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show that the S-map that was defined to simplify super-Yang–Mills multiparticle super-

fields is in fact a new Lie bracket on the dual space of Lie polynomials. We introduce Lie

polynomial currents based on Berends-Giele recursion for biadjoint scalar tree amplitudes

that take values in Lie polynomials. Field theory amplitudes are obtained from the Lie

polynomial amplitudes by numerators characterized as homomorphisms from the free Lie

algebra to kinematic data. Examples are presented for the biadjoint scalar, Yang–Mills

theory and the nonlinear sigma model. That these theories satisfy the Bern-Carrasco-

Johansson amplitude relations follows from the identities we prove for the Lie polynomial

amplitudes and the existence of BCJ numerators.

A KLT map from Lie polynomials to their dual is obtained by nesting the S-map

Lie bracket; the matrix elements of this map yield a recently proposed ‘generalized KLT

matrix’, and this reduces to the usual KLT matrix when its entries are restricted to a

basis. Using this, we give an algebraic proof for the cancellation of double poles in the

KLT formula for gravity amplitudes. We finish with some remarks on numerators and

colour-kinematics duality from this perspective.
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1. Introduction

This paper develops Lie polynomials [1] and the combinatorics of words [2] as basic tools for

the study of tree-level scattering amplitudes in QFT and string theory. We give streamlined

self-contained proofs of the basic results that underpin coloured amplitudes and the double

copy at tree-level using simply the elementary properties of Lie polynomials. We will see

that cleanest description is in terms of the Berends-Giele currents of biadjoint scalar theory,

with values in Lie polynomials.

The free Lie algebra, L , is the space of linear combinations of ‘Lie monomials’, which

are nested complete formal commutators of ‘letters’; our letters will be taken to be the

natural numbers, 1, 2, 3, . . .. L is a subspace of the space of linear combinations of ‘words’

formed from the natural numbers, with all letters distinct. There is a natural map from Lie

monomials Γ ∈ L to the colour structures that appear in gauge theories, for any choice

of gauge Lie algebra, and for any (single trace) gauge theory Lagrangian. There is also a

correspondence between Lie monomials Γ ∈ L , thought of as complete commutators of a

word, and trivalent trees with a given root.

The double copy starts by expressing Yang-Mills tree amplitudes in the form [3]

A =
∑

Γ

NΓcΓ
sΓ

. (1.1)

Here Γ denotes trivalent graphs, cΓ denotes the corresponding colour factor1, and sΓ de-

notes the product of denominator propagator factors associated to the graph. The numer-

ators NΓ are functions of momenta and multilinear in the gluon polarization data. These

are said to be ‘BCJ numerators’ if they satisfy colour kinematics duality: if Γ+Γ′+Γ′′ = 0,

then NΓ + NΓ′ + NΓ′′ = 0. In other words, the NΓ are ‘BCJ numerators’ if Γ 7→ NΓ is

a homomorphism from L to the kinematic data. Such numerators exist for Yang-Mills,

and the key example of the double copy is that replacing cΓ in (1.1) by another copy of

NΓ yields gravity amplitudes [4]. BCJ numerators are known for many coloured theories

and can be used to obtain the tree amplitudes of any theory known to participate in the

double copy. This includes gauge and gravity theories and their relatives, such as brane

theories, with and without supersymmetry, see [5] for an up-to-date review of progress and

references to the literature. The most basic example is to replace NΓ in (1.1) by cΓ: this

1 formed from the graph by introducing the Lie algebra’s structure constants at each vertex,

Kronecker-deltas along each internal propagator and the external colours at the leaves.
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gives the amplitudes of the biadjoint scalar theory. This theory forms the backbone of the

double copy.

Lie polynomials are ubiquitous in the auxiliary structures that are used to study

amplitudes, and with hindsight can be seen in the multiparticle vertex operators in con-

ventional string theory [6], in the geometry of the space of Mandelstam variables [7], and

in the CHY formulae and ambitwistor strings [8,9] via the structure of the moduli space

of n-points on the Riemann sphere [10,11]. However, our aim here is to prove basic results

directly using only the Lie polynomial structure.

