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Cataldo has found all rigidly rotating self-gravitating perfect fluid solutions in 2+1 dimensions
with a negative cosmological constant Λ, for a density that is specified a priori as a function of
a certain radial coordinate. We rewrite these solutions in standard polar-radial coordinates, for
an arbitrary barotropic equation of state p(ρ). For any given equation of state, we find the two-
parameter family of solutions with a regular centre and finite total mass M and angular momentum
J (rigidly rotating stars). For analytic equations of state, the solution is analytic except at the

surface, but including at the centre. Defining the dimensionless spin J̃ :=
√
−Λ J , there is precisely

one solution for each (J̃ ,M) in the region |J̃ | − 1 < M < |J̃ |, which consists of parts of the point

particle region M < −|J̃ | and overspinning regions |J̃ | > |M |. In an adjacent compact part of the

black hole region |J̃ | < M (whose extent depends on the equation of state), there are precisely two

solutions for each (J̃ ,M). Hence exterior solutions exist in all three classes of BTZ solution (black

hole, point particle and overspinning), but not all possible values of (J̃ ,M) can be realised as stars.

Regardless of the values of J̃ and M , the causal structure of all stars for all equations of state is
that of anti-de Sitter space, without horizons or closed timelike curves.
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I. INTRODUCTION

Classical Einstein gravity in 2+1 spacetime di-
mensions may appear to be dynamically trivial be-
cause in 2+1 dimensions the Weyl tensor is iden-
tically zero. This means that the full Riemann
tensor is determined by the Ricci tensor, and so
by the stress-energy tensor of the matter. Hence

there are no gravitational waves, and the vacuum
solution is locally unique: Minkowski in the ab-
sence of a cosmological constant Λ, de Sitter for
Λ > 0, and anti-de Sitter for Λ < 0.

However, in 1992, Bañados, Teitelboim and
Zanelli [1] (from now on, BTZ) noticed that 2+1
dimensional vacuum Einstein gravity with Λ < 0
admits rotating black hole solutions that are in
close analogy with the family of Kerr solutions
in 3+1 dimensions. They can be found easily by
solving an axistationary ansatz for the metric, but
their existence was unexpected because the met-
ric has to be locally that of the 2+1-dimensional
anti-de Sitter solution (from now on, adS3). In
fact, these metrics can be derived as highly non-
trivial identifications of adS3 under an isometry
[2].

We define the cosmological length scale

` := (−Λ)−
1
2 . (1)

and the dimensionless spin

J̃ :=
J

`
. (2)

The gravitational mass M is already dimension-
less in 2+1 dimensions. A key difference to axis-
tationary vacuum solutions in 3+1 dimensions is
the existence of a mass gap: while adS3 is given
by the BTZ solution with parameters M = −1
and J̃ = 0, only the BTZ solutions with M > 0
and |J̃ | < M represent black holes. Solutions with

−1 < M < 0 and |J̃ | < −M represent point par-
ticles, similar to those for Λ = 0 described in [3].

The status of those with |J̃ | > |M |, which we call
“overspinning”, remains unclear.

The relevance of the BTZ solutions goes beyond
vacuum because, roughly speaking, the vacuum
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exterior of any rotating isolated object must be
a BTZ solution, even if the object itself is neither
stationary nor axisymmetric.

More precisely, consider a region of spacetime
with a timelike world tube removed. We can make
this region simply connected by making a cut from
the world tube to the outer boundary of the re-
gion. In the resulting simply connected region the
spacetime must be adS3. However, when we make
the region multiply connected again by identify-
ing the two sides of the cut, this identification is
parameterised by an isometry of adS3. The isom-
etry group of adS3 is six-dimensional, but it was
shown in [2] that the gauge-invariant part of the
identification is characterised by only two parame-
ters (J̃ ,M), parameterising precisely the BTZ so-
lutions. A region of spacetime with several world
tubes removed requires one identification around
each world tube, and so is described by a pair
(J̃i,Mi) for each world tube representing a com-
pact object.

By contrast, in 3+1 dimensions, the exterior of
a rotating object is not in general the Kerr solu-
tion, even if the object is axisymmetric and sta-
tionary. The argument we have just given does
not apply because in more than 2+1 dimensions
a vacuum spacetime need not be Minkowski even
locally. Put more physically, compact objects in
3+1 dimensions can make not only their mass and
spin, but also their internal structure felt in their
vacuum exteriors through tidal forces and gravita-
tional waves.

Perhaps the simplest example of axistationary
matter solutions are rotating perfect fluid stars.
In this paper we examine if rigidly rotating perfect
fluid stars exist in 2+1 dimensions for reasonable
equations of state. Here we define a star to be a
perfect fluid solution with a regular centre and fi-
nite mass and spin. We allow both for stars which
have a surface at finite radius and are surrounded
by vacuum, and stars which fill all of space but
whose density falls off sufficiently rapidly. Given
the existence of three different classes of BTZ so-
lutions, we ask if point-particle, black hole and
overspinning BTZ solutions can all be realised as
exterior or asymptotic spacetimes of rigidly rotat-
ing perfect fluid stars.

Hence in this paper we solve the Einstein-fluid
equations

Gab + Λgab = 8πTab (3)

with Λ ≤ 0 and the perfect-fluid stress-energy ten-
sor

Tab = (ρ+ p)uaub + pgab, (4)

making an ansatz of stationarity and axisymme-
try. The vector field ua is tangential to the fluid

worldlines, with uaua = −1, and p and ρ are the
pressure and total energy density measured in the
fluid rest frame. We formally assume a barotropic
equation of state p = p(ρ) given a priori. How-
ever, as we consider only axistationary solutions,
where all variables depend only on the radial co-
ordinate r, any solution with a given barotropic
equation of state could also a posteriori be a inter-
preted as a solution of a 2-parameter equation of
state p = p(ρ, s) (where s is, for example, the spe-
cific entropy), together with a given stratification
s = s(ρ). We set c = G = 1 throughout.

Cruz and Zanelli [4] have shown that static per-
fect fluid solution require a non-positive cosmo-
logical constant Λ ≤ 0 and also studied in more
detail the case of constant energy-density. In [5],
the special cases of a polytropic equation of state
with and without cosmological constant were also
studied in [5] and [6]. In [7], Garćıa et al. have
derived all static circularly symmetric spacetimes
with Λ ≤ 0. Rigidly rotating configurations were
also studied [8] and [9]. Cataldo [10] has found
all axistationary rigidly rotating perfect fluid so-
lutions in 2+1 spacetime dimensions with Λ < 0.
The total energy density ρ is specified a priori as
a function of the radial coordinate ρ(r̄). The met-
ric and p(r̄) are then given explicitly in terms of
ρ(r̄) and four parameters C, D, E and ω0. The
equation of state p(ρ) is implied only a posteri-
ori by comparing p(r̄) and ρ(r̄). We summarise
these results in Sec. II A below, followed by a list
of questions that remained open: How does one
find the general solution if not ρ(r̄) but the equa-
tion of state p(ρ) is given a priori? Which solutions
have a regular centre? Which solutions have a vac-
uum exterior solution, and what is its form? What
are the BTZ mass and angular momentum of such
star-like solutions?

