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Abstract. We analyse the homotopy types of gauge groups for principal U(n)-bundles over lens

spaces and 2-dimensional Moore spaces.

1. Introduction

Let G be a simple, compact Lie group and P −→ M be a principal G-bundle. The gauge group

of this bundle is the group of G-equivariant automorphisms of P that fix M . There has been

considerable work recently in trying to understand the homotopy types of gauge groups that arise in

physical or geometric contexts. Most work to date has concentrated on M being a simply-connected

four-manifold when G is simply-connected or M being an orientable surface when G = U(n).

In this paper we turn our attention to the case when M is a 3-manifold. If G is simply-connected

then [M,BG] ∼= 0, implying that the only principal G-bundle is the trivial bundle, which has the

trivial gauge group. We consider instead the more topologically intricate case when G = U(n)

and M is a lens space, for then [M,BU(n)] 6∼= 0.

Let p and q be coprime integers. The lens space L(p, q) is the orbit space S3/(Z/pZ), where

the action of Z/pZ on S3 is given by (z0, z1) −→ (e2πi/pz0, e
2πiq/pz1). For n ≥ 1 and p ≥ 2, let

p : Sn −→ Sn be the map of degree p and let Pn+1(p) be its homotopy cofibre. The space Pn+1(p)

is the (n+ 1)-dimensional mod-p Moore space. As a CW -complex, L(p, q) ' P 2(p) ∪ e3.

The analysis of gauge groups of principal U(n)-bundles over L(p, q) is necessarily delicate for two

reasons. First, the isomorphism classes of principal bundles is determined by [L(p, q), BU(n)], and

this set is determined by [P 2(p), BU(n)] rather than [S3, BU(n)]. This is in contrast to the case

when G is simply-connected and M is a simply-connected four-manifold or when G = U(n) and M

is an orientable surface; in both of those cases [M,BG] is determined by the top cell of M and

this leads to certain homotopy fibrations being more easily compared. Second, typically localization

techniques are used to work one prime at a time, allowing for easier progress. However, as L(p, q)

may not be nilpotent, localization techniques may be problematic, so we approach the problem

without localization. The strategy and methods used should be applicable to other cases as well.

As will be shown, there are isomorphisms [L(p, q), BU(n)] ∼= [P 2(p), BU(n)] ∼= Z/pZ. For

k ∈ Z/pZ, let Gk(L(p, q)) and Gk(P 2(p)) respectively be gauge groups of the principal U(n)-bundles
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over L(p, q) and P 2(p) with first Chern class k. Our main results for Gk(P 2(p)) are stated in Propo-

sition 3.4 and Corollary 3.6, and our main results for Gk(L(p, q)) are stated in Proposition 4.3 and

Corollary 4.6. For now we point out two special cases that give classifications and are easier to state.

For integers a, b, let (a, b) be their greatest common divisor.

Theorem 1.1. Let p be a prime and consider the gauge groups of principal U(p)-bundles over P 2(p)

and L(p, q). The following hold:

(a) Gk(P 2(p)) ' G`(P 2(p)) if and only if (p, k) = (p, `);

(b) if p ∈ {3, 5} then Gk(L(p, q)) ' G`(L(p, q)) if and only if (p, k) = (p, `).

The authors would like to thank the referees for identifying an error in an earlier version of the

paper, and for pointing out the work of Olum [O] and Lemma 2.4.

2. Isomorphism classes of bundles and components of mapping spaces

As a CW -complex L(p, q) ' P 2(p) ∪ e3, so there is a homotopy cofibration

S2 f−→ P 2(p)
i−→ L(p, q)

where f attaches the top cell to L(p, q) and i is the inclusion of the 2-skeleton. Let π : P 2(p) −→ S2

be the pinch map to the top cell. Let j be the composite of inclusions j : S1 −→ P 2(p)
i−→ L(p, q).

Then there is a homotopy cofibration diagram

(1)

S1

��

S1

j

��
S2

f
// P 2(p)

i //

π

��

L(p, q)
g
//

h

��

S3

S2
π◦f

// S2 // C // S3

that defines the space C and the maps g and h.

Lemma 2.1. The map π ◦ f is null homotopic and there is a homotopy equivalence C ' S2 ∨ S3.

