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Abstract. Tracking of objects in cellular environments has become a vital tool in molecular
cell biology. A particularly important example is single molecule tracking which enables the study
of the motion of a molecule in cellular environments by locating the molecule over time and provides
quantitative information on the behavior of individual molecules in cellular environments, which
were not available before through bulk studies. Here, we consider a dynamical system where the
motion of an object is modeled by stochastic differential equations (SDEs), and measurements are
the detected photons emitted by the moving fluorescently labeled object, which occur at discrete
time points, corresponding to the arrival times of a Poisson process, in contrast to equidistant time
points which have been commonly used in the modeling of dynamical systems. The measurements
are distributed according to the optical diffraction theory, and therefore, they would be modeled
by different distributions, e.g., an Airy profile for an in-focus and a Born and Wolf profile for an
out-of-focus molecule with respect to the detector. For some special circumstances, Gaussian image
models have been proposed. In this paper, we introduce a stochastic framework in which we calculate
the maximum likelihood estimates of the biophysical parameters of the molecular interactions, e.g.,
diffusion and drift coefficients. More importantly, we develop a general framework to calculate the
Cramér-Rao lower bound (CRLB), given by the inverse of the Fisher information matrix, for the
estimation of unknown parameters and use it as a benchmark in the evaluation of the standard
deviation of the estimates. There exists no established method, even for Gaussian measurements,
to systematically calculate the CRLB for the general motion model that we consider in this paper.
We apply the developed methodology to simulated data of a molecule with linear trajectories and
show that the standard deviation of the estimates matches well with the square root of the CRLB.
We also show that equally sampled and Poisson distributed time points lead to significantly different
Fisher information matrices.

Key words. Object tracking, Single molecule microscopy, Stochastic differential equation,
Maximum likelihood estimation, Fisher information matrix, Cramér-Rao lower bound.
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1. Introduction. The ability to track objects of interest, e.g., subcellular or-
ganelles and molecules, in cellular environments plays an important role in studying
biological systems. In particular, single molecule tracking, which enables following
subcellular processes at the single molecule level, has become a vital tool in cell
biology [29, 28, 27]. Traditionally, microscopy studies were bulk studies and the infor-
mation from such studies reflected the behavior of ensembles of molecules as opposed
to individual ones [23]. Single molecule microscopy techniques have revolutionized
the field of microscopy by providing quantitative information on the behavior of in-
dividual molecules in cellular environments, which were not available before through
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bulk studies [21, 24]. In biological studies, single molecule tracking methods have
been used to study the intracellular trafficking of fluorescently labeled antibodies,
e.g., prostate-specific membrane antigen (PSMA) antibodies [13, 12, 2], by analyzing
the velocity and path of the fluorescent molecules.

In general, the motion of an object in cellular environments is subject to different
types of forces, e.g., deterministic forces due to the environment and random forces
due to random collisions with other objects [31, 7]. It has been shown that the mo-
tion of a moving object in such environments can be modeled by stochastic differential
equations (SDEs) [26]. In particular, in many biological applications, solutions of lin-
ear SDEs are good fits to experimental single molecule trajectories [10, 9, 8]. In a basic
fluorescence microscope, a fluorescently labeled object of interest is imaged by a detec-
tor which detects the photons emitted by the object during the acquisition time. Since
the detection process of the emitted photons is inherently a random phenomenon, the
acquired measurements are stochastic in nature. These measurements, according to
the optical diffraction theory, can be modeled by different distributions. For example,
a typical distribution for an in-focus molecule is an Airy profile [11], whereas, classical
Born and Wolf profiles [6] are used instead for out-of-focus molecules. In some cases,
it is possible and computationally beneficial to approximate these complex profiles
with simple Gaussian models [1].

In many dynamical systems, the time points of the measurements are assumed to
be equidistant. However, the time points of detection of the photons correspond to the
arrival times of a Poisson process [21, 24]. This gives rise to non-uniform sampling
of the continuous-time stochastic process that describes the motion of the object.
Since the parameters of the motion model of the object are highly time-dependent,
this randomized non-uniform sampling causes significant fluctuations in the values of
these parameters.

In recent years, many methods have been developed to analyze the trajectories
of a molecule in cellular environments. In most of these methods, the model for the
motion of the molecule is assumed to be limited to a Brownian motion (pure diffusion)
model described only by the diffusion coefficient, and only few of the available meth-
ods consider more general motion models. The methods developed to analyze pure
diffusion models are mostly based on the mean square displacement approach [22], in
which the diffusion coefficient is estimated by a linear regression of the mean square
displacement of the Gaussian distributed observed locations of the molecule as a func-
tion of the time lag [5, 19, 18]. Mean square displacement-based methods are not the
only approaches used to estimate the diffusion coefficient from a set of measurements.
For example, Relich et al. [25] have proposed a method for the maximum likelihood
estimation of the diffusion coefficient, with an information-based confidence interval,
from Gaussian measurements. In all of these methods, the motion of a molecule is as-
sumed as a pure diffusion model, and the measurements are modeled by independent
and identically distributed Gaussian random variables [17].

However, in general, the motion of a molecule is not limited to the pure diffusion
model, and the diffusion coefficient is only one of the parameters that play a role in the
motion of the molecule. Also, the Gaussian assumption for the measurements is prob-
lematic in practice due to the fact that the Gaussian model is often not an accurate
analytical model. In [3], Ashley and Andersson have proposed a simultaneous local-
ization and parameter estimation algorithm for more complex motion models, such as
confined [26] and tethered motions [20], which employs the expectation maximization
algorithm in conjunction with sequential Monte Carlo methods [30]. For the general
object tracking problem, in [16, 15], a sequential Monte Carlo method has been devel-
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oped for the parameter estimation from nonlinear non-Gaussian state-space models.
Briane et al. [7] have developed a method for classifying the object trajectories in
living cells into three types of diffusion: Brownian motion, subdiffusion (diffusion in a
closed domain or in a crowded area) and superdiffusion (diffusion in a specific direc-
tion). In [10, 9, 8], the motion of a moving object has been described more generally
by a linear SDE, and the parameters of the model has been estimated using a maxi-
mum likelihood estimation method. However, they do not consider randomness of the
time points at which the measurements occur. Their proposed framework also does
not allow for non-Gaussian measurements.

In this paper, we address the above limitations by considering a more general
dynamical system with arbitrary distributed measurements, which occur at Poisson
distributed time points, that allows for more general motion models for an object of
interest. Here, the motion of an object in cellular environments is modeled by stochas-
tic differential equations, and the measurements are the detected photons emitted by
the moving fluorescently labeled object. As mentioned earlier, these measurements
can be modeled by non-Gaussian distributions. We develop a stochastic framework in
which we calculate the maximum likelihood estimates of the biophysical parameters
of the molecular interactions, e.g., diffusion and drift coefficients.

According to a well-known result from estimation theory, assuming that the esti-
mator is unbiased, its standard deviation is then at best equal to the square root of
the CRLB, which is given by the inverse of the Fisher information matrix [21, 24, 11].
More importantly, in order to evaluate the performance of our proposed estimation
method, we develop a general framework to calculate the Fisher information matrix of
the unknown parameters of the general motion model. There are some cases in which
Gaussian approximations of measurements are very useful due to, for example, the
ability of using computationally efficient algorithms in linear systems or the Kalman
filter formulae. In particular, for Gaussian measurements, we calculate the Fisher
information matrix by taking advantage of its relationship with the Kalman filter
formula through a computationally efficient algorithm. To the best of our knowledge,
even for Gaussian measurements, there currently exists no systematic methodology
to evaluate the standard deviations of the estimates using the CRLB for the general
motion model considered here.

To assess the performance of the proposed estimation method, we apply it to
simulated data sets comprising linear trajectories of a molecule with Gaussian, Airy
and classical model of Born and Wolf measurements. The results show that there is no
systematic bias associated with the method. In addition, we show that the means of
the distributions of the prediction of the molecule locations are able to follow the true
locations of the molecule for the all different types of measurements. In particular, for
data sets comprising repeat trajectories of a molecule with Gaussian measurements,
it is shown that the standard deviations of the diffusion and drift estimates are close
to the square roots of their corresponding CRLBs. We also show that, in case that
we have one detected photon, the Fisher information matrices obtained for an Airy
and its corresponding approximating Gaussian profile are different from each other,
and therefore, the use of the Gaussian approximation can be problematic in some
applications. We show that equally sampled time points, which have been commonly
used in most dynamical systems, and Poisson distributed time points can lead to
significantly different Fisher information matrices. We further show that even the
results obtained for different realizations of a Poisson process can vary notably.

This paper is organized as follows. In Section 2, we present the statistical descrip-
tion of the acquired data, and derive a general formula for the likelihood function of
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the described data model. Section 3 is devoted to introduce linear stochastic sys-
tems and calculate the likelihood function in case that the object is undergoing this
type of trajectories. In Section 4, we propose a mathematical framework to calculate
the maximum likelihood estimates of the parameters of interest, such as the param-
eters of the motion model of the molecule. Section 5 is devoted to calculate general
expressions for the CRLB and Fisher information matrix relating to the parameter
estimation problem.

In this paper, we use the following notation

Cl × R
l
[t] := {(r1, · · · , rl, τ1, · · · , τl) |r1, · · · , rl ∈ C, t0 ≤ τ1 < · · · < τl ≤ t} ,(1.1)

where C := R
2, t0 ∈ R, and l = 1, 2, · · · . If there is no bound on τl, we denote the set

in Eq. (1.1) by Cl × R
l
[∞].