To answer these questions, we translate
Cataldo’s solution into the standard 2+1 form in
terms of a lapse, shift and 2-metric, introduce an
area radius coordinate, identify Cataldo’s radial
coordinate r̄ with a certain integral over the equa-
tion of state, and identify the subset of solutions
with a regular centre, which as expected have only
two free parameters (not four). We give expres-

sions for M and J̃ in terms of these two parameters
and certain integrals involving only the equation
of state.

Our solutions for a general equation of state are
in implicit form. They can be made explicit by
evaluating an integral, inverting the resulting func-
tion, and evaluating another integral. As already
obtained by Cataldo, this can be done for the lin-
ear equation of state p = κρ and the “polytropic”
equation of state p = Kρk. As a further example,
we also consider the equation of state p = κ(ρ−ρs)
for ρs > 0.
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II. GENERAL EQUATION OF STATE

A. Rigidly rotating axistationary perfect
fluid solutions

Cataldo [10] has found axisymmetric, station-
ary, rigidly rotating perfect fluid solutions of the
Einstein equations in comoving coordinates, de-
fined by ua ∝ (∂t)

a, for a certain choice of radial
coordinate, in the form

ds2 = − (r̄ dt̄+ ωdθ)
2

+ h−1 dr̄2 + h dθ2, (5)

where

ω(r̄) :=
ω0

r̄
+ Er̄, (6)

h(r̄) := C − Λr̄2 +Dr̄ +
ω2

0

r̄2
+ 16πf̄(r̄), (7)

f̄(r̄) :=

∫ r̄

r̄0

r̄′ρ(r̄′) dr̄′ − r̄
∫ r̄

r̄0

ρ(r̄′) dr̄′, (8)

p(r̄) :=
D

16πr̄
− 1

r̄

∫ r̄

r̄0

ρ(r̄′) dr̄′. (9)

Here r̄0 is an arbitray integration limit. (In solu-
tions with a regular centre, we will later choose it
to correspond to the centre.) These solutions are
parameterised by the function ρ(r̄) and the con-
stants ω0, E, C and D. (We denote the time and
radial coordinates of [10] by t̄ and r̄ to distinguish
them from rescaled coordinates t and r that we in-
troduce below, and the area radius, which we will
denote by R.)

At this point, it appears that the density ρ has
to be specified as a function of the radial coordi-
nate r̄, which only afterwards implies an equation
of state p(ρ) through the expression (9) for p(r̄).
This issue was partly addressed in [10] by deriving
explicit solutions for two simple barotropic equa-
tions of state, but it remained unclear if and how
solutions can be obtained for an arbitrary equation
of state p(ρ) given a priori.

It also remained unclear which solutions have
a regular centre. This issue was partly addressed
in [10] by giving explicit solutions with a regular
centre for the above-mentioned equations of state.
There was, however, no systematic construction of
all solutions with a regular centre for an arbitrary
given equation of state in terms of precisely two
free parameters that control the mass and spin of
the star. Also lacking was a criterion on the equa-
tion of state for a solution with a regular centre
to either have a vacuum exterior, or to be asymp-
totically adS3 with finite BTZ mass M and spin
J .

In the remainder of this paper, we resolve all
these questions.

B. The equation of state

We first clarify the role of the equation of state.
Differentiating (9), we obtain

r̄
dp

dr̄
+ p+ ρ = 0. (10)

Solving this separable ODE by integration, we find

ln
r̄

r̄0
= −

∫ p(r̄)

p0

dp

p+ ρ(p)
= −

∫ ρ(r̄)

ρ0

p′(ρ) dρ

p(ρ) + ρ
,

(11)
where ρ0 := ρ(r̄0) is the density at r̄0 and p0 :=
p(ρ0) the corresponding pressure, given by the
equation of state p(ρ). For stars, we will later
choose r̄0 as the value of r̄ at the regular centre,
so that p0 is the central pressure.

Unless stated otherwise, we assume throughout
that the equation of state p(ρ) is at least continu-
ous and piecewise continuously differentiable, with
0 ≤ p′(ρ) < 1, and where p′(ρ) = 0 is allowed
only at p = 0. As a consequence, the sound speed√
p′(ρ) is real and less than the speed of light, and

the inverse equation of state ρ(p) also exists as a
continuous function that is piecewise once differ-
entiable for p > 0. We allow for the possibility
that p(ρs) = 0 for some ρs ≥ 0.

In obtaining (10) by differentiating (9) we have
lost the constant D. To find its value, we evaluate
(9) at r̄0, obtaining

D = 16πr̄0p0. (12)

C. Standard form of the metric

For further analysis, we rearrange the metric in
the usual 2+1 form, and with the 2-metric ex-
pressed in terms of an area radius R, that is, as

ds2 = −ᾱ2 dt̄2 + a2

(
dR

dr̄

)2

dr̄2 +R2 (dθ + β̄ dt̄)2,

(13)
where a, ᾱ, β̄ and R are all functions of r̄. Hence
ᾱ is the lapse, β̄ the shift in the angular direction,
both with respect to the time coordinate t̄, gθθ =
R2 defines the area radius R as the length of the
Killing vector ∂θ (and hence R is a scalar), and
gRR = a2 if we use R as the radial coordinate. We
read off

R2 = h− ω2, (14)

β̄ = − r̄ω
R2

, (15)

ᾱ2 = r̄2 +R2β̄2, (16)

a2 =
1(

dR
dr̄

)2
h

=
4R2(
dR2

dr̄

)2
h

(17)
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as functions of r̄. We see that t̄ and r̄ have
nonstandard dimensions, namely length−1 and
length2, respectively. We use r̄0 to define a length
scale

s :=
√
r̄0, (18)

and then define

t := s2 t̄, r :=
r̄

s
, (19)

which have the usual dimension length. We corre-
spondingly rescale the lapse and shift as

α :=
ᾱ

s2
, β :=

β̄

s2
. (20)

The metric now takes the form

ds2 = −α2 dt2 + a2

(
dR

dr

)2

dr2 +R2 (dθ + β dt)2.

(21)
We introduce the dimensionless cosmological

constant and spin parameters

λ := s
√
−Λ ≥ 0, (22)

Ω :=
ω0

s3
, (23)

and their combination

µ := λ2 − Ω2. (24)

Note that λ� 1 corresponds to the length scale s
being small compared to the cosmological length
scale `, but also, equivalently, to the cumulative ef-
fects of the cosmological constant being small over
length scales of size s. We will in general consider
λ > 0, but at one point also λ = 0, interpreted as
Λ = 0. Otherwise, we always express λ in terms
of the two independent parameters µ and Ω.

