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Abstract. The homotopy types of gauge groups of principal SO(4)-bundles over S4 are
classified p-locally for every prime p, and partial results are obtained integrally. The
method generalizes to deal with any quotient of the form (S3)n/Z where Z is a subgroup
generated by (−1, . . . ,−1).

1. Introduction

Let G be a topological group and P be a principal G-bundle over a base space X. The gauge
group of P is the topological group of G-equivariant automorphisms of P which cover the
identity map on X. If X is a finite CW -complex, Crabb and Sutherland [2] showed that,
despite there possibly being infinitely many inequivalent principal G-bundles over X, there
are only finitely many homotopy types for the corresponding gauge groups. There has been
an intensive effort recently to classify the homotopy types of gauge groups, particularly in
cases of interest to physics and geometry.

In this paper we consider the homotopy types of gauge groups of principal SO(4)-bundles
over S4. Our results are stated in more generality. Let Z be a subgroup of (S3)n generated
by an element (−1, . . . ,−1). Define

Kn = (S3)n/Z.

Then, in particular, K1 = SO(3) and K2 = SO(4). Let εi be the composite of the i-th
inclusion S3 → (S3)n and the projection (S3)n → Kn for 1 ≤ i ≤ n. Then π3(Kn) ∼= Zn is
generated by ε1, . . . , εn. Let Gk1,...,kn be the gauge group of a principal Kn-bundle over S4

corresponding to k1ε1 + · · · + knεn ∈ π3(Kn). The aim of this paper is to classify the
homotopy types of gauge groups Gk1,...,kn as k1, . . . , kn range over all integers.

Let {{a1, . . . , an}} denote a multiset consisting of elements a1, . . . , an. For integers a and b,
let (a, b) be their greatest common divisor.

Theorem 1.1. The following hold:

(a) if {{(k1, 12), . . . , (kn, 12)}} = {{(l1, 12), . . . , (ln, 12)}} then there is a homotopy equiv-
alence Gk1,...,kn ' Gl1,...,ln;
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(b) if there is a homotopy equivalence Gk1,...,kn ' Gl1,...,ln then {{(k1, 4), . . . , (kn, 4)}} =
{{(l1, 4), . . . , (ln, 4)}} and {{(k1, 3), . . . , (kn, 3)}} = {{(l1, 3), . . . , (ln, 3)}}.

The weaker statement in Theorem 1.1 (b) stems from the fact that the homotopy equiv-
alence induces an isomorphism of homotopy groups, but as we will see in Lemma 2.7, the
isomorphism of second homotopy groups may take the form Z/12 ⊕ Z/1 ∼= Z/3 ⊕ Z/4
when n = 2, (where Z/1 is the trivial group), which does not imply an equality between
{{(1, 12), (12, 12)}} and {{(4, 12), (3, 12)}}.
If one is willing to localize then a classification holds. For a nilpotent space X and a prime p,
let X(p) be the localization of X at p. For an integer m, let νp(m) be the p-component of m.

Theorem 1.2. Let p be a prime. There is a p-local homotopy equivalence (Gk1,...,kn)(p) '
(Gl1,...,ln)(p) if and only if {{νp((k1, 12)), . . . , νp((kn, 12))}} = {{νp((l1, 12)), . . . , νp((ln, 12))}}.

The K1 = SO(3) case in Theorem 1.1 is already known [7]. In this case, as there is only
one index involved, Theorem 1.1 implies the stronger statement that Gk ' Gl if and only if
(k, 12) = (l, 12). The key new case is for K2 = SO(4).

The SO(4) and Spin(4) cases are the last to consider among the principal G-bundles over S4

when G is a connected, compact Lie group of type 2. A classification in the SU(3) case was
completed in [6] and the PU(3) case in [5], a classification of the p-local homotopy types in
the Sp(2) case was completed in [10] and PSp(2) in [5], the U(2)-case was classified in [3],
and the p-local homotopy types in the G2 case were classified up to one factor of 2 in [8].

The overall strategy used to prove Theorem 1.1 is similar to that in the other type 2
cases, but distinctive features arise. The principal SO(4)-bundles over S4 are in one-to-one
correspondence with [S4, BSO(4)] ∼= Z ⊕ Z and so require a multi-index, as opposed to
the earlier cases which only required a single index. This leads to the use of multisets and
the possibility that a homotopy equivalence Gk1,k2 ' Gl1,l2 may arise via a permutation of
indices. It also leads to the issue mentioned above of a group decomposition preventing an
identification of multisets.