2. Fundamental data model. A basic setup of an optical system considered
here is shown in Fig. 1, where an object is in the object space and its image is
captured by a planar detector in the image space. In the fundamental data model,
we assume that the microscopy image data is acquired under ideal conditions. It
assumes the use of an image detector that has an unpixelated photon detection area.
The detection of a photon is intrinsically random in terms of both the time and the
location on the detector at which the photon is detected. In general, the temporal
part of the detection of the emitted photons can be modeled as a counting process
{N(τ), τ ≥ t0}. Here, we assume that {N(τ), τ ≥ t0} is a Poisson process referred
to as the photon detection process that is characterized by the intensity function
Λ(τ), τ ≥ t0, referred to as the photon detection rate. The spatial component of the
photon detection process is specified by random variables, referred to as the photon
location variables, that describe the locations at which photons emitted by the object
of interest are detected.
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Fig. 1. Schematic of an optical microscope. An object located in the object (focal) plane is
imaged by an optical lens system and the image of the object is acquired by the planar detector in
the image space. A 3D random variable Xθ(τ), τ ≥ t0, describes the location of the object in the
object plane at time τ .

In the following definition, we define a spatio-temporal process referred to as the
image detection process, which models the acquired data, for two different acquisition
methods, one when the time interval over which photons are detected is given and
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the other when the total number of detected photons is given. For a fixed acquisition
time, due to the stochastic nature of photon emission, the total number of detected
photons varies for every image, while in the other case, the number of detected photons
remains the same.

Definition 2.1. Let C := R
2 denote a non-pixelated detector. Let R

n, n =
1, 2, · · · , be the n-dimensional full parameter space. Let the parameter space Θ de-
scribe an open subset of Rn containing the true parameters. Elements in Θ are de-
scribed by a parameter vector θ ∈ Θ. Let the one-dimensional (1D) random variables
T1, T2, · · · , describe the time points of detection of the photons that impact the detec-
tor C, which are arrival time points associated with a Poisson process with intensity
function Λ(τ), τ ≥ t0, t0 ∈ R. Let U1, U2, · · · , be 2D random variables that describe
the locations of detection of the photons that impact the detector C. For l = 1, 2, · · · ,
let Ul := (U1, · · · , Ul) ,U0 = ∅, and Tl := (T1, · · · , Tl) , T0 = ∅. Assume that the cur-
rent location of the detected photon, given the current and previous time points, is
independent of the future time points, i.e., for r ∈ C and t0 ≤ τ1 < τ2 < · · · ,

pUl|Tk

(

r|τ1, · · · , τk
)

= pUl|Tl

(

r|τ1, · · · , τl
)

, for all k, l = 1, 2, · · · , k ≥ l,

where, for random vectors X and Y , the conditional probability density function of X,
given Y , is denoted by pX|Y . In other words, we assume that it may depend on past and
current inputs but not future inputs. This assumption is natural in the context of the
modeling of the dynamics of biomolecular processes such as the stochastic trajectory of
a single molecule or organelle in a cellular context, where future effects do not impact
the present.

1. For a fixed acquisition time interval [t0, t], an image detection process

G[t]

( (
U[t], T[t]

)
, C,Θ

)

for a time interval [t0, t] is defined as a spatio-temporal process

whose temporal part T[t] and spatial part U[t] describe the time points and the locations
of detection of the photons that impact the detector C in the time interval [t0, t],
respectively, i.e., for ω ∈ Ω, where Ω is the sample space,

USt(ω) = TSt(ω) = ∅, St(ω) = 0,

and

T[t](ω) :=
(

T1(ω), · · · , TSt(ω)(ω)
)

, U[t](ω) :=
(

U1(ω), · · · , USt(ω)(ω)
)

, St(w) > 0,

where t0 ≤ T1(ω) < · · · < TSt(ω)(ω) ≤ t, and St is a discrete 1D random variable that
takes its values in the non-negative integers such that TSt(ω)(ω) ≤ t, TSt(ω)+1(ω) >
t, St(w) > 0.

2. Given a fixed number L = 1, 2, · · · , of photons, an image detection process

GL
(

(UL, TL) , C,Θ
)

for a fixed number L of photons is defined as a spatio-temporal

process whose temporal and spatial parts describe the time points and the locations of
detection of the L photons that impact the detector C, respectively. Moreover, given

TL = (τ1, · · · , τL) , t0 ≤ τ1 < τ2 < · · · < τL, Gτ1,··· ,τL

(

(UL, TL) , C,Θ
)

is referred to as

the image detection process at fixed time points τ1, · · · , τL.

In Theorem 2.2, we state expressions for the probability/probability density func-
tions of image detection processes for a fixed time interval and for a fixed number of
photons in terms of the conditional distributions of the locations of the detected pho-
tons, given the previous locations and the current and previous time points of the
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detected photons. We further show that each of these conditional distributions can
be expressed in terms of a scaled and shifted version of the image of the object and
the distribution of the prediction of the object location, given the previous locations
and time points of the detected photons. All the proofs in the paper are placed in the
supplementary material. We drop the parameter vector θ ∈ Θ, when it is clear from
the context.

Theorem 2.2. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)

and GL
(

(UL, TL) , C,Θ
)

be image de-

tection processes for a time interval [t0, t] and for a fixed number L of photons, re-
spectively. Let D[t] :=

(
U[t], T[t]

)
,Dk := (Uk, Tk) , k = 0, 1, · · · .

1. Then, the probability of D[t] = ∅ and N(t) = 0 is given by

P
(

D[t] = ∅, N(t) = 0
)

= e
−
∫

t

t0
Λ(τ)dτ

,

and the probability density function p[t] of D[t] and N(t) is given by

p[t]

(

dK ,K
)

= e
−
∫

t
t0

Λ(τ)dτ
K
∏

k=1

Λ(τk)

[

K
∏

l=1

pUl|Tl,Dl−1

(

rl|τl, dl−1

)

]

,(2.1)

where dK ∈ CK×R
K
[t],K = 1, 2, · · · , and pUl|Tl,Dl−1

denotes the conditional probability

density function of Ul, given Tl,Dl−1, with pU1|T1,D0

(

r1|τ1, d0
)

:= pU1|T1

(

r1|τ1
)

.

2. Moreover, the probability density function pL of DL is given by

pL

(

dL

)

= e
−
∫ τL
t0

Λ(τ)dτ
L
∏

k=1

Λ(τk)

[

L
∏

l=1

pUl|Tl,Dl−1

(

rl|τl, dl−1

)

]

, dL ∈ CL × R
L
[∞].(2.2)

Proof. See Section SM1 in the supplementary material.

Note that, as can be seen in the above theorem, the probability density function
of an image detection process for a time interval [t0, t] depends on the integral of the
photon detection rate Λ(τ), τ ≥ t0, over the time interval [t0, t], and the probability
density function of an image detection process for a fixed number L of photons depends
on the integral of the photon detection rate over the time interval [t0, τL], where τL
denotes the time point of the Lth (last) detected photon.

The probability density function of the location at which a photon emitted by
the object of interest is detected, is referred to as the image profile of the object.
So far we have made no assumptions about the specific functional form of the image
profile of the object. In many practical cases, the image profile can be described as
a scaled and shifted version of the image function. In such cases, an image function
describes the image of an object on the detector plane at unit lateral magnification.
Also, in general, the trajectory of the object can be described by a random process.
In the following definition, we define image detection processes driven by a stochastic
trajectory of the object and the image function for a fixed time interval and for a
fixed number of photons.

Definition 2.3. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)

and GL
(

(UL, TL) , C,Θ
)

be image de-

tection processes for a time interval [t0, t] and for a fixed number L of photons, respec-
tively. Let X(τ), τ ≥ t0, denote a 3D random process that describes the 3D stochastic
trajectory of the object. Also, let {fx}x∈R3 defined on the detector C, be a family of
image profiles of an object located at x ∈ R

3 in the object space. Assume that the
current location of the detected photon, given the current location of the object, is
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independent of the previous locations and time points of the detected photons, i.e., for
all x ∈ R

3,

pUl|X(Tl),Tl,Dl−1

(

rl|x, τl, dl−1

)

= pUl|X(τl)

(

rl|x
)

:= fx (rl) , rl ∈ C,

where dl ∈ Cl ×R
l
[t] for G[t], dl ∈ Cl ×R

l
[∞] for GL, pUl|X(Tl),Tl,Dl−1

is the conditional

probability density function of Ul, given X(Tl), Tl,Dl−1, and pUl|X(τl) denotes the
conditional probability density function of Ul, given X(τl). This assumption is justified
as the process of the image formation, photon emission etc. only depends on the
position of the emitting fluorescent object at the particular point in time and not on
prior events.

Assume that there exists a function qz0 : R
2 7→ R, z0 ∈ R, such that for an invert-

ible matrix M ∈ R
2×2 and x := (x0, y0, z0) ∈ R

3,

fx (r) :=
1

|det (M)|
qz0

(

M−1r − (x0, y0)
T
)

, r ∈ C.(2.3)

In the above equation, qz0 , which is referred to as the image function, is a function
that describes, at unit lateral magnification, the image of the object in the detector
plane when the object is located at (0, 0, z0) in the object space.

Image detection processes G[t]

(

X,
(
U[t], T[t]

)
, q, C,Θ

)

and GL
(

X, (UL, TL) , q, C,

Θ
)

driven by the stochastic trajectory X and image function q for a time interval

[t0, t] and for a fixed number L of photons are defined as the spatio-temporal processes
G[t] and GL, respectively.