Proof. The degree of π ◦ f is detected by the Bockstein in the homology of C, but this Bockstein

is zero since the corresponding Bockstein for L(p, q) is zero. Therefore π ◦ f ' ∗, implying that

C ' S2 ∨ S3. �

Let π be the composite

π : L(p, q)
h−→ C

'−→ S2 ∨ S3 −→ S2

where the right map collapses S3 to a point. Lemma 2.1 immediately implies the following.

Corollary 2.2. The pinch map P 2(p)
π−→ S2 extends across i to the map π : L(p, q) −→ S2. �
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If n = 1 then BU(1) is the Eilenberg-Mac Lane space K(Z, 2) and for any CW -complex X the

set [X,BU(1)] has a group structure. If n > 1 then the standard inclusion BU(n) −→ BU(∞) has

homotopy fibre U(∞)/U(n) which is 2n-connected. Thus if X is a CW -complex of dimension ≤ 2n

then there is an isomorphism [X,BU(n)] ∼= [X,BU(∞)]. In particular, as BU(∞) is an infinite

loop space, [X,BU(n)] has a group structure. In our case, each space in the homotopy cofibration

sequences S1 −→ P 2(p)
π−→ S2

p
−→ S2 and S2 f−→ P 2(p)

i−→ L(p, q)
g−→ S3 has dimension ≤ 4 so

for any n ≥ 1 we obtain exact sequences of groups

(2) [S2, BU(n)]
p∗

−→ [S2, BU(n)]
π∗−→ [P 2(p), BU(n)] −→ [S1, BU(n)]

and

(3) [S3, BU(n)]
g∗−→ [L(p, q), BU(n)]

i∗−→ [P 2(p), BU(n)]
f∗−→ [S2, BU(n)].

Recall that [S2, BU(n)] ∼= π1(U(n)) ∼= Z.

Lemma 2.3. Let n ≥ 1. The following hold:

(a) there is a group isomorphism [P 2(p), BU(n)] ∼= Z/pZ;

(b) the map π∗ is reduction mod-p;

(c) there is a group isomorphism [L(p, q), BU(n)]
i∗−→ [P 2(p), BU(n)];

(d) the map π∗ is reduction mod-p.

Proof. In (2), since p is the map of degree p, the induced map p∗ is multiplication by p. As

π2(BU(n)) ∼= Z and π1(BU(n)) ∼= 0, exactness in (2) immediately implies that [P 2(p), BU(n)] ∼=

Z/pZ and π∗ is reduction mod-p, proving parts (a) and (b).

As π3(BU(n)) ∼= 0, [P 2(p), BU(n)] ∼= Z/pZ and [S2, BU(n)] ∼= Z, from (3) we obtain an exact

sequence of groups

0 −→ [L(p, q), BU(n)]
i∗−→ Z/pZ −→ Z.

Any homomorphism from a finite group to Z is trivial so, by exactness, i∗ is an isomorphism, proving

part (c).

Since π ' π ◦ i by Corollay 2.2, part (d) follows from parts (b) and (c). �

In general, if X is a pointed CW -complex then the isomorphism classes of principal U(n)-bundles

over X are classified by the homotopy classes in [X,BU(n)]. If P is such a bundle, classified by a

map α, let Gα(X) be its gauge group. This group has a classifying space BGα(X) and by [G, AB]

there is a homotopy equivlalence BGα(X) ' Mapα(X,BU(n)), where Mapα(X,BU(n)) is the com-

ponent of the space of continuous maps from X to BU(n) that contains α. The subgroup G∗α(X)

of G-equivariant automorphisms of P that pointwise fix the fibre at the basepoint is the pointed

gauge group. There is a corresponding homotopy equivalence BG∗α(X) ' Map∗α(X,BU(n)), where
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Map∗α(X,BU(n)) is the component of the continuous, pointed maps from X to BU(n) that con-

tains α. Evaluation of maps at the basepoint gives a homotopy fibration sequence

U(n)
∂α−→ Map∗α(X,BU(n)) −→ Mapα(X,BU(n)) −→ BU(n).

The homotopy fibre of the connecting map ∂α is Gα(X).