The authors would like to thank the referee for a careful reading of the paper that has
improved its exposition.

2. Proof of Theorem 1.1

Recall from [4] (cf. [1]) that there is a homotopy equivalence

BGk1,...,kn ' map(S4, BKn; k1ε1 + · · ·+ knεn),

where the right hand side is the path-connected component of the space of maps from S4

to BKn containing k1ε1 + · · ·+ knεn. Consider the homotopy fiber sequence

Kn

∂k1,...,kn−−−−−→ Ω3
0Kn → map(S4, BKn; k1ε1 + · · ·+ knεn)→ BKn,

where the last map is the evaluation at the basepoint. Then Gk1,...,kn is homotopy equivalent
to the homotopy fiber of ∂k1,...,kn . Let π : Kn → Kn

1 be the canonical projection. Since
Ω3π : Ω3

0Kn → (Ω3
0K1)n is a homotopy equivalence, one obtains the following.
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Lemma 2.1. The gauge group Gk1,...,kn is homotopy equivalent to the homotopy fiber of
Ω3π ◦ ∂k1,...,kn. �

We need to identify the map Ω3π ◦ ∂k1,...,kn . Whitehead [11] showed that the adjoint S4 ∧
Kn → BKn of ∂k1,...,kn is the Whitehead product of the adjoint of k1ε1 + · · · + knεn and
the canonical inclusion ΣKn → BKn. Thus by the adjointness of Whitehead products and
Samelson products, we obtain the following.

Lemma 2.2. The adjoint S3 ∧ Kn → Kn of the map ∂k1,...,kn is the Samelson product
〈k1ε1 + · · ·+ knεn, 1Kn〉. �

Now we calculate π ◦ 〈k1ε1 + · · · + knεn, 1Kn〉. For 1 ≤ i ≤ n, let pi : K
n
1 → K1 be the

projection onto the ith-factor. Define πi by the composite

πi : Kn
π−→ Kn

1
pi−→ K1.

Define ε̄i and λi by the composites

ε̄i : S
3 εi−→ Kn

πi−→ K1

λi : S
3 ∧Kn

〈ε̄i,πi〉
// K1 .

Observe that πi ◦ (k1ε1 + · · ·+ knεn) ' kiε̄i. Therefore, as πi is a homomorphism,

πi ◦ 〈k1ε1 + · · ·+ knεn, 1Kn〉 ' 〈πi ◦ (k1ε1 + · · ·+ knεn), πi〉 ' ki〈ε̄i, πi〉 = kiλi.

Thus π◦〈k1ε1 + · · ·+knεn, 1Kn〉 ' (k1λ1, . . . , knλn). Let k : K1 → K1 be the kth-power map.
Then (k1λ1, . . . , knλn) ' (k1 × · · · × kn) ◦ (λ1, . . . , λn). Hence π ◦ 〈k1ε1 + · · · + knεn, 1Kn〉
has the following linearity property.

Proposition 2.3. There is a homotopy

π ◦ 〈k1ε1 + · · ·+ knεn, 1Kn〉 ' (k1 × · · · × kn) ◦ (λ1, . . . , λn).

Next, we determine the order of λi.

Proposition 2.4. The order of λi = 〈ε̄i, πi〉 is 12 for each 1 ≤ i ≤ n.

Proof. The diagonal map S3 → (S3)n induces an inclusion j : K1 → Kn which is a section
of πi for each 1 ≤ i ≤ n. On the one hand, since πi ◦ j is the identity map on K1, the
composite

S3 ∧K1

1S3∧j
// S3 ∧Kn

〈ε̄i,πi〉
// K1

is 〈ε̄i, 1K1〉. By [7] the order of 〈ε̄i, 1K1〉 is 12. Thus the order of 〈ε̄i, πi〉 is at least 12. On
the other hand, observe that 〈ε̄i, πi〉 factors as the composite

S3 ∧Kn

1S3∧πi
// S3 ∧K1

〈ε̄i,1K1
〉
// K1.