In the classical case of a measurement error, the image function qz0 is defined as
a function of

(
r −M(x0, y0)

T
)
, which is the deviation between two locations in the

image space. Here, however, in order to be consistent with our previous framework
developed for a static object, qz0 is defined as a function of

(
M−1r − (x0, y0)

T
)
, which

is the difference between two points in the object space.
We next illustrate specific image functions that describe the image of a point

source. According to the optical diffraction theory, when a point source is in-focus
with respect to the detector, the intensity distribution of the image of the point source
is described by an Airy profile given by [24] (see Fig. 2(a))

q(x, y) =
J2
1

(
2πna

λ

√

x2 + y2
)

π (x2 + y2)
, (x, y) ∈ R

2,(2.4)

where na denotes the numerical aperture of the objective lens, λ denotes the emission
wavelength of the molecule, and J1 denotes the first order Bessel function of the first
kind. The 2D Gaussian profile, on the other hand, which has been widely used to
approximate the Airy profile, is given by

q(x, y) =
1

2πσ2
e
− 1

2

(

x2+y2

σ2

)

, (x, y) ∈ R
2,(2.5)

where σ > 0.
For an out-of-focus point source, the image function can be obtained by the

classical Born and Wolf model given by [6]

qz0(x, y) =
4πn2a
λ2

∣
∣
∣
∣

∫ 1

0

J0

(
2πna
λ

√

x2 + y2ρ

)

e
jπn2

az0
noλ

ρ2ρdρ

∣
∣
∣
∣

2

, (x, y) ∈ R
2,(2.6)
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where J0 is the zeroth-order Bessel function of the first kind, no is the refractive index
of the objective lens immersion medium, and z0 ∈ R is the z-location of the point
source on the optical axis in the object space. When the point source is in-focus with
respect to the detector, i.e., it lies in the object plane, then z0 = 0 and Eqs. (2.4) and
(2.6) are equivalent.
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Fig. 2. Image function examples. (a) Airy and (b) symmetric Gaussian profiles, which describe
the images of an in-focus point source, simulated by Eqs. (2.4) and (2.5), respectively, with the
parameters given in Section 4.1. (c) Born and Wolf profile simulated by Eq. (2.6) with the out-of-
focus level z0 = 1 µm, and the parameters given in Section 4.1.

We calculate pUl|Tl,Dl−1
, l = 1, 2, · · · , for more general cases. In the following

corollary to Theorem 2.2, by describing these conditional probability density functions
in terms of the image function, we derive expressions for the probability density
functions of the image detection processes driven by the stochastic trajectory X and
image function q for a time interval [t0, t] and for a fixed number L of photons.

Corollary 2.4. Let G[t]

(

X,
(
U[t], T[t]

)
, q, C,Θ

)

(or GL
(

X, (UL, TL) , q, C,Θ
)

) be

an image detection process driven by the stochastic trajectory X and image function q
for a time interval [t0, t] (or for a fixed number L of photons). Then, the conditional
probability density function pUl|Tl,Dl−1

, l = 1, 2, · · · , in Eq. (2.1) (or in Eq. (2.2)) of
Theorem 2.2 is given by, for x := (x0, y0, z0) ∈ R

3,

pUl|Tl,Dl−1

(

rl|τl, dl−1

)

=

∫

R3

fx (rl) pprl

(

x|τl, dl−1

)

dx

=
1

|det(M)|

∫

R3

qz0

(

M−1rl − (x0, y0)
)

pprl

(

x|τl, dl−1

)

dx,(2.7)

where dl ∈ Cl×R
l
[t] (or dl ∈ Cl×R

l
[∞]), pprl := pX(Tl)|Tl,Dl−1

denotes the distribution

of the prediction of the object location, ppr1

(

x|τ1, d0
)

:= ppr1

(

x|τ1
)

, and fx, x ∈ R
3,

is the image profile of an object located at x in the object space.

Proof. See Section SM2 in the supplementary material.
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As can be seen in the above corollary, the expression of the probability density
function of the image detection process depends on the distribution pprl , l = 1, 2, · · · ,
of the prediction of the object location, given the previous locations of the detected
photons and the current and previous time points. In the following section, we intro-
duce linear stochastic systems and calculate pprl , l = 1, 2, · · · , for them.

In Theorem 2.2, we expressed the probability density functions of image detec-
tion processes in terms of conditional probability densities pUl|Tl,Dl−1

, l = 1, 2, · · · ,
of the locations of the detected photons, given the previous locations and the cur-
rent and previous time points of the detected photons. In particular, for an object
with a deterministic trajectory or a static object, the conditional probability densi-
ties pUl|Tl,Dl−1

, l = 1, 2, · · · , are given as follows. For an object with deterministic
trajectory X(τ) ∈ R

3, τ ≥ t0, we have

pUl|Tl,Dl−1

(

rl|τl, dl−1

)

= pUl|Tl
(rl|τl) := fX(τl) (rl) .(2.8)

Also, for a static object with position X0 ∈ R
3, we have

pUl|Tl,Dl−1

(

rl|τl, dl−1

)

= pUl
(rl) := fX0

(rl) .(2.9)

3. Linear stochastic systems. In general, the motion of an object in cellular
environments is subject to different types of forces, e.g., deterministic forces due to the
environment and random forces due to random collisions with other objects [31, 7].
The 3D random variable X(τ) denotes the location of the object at time τ ≥ t0.
Then, the motion of the object is assumed to be modeled through a general state
space system with state X̃(τ) ∈ R

k, τ ≥ t0, as

X̃(τl+1) = φ̃(τl, τl+1)X̃(τl) + W̃ (τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · ,(3.1)

where we assume that there exists a matrix H ∈ R
3×k such that X(τ) = HX̃(τ), τ ≥

t0, φ̃(τl, τl+1) ∈ R
k×k is a state transition matrix, and

{

W̃ (τl, τl+1) , l = 1, 2, · · · }

is a sequence of k-dimensional random variables with probability density functions
pW̃ (τl,τl+1)

. We also assume that the initial state X̃(t0) is independent of W̃ and its
probability density function is given by pX̃(t0)

.

The general system of discrete evolution equations described by Eq. (3.1) can
arise, for example, from stochastic differential equations [26]. In particular, in many
biological applications, solutions of linear stochastic differential equations are good fits
to experimental single-molecule trajectories [26]. As an example, we assume that the
motion of the object of interest, e.g., a single molecule, is described by the following
linear vector stochastic differential equation [8]

dX(τ) = (V + F (τ)X(τ)) dτ +G(τ)dB(τ), τ ≥ t0,(3.2)

where the 3D random process X(τ) describes the location of the object at time τ ≥ t0,
F ∈ R

3×3 andG ∈ R
3×r are continuous matrix time-functions related to the first order

drift and diffusion coefficients, respectively, V ∈ R
3 is the zero order drift coefficient,

and {B(τ) ∈ R
r, τ ≥ t0} is a random process [4].

Here, we assume that {B(τ) ∈ R
r, τ ≥ t0} is an r-vector Brownian motion process

with E
{
dB(τ)dB(τ)T

}
= Ir×r, τ ≥ t0, where Ir×r is the r × r identity matrix [10,

9, 8]. Then, the solution of Eq. (3.2) at discrete time points τ0 := t0 ≤ τ1 < · · · <
τl+1 < · · · is given by [14]

X(τl+1) = φ(τl, τl+1)X(τl) + a(τl, τl+1) +Wg(τl, τl+1),(3.3)
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where the continuous matrix time-function φ ∈ R
3×3 is given by

dφ(t, τ)

dt
= F (t)φ(t, τ), φ(τ, τ) = I3×3, for all t, τ ≥ t0,

φ(t, τ)φ(τ, ψ) = φ(t, ψ), for all t, τ, ψ ≥ t0,

and the vector a(τl, τl+1) ∈ R
3×1 is given by

a(τl, τl+1) :=

∫ τl+1

τl

φ(τ, τl+1)V dτ.

Also, in this case,
{

Wg(τl, τl+1) :=
∫ τl+1

τl
φ(τ, τl+1)G(τ)dB(τ), l = 1, 2, · · ·

}

is a zero

mean white Gaussian sequence with covariance Qg(τl, τl+1) ∈ R
3×3 given by

Qg(τl, τl+1) =

∫ τl+1

τl

φ(τ, τl+1)G(τ)G
T (τ)φT (τ, τl+1)dτ.

By letting X(τ) = HX̃(τ) = I3×3X̃(τ) = X̃(τ), τ ≥ t0, and φ(τl, τl+1) = φ̃(τl, τl+1),
we obtain expressions of the form of Eq. (3.1), where we assume that

{

W̃ (τl, τl+1) = a(τl, τl+1) +Wg(τl, τl+1), l = 1, 2, · · ·
}

is a white Gaussian sequence with mean a(τl, τl+1) and covariance Qg(τl, τl+1).
As an another example, for pure diffusion motion, when V and F (τ), τ ≥ 0, in

Eq. (3.2) are equal to zero, the discrete motion model is given by

X(τl+1) = X(τl) +Wg(τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · .(3.4)

Setting X̃(τ) := X(τ), τ ≥ t0, with H the identity matrix, φ̃(τl, τl+1) = φ(τl, τl+1) =
I3×3, and W̃ (τl, τl+1) = Wg(τl, τl+1), we again obtain expressions of the form of Eq.
(3.1).

The above discussion motivates us to model the motion of the object, in the
following definition, by Eq. (3.1) with, in general, an arbitrary distributed process
noise W̃ . In particular, we also consider the special case of Gaussian distributed
process noise W̃g, separately.