The following is a detailed summary of results.

1.1. Berends-Giele recursion and planar binary trees

In §2 we review the properties of the vector space of Lie polynomials, L . Important for the

applications in this paper is the dual vector space, L ∗. Elements of L ∗ can be expressed

as words P modulo proper shuffles, i.e. the sum R�S over ordered permutations with

R, S 6= ∅.

In §3 we introduce perturbative L valued fields for biadjoint scalar theory and use

them to define corresponding Lie-polynomial Berends-Giele currents.2 The Lie-polynomial

currents b(P ) satisfy a recursion [13]

b(P ) =
1

sP

∑

XY =P

[b(X), b(Y )] , (1.2)

where sP is the Mandelstam denoting the square of the off-shell momentum of the particles

in the set {P} and the commutator is that in L . This defines a map b : L ∗ → LS where

L ∗ encodes the colour ordering in the form of a words P up to proper shuffles, and LS is

the space of Lie polynomials with coefficients in Mandelstam variables.

The currents b(P ) give rise to Lie polynomial amplitudes obtained by removing the

off-shell external propagator to give single colour ordered partial amplitudes m(Pn) valued

in Lie polynomials:

m(Pn) := lim
sP→0

sP b(P ) ∈ L . (1.3)

The pairing of (1.3) with an ordering gives the double colour ordered partial amplitudes

of the biadjoint theory m(Pn,Qn) := (Q,m(Pn)) [14].

2 The more familiar Yang-Mills case [12] is treated similarly in appendix A where the analogous

objects are L -valued Berends Giele currents.
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We will interpret BCJ numerators NΓ as homomorphisms from the free Lie algebra to

appropriate functions of their kinematic data, as in [10]. The existence of such homomor-

phisms is not in principle guaranteed from this construction, but we will explicitly write

down examples for NLSM and SYM theories in §7. All identities such as the Kleiss-Kuijf

(KK) relations and the Bern Carrasco Johansson (BCJ) relations that are obeyed by b are

inherited by tree-level scattering amplitudes obtained from the homomorphism.

1.2. BCJ amplitude relations and a Lie bracket

It was argued in [6,15] that BCJ amplitude relations could be expressed using the S-map

defined in [6]. We will show that the S-map corresponds to a Lie bracket { , } in the dual

space of Lie polynomials and that the BCJ amplitude relations [3] follow from the identity

b({P,Q}) = [b(P ), b(Q)] (1.4)

which generalizes the off-shell BCJ relations of [16]. Thus b maps the {, }-bracket to the

standard Lie bracket. Since b(P ) is invertible as a map L ∗ → L , this shows that {, } is

the pullback of [, ] from Ls to L ∗
s using b(P ); in particular {, } is a Lie bracket on L ∗.

For theories obtained from a homomorphism acting on the Lie polynomial amplitude

(1.3), the BCJ relation for amplitudes follow fromm({P,Q}, n) = 0 in the limit as sPQ → 0

as b({P,Q}) no longer has a pole in 1/sPQ due to (1.4).

1.3. The KLT inner product and its generalized matrix

The Kawai–Lewellen-Tye (KLT) matrix [17,18,19] is the inner product that is required to

turn two sets of colour ordered Yang-Mills amplitudes into a gravity amplitude [20]. We

show that its origins can be traced to the {, }–bracket. The fact that {, } forms a Lie bracket

means that any Lie monomial Γ can be rebuilt out of {, } in L ∗ to form {Γ} ∈ L ∗. This

gives our most abstract definition of the KLT kernel as the map L → L
∗ by Γ → {Γ};

this determines the symmetric bilinear form on L by the pairing S(Γ1,Γ2) := ({Γ1},Γ2).