To write all our equations in fully non-
dimensional form, we introduce the dimensionless
radial coordinate y and dimensionless area radius
x defined by

y :=
r

s
, x :=

R

s
. (25)

For a given equation of state p(ρ) and reference
density ρ0, the relation between the density ρ and
the dimensionless radial coordinate y is

y(ρ0; ρ) = exp

(
−
∫ ρ

ρ0

p′(ρ̃) dρ̃

p(ρ̃) + ρ̃

)
, (26)

or equivalently

y(p0; p) = exp

(
−
∫ p

p0

dp̃

p̃+ ρ(p̃)

)
, (27)

where ρ0 and p0 = p(ρ0) are the density and pres-
sure at y = 1, p′(ρ) := dp/dρ, and ρ(p) is the
inverse equation of state, compare also Eq. (50) of
[9]. We define the dimensionless function f(y) :=
s−2f̄(r̄), that is

f(y) = s2

(∫ y

1

ρ(ỹ)ỹ dỹ − y
∫ y

1

ρ(ỹ) dỹ

)
. (28)

We primarily use s rather than ` to adimension-
alise all other variables and parameters in order to
keep the limit Λ = 0 regular. However, when we
want to compare different solutions with the same
Λ < 0, it is more natural to express the dimen-
sionful quantities R, ρ and p in terms of `, using

s = λ` =
√
µ+ Ω2 `. (29)

In particular we have

R = `
√
µ+ Ω2 x (30)

and

s2ρ = (µ+ Ω2)`2ρ. (31)

D. Local mass and angular momentum

For an arbitrary time-dependent axisymmetric
spacetime in 2+1 spacetime dimensions, regardless
of matter content, there exist two conserved cur-
rents ∇aja(J) = 0 and ∇aja(M) = 0: the conserved

current due to the angular Killing vector, and a
second, more mysterious, one that generalises the
Misner-Sharp mass that exists for spherical sym-
metry in any dimension, to a conserved mass that
exists for axisymmetry in 2+1 dimensions only. In
terms of the metric (21), the corresponding con-
served quantities are given by

J =
R3 ∂β

∂r
dR
dr aα

, (32)

M =
R2

`2
+

J2

4R2
− 1

a2
. (33)

Note that these expressions hold in the axsymmet-
ric but time-dependent case. In the axistationary
case that we consider here, ∂β/∂r simply becomes
dβ/dr. In any vacuum region, M and J are con-
stant with values equal to the BTZ parameters of
the same name, that is, the Einstein equations give
M,r = M,t = J,r = J,t = 0. In particular, for con-
stant (J,M), the polar-radial metric (21) takes the
form

c20α
2 = −M +

R2

`2
+

J2

4R2
, (34)

a2 =
1

c20α
2
, (35)

c0β = − J

2R2
+ β0. (36)
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We can further set c0 = 1 by rescaling t by the
constant factor c0, and β0 = 0 by a rigid rotation of
the coordinate system that corresponds to shifting
θ by β0t. The result is the standard form of the
BTZ metric first given in [1].

E. Solutions with a regular centre

We now demand that the solution has a regular
centre at some value of the radial coordinate r̄.
Without loss of generality we choose the centre to
be at the reference radius r̄0, so that R(r̄0) = 0 and
f̄(r̄0) = (df̄/dr̄)(r̄0) = 0. With these conditions,
(7) can be solved for the parameter C, which is
now replaced as a free parameter by r̄0.

We also demand that there is no conical singu-
larity at the centre, a(r̄0) = 1. However, a neces-
sary condition for this limit to be finite, given that
R(r̄0) = 0 (by definition) and (dR2/dr̄)(r̄0) 6= 0
(by observation) is that h(r̄0) = 0, and hence that
ω(r̄0) = 0. This last condition can be solved for
the parameter E. Applying l’Hôpital’s rule, we
then have

lim
r̄→r̄0

a = lim
r̄→r̄0

4
dR2

dr̄
dh
dr̄

=
4

dh
dr̄ (r̄0)2

, (37)

and so we need (dh/dr̄)(r̄0) = 2, which can be
solved for D. The result, expressed for brevity in
terms of our dimensionless parameters µ and Ω
and reference scale s, is

E = −Ω

s
, (38)

C = s2(µ− 2(1 + Ω2)), (39)

D = 2(1− µ). (40)

For a given barotropic equation of state, the gen-
eral solution with a regular centre now has two
dimensionless free parameters µ, Ω, which govern,
roughly speaking, the mass and spin of the star.
This is the number of free physical parameters one
would expect after imposing regularity at the cen-
tre. Note that, for fixed Λ, s is given in terms of µ
and Ω by (29), and from (12) and (40), the central
pressure is given in terms of µ by

p0 =
1− µ
8πs2

, (41)

or equivalently

p0 =
1− µ

8π(µ+ Ω2)`2
. (42)

The expression for the metric coefficients, for
an arbitrary equation of state, can be written con-

cisely as

x2 = µ(y − 1)2 + 2(y − 1) + 16πf, (43)

α2 = y2 +
Ω2(y2 − 1)2

x2
, (44)

a2 =
4y2(

dx2

dy

)2

α2

, (45)

β =
Ω(y2 − 1)

sx2
. (46)

where x, a, α and β are all functions of y. Note
that y ≥ 1 with y = 1 at the regular centre. Recall
that f(y) was defined in Eq. (28), where ρ(y) is
given implicitly by inverting the integral (26), with
the integration limit ρ0 = ρ(p0) defined in terms
of our free parameters µ and Ω by Eq. (42).

Eqns. (26), (28), (42) and (43-46) together fully
specify our solutions, and can be taken as the
starting point for the analysis that follows.

For an analytic equation of state, f(y) is ana-
lytic with f(y) = O(y − 1)2 near the centre, and
hence

x2 = 2(y − 1) +O(y − 1)2, (47)

β =
Ω

s
+O(y − 1)

=
Ω√

µ+ Ω2 `
+O(y − 1) (48)

near the centre. We note for later use that, while
β is proportional to Ω for small Ω, it remains finite
everywhere as |Ω| → ∞.

We obtain a fully explicit solution in the radial
coordinate y if and only if the integral (26) can
be evaluated for y(ρ0; ρ), this can then be inverted
to give ρ(ρ0; y), and if the integral (28) can then
also be evaluated. Furthermore, we obtain a fully
explicit solution in terms of the area radius R if
and only if Eq. (43) can also be inverted to give
y(x).

However, we do not need explicit solutions to
establish analyticity of the solution in the area ra-
dius R. In an open interval of ρ where the equation
of state p(ρ) is analytic and p + ρ > 0, Eq. (26)
defines y as a monotonically decreasing analytic
function of ρ in this interval of ρ, and so ρ(y) ex-
ists and is analytic in the corresponding interval
of y. It follows that f is an analytic function of y
in this interval. Hence a, α and β are all analytic
functions of y at least for y > 1. A closer look
shows that they are analytic also at y = 1, which
corresponds to x = 0. Moreover, x2 is an analytic
function of y for y ≥ 1, and so implicitly ρ, p, a, α,
β are all analytic functions of x2. In other words,
they are even analytic functions of R for R ≥ 0.
For typical equations of state, analyticity breaks
down at the surface of the star where p = 0.
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By a standard argument, analyticity in R2 im-
plies that if we rewrite the metric in terms of
Cartesian coordinates X := R cos θ, Y := R sin θ,
all coefficients of the metric in the coordinates
(t,X, Y ) are analytic functions of X and Y (and
independent of t), including at the centre X =
Y = 0.