Definition 3.1. Let G[t]

(

X,
(
U[t], T[t]

)
, q, C,Θ

)

and GL
(

X, (UL, TL) , q, C,Θ
)

be

image detection processes driven by a stochastic trajectory X and image function q
for a fixed time interval [t0, t] and for a fixed number L of photons. Let pX(t0) be the
probability density function of the initial location X(t0) of the object. We assume that

a. the motion of the object is modeled through a general state space system with
state X̃(τ) ∈ R

k, τ ≥ t0, as

X̃(τl+1) = φ̃(τl, τl+1)X̃(τl) + W̃ (τl, τl+1), τ0 := t0 ≤ τ1 < · · · < τl+1 < · · · ,(3.5)

where we assume that there exists a matrix H ∈ R
3×k such that X(τ) = HX̃(τ), τ ≥

t0, φ̃(τl, τl+1) ∈ Φ̃, where Φ̃ =
{

φ̃(τ, ψ)
}

ψ>τ≥t0
is a family of k × k invertible real-

valued state-transition matrices, and
{

W̃ (τl, τl+1), l = 0, 1, 2, · · ·
}

is a process noise

sequence of independent k-dimensional random variables with probability density func-
tions pW̃ (τl,τl+1)

.
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b. We assume that

Ul = Z (X(τl)) , l = 1, 2, · · · ,(3.6)

where {Z (X(τl)) , l = 1, 2, · · · } is a measurement sequence of independent 2D random
variables with probability density functions pZ(X(τl)) = fX(τl), where Z is a random
function that maps the object space into the image space, fX(τl) is the image profile
of an object located at X(τl) defined in Definition 2.3 and

c. We assume that the sequences
{

W̃ (τl, τl+1), l = 0, 1, · · ·
}

, {Z (X(τl)) , l = 1, 2,

· · · }, and X̃(t0) are independent of one another.

The image detection process G[t]

(

X,
(
U[t], T[t]

)
, q, C,Θ

)

(or GL
(

X, (UL, TL) , q, C,

Θ
)

) with the additional properties (a)-(c) is called an image detection process with

expanded state space X̃ for a time interval [t0, t] (or for a fixed number L of photons),

and is denoted by G[t]

((

X̃,H, W̃ , Z
)

,
(
U[t], T[t]

)
, Φ̃, C,Θ

)

(or GL
((

X̃,H, W̃ , Z
)

,

(UL, TL) , Φ̃, C,Θ
)

).

We further assume that

α.
{

W̃g(τl, τl+1) := W̃ (τl, τl+1), l = 0, 1, · · ·
}

is a white Gaussian sequence with

mean ã(τl, τl+1) ∈ R
k and covariance matrix Q̃g(τl, τl+1) ∈ R

k×k, Q̃g(τl, τl+1) > 0,
β.

Z(X(τl)) =M ′X(τl) + Zg,l l = 1, 2, · · · ,(3.7)

where M ′ :=
[
M 02×1

]
∈ R

2×3, in which M ∈ R
2×2 is an invertible magnification

matrix used in the definition of the image function (Eq. (2.3)), where 02×1 is the 2×1
zero matrix, and {Zg,l, l = 1, 2, · · · } is a measurement noise sequence of independent
2D Gaussian random variables with mean zero and the same covariance matrix Σg ∈
R

2×2,Σg > 0.

γ. We assume that the initial state X̃(t0) is Gaussian distributed with mean
x̄0 ∈ R

k and covariance matrix P̃0 ∈ R
k×k, P̃0 > 0.

If, in addition, an image detection process with expanded state space has the prop-
erties (α)-(γ), it is called an image detection process with expanded state space X̃ and

Gaussian process and measurement noise models, and is denoted by Gg[t]

((

X̃,H, W̃g,

Zg) ,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)

(or GgL

((

X̃,H, W̃g, Zg

)

, (UL, TL) , Φ̃,M
′, C,Θ

)

) for a

time interval [t0, t] (or for a fixed number L of photons).

In Corollary 2.4, we calculated the probability density function of the image de-
tection process in terms of the image function q and the distribution pprl , l = 1, 2, · · · ,
of the prediction of the object location, given the previous locations of the detected
photons and the current and previous time points. In the following theorem, for a
linear stochastic system and Gaussian process and measurement noise, we calculate
these distributions using the Kalman filter formulae. Also, for a more general Markov
motion model described by a first order system with arbitrary distributed process and
measurement noise, we calculate these distributions recursively.

Theorem 3.2. Let G[t]

((

X̃,H, W̃ , Z
)

,
(
U[t], T[t]

)
, Φ̃, C,Θ

)

(or GL
((

X̃,H, W̃ ,

Z) , (UL, TL) , Φ̃, C,Θ
)

) be an image detection process with expanded state space X̃ for
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a time interval [t0, t] (or for a fixed number L of photons). Let Dk := (Uk, Tk) ,
k = 0, 1, · · · , and

pprl

(

x|τl, dl−1

)

:= pX(Tl)|Tl,Dl−1

(

x|τl, dl−1

)

, x ∈ R
3,

where dl ∈ Cl × R
l
[t] (or dl ∈ Cl × R

l
[∞]), be the probability density function of the

prediction of the object location, and ppr1

(

x|τ1, d0
)

:= ppr1

(

x|τ1
)

.

1. Assume that there exist non-singular matrix H1 ∈ R
3×3 and matrix H2 ∈

R
3×(k−3) such that H =

[
H1 H2

]
. Let

S :=

[
H1 H2

0(k−3)×3 I(k−3)×(k−3)

]

∈ R
k×k.

Then, for x := (x1, x2, x3)
T ∈ R

3 and x̄ := (x1, x2, x3, x̄4, · · · , x̄k)
T ∈ R

k,

pprl

(

x|τl, dl−1

)

=

∫

Rk−3

p̃prl

(

S−1x̄|τl, dl−1

)

|H1|
−1
dx̄4 · · · dx̄k,

where p̃prl := pX̃(Tl)|Tl,Dl−1
, l = 0, 1, 2, · · · , and S−1 is given by

S−1 =

[
H−1

1 −H−1
1 H2

0(k−3)×3 I(k−3)×(k−3)

]

.

If H =
[
I3×3 03×(k−3)

]
, then,

pprl

(

x|τl, dl−1

)

=

∫

Rk−3

p̃prl

(

x̄|τl, dl−1

)

dx̄4 · · · dx̄k.

2. The probability density function p̃prl , l = 0, 1, 2, · · · , can be calculated through
the following recursive formula, for x̄ ∈ R

k,

p̃prl+1

(

x̄|τl+1, dl

)

=
1

|det (φ(τl, τl+1))|

∫

Rk

p̃fil

(

φ̃
−1(τl, τl+1)x̄o|dl

)

pW̃ (τl,τl+1)

(

x̄− x̄o

)

dx̄o,

(3.8)

where d0 = ∅, and the distribution p̃fil

(

x̄|dl
)

:= pX̃(Tl)|Dl

(

x̄|dl
)

of the filtered object

location is given by

p̃fil

(

x̄|dl
)

=
pZ(Hx̄) (rl) p̃prl

(

x̄|τl, dl−1

)

∫

Rk pZ(Hx̄o) (rl) p̃prl

(

x̄o|τl, dl−1

)

dx̄o

.(3.9)

3.1. Let Gg[t]

((

X̃,H, W̃g, Zg

)

,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)

(or GgL

((

X̃,H, W̃g, Zg

)

,

(UL, TL) , Φ̃,M ′, C,Θ
)

) be an image detection process with expanded state space X̃

and Gaussian process and measurement noise models for a time interval [t0, t] (or for
a fixed number L of photons). Let C :=M ′H. Then, for l = 0, 1, · · · , and x̄ ∈ R

k,

p̃prl+1

(

x̄|dl, τl+1

)

=
1

(2π)k/2
[

det(P l
l+1)

]1/2
exp

(

−
1

2
(x̄− x̂

l
l+1)

T
(

P
l
l+1

)−1

(x̄− x̂
l
l+1)

)

,

(3.10)
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where dl ∈ Cl×R
l
[t] (or dl ∈ Cl×R

l
[∞]), x̂

0
1 = φ̃(τ0, τ1)x̄0, P

0
1 = φ̃(τ0, τ1)P̃0φ̃

T (τ0, τ1)+

Q̃g(τ0, τ1), and for l = 1, 2, · · · ,

x̂
l
l+1 = φ̃(τl, τl+1)x̂

l
l + ã(τl, τl+1),

P
l
l+1 = φ̃(τl, τl+1)P

l
l φ̃

T (τl, τl+1) + Q̃g(τl, τl+1),(3.11)

with

Kl = P
l−1
l C

T
(

CP
l−1
l C

T +Σg

)−1

,

x̂
l
l = x̂

l−1
l +Kl(rl − Cx̂

l−1
l ),

P
l
l = P

l−1
l −KlCP

l−1
l .(3.12)

3.2. Moreover, the conditional probability density function pUl|Tl,Dl−1
is given by

pUl|Tl,Dl−1

(

rl|τl, dl−1

)

=
1

2π [det (Rl)]
1/2

exp

(

−
1

2
(rl − r̂l)

T
R

−1
l (rl − r̂l)

)

,(3.13)

where dl ∈ Cl × R
l
[t] (or dl ∈ Cl × R

l
[∞]), Rl := CP l−1

l CT +Σg and r̂l := Cx̂l−1
l .

Proof. See Section SM3 in the supplementary material.

4. Maximum likelihood estimation. The main purpose of the presented ma-
terials in the previous section is to provide a mathematical framework to estimate
the parameters of interest, such as the parameters of the model that describes the
motion of a moving object with stochastic trajectories, from the acquired data. In this
paper, we use the maximum likelihood estimation approach as follows. For a general
parameter estimation problem, denoting the acquired data by d̄ ∈ R

m,m = 1, 2, · · · ,
the maximum likelihood estimate θ̂mle of θ ∈ Θ, if it exists, is given by

θ̂mle = argmin
θ∈Θ

(

− logL(θ|d̄)
)

,

where L denotes the likelihood function. In our specific problem, the acquired data
for the fixed time interval [t0, t] acquisition case is denoted by d̄K ∈ CK × R

K
[t],K =

0, 1, · · · . Then, the likelihood function L[t] of G[t]

( (
U[t], T[t]

)
, C,Θ

)

is given by, ac-

cording to Theorem 2.2 (see also [32, 33]), for θ ∈ Θ,

L[t](θ|d̄K) =







e
−
∫

t
t0

Λθ(τ)dτ , K = 0,

e
−
∫

t
t0

Λθ(τ)dτ ∏K
k=1 Λθ(τ̄k)

[

∏K
l=1 p

θ
Ul|Tl,Dl−1

(

r̄l|τ̄l, d̄l−1

)]

, K = 1, 2, · · · ,
(4.1)

and the likelihood function LL of GL
(

(UL, TL) , C,Θ
)

is given by

LL(θ|d̄L) = pθL(d̄L) = e−
∫ τ̄L
t0

Λθ(τ)dτ
L∏

k=1

Λθ(τ̄k)

[
L∏

l=1

pθUl|Tl,Dl−1

(

r̄l|τ̄l, d̄l−1

)
]

,(4.2)

where d̄L ∈ CL × R
L
[∞], L = 1, 2, · · · .