In our case, we have [S2, BU(n)] ∼= Z and, by Lemma 2.3, [P 2(p), BU(n)] ∼= [L(p, q), BU(n)] ∼=

Z/pZ. Note that, for dimensional reasons, the principal U(n)-bundles over S2, P 2(p) and L(p, q)

are classified by the value of the first Chern class. For k̄ ∈ Z, let Gk̄(S2) be the gauge group of the

isomorphism class of principal U(n)-bundles over S2 whose first Chern class is k̄. For k ∈ Z/pZ,

let Gk(P 2(p)) and Gk(L(p, q)) be the respective gauge groups of the isomorphism classes of principal

U(n)-bundles over P 2(p) and L(p, q) whose first Chern class is k. Lemma 2.3 implies that if k̄ ≡

k mod p then there is a commutative diagram of fibration sequences

(4)

U(n)
∂S
k̄ // Map∗k̄(S2, BU(n)) //

π∗

��

Mapk̄(S2, BU(n)) //

π∗

��

BU(n)

U(n)
∂Lk // Map∗k(L(p, q), BU(n)) //

i∗

��

Mapk(L(p, q), BU(n)) //

i∗

��

BU(n)

U(n)
∂Pk // Map∗k(P 2(p), BU(n)) // Mapk(P 2(p), BU(n)) // BU(n).

The homotopy fibres of ∂S
k̄

, ∂Lk and ∂Pk are Gk̄(S2), Gk(L(p, q)) and Gk(P 2(p)) respectively.

The goal is to find information about the gauge groups Gk(L(p, q)) via the middle homotopy

fibration in (4). However, it is not so easy to study this fibration directly, one issue being that it is

unclear whether the components Map∗k(L(p, q), BU(n)) are all homotopy equivalent. A similar issue

appeared in work of the first author [MS] in dealing with gauge groups for principal G-bundles over

S3-bundles over S4, where G is a simply-connected, simple compact Lie group. The approach in

that case involved localization, which needs to be avoided here since P 2(p) need not be nilpotent.

Instead, we obtain information through self-equivalences of P 2(p) and L(p, q) and how these interact

with known information from [S] about Gk̄(S2) via the top fibration in (4).

There is another way of viewing gauge groups that will also be helpful. The following argument

was suggested by a referee. The gauge group of a principal G-bundle P → M can be identified

with the space of sections Γ(P ×G G), where the action of G on itself is the adjoint one. Since

P ×G G ∼= P/Z ×G/Z G, where Z is the center of G, it follows that the gauge group is determined

by the principle G/Z-bundle P/Z →M . In our case, G/Z = PU(n). Using exact sequences similar

to (2) and (3) we get

[L(p, q), BPU(n)] ∼= [P 2(p), BPU(n)] ∼= Z/(n, p)Z.

Since all PU(n)-bundles are obtained as adjoint bundles of U(n)-bundles we obtain the following.
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Lemma 2.4. If k, l ∈ Z/pZ are such that k ≡ l (mod (p, n)) then Gk(P 2(p)) ' Gl(P 2(p)) and

Gk(L(p, q)) ' Gl(L(p, q)). �

Notably, Lemma 2.4 implies that if p and n are coprime then Gk(P 2(p)) ' G0(P 2(p)) and

Gk(L(p, q)) ' G0(L(p, q)).

3. The homotopy types of Gk(P 2(p))

By Corollary 2.2, the pinch map P 2(p)
π−→ S2 is homotopic to the composite P 2(p)

i−→

L(p, q)
π−→ S2. So from (4) we obtain a homotopy commutative diagram of fibration sequences

(5)

U(n)
∂S
k̄ // Map∗k̄(S2, BU(n)) //

π∗

��

Mapk̄(S2, BU(n)) //

π∗

��

BU(n)

U(n)
∂Pk // Map∗k(P 2(p), BU(n)) // Mapk(P 2(p), BU(n)) // BU(n).

First, we show that all the components Map∗k(P 2(p), BU(n)) are homotopy equivalent, and in a

way that is compatible with a similar result from [S] about the components Map∗k̄(S2, BU(n)). In

terms of gauge groups, this says that all of the classifying spaces BG∗k(P 2(p)) of the pointed gauge

groups are homotopy equivalent, and in a way compatible with the equivalences of the classifying

spaces BG∗
k̄
(S2).