Thus the order of 〈ε̄i, πi〉 is at most 12. Hence the order of 〈ε̄i, πi〉 is precisely 12. �
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Lemma 2.5. Let αi : X → Yi be a map of order pmi into a p-local H-space Yi for 1 ≤ i ≤ n.
If (ki, p

mi) = (li, p
mi) for all i, then there is a self-homotopy equivalence hp of Y1× · · ·×Yn

such that

hp ◦ (k1 × · · · × kn) ◦ (α1, . . . , αn) ' (l1 × · · · × ln) ◦ (α1, . . . , αn).

Proof. If (ki, p
mi) = (li, p

mi) = pmi then the composites ki ◦ αi and li ◦ αi are both null
homotopic since αi has order pmi . In that case let hp,i be the identity map on Yi. If

(ki, p
mi) = (li, p

mi) < pmi , let ai = ki
(ki,pmi )

and bi = li
(li,pmi )

. Then ai and bi are units

in Z(p), and in particular, the power maps ai, bi : Yi → Yi are homotopy equivalences. As

(ki, p
mi) = (li, p

mi) we obtain bi
ai
ki = li. Therefore if hp.i = bi ◦ a−1

i then hp,i ◦ ki ' li as
self-maps of Yi. Thus hp = hp,1 × · · · × hp,n is the desired self-homotopy equivalence. �

Proposition 2.6. If {{(k1, 12), . . . , (kn, 12)}} = {{(l1, 12), . . . , (ln, 12)}}, then Gk1,...,kn and
Gl1,...,ln are homotopy equivalent.

Proof. By assumption, there is a permutation σ such that ((kσ(1), 12), . . . , (kσ(n), 12)) =

((l1, 12), . . . , (ln, 12)). We denote the permutation of (S3)n induced from σ by the same
symbol. This automorphism induces an automorphism of Kn which we denote by σ̄. The
automorphism σ̄ induces a homotopy commutative diagram of Samelson products

S3 ∧Kn
〈k1ε1+···+knεn,1Kn 〉

//

1∧σ̄
��

Kn

σ̄

��

S3 ∧Kn

〈kσ(1)εσ(1)+···+kσ(n)εσ(n),1Kn 〉
// Kn.

Taking adjoints, by Lemma 2.2 we obtain Ω3σ̄◦∂k1,...,kn ' ∂kσ(1),...,kσ(n) ◦ σ̄. Composing with

the map Ω3K
Ω3π−→ Ω3Kn

1 and using the fact that Ω3
0K

n
1 ' (Ω3

0S
3)n, we obtain a homotopy

commutative diagram

Kn

Ω3π◦∂k1,...,kn
//

σ̄

��

(Ω3
0S

3)n

Ω3σ
��

Kn

Ω3π◦∂kσ(1),...,kσ(n)
// (Ω3

0S
3)n.

By Lemma 2.1, the homotopy fibre of Ω3π◦∂k1,...,kn is Gk1,...,kn . So as σ and σ̄ are homotopy
equivalences, this diagram induces a homotopy equivalence Gk1,...,kn ' Gkσ(1),...,kσ(n) . Thus,
for ease of notation in what follows, we may assume without loss of generality that the
permutation σ is the identity.

By Proposition 2.3, π◦〈k1ε1+· · ·+knεn, 1Kn〉 ' (k1×· · ·×kn)◦(λ1, . . . , λn). Since πi(Ω
3
0S

3)
is finite for each i, there is a homotopy equivalence

Ω3
0S

3 '
∏
p∈P

Ω3
0S

3
(p)
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where P is the set of all primes and S3
(p) is the localization of S3 at p. Let λ̂i : Kn → Ω3

0S
3

be the adjoint of λi and let

(λ̂1, . . . , λ̂n)p : Kn → (Ω3
0S

3
(p))

n

be the composite of (λ̂1, . . . , λ̂n) and the map localizing (Ω3
0S

3)n to (Ω3
0S

3
(p))

n. For con-

venience, the mth-power map on Ω3
0S

3 will also be denoted by m. By Lemma 2.5, for
each prime p there is a self-homotopy equivalence hp of (Ω3

0S
3
p)n satisfying a homotopy

commutative diagram

(2.1) Kn
(λ̂1,...,λ̂n)p

// (Ω3
0S

3
(p))

n k1×···×kn
// (Ω3

0S
3
(p))

n

hp

��

Kn
(λ̂1,...,λ̂n)p

// (Ω3
0S

3
(p))

n l1×···×ln
// (Ω3

0S
3
(p))

n.