In supplementary Section SM4, we provide an example to illustrate our results for
the specific case that the motion model is described by a linear stochastic differential
equation.

In the following, we present and discuss the results of the proposed maximum
likelihood estimation method when applied to simulated data sets of trajectories of a
single molecule.
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4.1. Simulated parameters. To analyze the performance of the proposed max-
imum likelihood estimation method, we simulated different data sets using parameters
commonly used in single molecule experiments. Unless otherwise stated, the images
of in-focus and out-of-focus molecules were generated with Airy and Born and Wolf
profiles (Eqs. (2.4) and (2.6)), respectively, where na = 1.4, λ = 520 nm, no = 1.515,
and z0 = 1 µm. For the Gaussian measurement case, the image of a molecule was
generated with a zero-mean Gaussian measurement noise with the probability density
function given by Eq. (2.5), where σ = 70 nm, which is related to the corresponding
Airy profile.

Furthermore, a measurement (magnification) matrix M = 100I2×2 was assumed
to map the object space to the image space.
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Fig. 3. Analysis of the error of diffusion coefficient and first order drift coefficient estimates
produced by the maximum likelihood estimation method for the Born and Wolf measurement model.
(a) A trajectory of an out-of-focus molecule, with the out-of-focus level z0 = 1 µm, in the object
space simulated using Eq. (SM4.1) where the time points are drawn from a Poisson process with
mean 500 in the time interval [0, 100] ms with the first order drift coefficient F = −10I2×2/s and the
diffusion coefficient D = 1 µm2/s. We assume the zero order drift is equal to 0. Also, we assume
that the initial location of the molecule is Gaussian distributed with mean x0 = (4.4, 4.4)T µm
and covariance P0 = 10I2×2 nm2. (b) Detected locations of the photons emitted from the molecule
trajectory of part (a) in the image space which are simulated using Eq. (3.6) with the Born and Wolf
profile (Eq. (2.6)) and the parameters given in Section 4.1. (c) Differences between the diffusion
coefficient estimates and the true diffusion coefficient value for 100 data sets, each containing a
trajectory of a molecule simulated using Eqs. (SM4.1) and (3.6) with the Born and Wolf profile,
and the parameters given in parts (a) and (b). (d) Differences between the first order drift coefficient
estimates and its true value for the data sets of part (c).

4.2. Estimation results. Using simulated data sets, we first examine the per-
formance of the maximum likelihood estimation method used to estimate the param-
eters of the linear motion model of a moving molecule in terms of the bias of the
method. The bias is assessed by the average of the deviations of the estimates from
the true value. For this purpose, we simulated 100 data sets, each containing a tra-
jectory of an out-of-focus molecule, with the out-of-focus level z0 = 1 µm, simulated
using Eqs. (SM4.1) and (3.6), with the Born and Wolf profile (Eq. (2.6)) and the
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parameters given in Section 4.1, with a mean photon count of 500 photons in the
time interval [0, 100] ms, where the first order drift coefficient F = −10I2×2/s and
the diffusion coefficient D = 1 µm2/s. We assume the zero order drift is equal to
0. In Figs. 3(a) and 3(b), an example of a molecule trajectory in the object space
and its image in the image space are shown. For these data sets, we calculated the
maximum likelihood estimates of the diffusion and drift coefficients, separately. For
this purpose, we needed to obtain the distributions of the prediction in the likelihood
function expressions (Eqs. (4.1) and (4.2)) through Eqs. (3.8) and (3.9), which in
general is a computationally expensive problem. We approximated the distributions
of the prediction using a sequential Monte Carlo algorithm proposed in [30]. The
overall approach is explained in supplementary Section SM6 in detail. In Figs. 3(c)
and 3(d), the differences between the maximum likelihood estimates of the diffusion
and the first order drift coefficients and the true values are plotted. We also estimated
the z0-location of the molecule, i.e., the out-of-focus level, and show the errors of es-
timation in Fig. 4. As can be seen, the deviations of the estimates from the ground
truth are, overall, centered around 0 nm, which suggests that there is no systematic
bias associated with our proposed method (the average of the diffusion coefficient de-
viations and the first order drift coefficient deviations are -0.0319 µm2/s and 0.0307/s,
respectively).
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Fig. 4. Analysis of the error of out-of-focus z0-location estimates produced by the maximum
likelihood estimation method for the Born and Wolf measurement model. Differences between the
z0-location estimates and its true value, z0 = 1 µm, for the data sets of Fig. 3.

We further investigate the distribution pprl , l = 1, 2, · · · , of the prediction of the
molecule location, given previous observations, for the molecule trajectory shown in
Figs. 3(a) and 3(b). The means of the distributions of the prediction of the molecule
x- and y-locations and the true x- and y-locations are shown in Fig. 5(a) and 5(b). We
also show the measurements transformed from the image space to the object space,
which are obtained as follows. The location Xo := (xo, yo, zo)

T ∈ R
3 in the object

space is transformed into the location Xi := (xi, yi)
T ∈ R

2 in the image space through



16 M. R. VAHID, B. HANZON, R. J. OBER

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

2

4

6
X

-l
o

c
a

ti
o

n
 o

f 
m

o
le

c
u

le
 (
µ

m
)

Measurements

True

Predicted

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

2

4

6

Y
-l

o
c

a
ti

o
n

 o
f 

m
o

le
c

u
le

 (
µ

m
)

Measurements

True

Predicted

0 0.005 0.01 0.015 0.02 0.025 0.03

Time (s)

2

3

4

5

6

X
-l

o
c

a
ti

o
n

 o
f 

m
o

le
c

u
le

 (
µ

m
)

Measurements

True

Predicted

0 0.005 0.01 0.015 0.02 0.025 0.03

Time (s)

2

3

4

5

6

Y
-l

o
c

a
ti

o
n

 o
f 

m
o

le
c

u
le

 (
µ

m
)

Measurements

True

Predicted

(b)(a)

(c) (d)

Fig. 5. Predicted locations of the molecule for the Born and Wolf measurement model. (a) and
(b) Means of the distributions of the prediction of the molecule x- and y-locations and the true x-
and y-locations of the molecule for the same data set as in Figs. 3(a) and 3(b). The measurements
transformed from the image space to the object space are also shown. (c) and (d) Means of the
distributions of the prediction of the molecule x- and y-locations and the true x- and y-locations of
the molecule over the time interval [0, 27.5] ms.

a linear map as, for M ′ ∈ R
2×3,

(4.3) Xi =M ′Xo.

In Fig. 3, where we have a trajectory of an out-of-focus molecule, with the out-of-
focus plane zo = 1 µm, it is assumed that the magnification matrix (measurement
mapping matrix) M ′ = 100I2×2. Then, the x- and y-locations of the measurements
mapped to the object space are obtained as

(4.4) xo = xi/100, yo = yi/100.

For a better visual comparison, the means of the distributions of the prediction of the
molecule locations and the true locations for x- and y-coordinates are also shown over
a shorter time interval in Figs. 5(c) and 5(d). As can be seen, the predicted locations
are able to track the true locations of the molecule for both x- and y-coordinates. We
also show the differences between the means of the distributions of the prediction of the
molecule locations and the true locations of the molecule in Fig. SM4 (see Section
SM14.6 in the supplementary material). We also applied the proposed method to
trajectory data of an in-focus molecule simulated using an Airy profile, with the same
standard deviation as the Born and Wolf data, and obtained similar results (see Figs.
SM2, SM3 and SM5 in supplementary Section SM7).

As mentioned, in some applications, it is useful to approximate the point spread
function of an optical system with a Gaussian profile. We analyzed the error of the
estimates for simulated data sets with Gaussian measurement noise, with the same
standard deviation as the Born and Wolf data, and obtained similar results (see Figs.
6, 7, 8 and SM6). This time we estimated all the parameters of the trajectory together,
i.e., we assumed that the parameter vector θ := (V, F,D, x0, y0), where V ∈ R

2 and
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Fig. 6. Analysis of the error of diffusion coefficient and first order drift coefficient estimates
produced by the maximum likelihood estimation method for the Gaussian measurement noise case.
(a) A 2D trajectory of an in-focus molecule in the object space simulated using Eq. (SM4.1) where
the time points are drawn from a Poisson process with mean 500 in the time interval [0, 100] ms
with the first order drift coefficient F = −10I2×2/s and the diffusion coefficient D = 1 µm2/s.

Also, we assume that the zero order drift coefficient V = (100, 100)T µ/s, the initial location of
the molecule is Gaussian distributed with mean x0 = (4.4, 4.4)T µm and covariance P0 = 10I2×2

nm2. (b) Detected locations of the photons emitted from the molecule trajectory of part (a) in the
image space which are simulated using Eq. (3.7) with the Gaussian measurement noise (Eq. (2.5))
and σ = 0.51 µm. (c) Differences between the diffusion coefficient estimates and the true diffusion
coefficient value for 100 data sets, each containing a trajectory of a molecule simulated using Eqs.
(SM4.1) and (3.7) with the Gaussian profile, and the parameters given in parts (a) and (b). (d)
Differences between the first order drift coefficient estimates and its true value for the data sets of
part (c).