Lemma 3.1. For k̄ ∈ Z and k ∈ Z/pZ with k̄ ≡ k mod p, there is a homotopy commutative diagram

Map∗k̄(S2, BU(n))
π∗ //

'
��

Map∗k(P 2(p), BU(n))

'
��

Map∗0(S2, BU(n))
π∗ // Map∗0(P 2(p), BU(n)).

Proof. This was essentially proved in [S] but not stated in this form. An argument is given for the

sake of completeness. Let ε : S2 −→ BU(n) be a fixed map with first Chern class −k̄. Define

θ : Map∗k̄(S2, BU(n)) −→ Map∗0(S2, BU(n))

by sending a map f : S2 −→ BU(n) with first Chern class k̄ to the composite

θ(f) : S2 σ−→ S2 ∨ S2 f∨ε−→ BU(n) ∨BU(n)
∇−→ BU(n)

where σ is the comultiplication on S2 and ∇ is the folding map. Similarly, define

φ : Map∗0(S2, BU(n)) −→ Map∗k̄(S2, BU(n))

by sending g to ∇◦ (g∨ (−ε)) ◦σ. Then θ and φ are continuous and the homotopy associativity of σ

implies that φ ◦ θ and θ ◦ φ are homotopic to the identity maps.

The space P 2(p) is not a co-H-space. However, as π is a homotopy cofibration connecting map

there is a coaction ψ : P 2(p) −→ P 2(p) ∨ S2 which, when pinched to P 2(p) is the identity map, and
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when pinched to S2 is π. Further, this coaction has a homotopy associativity property: (ψ∨1)◦ψ '

1 ∨ σ. Define

θ′ : Map∗k(P 2(p), BU(n)) −→ Map∗0(P 2(p), BU(n))

by sending a map f ′ : P 2(p) −→ BU(n) with first Chern class k to the composite

θ′(f) : P 2(p)
ψ−→ P 2(p) ∨ S2 f ′∨ε−→ BU(n) ∨BU(n)

∇−→ BU(n)

and define

φ′ : Map∗0(P 2(p), BU(n)) −→ Map∗k(P 2(p), BU(n))

by sending g to ∇ ◦ (g ∨ (−ε)) ◦ ψ. Then, as before, θ′ is a homotopy equivalence.

Finally, the coaction ψ satisfies a homotopy commutative diagram

P 2(p)
ψ
//

π

��

P 2(p) ∨ S2

π∨1

��
S2 σ // S2 ∨ S2.

This implies that θ and θ′, and φ and φ′, are compatible, implying the homotopy commutative

diagram asserted by the lemma. �

Using ∂S
k̄

to also denote the composite U(n)
∂S
k̄−→ Map∗k̄(S2, BU(n))

'−→ Map∗0(S2, BU(n)), and

similarly for ∂Pk , by Lemma 3.1 the left square in (5) may be replaced with a homotopy commutative

square

(6)

U(n)
∂S
k̄ // Map∗0(S2, BU(n))

π∗

��
U(n)

∂Pk // Map∗0(P 2(p), BU(n)).

By (5), the homotopy fibres of ∂S
k̄

and ∂Pk are Gk̄(S2) and Gk(P 2(p)) respectively.

We next identify certain self-homotopy equivalences of Map∗k(P 2(p), BU(n)). Since P 2(p) is not

a co-H-space it is not immediately clear that it has a degree d map for any integer d. However,

Olum [O, Theorem 6.2] has shown that there are analogous maps and they behave the way one

would hope.

Lemma 3.2. If d is a unit mod-p then there is a homotopy equivalence d : P 2(p) −→ P 2(p) satisfying

a homotopy commutative diagram

S1 //

d

��

P 2(p)
π //

d

��

S2

d

��
S1 // P 2(p)

π // S2.
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�

Since d is a homotopy equivalence, it induces a homotopy equivalence

Mapk(P 2(p), BU(n)) −→ Mapdk(P 2(p), BU(n)).

Phrased in terms of gauge groups this gives the following.

Corollary 3.3. If d is a unit mod-p then there is a homotopy equivalence BGk(P 2(p)) ' BGdk(P 2(p)). �

Recall that, by elementary number theory, if (u, n) = 1 then u is a unit mod n, and if (k, n) = (`, n)

then k ≡ u` mod n for some integer u satisfying (u, n) = 1.