The expressions for the local mass and angular
momentum as functions of y are

M = (µ+ 2Ω2)x2 − 1

4

(
dx2

dy

)2

−
Ω2(y2 − 1)dx

2

dy

y
, (49)

J = sΩ

(
2x2 −

(y2 − 1)dx
2

dy

y

)
, (50)

or equivalently

J̃ =
√
µ+ Ω2 Ω

(
2x2 −

(y2 − 1)dx
2

dy

y

)
. (51)

These are also even analytic functions of R.

F. The adS3 and test fluid cases

For µ = 1 the central pressure is zero, and so
this must correspond to the adS3 solution. Indeed,
with µ = 1 the metric takes the form

x2 = y2 − 1, (52)

α2 = (1 + Ω2)y2 − Ω2, (53)

a2 = α−2, (54)

β = s−1Ω =: β0, (55)

and we have M = −1 and J = 0. Hence this is
the adS3 solution in a rigidly rotating coordinate
system, with constant angular velocity β0. In the
vacuum solution, β0 has no physical significance,
and can be set to zero.

Expanding in µ − 1, to leading order we ob-
tain the test fluid limit, in which a stationary,
rigidly rotating, fluid configuration is held together
only by the cosmological constant (as well as be-
ing pulled apart by rotation), but in which its self-
gravity can be ignored. The metric is that of adS3,
but in a coordinate system that rotates with the
fluid. As in the self-gravitating case, the equation
of state and the central density ρ0 implicitly de-
termine a function ρ = ρ(ρ0; y) through Eq. (26).
In the test fluid case, from (52), y is given in terms
of the area radius R, the cosmological constant Λ
and the constant angular velocity β0 as

y2 = 1 + x2 = 1 +R2(−Λ− β2
0), (56)

where we have used (22), (24) with µ = 1 and (55)
to eliminate s. Hence we have an implicit expres-
sion ρ(R) for any rigidly rotating test fluid solu-
tion, for arbitary central density ρ0 and arbitrary
constant angular velocity β0 (with respect to the
Killing vector ∂t), given a cosmological constant
Λ < 0 and equation of state.

G. Star-like solutions

We now look for solutions in which either p = 0
occurs at finite radius or p → 0 and ρ → 0 suf-
ficiently rapidly as R → ∞ so that the solution
has finite M and J . We shall call such solutions
“stars”. Without any attempt at rigour, we clas-
sify the possibilities by assuming that the fluid is
polytropic at low pressure, that is

p ∼ ρk as p→ 0, (57)

for some k ≥ 1. We note that for k < 1, the sound
speed

√
p′(ρ) diverges as ρ → 0. We therefore

disregard this range as unphysical.
From (42), we require µ ≤ 1 for the central pres-

sure to be non-negative, and from (43) we further
require µ ≥ 0 for x(y) to be a monotonically in-
creasing function for all y, in particular at large
y. Stars therefore exist only with Λ < 0, and for
0 ≤ µ ≤ 1. Physically, from (24), µ > 0 means
that the Hubble acceleration is centripetal (Λ < 0)
and larger than the centrifugal acceleration due to
the rigid rotation (λ2 > Ω2). Both the Hubble
and the centrifugal acceleration depend on radius
in the same way, and so this is true either for all
y or for none.
a. Stars with a surface From (27), we see that

the solution has a surface p(y∗) = 0 at some finite
coordinate radius y∗ and finite area radius x∗ if
and only if the integral

y∗(p0) := y(p0; 0) = exp

∫ p0

0

dp

p+ ρ(p)
. (58)

converges. Note that in this case y∗(0) = 1. In
the approximation (57) this is the case for k > 1.
The limiting case k = ∞ can be interpreted as
a fluid where ρ = ρs > 0 is finite at p = 0. (One
may think of such a perfect fluid as a liquid, rather
than a gas).

In the exterior y > y∗, the solution must be
equal to a BTZ solution with constant M and J .
To verify this, we note that in the exterior, (28)
reduces to

16πf = m− 2(1− µ)y, (59)

where we have defined the integrated fluid mass

m := 16πs2

∫ y∗

1

ρ y dy. (60)
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We have identified the coefficient of y in (59) as
−D by demanding that (9) holds in the vacuum
region p = 0, and have then used (40) to eliminate
D.

As y ≥ 1 in the integral in (60), we have

m ≥ 16πs2

∫ y∗

1

ρ dy = 2(1− µ), (61)

where to obtain the last equality we have evaluated
(9) in the vacuum region p = 0 and used (40).

To clarify what free parameters determine m,
we use (27) to eliminate y and (41) to eliminate s
in favour of the central pressure p0, and then (42)
to in turn express p0 in terms our free parameters
µ and Ω. We obtain

m = 2(1− µ) I

(
1− µ

8π(µ+ Ω2)`2

)
, (62)

where

I(p0) :=

∫ p0

0

exp

(
−2

∫ p

p0

dp̃

p̃+ ρ(p̃)

)
ρ(p)

p0

dp

p+ ρ(p)
.

(63)
So in general m depends on µ and Ω2, as well as
of course on the equation of state. Note that from
(61), we have I(p0) ≥ 1.

To simplify the expressions that follow, we de-
fine the auxiliary quantity

A(µ,Ω) := m(µ,Ω) + µ− 2. (64)

By definition, A(1,Ω) = −1 in the vacuum or test
fluid case, where m = 0. From (61), we have

A+ µ ≥ 0. (65)

With f given by (59), the metric coefficients in
the vacuum exterior are given by (43-46) as

x2 = µy2 +A, (66)

α2 = y2 +
Ω2(y2 − 1)2

µy2 +A
, (67)

a2 =
1

µ2α2
, (68)

β =
Ω(y2 − 1)

s(µy2 +A)
. (69)

Substituting (66) into the expressions (49) and
(50) for M and J , we obtain the constant values

M = Mtot := Aµ+ 2(A+ µ)Ω2, (70)

J̃ = J̃tot := 2
√
µ+ Ω2(A+ µ)Ω, (71)

or equivalently

Jtot = 2s(A+ µ)Ω. (72)

It is then easy to verify that the exterior metric
(66-69), is (34-36), generally with c0 6= 1 and β0 6=
0.

b. Stars without a surface If the integral (58)
diverges but the integral (60) with y∗ = ∞ con-
verges to a finite value of m, the star has no surface
but finite mass.

Taking the limit of M(y) and J(y) as y →∞, we
again obtain the finite total values given by (70)
and (72). The metric is now asymptotic (rather
than strictly equal) to the BTZ metric (21,34-36).