F ∈ R denote the zero order and first order drift, respectively, D ∈ R is the diffusion
coefficient and (x0, y0) ∈ R

2 is the initial location of the molecule. We also consider

the more general case where F =

[
Fx 0
0 Fy

]

, Fx, Fy ∈ R (Fig. SM1). In order

to calculate the predicted locations of the molecule for Gaussian measurements, we
took advantage of the relationship between the likelihood function and Kalman filter
formulae (see Theorem 3.2). It improved the computational efficiency significantly.

5. Fisher information matrix and CRLB. In any estimation problem, the
performance of the estimator can be evaluated by calculating their standard deviations
from the true parameter values. According to the Cramér-Rao inequality, the covari-
ance matrix of any unbiased estimator θ̂ of an unknown vector parameter θ is bounded
from below by the inverse of the Fisher information matrix I(θ), i.e., Cov(θ̂) ≥ I−1(θ).
Therefore, a benchmark on the standard deviation of estimates can be obtained by
the square root of the inverse of the Fisher information matrix. Note that the Fisher
information matrix only depends on the statistical nature of the acquired data and is
independent of the applied estimation technique. Since this concept is very important
when we have fixed time points, as we defined image detection processes and their
probability density functions at fixed time points in Section 2, here, we first introduce
a notation for the Fisher information matrix of these processes in Definition 5.1, and
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Fig. 7. Analysis of the error of the zero order drift coefficient and initial location estimates
produced by the maximum likelihood estimation method for the Gaussian measurement noise case.
(a) and (b) Differences between the zero order drift coefficient estimates and its true value, in both
x- and y-directions, for the data sets of Fig. 6. (c) and (d) Differences between the initial location
estimates and its true value, in both x- and y-directions, for the data sets of Fig. 6.

use it to calculate the Fisher information matrix of image detection processes for the
fixed time interval and for the fixed number of photons in Theorem 5.2.

Definition 5.1. For t0 ≤ τ1 < · · · < τK , let Gτ1,··· ,τK

(

(UK , TK) , C,Θ
)

be an

image detection process at fixed time points τ1, · · · , τK . We introduce the following

notation for the Fisher information matrix of Gτ1,··· ,τK

(

(UK , TK) , C,Θ
)

as, for a row

parameter vector θ ∈ Θ,

Iτ1,··· ,τK (θ) : = EUK |TK=τ1:K















∂ log pθ
UK |TK

(

r1:K |τ1:K

)

∂θ





T 



∂ log pθ
UK |TK

(

r1:K |τ1:K

)

∂θ















=

∫

C
· · ·

∫

C
pθUK |TK

(

r1:K |τ1:K

)





∂ log pθ
UK |TK

(

r1:K |τ1:K

)

∂θ





T

×





∂ log pθ
UK |TK

(

r1:K |τ1:K

)

∂θ



 dr1 · · · drK ,

for t0 ≤ τ1 < · · · < τK , and Iτ1,··· ,τK (θ) = 0, otherwise, where r1:K := (r1, · · · , rK)
, r1, · · · , rk ∈ C, τ1:K := (τ1, · · · , τK) ,K = 1, 2, · · · , and EUK |TK=τ1:K denotes the

expected value with respect to the conditional probability density function pθUK |TK
of

UK , given TK = τ1:K .

Theorem 5.2. Let G[t]

( (
U[t], T[t]

)
, C,Θ

)

and GL
(

(UL, TL) , C,Θ
)

be image de-

tection processes for a time interval [t0, t] and for a fixed number L of photons, re-
spectively. Let D[t] :=

(
U[t], T[t]

)
,Dk := (Uk, Tk) , k = 0, 1, · · · . Assume that the

conditional probability density functions pθUl|Tl,Dl−1
, l = 1, 2, · · · , of Ul, given Tl and

Dl−1, satisfy the following regularity conditions, for θ = (θ1, · · · , θn) ∈ Θ,
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Fig. 8. Predicted locations of the molecule for the Gaussian measurement noise case. (a) and
(b) Means of the distributions of the prediction of the molecule x- and y-locations and the true x-
and y-locations of the molecule for the same data set as in Figs. 6(a) and 6(b). The measurements
transformed from the image space to the object space are also shown. (c) and (d) Means of the
distributions of the prediction of the molecule x- and y-locations and the true x- and y-locations of
the molecule over the time interval [0, 27.5] ms.

(a)
∂pθUl|Tl,Dl−1

(

rl|τl,dl−1

)

∂θi
exists for i = 1, · · · , n,

(b)

∫

C

∣
∣
∣
∣
∣
∣

∂pθUl|Tl,Dl−1

(

r|τl,dl−1

)

∂θi

∣
∣
∣
∣
∣
∣

dr <∞ for i = 1, · · · , n,

where dl ∈ Cl×R
l
[t] for G[t], dl ∈ Cl×R

l
[∞] for GL, and p

θ
(

r1|τ1, d0
)

:= pθ
(

r1|τ1
)

.

1.1. Then, the Fisher information matrix I[t] of G[t] is given by

I[t](θ) =
1

Pθ

(

N(t) = 0
)





∂Pθ

(

N(t) = 0
)

∂θ





T 



∂Pθ

(

N(t) = 0
)

∂θ





+
∞
∑

K=1

∫ t

t0

∫ τK

t0

· · ·

∫ τ3

t0

∫ τ2

t0

[

∫

C
· · ·

∫

C

1

pθ
[t]

(

dK ,K
)





∂pθ
[t]

(

dK ,K
)

∂θ





T 



∂pθ
[t]

(

dK ,K
)

∂θ





× dr1 · · · drK

]

dτ1dτ2 · · · dτK−1dτK ,

(5.1)

where dl ∈ Cl×R
l
[t], and p

θ
[t] denotes the probability density function of D[t] and N(t).

1.2. Assume that the photon detection rate Λ is independent of θ. Then, I[t] can
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be calculated as

I[t](θ) = e
−
∫

t

t0
Λ(τ)dτ

∞∑

K=1

{
∫ t

t0

∫ τK

t0

· · ·

∫ τ3

t0

∫ τ2

t0

Iτ1,··· ,τK (θ)
K∏

k=1

Λ(τk)

× dτ1dτ2 · · · dτK−1dτK

}

,(5.2)

where the Fisher information matrix Iτ1,··· ,τK of the image detection process at fixed

time points τ1, · · · , τK Gτ1,··· ,τK

(

(UL, TL) , C,Θ
)

is given by

Iτ1,··· ,τK (θ) =

{

∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,
(5.3)

in which the Fisher information matrix Iτ1,··· ,τl
Ul|Tl,Dl−1

calculated with respect to the con-

ditional probability density function pθUl|Tl,Dl−1
at fixed time points Tl = τ1:l is given

by

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ) = EUl|Tl=τ1:l















∂ log pθUl|Tl,Dl−1

(

rl|τl, dl−1

)

∂θ





T 



∂ log pθUl|Tl,Dl−1

(

rl|τl, dl−1

)

∂θ















=

∫

C

· · ·

∫

C

p
θ
Ul−1|Tl−1

(

r1:l−1|τ1:l−1

)

[

∫

C

1

pθ
Ul|Tl,Dl−1

(

rl|τl, dl−1

)

×





∂pθUl|Tl,Dl−1

(

rl|τl, dl−1

)

∂θ





T 



∂pθUl|Tl,Dl−1

(

rl|τl, dl−1

)

∂θ



 drl

]

drl−1 · · · dr1,(5.4)

with r1:l := (r1, · · · , rl) , τ1:l := (τ1, · · · , τl), and I
τ1
U1|T1

given by

I
τ1
U1|T1

(θ) =

∫

C

1

pθU1|T1

(

r|τ1
)





∂pθU1|T1

(

r|τ1
)

∂θ





T 



∂pθU1|T1

(

r|τ1
)

∂θ



 dr.(5.5)

2.1. The Fisher information matrix IL of GL is given by

IL(θ) =

∫ ∞

t0

∫ τL

t0

· · ·

∫ τ3

t0

∫ τ2

t0

[

∫

C
· · ·

∫

C

1

pθL

(

dL

)





∂pθL

(

dL

)

∂θ





T 



∂pθL

(

dL

)

∂θ



 dr1 · · · drL

]

× dτ1dτ2 · · · dτL−1dτL,

where dl ∈ Cl × R
l
[∞], and p

θ
L denotes the probability density function of DL.

2.2. Assume that the photon detection rate Λ is independent of θ. Then, IL can
be obtained as

IL(θ) =

∫ ∞

t0

∫ τL

t0

· · ·

∫ τ3

t0

∫ τ2

t0

Iτ1,··· ,τL(θ)e
−
∫ τL
t0

Λ(τ)dτ
L∏

k=1

Λ(τk)

× dτ1dτ2 · · · dτL−1dτL.(5.6)

Remark 5.3. Note that for K = 1, the time integral of Eq. (5.2) is calculated

over the interval [t0, t], i.e.,
∫ t

t0
Iτ1(θ)Λ(τ1)dτ1.

Proof. See Section SM8 in the supplementary material.
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We next derive expressions for the Fisher information matrices of the image de-
tection processes driven by the stochastic trajectory X and image function q for a
time interval [t0, t] and for a fixed number L of photons in the following corollary to
Theorem 5.2.