Proposition 3.4. Let r = (p, n). Suppose that (k, r) = (`, r), implying that k ≡ u` mod r for some

integer satisfying (u, r) = 1. Suppose that (u, p) = 1 as well. Then Gk(P 2(p)) ' G`(P 2(p)).

Proof. Since r = (p, n), the fact that k ≡ u` mod r lets us apply Lemma 2.4 to obtain a homotopy

equivalence Gk(P 2(p)) ' Gu`(P 2(p)). Since u is a unit mod-p, by Corollary 3.3 there is a homotopy

equivalence G`(P 2(p)) ' Gu`(P 2(p)). Putting these together gives Gk(P 2(p)) ' G`(P 2(p)). �

There is a partial converse to Proposition 3.4 in a limited number of cases.

Lemma 3.5. There is an isomorphism π2n−1(BGk(P 2(p))) ∼= Z/(p, (n− 1)!(n, k))Z.

Proof. The homotopy cofibration P 2(p)
π−→ S2

p
−→ S2 induces an exact sequence

π2n−1(Ω0U(n))
p−→ π2n−1(Ω0U(n))

π∗−→ π2n−1(Map∗0(P 2(p), BU(n)))

−→ π2n−2(Ω0U(n))
p−→ π2n−2(Ω0U(n)).

By [BH] or [To], π2n(U(n)) ∼= Z/n!Z, and it is well known that π2n−1(U(n)) ∼= Z. As multiplication

by p on Z/n!Z sends a generator γ to (n!, p)γ and mutliplication by p on Z is an injection, we obtain

π2n−1(Map∗0(P 2(p), BU(n))) ∼= Z/(n!, p)Z and π∗ is reduction mod (n!, p).

Next, consider the commutative diagram

π2n−1(U(n))
(∂S
k̄

)∗
// π2n−1(Ω0U(n))

π∗

��
π2n−1(U(n))

(∂Pk )∗
// π2n−1(Map∗0(P 2(p), BU(n))) // π2n−1(BGk(P 2(p))) // π2n−1(BU(n))

induced by (6), and note that the bottom row is exact. The fact that π2n−1(BU(n)) ∼= 0 implies

that π2n−1(BGk(P 2(p))) is isomorphic to the cokernel of (∂Pk )∗. We wish to identify this cokernel in

a manner related to (n, k) and then compare to the (n, `) case.

Sutherland [S] showed that the image of (∂S
k̄

)∗ is generated by (n−1)!(n, k̄) γ. Let δ = π∗(γ). Then

the image of (∂Pk )∗ is generated by (n − 1)!(n, k) δ. Therefore the cokernel of (∂Pk )∗ is isomorphic
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to the cokernel of the map Z (n−1)!(n,k)−−−−−−→ Z/(n!, p)Z, which is Z/((n!, p), (n − 1)!(n, k))Z. Since

((n!, p), (n−1)!(n, k)) = (p, (n−1)!(n, k)) we obtain π2n−1(BGk(P 2(p))) ∼= Z/(p, (n−1)!(n, k))Z. �

Corollary 3.6. If Gk(P 2(p)) ' G`(P 2(p)) then (p, (n− 1)!(n, k)) = (p, (n− 1)!(n, `)). �

Proposition 3.4 and Corollary 3.6 can be combined to give a complete classification of the homo-

topy types of the gauge groups Gk(P 2(p)) in a special case.

Proof of Theorem 1.1 (a). Suppose that Gk(P 2(p)) ' G`(P 2(p)). Then, as n = p, by Corollary 3.6

(p, (p−1)!(p, k)) = (p, (p−1)!(p, `)). Since p is a prime, (p−1)! and p are coprime so (p, (p−1)!(p, k)) =

(p, (p, k)) = (p, k). Similarly, (p, (p− 1)!(p, `)) = (p, `). Hence (p, k) = (p, `).