Note that since each ki ◦ λ̂i is a divisor of 12, the map hp is a homotopy equivalence if p ≥ 5.
Let h be the composite

h : (Ω3
0S

3)n
'
//
∏
p∈P (Ω3

0S
3
(p))

n

∏
p∈P hp

//
∏
p∈P (Ω3

0S
3
(p))

n '
// (Ω3

0S
3)n.

Since each hp is a homotopy equivalence, so is h. From the diagrams (2.1) at each p we
obtain a homotopy commutative diagram

(2.2) Kn
(λ̂1,...,λ̂n)

// (Ω3
0S

3)n
k1×···×kn

// (Ω3
0S

3)n

h
��

Kn
(λ̂1,...,λ̂n)

// (Ω3
0S

3)n
l1×···×ln

// (Ω3
0S

3)n.

On the one hand, by definition, λ̂i is the adjoint of λi, so the adjoint of (k1 × · · · × kn) ◦
(λ̂1, . . . , λ̂n) is (k1 × · · · × kn) ◦ (λ1, . . . , λn), which by Proposition 2.3 is homotopic to
π ◦ 〈k1ε1 + · · · + knεn, 1Kn〉. On the other hand, by Lemma 2.2, π ◦ ∂k1,...,kn is also the

adjoint of π ◦ 〈k1ε1 + · · · + knεn, 1Kn〉. Thus (k1 × · · · × kn) ◦ (λ̂1, . . . , λ̂n) ' π ◦ ∂k1,...,kn .
Hence (2.2) may be rewritten as a homotopy commutative diagram

(2.3) Kn

Ω3π◦∂k1,...,kn
// (Ω3

0S
3)n

h
��

Kn

Ω3π◦∂l1,...,ln
// (Ω3

0S
3)n.

By Lemma 2.1, the homotopy fibres of Ω3π ◦ ∂k1,...,kn and Ω3π ◦ ∂k1,...,kn respectively are
Gk1,...,kn and Gl1,...,ln . From (2.3) there is an induced map of homotopy fibres Gk1,...,kn →
Gl1,...,ln . As h is a homotopy equivalence, this induced map of homotopy fibres is also a
homotopy equivalence, completing the proof. �
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Let ε̃i : S
3 → (S3)n be the i-th inclusion for 1 ≤ i ≤ n. Let G̃k1,...,kn be the gauge group

of a principal (S3)n-bundle over S4 corresponding to k1ε̃1 + · · · + knε̃n. Then there is an
isomorphism

G̃k1,...,kn ∼= G̃k1 × · · · × G̃kn .
where each G̃ki is the gauge group of the principal S3 bundle over S4 classified by ki ∈ Z ∼=
π4(BS3).

On the other hand, there is a two sheeted covering G̃k1,...,kn → Gk1,...,kn . Therefore for all
m ≥ 2 there is an isomorphism

(2.4) πm(Gk1,...,kn) ∼=
n⊕
i=1

πm(G̃ki).

In particular, by [9], π2(G̃k) ∼= Z/ 12
(k,12) , so we obtain the following.

Lemma 2.7. π2(Gk1,...,kn) ∼= Z/ 12
(k1,12) ⊕ · · · ⊕ Z/ 12

(kn,12) . �

Observe that the isomorphism in Lemma 2.7 does not imply that there is an equality of
multisets {{(k1, 12), . . . , (kn, 12)}} = {{(l1, 12), . . . , (ln, 12)}}. For example, if n = 2 then
Z/12 ⊕ Z/1 ∼= Z/3 ⊕ Z/4 but {{(1, 12), (12, 12)}} 6= {{(4, 12), (3, 12)}}. However, if we work
one prime at a time we do get an equality of multisets.

Proposition 2.8. If Gk1,...,kn ' Gl1,...,ln then {{(k1, 4), . . . , (kn, 4)}} = {{(l1, 4), . . . , (ln, 4)}}
and {{(k1, 3), . . . , (kn, 3)}} = {{(l1, 3), . . . , (ln, 3)}}.

Proof. By Lemma 2.7, the homotopy equivalence Gk1,...,kn ' Gl1,...,ln implies that there is an
isomorphism of groups

(2.5) Z/
12

(k1, 12)
⊕ · · · ⊕ Z/

12

(kn, 12)
∼= Z/

12

(l1, 12)
⊕ · · · ⊕ Z/

12

(ln, 12)
.