In these stars without a sharp surface, we
can nevertheless roughly identify a central region
where self-gravity of the star is important and M
and |J | still increase, and an outer region, or stellar
atmosphere, where M and J are essentially con-
stant and the fluid is essentially a test fluid on the
BTZ spacetime with parameters Mtot and Jtot.

In our approximation (57) this happens in the
marginal case k = 1, we need to also specify the
constant of proportionality, as the dimensionless
parameter κ in

p ' κρ as p→ 0, (73)

for some 0 < κ < 1. The pressure and density
fall off as ρ ∼ p ∼ y−1− 1

κ , and so once again m is
finite, but there is now no surface at finite radius,
and the metric is only asymptotically BTZ, with
y∗ =∞. The sound speed is also less than the the
speed of light for 0 < κ < 1.
c. Non-stars When not only y∗ but m di-

verges, f(y) grows faster than y as y → ∞. In
the approximation (57), this is the case for 1/2 ≤
k < 1, when ρ ∼ y− 1

k and f ∼ y2−(1/k) as y →∞.
However, we have already ruled out k < 1 on the
grounds that the sound speed

√
p′(ρ) diverges at

the surface. The expressions for M(y) and J(y)
also diverge, and so the spacetime is not asymptot-
ically BTZ. Such solutions do not describe stars.
Recall again that we have already ruled out k < 1
on the grounds of diverging sound speed.

H. The manifold of solutions

In contrast to 3+1 and higher dimensions, the
vacuum exterior metric, or the asymptotic metric
at infinity, of a rotating star is given by a BTZ
metric. It is therefore of interest what region in the
(J̃ ,M) plane is covered by possible stellar exterior
solutions. Recall that for stars the parameters µ
and Ω can take any values in the strip

0 < µ ≤ 1, −∞ < Ω <∞. (74)

In the following, we suppress the suffix “tot” for
brevity, and for the rest of this Section, M and
J̃ always denote the total mass and spin of the
spacetime, measured at infinity.

The manifold of solutions is uniquely parame-
terised by (Ω, µ). However, if we are interested
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more in the values of (J̃ ,M), we can present the

solution manifold as a hypersurface in (J̃ ,M, µ)
space. The case of the linear equation of state
p = κρ is non-generic in that A is a function of µ
only, but it, and in particular the value κ = 1/2,
can serve as a concrete illustration of the gen-
eral considerations presented below. The solution
manifold parameterised by (Ω, µ) for the equation
of state p = ρ/2 is shown in Fig. 1. The same

solution manifold embedded in (J̃ ,M, µ) space is
shown in Fig. 2, and the projection of this embed-
ding down into the (J̃ ,M) plane in Fig. 3. We
stress that the following arguments hold for all
equations of state that admit star-like solutions,
and so these figures apply qualitatively to all equa-
tions of state.
a. Boundary µ = 1 of solution space We have

already seen that µ = 1 at finite Ω (the thick black
line in Fig. 1) corresponds to a rotating test fluid

on the adS3 spacetime with M = −1 and J̃ = 0.
However, taking the simultaneous limit µ → 1−,
Ω→ ±∞ of (70) and (71) such that

µ = 1− q̃

Ω2
(75)

for some fixed constant q̃ > 0, we have s→∞ and
p0 → 0 and so, for finite I(0), we obtain

m ' 2(1− µ) I(0), (76)

giving

A+ µ ' q

Ω2
, q := 2[I(0)− 1]q̃, (77)

and hence two 1-parameter families of solutions
with

M = −1 + q, J̃ = ±q. (78)

From (65), we have that q ≥ 0. See the blue re-
gion in Fig. 1 as Ω → ±∞, and the thick dashed
black line in Fig. 2. In this limit, the fluid is in-
finitely dilute but infinitely extended. Note that
even though Ω → ∞, the angular velocity β is fi-
nite everywhere. The integrated fluid rest mass m
vanishes, but M > −1. Intuitively, this nontrivial
gravitational mass comes from rotational energy.

We now show, assuming an analytic equation of
state for small p > 0, that I(0) = 1 if the star has
a surface at finite radius. To see this, we write

I(p0) =

∫ p0

0

y2(p0; p)
ρ

p0

dp

p+ ρ
≥ 0. (79)

We can bound 1 ≤ y2 ≤ y2
∗ in the integrand, and

so

1

p0

∫ p0

0

ρ

p+ ρ
dp ≤ I(p0) ≤ y2

?

p0

∫ p0

0

ρ

p+ ρ
dp.

(80)

From y∗(0) = 1 (as noted above) and the squeeze
theorem, we then have

I(0) = lim
p0→0

1

p0

∫ p0

0

dp

1 + p
ρ

. (81)

From causality, p/ρ must remain bounded as p→
0. If in fact p/ρ→ 0 as p→ 0, we have I(0) = 1.

In the other case, where p/ρ→ κ remains finite
as p→ 0, the surface of the star is at infinity and
so we cannot rely on (81). However, one can see
by explicit calculation that I(0) = 1/(1 − κ) for
this case, which is finite, see also (109) below.

b. Boundary µ = 0 of solution space If
A(0,Ω) is finite, the boundary µ = 0 of solution
space corresponds to a family of solutions with

M = 2A(0,Ω) Ω2, J̃ = 2A(0,Ω) |Ω|Ω, (82)

Note that A(0,Ω) ≥ 0 from (65), and so these

solutions obey M ≥ 0 with |J̃ | = M . See the thick
blue line in Figs. 1 and 2.

c. Second family of critically spinning solu-
tions There is a second family of solutions with
|J̃ | = |M |, over a finite range of M including both
positive and negative values of M , namely

Ω = ±Ωc(µ), (83)

where Ωc(µ) is defined by solving

A2 = 4(A+ µ)Ω2 (84)

for Ω2, given µ. Along these curves, parameterised
by µ, we have

|M | = |J̃ | = A

(
µ+

A

2

)
. (85)

The range 1 > µ > 0 corresponds to the range
−1/2 < M < M0. Here

M0 := 8Ω2
0, (86)

where Ω0 is the positive solution of

A(0,Ω0) = 4Ω2
0. (87)

[Note that therefore Ω0 = Ωc(0).] See the thick
green lines in Figs. 1 and 2.. The two curves inter-
sect at M = J̃ = 0, which corresponds to µ = µc
defined by

A(µc, 0) = 0. (88)

This always has a solution in the range 0 ≤ µc < 1
because A(µ,Ω) is continuous with A(0,Ω) ≥ 0
and A(1,Ω) = −1. [We assume without proof that
there is only one solution.] At their upper ends,
the two curves are asymptotic to µ = 1 as Ω →
±∞ in the (Ω, µ) strip, but in the (J̃ ,M) plane

they end at the finite pointsM = −1/2, J̃ = ±1/2.
At their lower ends they intersect µ = 0 at finite
|Ω| = Ω0, corresponding to |J̃ | = M = M0 > 0.
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d. Double cover of a region in the (J̃ ,M) plane