Conversely, suppose that (p, k) = (p, `). In Proposition 3.4, as p = n we have r = (p, n) = (p, p) =

p, so the two conditions (u, r) = 1 and (u, p) = 1 coincide. The statement of the proposition now

says that if (p, k) = (p, `) then Gk(P 2(p)) ' G`(P 2(p)). �

4. The homotopy types of Gk(L(p, q))

The strategy and results obtained are similar to those for Gk(P 2(p)). This begins with identifying

self-homotopy equivalences of lens spaces, which require an additional condition as compared to those

for two-dimensional Moore spaces. Consider the homotopy cofibration S2 −→ P 2(p) −→ L(p, q) that

attaches the top cell to L(p, q). The following was established in [O, Remark 7.4].

Lemma 4.1. Suppose that u is a unit mod-p with the property that u2 ≡ ±1 mod p. Then there is

a homotopy cofibration diagram

S2 //

±1

��

P 2(p) //

u

��

L(p, q)

u

��
S2 // P 2(p) // L(p, q).

where u is a homotopy equivalence. �

Since ū is a homotopy equivalence, it induces a homotopy equivalence

Mapk(L(p, q), BU(n)) −→ Mapuk(L(p, q), BU(n)).

Phrased in terms of gauge groups this gives the following.

Corollary 4.2. If u is a unit mod-p with the property that u2 ≡ ±1 mod p then there is a homotopy

equivalence BGk(L(p, q)) ' BGuk(L(p, q)). �

Similarly to Proposition 3.4 we obtain the following.

Proposition 4.3. Let r = (p, n). Suppose that (k, r) = (`, r), implying that k ≡ u` mod r for some

integer satisfying (u, r) = 1. Suppose in addition that (u, p) = 1 and u2 ≡ ±1 mod p. Then there is

a homotopy equivalence Gk(L(p, q)) ' G`(L(p, q)).



THE HOMOTOPY TYPES OF U(n)-GAUGE GROUPS OVER LENS SPACES 9

Proof. Since r = (p, n), the fact that k ≡ u` mod r lets us apply Lemma 2.4 to obtain a homotopy

equivalence Gk(L(p, q)) ' Gu`(L(p, q)). Since u is a unit mod-p and u2 ≡ ±1 mod p, by Corol-

lary 4.2 there is a homotopy equivalence G`(L(p, q)) ' Gu`(L(p, q)). Putting these together gives

Gk(L(p, q)) ' G`(L(p, q)). �

Conversely, starting with a homotopy equivalence Gk(L(p, q)) ' G`(L(p, q)) we aim for a g.c.d.

condition involving k, `, n and p. Consider the homotopy cofibration sequence

S2 f−→ P 2(p)
i−→ L(p, q)

g−→ S3.

Lemma 4.4. There is a homotopy equivalence Σ2L(p, q) ' P 4(p) ∨ S5.

Proof. In general, any closed, orientable 3-manifold M is parallelizable so by [A] it has the property

that its top cell splits off stably. In our case, as L(p, q) is such a manifold, the attaching map f for

the top cell is stably trivial. As f is in the stable range after two suspensions, this implies that Σ2f

null homotopic. Thus there is a homotopy equivalence Σ2L(p, q) ' P 4(p) ∨ S5. �

Lemma 4.5. If n > 1 there is an isomorphism

π2n−1(BGk(L(p, q))) ∼=

 Z/(p, (n− 1)!(n, k))Z if n is odd

Z/(p, (n− 1)!(n, k))Z⊕ Z/2Z if n is even.

Proof. It is worth first pointing out that this argument is different from that for Lemma 3.5 since it

is not clear that the components Map∗k(L(p, q), BU(n)) are all homotopy equivalent, so a different

approach is needed. Consider the homotopy cofibration diagram

(7) ∗ //

��

S3

��

S3

γ

��

// ∗

��

// S4

��

S4

Σγ

��
L(p, q)

h // S2 ∨ S3 s //

pinch

��

S2 //

��

ΣL(p, q) // S3 ∨ S4 Σs //

��

S3

��
L(p, q)

π // S2 t // C // ΣL(p, q)
Σπ // S3 Σt // ΣC

which defines the space C and the maps s, t and γ. The restriction of s to S2 is the degree p map

and its restriction to S3 is a · η where η represents a generator of π3(S2) ∼= Z. Thus γ = a · η. Since

the Steenrod square Sq2 detects η, if a was odd then there would exist a nontrivial Sq2 in the mod-2

cohomology of ΣL(p, q). This operation is stable, so would also appear in the mod-2 cohomology of

Σ2L(p, q), contradicting the homotopy equivalence in Lemma 4.4. Therefore a is even. Since Ση has

order 2, this implies that Σγ = a · Ση is null homotopic. Hence ΣC ' S3 ∨ S5 and Σt is homotopic

to the composite S3 p−→ S3 ↪→ S3 ∨ S5.