For a prime p, let Z(p) be the integers localized at p. Tensoring the isomorphism (2.5)
with Z(2) gives a group isomorphism

Z/
4

(k1, 4)
⊕ · · · ⊕ Z/

4

(kn, 4)
∼= Z/

4

(l1, 4)
⊕ · · · ⊕ Z/

4

(ln, 4)
.

The groups Z/1, Z/2 and Z/4 appearing on either side of this isomorphism are indecom-
posable, so each side must have the same number of generators of each order. Hence
{{(k1, 4), . . . , (kn, 4)}} = {{(l1, 4), . . . , (ln, 4)}}. The same argument applies if (2.5) is ten-
sored with Z(3). �

Finally, we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Combine Propositions 2.6 and 2.8. �

Proof of Theorem 1.2. Suppose there is a p-local homotopy equivalence (Gk1,...,kn)(p) '
(Gl1,...,ln)(p). Notice that ν2((ki, 12)) = (ki, 4) and ν3((ki, 12)) = (ki, 3), so Proposition 2.8
proves the p = 2 and p = 3 cases. If p ≥ 5 then νp((ki, 12)) = 1 and νp((li, 12)) = 1 for
all 1 ≤ i ≤ n, so the asserted equality of multisets holds. The converse is proved using the
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same argument as for Proposition 2.6; in fact, it is easier since we need only consider the
factor Ω3

0S
3
(p) of Ω3

0S
3 =

∏
p∈P Ω3

0S
3
(p). �

Remark 2.9. Some generalization is possible. Let G be a simply-connected, simple compact
Lie group with centre Z(G). Let Ln = Gn/Z where Z is the subgroup generated by the im-
age of the diagonal map Z(G) −→ Z(G)n. Replacing Kn with Ln, the material in Section 2
through to Proposition 2.4 generalizes, where the order of λi = 〈εi, πi〉 may no longer be 12
but it is a fixed number M for all 1 ≤ k ≤ n. The proof of Proposition 2.6 leading to (2.1)
holds, giving the statement that if {{(k1,M), . . . , (kn,M)}} = {{(l1,M), . . . , (ln,M)}} then
Gk1,...,kn and Gl1,...,ln are p-locally homotopy equivalent for each prime p. However, as Ω3

0G
may not only have torsion homotopy groups, the argument for (2.2) leading to an integral
homotopy equivalence of gauge groups will not hold. Further, the converse statement in

Proposition 2.8 requires the homotopy type of G̃k to be determined by a homotopy set that
depends on (k,M), which is not known to hold in general.

References

[1] M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc.
London Ser. A 308 (1983), 523-615.

[2] M.C. Crabb and W.A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc.
81 (2000), 747-768.

[3] T. Cutler, The homotopy types of U(n)-gauge groups over S4 and CP 2, Homology, Homotopy and Appl.
20 (2018), 5-36.

[4] D.H. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23-50.
[5] S Hasui, D. Kishimoto, A. Kono and T. Sato, The homotopy types of PU(3) and PSp(2)-gauge groups,

Algebr. Geom. Topol. 16 (2016), 1813-1825.
[6] H. Hamanaka and A. Kono, Unstable K1-group and homotopy type of certain gauge groups, Proc. Roy.

Soc. Edinburgh Sect. A 136 (2006), 149-155.
[7] Y. Kamiyama, D. Kishimoto, A. Kono and S. Tsukuda, Samelson products of SO(3) and applications,

Glasgow Math. J. 49 (2007), 405-409.
[8] D. Kishimoto, S. Theriault and M. Tsutaya, The homotopy types of G2-gauge groups, Topol. Appl. 228

(2017), 92-107.
[9] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117

(1991), 295-297.
[10] S.D. Theriault, The homotopy types of Sp(2)-gauge groups, Kyoto J. Math. 50 2010, 591-605.
[11] G.W. Whitehead, On products in homotopy groups, Ann. of Math (2) 47 (1946), 460-475.

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan

E-mail address: kishi@math.kyoto-u.ac.jp

Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

E-mail address: I.Membrillo-Solis@soton.ac.uk

Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

E-mail address: S.D.Theriault@soton.ac.uk


	1. Introduction
	2. Proof of Theorem 1.1
	References