As there are two solutions for M = |J̃ | for 0 ≤
M < M0, by continuity there must be a region
of the (J̃ ,M) plane that is doubly covered by the

manifold of solutions. As the solutions M = |J̃ |
corresponding to µ = 0 lie on one boundary of the
solution manifold, they also form one boundary of
the doubly-covered region [in (Ω, µ) and (J̃ ,M),
respectively]. The other boundary of the doubly-

covered region in the (J̃ ,M) plane occurs where
the solution manifold of Fig. 2 folds over. This
occurs where ∣∣∣∣∣∂(J̃ ,M)

∂(Ω, µ)

∣∣∣∣∣ = 0, (89)

which is equivalent to

2(A+µ)(µA,µ+A−4Ω2)+(A−4Ω2−3µ)ΩA,Ω = 0.
(90)

This implicitly defines a curve

Ω = ±Ωr(µ), 0 < µ < µr, (91)

where µr is defined by Ωr(µr) = 0, giving

µrA,µ(µr, 0) +A(µr, 0) = 0. (92)

[Note that Ωr(0) = Ω0. We assume without proof
that there is only one such curve, that is, the solu-
tion manifold is not folded over more than double.]

In fluid parameter space (Ω, µ), the doubly-
covered region lies between the curves (83) for
0 < µ < µc (the lower part of the two green curves
in Fig. 1) and the curve µ = 0 for −Ω0 < Ω < Ω0

(part of the blue line). It is divided into two halves
by (91) (the red curve). All three curves intersect
at the two points µ = 0, Ω = ±Ω0. Pairs of points
from those two halves of the doubly-covered region
have the same values of M and J̃ .

In BTZ parameter space (J̃ ,M), the doubly cov-

ered region lies between |J̃ | = M for 0 < M < M0

(corresponding to both the blue and green curves
in Fig. 2), and the red curve

Ω = ±Ω̃r(M), 0 < M < M0, (93)

which is given implicitly by (70) and (71) with
(91). The double cover becomes clearer by com-
paring Fig. 2 with its top view, Fig. 3. The corner
points at µ = 0, Ω = ±Ω0 have M = |J̃ | = M0.

Hence the maximum possible M for given |J̃ | <
M0 is obtained on the red curve. In particular,
the maximum possible mass without rotation is
given by Ω = 0 and µ = µr, and is

Mr := M(µr, 0) = A(µr, 0)µr. (94)

The red curve (91) corresponds to a curve of
solutions that have a zero mode, a static linear

perturbation that corresponds to an infinitesimal
change of (µ,Ω) that leaves (J̃ ,M) invariant to
linear order. This signals that a linear perturba-
tion mode changes from stable to unstable across
the red curve. This is familiar from nonrotating
stars in 3+1 dimensions, where an extremum of
the mass as a function of central density signals a
separation between stable and unstable stars, with
the less dense stars stable and the more dense ones
unstable. We conjecture that the solutions in the
doubly-covered region with smaller µ (and hence
larger central density) are unstable, correspond-
ing to region below the red curve in Fig. 1. As
their asymptotic metrics are of black-hole type, it
is possible that these unstable solutions collapse
to a black hole when perturbed in a suitable way.

We have obtained some evidence for this conjec-
ture by time-evolving the two solutions with the
equation of state p = ρ/2 represented by the or-
ange and black dots in Fig. 1. Adding a small
perturbation of the density with either sign to the
less dense (orange) solution sets up propagating
perturbations that remain small. Adding a small
density perturbation to the denser (black) solution
results in a highly nonlinear oscillation for one sign
of the perturbation, where the central density re-
peatedly decreases below that of the orange solu-
tion, while perturbing the initial density with the
opposite sign triggers prompt collapse to a black
hole.

e. Summary of Λ < 0 In summary, the man-
ifold of solutions contains a unique solution with
given (J̃ ,M) in the chevron-shaped region

|J̃ | − 1 < M < |J̃ | (95)

that is bounded by the curves (78) and (82), while

in a contiguous compact region bounded by |J̃ | =
M for 0 < M < M0 and the curve (91) there are

two solutions with the same given (J̃ ,M). There

are no solutions with (J̃ ,M) outside these two re-
gions.

f. The case Λ = 0 We now consider the limit
where the length scale s remains finite but Λ→ 0.
Then λ2 = µ + Ω2 = 0, so in this limit µ = Ω =
0. Therefore, no rigidly rotating stars can exist.
Intuitively, only the cosmological contraction due
to Λ < 0 can balance the centrifugal acceleration
of rigid rotation, while the curvature generated by
stress-energy cannot. Setting Ω = 0, replacing
(µ + Ω2)`2 with s2, and then setting µ = 0, we
obtain

m = 2I

(
1

8πs2

)
. (96)
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Eqns. (26) and (28) still hold, and so do (43-46)
and (49), reduced to

x2 = 2(y − 1) + 16πf, (97)

α2 = y2, (98)

M = − 1

a2
= −1

4

(
dx2

dy

)2

, (99)

with β = 0 and J = 0. They define an analytic in-
terior solution for analytic equation of state, with
in particular a regular centre. However, in the vac-
uum exterior to this interior solution, (97) with
(59) gives x2 = m− 2, which is constant, so from
(99) M = 0. This means that a diverges at the
surface, but the metric expressed in terms of y re-
mains regular, and in the exterior it is

ds2 = −y2 dt2 + s2

(
dy2

m− 2
+ (m− 2) dθ2

)
,

(100)
for y∗ < y < ∞. The spatial geometry is a cylin-
der, see also Eq. (79) of [9]. If y? is finite, we do
not consider such a solution as a star.

I. Causal structure

If we apply the standard compactification of
adS3, namely

R = ` tan
ψ

`
, (101)

to the BTZ metric in its standard form, (21,34-36)
with c0 = 1 and β0 = 0, we obtain

ds2 =
1

cos2 ψ
`

[
−F dt2 +G−1 dψ2

+`2 sin2 ψ

`
(dθ +H dt)

2

]
, (102)

where F = G and

G = 1− (M + 1) cos2 ψ

`
+
J2 cos4 ψ

`

4 sin2 ψ
`

, (103)

H =
J cos2 ψ

`

2 sin2 ψ
`

. (104)

This is conformal to a metric (the one in the
large square brackets) that is regular everywhere,
or in the black-hole case everywhere outside the
event horizon, but always including at ψ/` = π/2,
which is therefore revealed as a timelike conformal
boundary. In our star-like solutions, F 6= G and H
are different functions from those given above, but
they are finite and non-zero for 0 ≤ ψ/` ≤ π/2.