We show that the standard KLT matrix is most naturally understood as the components

of this S in a special ‘Lyndon’ basis; the generalized KLT matrix of [13] is

S(P |Q) = (ℓ{P}, ℓ[Q]) , (1.5)

where ℓ denotes the complete left bracketings:

ℓ{123 . . . n} := {. . .{1, 2} . . . n} , ℓ[123 . . . n] := [. . . [1, 2] . . . n] . (1.6)
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This generalized KLT matrix is symmetric and reduces to the standard KLT matrix in a

Lyndon word basis of L
∗ that singles out a special single particle.

Cachazo, He and Yuan [8] emphasize that biadjoint scalar amplitudes are in some

sense the inverse to the KLT matrix, see [21]. Using the Berends-Giele amplitude formula

for the biadjoint amplitudes of [14], this statement translates to the algebraic relation

δP,Q =
∑

R S(P |R)ib(iR|iQ). Using that the KLT matrix corresponds to a particular basis

choice of a more fundamental KLT map, this identity will be proven in section 5.2.

1.4. Numerators and cobrackets

In §6 we show that the “contact term map” defined in [22] is the Lie co-bracket dual to

the S-bracket; it gives rise to a Lie co-algebra structure on L ∗
S . As discussed in [22], the

contact-term map encodes the BRST variations of local multiparticle superfield numerators

satisfying generalized Jacobi identities [6] in the pure spinor formalism of the superstring

[23]. These BRST variations play a central role in all recent developments in the explicit

calculation of superstring amplitudes, from tree-level to 3-loops.

In §7 we discuss BCJ numerators from the perspectives of this paper. We discuss the

distinctions in gauge freedoms between on-shell and Berends-Giele numerators; Berends-

Giele off-shell extensions are not unique and depend on a choice of gauge and field redefi-

nitions. Given such a choice, BCJ numerators are unique, but their locality will in general

depend on the gauge choices etc.. We give a brief discussion of known numerators; the

biadjoint scalar case is trivial being realized by the pairing (P,Γ) of a Lie polynomial with

a word P . We give a conjecture for the non-linear sigma model (NLSM) that has now been

proved elsewhere [24], and briefly describe how super–Yang–Mills (sYM), Z-theory and

finally the open superstring including α′ corrections fits into this framework. We end with

a brief discussion of colour/kinematics duality within the framework of the Lie brackets

discussed in the text.

2. Review of Lie polynomials, combinatorics on words and colour factors

Let W (A) be the vector space of linear combinations of words with non-repeated letters

in the alphabet A ⊂ N.3 The multilinear free Lie algebra L (A) ⊂ W (A) is the subspace

3 The definitions in this review section can be stated in the free associative algebra, in which

the words may contain repetition of letters. However, in the context of scattering amplitudes we

only use words that are permutations of a subset of N with no repeated letters.
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of W (A) linearly generated by the Lie monomials, Γ, that are defined to be complete

bracketings of words with no repeated letters such as 123 − 132 − 231 + 321 = [1, [2, 3]].

We will also define L(A) ⊂ L (A) to be the subspace of Lie polynomials of maximum

length (L (A) has Lie polynomials of different lengths). In particular, we write Ln−1 ≡

L(1, 2, ..., n− 1) to be the linear span of total bracketings of 1, ..., n− 1.

The left- and right-bracketings are surjective maps from W onto L given by

ℓ[123 . . . n] := [[[1, 2], 3], . . . , n] , r[123 . . . n] := [1, [2, [3, . . . , [n− 1, n] . . .]]]. (2.1)

Clearly

ℓ[Pi] = [ℓ[P ], i], r[iP ] = [i, r[P ]], (2.2)

for a letter i and word P . This inductively implies Baker’s identity [1]

ℓ[Pℓ[Q]] = [ℓ[P ], ℓ[Q]]. (2.3)

Write |P | for the length of a word P . Then ℓ[P ] and r[P ] are related by ℓ[P ] =

−(−1)|P |r[P ], where P is the reverse of P .