Corollary 5.4. Let G[t]

(

X,
(
U[t], T[t]

)
, q, C,Θ

)

(or GL
(

X, (UL, TL) , q, C,Θ
)

) be

an image detection process driven by the stochastic trajectory X and image function
q for a time interval [t0, t] (or for a fixed number L of photons). Let, for a row
parameter vector θ = (θ1, · · · , θn) ∈ Θ, the n-dimensional vector F θl be given by

F θl

(

x, dl

)

:=

[
(
dfθx (rl)

)T
(

dpθprl

(

x|τl, dl−1

))T
]

︸ ︷︷ ︸

Block row vector

[

pθprl

(

x|τl, dl−1

)

fθx (rl)

]

, x ∈ R
3,

(5.7)

where dl ∈ Cl × R
l
[t] (or dl ∈ Cl × R

l
[∞]), r1:l := (r1, · · · , rl) , τ1:l := (τ1, · · · , τl),

pθprl := pθX(Tl)|Tl,Dl−1
, pθpr1

(

x|τ1, d0
)

:= pθpr1

(

x|τ1
)

, denotes the distribution of the

prediction of the object location, and dpθprl :=
∂pθprl
∂θ

, dfθx :=
∂fθ

x

∂θ
. Assume that the

photon detection rate Λ is independent of θ. Then, Iτ1,··· ,τK in Eq. (5.2) (or Eq.
(5.6)) of Theorem 5.2 is given by

Iτ1,··· ,τK (θ) =

{∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,

where

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ) =

∫

C
· · ·

∫

C
pθUl−1|Tl−1

(

r1:l−1|τ1:l−1

)

×







∫

R3

∫

R3







∫

C

F θ
l

(

x1, dl

) [

F θ
l

(

x2, dl

)]T

pθ
Ul|Tl,Dl−1

(

rl|τl, dl−1

) drl






dx1dx2






drl−1 · · · dr1,(5.8)

and

pθUl−1|Tl−1

(

r1:l−1|τ1:l−1

)

=

l−1∏

i=1

∫

R3

fθxo
(ri) p

θ
pri

(

xo|τi, di−1

)

dxo,(5.9)

with Iτ1
U1|T1

given by

I
τ1
U1|T1

(θ) =

∫

C

∫

R3

∫

R3

1

pθU1|T1

(

r|τ1
)

[

(

dfθ
x1

(r)
)T

(

dpθpr1

(

x1|τ1
))T ]

[

pθpr1

(

x1|τ1
)

fθ
x1

(r)

]

×

[

pθpr1

(

x2|τ1
)

fθ
x2

(r)

]T [
dfθ

x2
(r)

dpθpr1

(

x2|τ1
)

]

dx1dx2dr.(5.10)

Remark 5.5. Note that if the image function q is independent of the parameter
vector θ, then,

F θl

(

x, dl

)

= fx (rl)
(

dpθprl

(

x|τl, dl−1

))T

, x ∈ R
3,
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and the expression for Iτ1,··· ,τl
Ul|Tl,Dl−1

can be simplified as

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ)

=

∫

C

· · ·

∫

C

p
θ
Ul−1|Tl−1

(

r1:l−1|τ1:l−1

)

[

∫

C

1

pθ
Ul|Tl,Dl−1

(

rl|τl, dl−1

)

×

(

∂

∂θ

∫

R3
fxo (rl) p

θ
prl

(

xo|τl, dl−1

)

dxo

)T(

∂

∂θ

∫

R3
fxo (rl) p

θ
prl

(

xo|τl, dl−1

)

dxo

)

drl

]

× drl−1 · · · dr1

=

∫

C

· · ·

∫

C

p
θ
Ul−1|Tl−1

(

r1:l−1|τ1:l−1

)

{

∫

R3

∫

R3

[

∫

C

1

pθ
Ul|Tl,Dl−1

(

rl|τl, dl−1

)

× fx1
(rl) fx2

(rl)





∂pθprl

(

x1|τl, dl−1

)

∂θ





T 



∂pθprl

(

x2|τl, dl−1

)

∂θ



 drl

]

dx1dx2

}

drl−1 · · · dr1.

(5.11)

Proof. See Section SM9 in the supplementary material.

As mentioned in Section 2, for special cases of an object with a deterministic
trajectory and a static object, the probability density function of the image detection
process Gτ1,··· ,τK at fixed time points t0 ≤ τ1 < · · · < τK is simplified as given by Eqs.
(2.8) and (2.9), respectively. We next in Corollary 5.6 to Theorem 5.2 calculate the
Fisher information matrix for these special cases, and show that the obtained results
are consistent with the results presented in [21, 36, 34, 35].

Corollary 5.6. For t0 ≤ τ1 < · · · < τK , let Gτ1,··· ,τK

(

(UK , TK) , C,Θ
)

be an

image detection process at fixed time points τ1, · · · , τK . Assume that pUl|Tl,Dl−1

(

rl|τl,

dl−1

)

= pUl|Tl

(

rl|τl
)

, dl ∈ Cl × R
l
[∞], l = 1, 2, · · · .

1. Then, the Fisher information matrix Iτ1,··· ,τK of Gτ1,··· ,τK

(

(UK , TK) , C,Θ
)

is

given by

Iτ1,··· ,τK (θ) =

{∑K
l=1 I

τl
Ul|Tl

(θ), t0 ≤ τ1 < · · · < τK ,

0, otherwise,

where for l = 1, · · · ,K,

I
τl
Ul|Tl

(θ) =

∫

R2

1

pθUl|Tl

(

r|τl
)





∂pθUl|Tl

(

r|τl
)

∂θ





T 



∂pθUl|Tl

(

r|τl
)

∂θ



 dr.

2.1. For an object with deterministic trajectory Xτ (θ) := (xτ (θ), yτ (θ)) ∈ R
2, τ ≥

t0, assume that there exists an image function q: R2 7→ R, which describes the image
of an object on the detector plane at unit lateral magnification and it is assumed to
be independent of the parameter vector θ = (θ1, · · · , θn) ∈ Θ, such that

pθUl|Tl

(

r|τ
)

:=
1

M2
q

(
x

M
− xτ (θ),

y

M
− yτ (θ)

)

,

where r = (x, y) ∈ R
2, t0 ≤ τ ≤ t, and M > 1 is a magnification factor. Let D1q and

D2q be the partial derivatives of q with respect to the x- and y-coordinates, respectively.
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Also, let Djxτ and Djyτ , j = 1, · · · , n, denote the partial derivatives of xτ and yτ with
respect to the jth parameter coordinate, respectively. Then, for t0 ≤ τ1 < · · · < τK ,

Iτ1,··· ,τK (θ) =
K∑

l=1

Iτl(θ),

where

Iτl(θ) = V
T
θ (τl)

(

∫

R2

1

q(u, v)

[

(D1q)(u, v)
(D2q)(u, v)

] [

(D1q)(u, v)
(D2q)(u, v)

]T

dudv

)

Vθ(τl),

and

Vθ(τl) :=

[
(D1xτl)(θ) · · · (Dnxτl)(θ)
(D1yτl)(θ) · · · (Dnyτl)(θ)

]

∈ R
2×n.

2.2. For a static object with position X0(θ) = (x0(θ), y0(θ)) ∈ R
2, we have, for

t0 ≤ τ1 < · · · < τK ,

Iτ1,··· ,τK (θ) = I(θ) = KĨ(θ),

where

Ĩ(θ) = V
T
θ

(

∫

R2

1

q(u, v)

[

(D1q)(u, v)
(D2q)(u, v)

] [

(D1q)(u, v)
(D2q)(u, v)

]T

dudv

)

Vθ,

and for θ = (θ1, · · · , θn) ∈ θ,

Vθ :=

[
(D1x0)(θ) · · · (Dnx0)(θ)
(D1y0)(θ) · · · (Dny0)(θ)

]

∈ R
2×n.

Proof. See Section SM10 in the supplementary material.

The material presented in Theorem 5.2 and Corollary 5.4 provides a mathemati-
cal framework to calculate the Fisher information matrix of image detection processes
for a fixed time interval and for a fixed number of photons for a moving object with
a general stochastic motion model. As mentioned before, in many biological appli-
cations, the motion of a small object in subcellular environments can be modeled by
a linear stochastic differential equation. The solution of this linear stochastic differ-
ential equation can be modeled by a first order system driven by Gaussian noise. In
Corollary 5.7 to Theorem 5.2, we obtain recursive expressions for the Fisher informa-
tion matrices for both image detection processes for a fixed time interval and fixed
number of photons, in case that the dynamical system is described by a first order
system with Gaussian process and measurement noise.

Corollary 5.7. Let Gg[t]

((

X̃,H, W̃g, Zg

)

,
(
U[t], T[t]

)
, Φ̃,M ′, C,Θ

)

(or GgL

((

X̃,

H, W̃g, Zg

)

, (UL, TL) , Φ̃,M
′, C,Θ

)

) be an image detection process with expanded state

space X̃ and Gaussian process and measurement noise models for a time interval
[t0, t] (or for a fixed number L of photons). Let C := M ′H. Assume that the photon
detection rate Λ, C and Zg are independent of θ. Let

S
(ji)
θ,l −A

(j)
θ,lS

(ji)
θ,l−1

(

A
(i)
θ,l

)T

= B
(j)
θ,lRθ,l−1

(

B
(j)
θ,l

)T

, l = 2, 3, · · · ,

S
(ji)
θ,1 =

[

φ̃θ(τ0, τ1)x̄θ,0 + ãθ(τ0, τ1)
∂(φ̃θ(τ0,τ1)x̄θ,0+ãθ(τ0,τ1))

∂θj

]







(

φ̃θ(τ0, τ1)x̄θ,0 + ãθ(τ0, τ1)
)

(

∂(φ̃θ(τ0,τ1)x̄θ,0+ãθ(τ0,τ1))
∂θi

)







T

,(5.12)



24 M. R. VAHID, B. HANZON, R. J. OBER

where

A
(i)
θ,l :=

[

φ̃θ(τl−1, τl) 0k×k
∂φ̃θ(τl−1,τl)

∂θi
φ̃θ(τl−1, τl)

(

Ik×k −Kθ,l−1C
)

]

, B
(i)
θ,l :=

[

φ̃θ(τl−1, τl)Kθ,l−1
∂(φ̃θ(τl−1,τl)Kθ,l−1)

∂θi

]

,

and Rθ,l := CP l−1
θ,l C

T +Σg, Kθ,l := P l−1
θ,l C

T
(

CP l−1
θ,l C

T +Σg

)−1

, l = 1, 2, · · · , where

P l−1
θ,l is obtained through Eqs. (3.11) and (3.12).