For the BTZ metrics corresponding to black
holes, the familiar Penrose diagram [2] is a differ-
ent one, being a square that is compact in the time
as well as the radial direction. At first sight, this
seems to contradict the above conformal picture
for a star, in which the conformal metric has an
infinite range of t. The apparent contradiction is
resolved by noticing that the black hole conformal
diagram contains at its top and right corner a point
representing timelike infinity where the curve rep-
resenting the future branch of the event horizon
meets the curve representing the timelike confor-
mal boundary. If we now cover up the black hole
region with a star, the timelike curve representing
the surface of the star and the timelike conformal
boundary meet at the same point in the confor-
mal diagram. Both have infinite proper length,
and are tangential to the stationary Killing vec-
tor. Moreover, a radial light ray reflected at both
curves travels between them an infinity number of
times before reaching the point in the conformal
diagram where they meet. Hence there must be a
conformal transformation where these two curves
remain parallel and have infinite coordinate length
in the resulting Penrose diagram, as derived above.

A second question about the causal structure is
if the spacetime admits closed timelike curves. It
is obvious that closed timelike curves exist if there
is a region where the metric coefficient gθθ = R2 is
negative. Conversely, Bañados, Henneaux, Teitel-
boim and Zanelli [2] have proved that the BTZ
metrics do not contain closed timelike curves if
there is no region with R2 < 0, or if such regions
are excluded. The proof only relies on the signa-
ture of the metric coefficients, not their form, and
so generalizes to metrics of the form (13), as long
as a2 and α2 remain positive. Hence, as a2, α2

and R2 are manifestly non-negative in our star-
like solutions, they do not contain closed timelike
curves. (The examples of solutions with closed
timelike curves given by Cataldo [10] can there-
fore not be star-like, that is, have both a regular
centre and be asymptotically BTZ.)

III. SIMPLE EQUATIONS OF STATE

A. Ultrarelativistic linear equation of state
p = κρ

In the following, we concentrate on solutions
with the ultra-relativistic (linear) equation of state
p = κρ, assuming the physical range 0 < κ < 1
of the equation of state parameter, which gives
a real speed of sound smaller than the speed of
light. (With the value κ = 1/2 in particular this
equation of state can be interpreted as a gas of
massless particles without internal degrees of free-
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dom.) We have already seen above that star-like
solutions with this equation of state have no sur-
face at finite radius but are asymptotically BTZ.
From (26) we have

ρ(ρ0; y) = ρ0y
− 1+κ

κ , (105)

and hence from (28)

8πf(y) = (1−µ)

(
(1− y) +

κ

1− κ

(
1− y−

1−κ
κ

))
.

(106)
Of the metric coefficients, we here write out only

x2 = µ(y2 − 1) +
2κ(1− µ)

1− κ

(
1− y−

1−κ
κ

)
. (107)

The other metric coefficients are given by (44-46).
In the test fluid case µ = 1 we have x2 = y2−1,

and so the density in terms of the area radius takes
the simple form

ρ = ρ0

[
1 +R2(−Λ− β2

0)
]− 1+κ

2κ , (108)

where the central density ρ0 is arbitrary (but as-
sumed so small that self-gravity can be neglected)
and β0 is the constant angular velocity.

Integrating (105), we have

m = 2
1− µ
1− κ

⇔ I(p0) =
1

1− κ
, (109)

and so

A =
2κ− (1 + κ)µ

1− κ
. (110)

For this particular equation of state, I(p0) is con-
stant, and so m and A depend on µ only but (un-
typically) not on Ω. The total mass and spin at
infinity are

Mtot =
−(1 + κ)µ2 + 2κµ(1− 2Ω2) + 4κΩ2

1− κ
,(111)

J̃tot =
4κ(1− µ)Ω

√
µ+ Ω2

1− κ
. (112)

The loci of J̃tot = ±Mtot are the two intersecting
critical curves Ω = ±Ωc(µ) with

Ωc(µ) =
2κ− (1 + κ)µ√
8κ(1− κ)(1− µ)

. (113)

They cross at

µc =
2κ

1 + κ
, (114)

which is inside the strip for all 0 < κ < 1, and
they intersect the edge µ = 0 of the strip at

Ω0 =

√
κ

2(1− κ)
. (115)

Hence for all physical values of κ the strip contains
regions corresponding to point-particle, black hole
and overspinning values of the pair (J̃ ,M), as we
have already shown in general.

The parameter space 0 < µ < 1, −∞ < Ω <∞
of solutions is shown in Fig. 1 for κ = 1/2, to-

gether with contour lines of M and J̃ , the lines
|J̃ | = |M |, colour-coding of the asymptotic met-
ric as black-hole, point particle or overspinning,
and the curve that divides the black-hole region
of parameter space into two halves that cover the
corresponding region of (J̃ ,M) space twice. This
second curve is given by

Ω2
r(µ) =

1 + κ

2(1− κ)
(µr − µ), µr :=

κ

1 + κ
(116)

for 0 < µ < µr. We can deparameterise this curve
to obtain J2 as a function of M involving only
square roots, but the result is messy.

Solutions of black-hole type exist only for M <
M0 with

M0 = 8Ω4
0 =

2κ2

(1− κ)2
. (117)

The maximum possible mass without rotation is

Mr = A(µr)µr =
κ2

1− κ2
. (118)

The manifold of solution is shown embedded in
(J̃ ,M, µ) space in Fig. 2 to show the double cover
more clearly, using the same colour-coding. A top
view, suppressing the µ direction and thus hiding
the double cover, is given in Fig. 3.

In all these figures, we have marked a specific
pair of solutions with black-hole class asymptotic
metrics, both of which have the same total mass
M = 0.38 and angular momentum J̃ = 0.24, but
which have different parameter values (Ω, µ) '
(0.154, 0.242) and (0.153, 0.392). These solutions
themselves are illustrated in Fig. 4 by plotting M ,
J̃ and `2ρ as functions of R/`.

B. Modified linear equation of state
p = κ(ρ− ρs)

A simple equation of state that admits solutions
with a surface at finite radius is the inhomogeneous
linear one,

p = κ(ρ− ρs), (119)

for 0 < κ < 1 and ρs ≥ 0. Obviously this reduces
to the previous example for ρs = 0. Proceeding as
before, we find

ρ = ρ0 y
− 1+κ

κ +
κρs

1 + κ

(
1− y−

1+κ
κ

)
. (120)
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FIG. 1. The nature of the asymptotic metric for
star-like solutions with the linear equation of state
p = ρ/2. All solutions lie in the strip 0 < µ < 1,
−∞ < Ω < ∞. The asymptotic metric is of black
hole type in the orange (bottom) region, of point-
particle type in the blue (top) region and of over-
spinning type in the green (left and right) regions.
The parameter values of the two solutions shown in
Fig. 4, and which have the same (J̃ ,M), are indi-
cated by an orange and a black dot. The contours
of M = −1,−1/2, 0, 1/2, 1, 2, 4, 8, 16 (from top to bot-

tom, solid) and J̃ = 0,±1/2,±1,±2,±4,±8,±16 (out-
ward from the centre, dashed) are also shown. The

crossing green lines indicate J̃ = ±M . The bottom
region is split into two regions by the red line, each
of which covers the same region in the (J̃ ,M) plane.
Solutions in the bottom half, such as the one indicated
by the black dot, are conjectured to be unstable. The
green dot is at (0, µc), and the three red dots are at
(±Ω0, 0) and (0, µr).