Now arguing along the lines of [MS, Lemma 4.7] (but integrally instead of p-locally), there is a

homotopy fibration

(8) Ω5BU(n)× Ω3BU(n)
∗×p−−→ Ω3BU(n)

π̂∗k−→ ΩMap∗k(L(p, q), BU(n)),
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where p is the p-th power map, and the map π̂∗k is identified with the composite

ΩMap∗0(S2, BU(n))
'−→ ΩMap∗k(S2, BU(n))

Ωπ∗−−−→ ΩMap∗k(L(p, q), BU(n)).

On the one hand, since Map∗k(L(p, q), BU(n)) ' BGk(L(p, q)), the homotopy fibration (8) im-

plies that the homotopy fibre of ∗ × p is ΩG∗k(L(p, q)). On the other hand, working directly from

the map ∗ × p, its homotopy fibre is Ω2Map∗k(P 2(p), BU(n)) × Ω4U(n). Thus ΩG∗k(L(p, q)) '

Ω2Map∗k(P 2(p), BU(n))×Ω4U(n). Since Map∗k(P 2(p), BU(n)) ' BGk(P 2(p)), we obtain an isomor-

phism

πm(BGk(L(p, q))) ∼= πm(BGk(P 2(p)))⊕ πm(Ω2U(n))

for every m ≥ 2. In particular, if m = 2n − 1 then πm(BGk(P 2(p))) ∼= Z/(p, (n − 1)!(n, k))Z by

Lemma 3.5, and π2n−1(Ω2U(n)) ∼= 0 if n is odd and π2n−1(Ω2U(n)) ∼= Z/2Z if n is even by [To].

The asserted isomorphism follows. �

Corollary 4.6. If Gk(L(p, q)) ' G`(L(p, q)) then (p, (n− 1)!(n, k)) = (p, (n− 1)!(n, `)). �

Proposition 4.3 and Corollary 4.6 can be combined in a special case to partially classify the

homotopy types of the gauge groups Gk(L(p, q)).

Proposition 4.7. Let p be a prime and consider the gauge groups of principal U(p)-bundles over L(p, q).

The following hold:

(a) if Gk(L(p, q)) ' G`(L(p, q)) then (p, k) = (p, `);

(b) if (p, k) = (p, `), so that k ≡ u` mod p for some integer u satisfying (u, p) = 1,

and if u2 ≡ ±1 mod p, then Gk(L(p, q)) ' G`(L(p, q)).

Proof. Suppose that Gk(L(p, q)) ' G`(L(p, q)). If p = 2 then, with n = 2 as well, the number

(p, (n− 1)!(n, k)) in Corollary 4.6 becomes (2, (2, k)) = (2, k). So Corollary 4.6 implies that there is

an isomorphism Z/(2, k)Z⊕Z/2Z ∼= Z/(2, `)Z⊕Z/2Z. This is only possible if (2, k) = (2, `). If p is

odd, then with n = p, the number (p, (p−1)!(p, k)) in Corollary 4.6 equals (p, (p, k)) = (p, k) since p

and (p− 1)! are coprime. Therefore Corollary 4.6 implies that (p, k) = (p, `).

Conversely, suppose that (p, k) = (p, `). In Proposition 4.3, as p = n we obtain r = (p, n) =

(p, p) = p, so the two conditions (u, r) = 1 and (u, p) = 1 coincide. The hypothesis that u2 ≡

±1 mod p then allows Proposition 4.3 to apply to obtain Gk(L(p, q)) ' G`(L(p, q)). �

In special cases there is a complete classification of the gauge groups of lens spaces.

Proof of Theorem 1.1 (b). If p = 3 or p = 5 then every unit in Z/pZ has the property that it

squares to ±1 mod p. Proposition 4.7 therefore implies that Gk(L(p, q)) ' G`(L(p, q)) if and only if

(p, k) = (p, `). �
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