Then, the Fisher information matrix Iτ1,··· ,τK in Eq. (5.2) (or Eq. (5.6)) of
Theorem 5.2 can be calculated as

Iτ1,··· ,τK (θ) =

{∑K
l=1 I

τ1,··· ,τl
Ul|Tl,Dl−1

(θ), t0 ≤ τ1 < · · · < τK ≤ t,

0, otherwise,
(5.13)

where, for θ = (θ1, · · · , θn) ∈ Θ and l = 1, · · · ,K, the i, jth, i, j = 1, · · · , n, entry
[

Iτ1,··· ,τl
Ul|Tl,Dl−1

]

i,j
of Iτ1,··· ,τl

Ul|Tl,Dl−1
can be calculated as

[

I
τ1,··· ,τl
Ul|Tl,Dl−1

(θ)
]

i,j
=

1

2
trace

[

R
−1
θ,l

∂Rθ,l

∂θi
R

−1
θ,l

∂Rθ,l

∂θj

]

+ trace

{

R
−1
θ,l C̃S

(ji)
θ,l C̃

T
}

,(5.14)

with C̃ :=
[
02×k C

]
.

Proof. See Section SM11 in the supplementary material.

In Section SM12, we provide an example to illustrate our results for calculating
the Fisher information matrix for the specific case of a linear trajectory described in
the example provided in Section SM4 of the supplementary material.

5.1. CRLB and standard deviation of estimates for different photon

counts. We next evaluate the performance of our proposed maximum likelihood
estimation method in terms of the standard deviation of the estimates. For this
purpose, we simulated data sets of the detected photons emitted from a molecule,
referred to as the images of a molecule, with a stochastic trajectory which differ
by the mean photon count, i.e., the mean number of detected photons during the
exposure time interval, assumed for each trajectory. This mean photon count ranges
from 250 to 1250. For each mean photon count, the data set consists of 100 repeat
images simulated using the Gaussian profile (Eq. (3.7)) with the parameters given
in Section 4.1. For these data sets, we calculated the maximum likelihood estimates
of the diffusion and first order drift coefficients, separately. Also, for the given data
set and time points, we obtained the square roots of the CRLBs for the diffusion
and first order drift coefficient by calculating the square roots of the inverse of their
corresponding Fisher information matrices at the fixed time points. It can be seen
in the first row of Fig. 9 that as the mean photon count increases and thereby
the amount of data that is available for the estimation increases the CRLB for the
estimates improves, consistent with the expectation that an increasing amount of
data leads to improved estimation results. The standard deviations of the estimates
show the analogous behavior while exhibiting the expected fluctuations due to the
stochastic nature of the sample standard deviations. Also, the percentage differences
between the standard deviations and the square roots of the CRLBs are shown in the
second row of Fig. 9. The percentage difference is the difference between the standard
deviation of the estimates and the square root of the corresponding CRLB, expressed
as a percentage of the square root of the corresponding CRLB. As can be seen, these
percentage differences are at most around 10%.
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Note that in theory, the square root of the CRLB provides a lower bound on
the standard deviation of an unbiased estimator. However, in simulation results, we
deal with individual stochastic trials rather than the probabilistic expressions that
are used in the statements of the CRLB. This means that even if the (probabilistic)
standard deviation of an estimator attains the CRLB, the sample standard deviation
obtained in a stochastic simulation will deviate from the probabilistic expression and
could be expected to be both above and below the CRLB.
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Fig. 9. Analysis of the standard deviation of diffusion coefficient and first order drift coefficient
estimates produced by the maximum likelihood estimation method for the Gaussian measurement
noise case. Shown in the first row are the standard deviations of the diffusion coefficient and first
order drift coefficient estimates versus the square roots of their corresponding CRLBs for simulated
data sets. The simulated data sets are the detected photons emitted from a molecule, referred to as
the images of a molecule, with a stochastic trajectory which differ by the mean photon count assumed
for each trajectory. For each mean photon count, the data set consists of 100 repeat images. For a
given data set, the time points of the detected photons are drawn from a Poisson process and are the
same for the all trajectories. All trajectories are simulated in the object space using Eq. (SM4.1)
with the first order drift coefficient F = −10I2×2/s and the diffusion coefficient D = 1 µm2/s. We
assume the zero order drift is equal to 0. Also, we assume that the initial location of the molecule
is Gaussian distributed with mean x0 = (5, 5)T µm and covariance P0 = 10I2×2 nm2. Detected
locations of the photons emitted from the molecule in the image space are simulated using Eq. (3.7)
with the parameters given in Section 4.1. Shown in the second row are the percentage differences
between the standard deviation of the diffusion coefficient and first order drift coefficient estimates
and the square roots of their corresponding CRLBs.

5.2. Fisher information matrix for non-Gaussian measurement noise.

So far, for computational purposes and taking advantage of the Kalman filter formu-
lation, we have focused on computing the Fisher information matrix and CRLB only
for Gaussian measurements. Although the Gaussian assumption is very useful in some
applications, there are many cases for which this assumption can be problematic in
practice due to the fact that the Gaussian model is often not a suitable approximation
for an analytical image profile. As mentioned earlier, from optical diffraction theory,
a typical point spread function for an in-focus molecule is given by the Airy profile.
Also, for the out-of-focus scenario, the image function is given by a classical model of
Born and Wolf [6].
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Here, we computed the Fisher information matrix of both the first order drift
and diffusion coefficients for the Airy measurements case and compared the results
with the Fisher information matrix obtained for the case that the Airy profile is
approximated by a 2D Gaussian profile. The typical approximation of the Airy profile
with α := 2πna/λ by a 2D Gaussian profile with standard deviation σ yields a value
of σ = 1.323/α [21]. We only focused on the one photon case, since computing the
integrals of the Fisher information expression for the Airy profile case numerically
requires a large number of samples and it is computationally expensive (see Section
SM13 in the supplementary material for the detailed computational procedure). As
shown in Fig. 10, the difference between the Fisher information matrices of these two
different profiles can be significant. As can be seen, this difference goes to 0 for the
diffusion coefficient and remains constant for the estimation of the drift coefficient.
The other main difference is that the CRLB decreases in the diffusion estimation case,
whereas it increases for the drift estimation as the size of the drift increases.
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Fig. 10. Fisher information matrix for Airy measurement noise versus Gaussian measurement
noise. Fisher information matrix of diffusion and first order drift coefficients for the Airy measure-
ment noise with parameter α = 2πna/λ given in Section 4.1 and by a 2D Gaussian profile with
standard deviation σ = 1.323/α, in case that we have one photon with arrival time of τ1 = 20 ms.

5.3. CRLB and Fisher information matrix for different sets of time

points. To examine further the CRLB for parameter estimation for a moving single
molecule with a stochastic trajectory, we calculated the square root of the CRLB
for the simulated trajectories with the same parameters as in Fig. 9, and different
time points drawn from a Poisson process with a mean value which ranges from
250 to 1250. In Fig. 11, we have plotted, for a given photon count, the median and
standard deviation of the different simulations of the square root of the CRLB for both
the diffusion and drift estimates. As in prior analyses the results vary significantly
for the two scenarios. While in both cases the median decreases with increasing
photon count (and thereby increasing acquisition time), the standard deviations of the
square roots of the CRLB expressions behave very differently. In case of the diffusion
parameter the standard deviations of the CRLB expressions are almost insignificant,
indicating that the specifics of the photon detection times do not have a major impact
on the standard deviation with which the diffusion coefficient can be estimated. The
situation for the estimation of the drift parameter is, however, very different. Here
the corresponding standard deviations are relatively high and in fact increase with the
number of photons that are acquired. This shows that the standard deviation with
which the drift coefficient can be estimated, in contrast to the diffusion coefficient,
is highly dependent on the specific time points at which the emitted photons are
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detected.
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Fig. 11. Analysis of the square root of the CRLB of the diffusion coefficient and first order

drift coefficient estimates for different sets of Poisson distributed time points. Medians and standard
deviations of the square roots of the CRLBs of the diffusion coefficient and the first order drift coef-
ficient estimates are shown by the circles and error bars, respectively, for the simulated trajectories
with the same parameters as in Fig. 9, and different time points drawn from a Poisson process with
the same mean value, which ranges from 250 to 1250.

We also show the Fisher information matrices (and Fisher information matrix
increments, i.e., the amount of information obtained by detecting one additional pho-
ton) for Poisson distributed time points and for equally distributed time points in
Fig. 12. For this purpose, we simulated two data sets of single molecule trajectories
with Gaussian measurements, the first containing a trajectory of a molecule simu-
lated using Eqs. (SM4.1), where the time points are drawn from a Poisson process
with mean 250 in the time interval [0, 50] ms, and the second containing 250 equally
spaced time points in the time interval [0, 50] ms. We then calculated the Fisher in-
formation matrix increments and Fisher information matrix (sum of the increments)
on the diffusion coefficient estimation for both data sets. As can be seen, the Fisher
information matrix increments, after initial iterations, are constant for the case of
equally spaced time points. However, for different realizations of Poisson time points,
the Fisher information matrix increments are different from each other. When the
time difference between two successive time points decreases (increases), the Fisher
information matrix increment of the diffusion coefficient decreases (increases), and
conversely, the corresponding CRLB increases (decreases).
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