We then obtain

x2 = µ̃(y2 − 1) +
2κ(1− µ̃)

1− κ

(
1− y−

1−κ
κ

)
(121)

which is just (107) again, only with µ replaced by

µ̃ := µ− σ, (122)

where

σ :=
κ

1 + κ
8πs2ρs =

κ

1 + κ
(µ+ Ω2)8π`2ρs.

(123)
The other metric components follow, and we do
not give them here. The stellar surface is now at
finite radius

y∗(ρ0) =

(
(1 + κ)ρ0

ρs
− κ
) κ

1+κ

. (124)

Note that y∗(ρs) = 1 as expected. We have

m = 2
1− µ
1− κ

+
1 + κ

1− κ
σ

(
1−

(
1− µ+ σ

σ

) 2κ
1+κ

)
,

(125)
which now depends also on Ω through σ(µ,Ω). We
do not write down further expressions, which are
complicated and do not add new insight.

FIG. 2. Parametric plot of (J̃ ,M) as a function of

(µ,Ω), embedded in three dimensions as (J̃ ,M, µ). All
dots and thick curves correspond to those of the same
colour in Fig. 1. Contours of Ω and µ are shown as
thin lines. The thick red line denotes the locus of
|∂(J̃ ,M)/∂(µ,Ω)| = 0, where the embedded surface
is vertical. The intersecting thick green lines denote
the loci of J̃ = ±M at nontrivial values of µ. The
bottom edge of the plot, µ = 0, is at J̃ = ±M , for
M > 0. The top edge of the plot (dashed black line),

µ = 1 is at J̃ = ±(M + 1), for M ≥ −1, with M = −1

only at µ = 1. The single point M = −1, J̃ = 0 in this
plot corresponds to a 2-parameter family of test fluid
solutions. Solutions in the area below the red line are
conjectured to be unstable. The orange dot and the
black dot represent two solutions with the same M and
J̃ that are presumed stable and unstable, respectively.
The green dot is at (0,Mc, µc), and the three red dots
are at (±M0,M0, 0) and (0, 0, µr).

FIG. 3. A top view, suppressing the dimension µ, of
the plot in Fig. 2. All dots and curves are as described
in Fig. 2. Note that the orange dot lies on top of, and
so hides, the black one.

C. Polytropic equation of state p = Kρk

For

p = Kρk, (126)

the star has a surface at finite radius

y∗(ρ0) =
(
1 +Kρk−1

0

) k
k−1 (127)
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FIG. 4. An example of two star-like solutions with the
equation of state p = ρ/2. Both have M = 0.38 and

J̃ = 0.24, but different central densities. We plot `2ρ
(solid), M (dashed) and J̃ (dotted) against R/`. The
less compact solution, with (Ω, µ) ' (0.154, 0.242) and
lower central density, (stable in nonlinear numerical
time evolutions) is plotted in orange, and the more
compact one with (Ω, µ) ' (0.153, 0.392) and higher
density, (numerically found to be unstable) in blue.

if and only if k > 1, consistent with the analysis
in Sec. II G. We find

ρ(ρ0; y) = K−
1
k−1

((
y

y∗(ρ0)

)− k−1
k

− 1

) 1
k−1

,

(128)
The functions f(y) and hence x2(y) can be ex-
pressed in closed form in terms of hypergeometric
functions, as already noticed in [10]. The same is
true for m, and hence Mtot and Jtot. We do not
write down these expressions as they do not give
further insight.

IV. CONCLUSIONS

We have constructed rotating perfect fluid star-
like solutions in 2+1-dimensional general relativity
with a negative cosmological constant Λ < 0. We
defined these to have a regular centre, and finite
mass M and spin J at infinity. (We again sup-
press the suffix “tot” in this Section.) We have
found these solutions in standard polar-radial co-
ordinates (t, R, θ), in terms of two free parameters
µ and Ω that control their mass and spin, and
we have given expressions for the total mass M
and spin J in terms of the two free parameters.
We have thus established that star-like solutions
in 2+1 dimensions exist for generic equations of
state.

Furthermore, we have shown that these solu-

tions are analytic in suitable coordinates, includ-
ing at the centre, for analytic equations of state
(except at the surface, if there is a sharp surface).
We have also shown that their causal structure is
that of the adS3 cylinder, without closed timelike
curves.

For any equation of state with 0 < p′(ρ) < 1
and where either p ∼ ρk with k > 1 as ρ → 0, or
p = 0 occurs at finite ρ, we have shown that rotat-
ing and non-rotating stars with a sharp surface ex-
ist. The spacetime in the vacuum exterior is then
the BTZ solution. In the limiting case where the
equation of state is linear at low density, p ' κρ
with 0 < κ < 1 as ρ→ 0, the density goes to zero
only asymptotically, but sufficiently fast so that
the spacetime is asymptotically BTZ with finite
M and J .

We stress that the necessary and sufficient cri-
terion for the existence of stars with a surface at
finite radius and finite M and J is simply that the
integral (58) converges at p = 0. We have not as-
sumed further constraints on the equation of state
except the causality constraint 0 < p′(ρ) < 1 for
all p > 0.

We have shown that for a generic equation of
state the (Ω, µ) parameter space contains exte-
rior/asymptotic metrics of all three BTZ types:
black-hole, point-particle and overspinning, but
not for all values (J̃ ,M). More precisely, solu-
tions for generic equations of state cover all of the
infinite region (95) of the (J̃ ,M) plane, and a fi-
nite region bounded by (93). In this second region,
there are two solutions for the same values of M
and J̃ , with the more compact one conjectured to
be unstable.

For an arbitrary barotropic equation of state
p = p(ρ) our solutions are in implicit form, involv-
ing two integrals and one function inversion. The
integrals can be solved in closed form for the lin-
ear equation of state p = κρ, explicitly construct-
ing the space of solutions, and we have shown that
this is possible also for two other simple equations
of state in which stars have sharp surfaces.

In spite of the local triviality of gravity, two
compact self-gravitating objects in 2+1 dimen-
sions can interact gravitationally through global
effects [3] and, for Λ < 0, even merge to form a
black hole; see [11] for an explicit construction of a
spacetime representing the formation of a spinning
black hole from two massless point particles col-
liding with impact parameter. However, because
there are no tidal forces or gravitational waves, un-
less and until the two objects actually touch they
do not affect each other’s local dynamics. In par-
ticular, if they start in an axistationary state they
remain so unless and until they touch. This makes
axistationary matter solutions even more relevant
for representing interacting compact objects than

13



they are in 3+1 dimensions.
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[1] M. Bañados, C. Teitelboim and J. Zanelli, Black
hole in three-dimensional spacetime, Phys. Rev.
Lett. 69, 1849 (1992).
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[5] Paulo M. Sá, Polytropic Stars in Three-
Dimensional Spacetime, Phys. Lett. B 467, 40
(1999).

[6] N. Cornish and N. Frankel, Gravitation in 2+1
dimensions, Phys. Rev. D 43, 2555 (1991).
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