2.1. The dual L ∗ of L , dual bases and their Kleiss-Kuijf relations

This section recalls the duality pairing between Lie polynomials and words defined up to

shuffle products. This pairing is central to the results of the paper.

Define first the Kronecker inner product, for words P,Q ∈ W , by

(P,Q) :=
{

1 if P = Q;
0 otherwise.

(2.4)

We will need the shuffle product on W , �, which is inductively defined by

(iP )�(jQ) := i(P�(jQ)) + j((iP )�Q), (2.5)

for letters i, j, and words P,Q. The base case is i�j = ij + ji. The expression P�Q is

sometimes referred to as the sum over ordered permutations of P and Q, preserving the

ordering of the letters of P and of Q. Ree’s theorem characterizes L in terms of the shuffle

product. More precisely, Γ ∈ W is a Lie polynomial iff [25]

(P�Q,Γ) = 0 (2.6)

for all nonempty P,Q ∈ W .
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If Sh ⊂ W is the subspace spanned by all proper shuffles, P�Q with P,Q nonempty,

then Ree’s theorem says that L = Sh⊥. Thus the dual vector space to L is

L
∗ = W/Sh. (2.7)

We will write elements of L ∗ as equivalence classes of the form P + Sh, for some P ∈ W .

If two expressions, P,Q ∈ W belong to the same equivalence class, write P ∼ Q, i.e.

P ∼ Q ⇔ P = Q+ Sh ⇔ P = Q+
∑

A,B 6=∅

A�B. (2.8)

Dual bases of L and L ∗ can be obtained as follows. An element P ∈ Lie∗ can be

represented by a particular expression P ∈ W in many ways. Likewise, a Lie polynomial

Γ ∈ L is not uniquely written as a sum of complete bracketings of words, because of the

antisymmetry and Jacobi relations. It is therefore useful to find bases for L ∗ and L .

A word P is Lyndon if its first letter is also its smallest with respect to some fixed

ordering of N.4 The set of dual Lie elements, P +Sh ∈ L ∗, where P runs over all Lyndon

words in W is a basis of L ∗ [1]. Dually, the set of Lie monomials, ℓ[P ], for all Lyndon

words P is a basis of L . These two bases are dual because, for two Lyndon words P and

Q, the smallest letter must come first in both words. But, for any letter i,

(iP, ℓ[iQ]) = (iP, iQ) = (P,Q), (2.9)

because the only term in the word expansion of ℓ[iQ] that has i at the beginning is iQ.

Restricting to L∗
n−1 this gives the basis of dual Lie elements 1Q + Sh, for all the

(n− 2)! permutations Q of 23...n− 1. Their linear independence follows from the fact that

they are dual to the set of Lie monomials ℓ[1P ] in L, for P a permutation of 23...n− 1 by

(2.9). Since 1Q spans L ∗, any P + Sh ∈ L∗ must have the following basis expansion:

P + Sh =
∑

Q

(P, ℓ[1Q])1Q+ Sh, (2.10)

where the sum is over all permutations, Q, of 23...n− 1. The word expansions of ℓ[iP ] and

r[Pi] have the following explicit formulas

ℓ[iP ] =
∑

P∈X�Y

(−1)|X|XiY , r[Pi] =
∑

P∈X�Y

(−1)|Y |XiY . (2.11)

4 P is assumed to have no repeated letters in our context. There is a more standard notion of

Lyndon words for words that have repeated letters [2].
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These can be proved by verifying that they satisfy (2.2). Substituting P = XiY into the

explicit formula, (2.11), for the expansion of ℓ[iP ], (2.10) implies that,

XiY ∼ (−1)|X|i(X�Y ) , (2.12)

where XiY is a permutation of 12...n− 1, and i is some letter in 1, 2, ..., n− 1.5 Setting Y

to be empty in (2.12) gives for any word P the special case P ∼ −(−1)|P |P .

As explained in [15], (2.12) corresponds to the Kleiss-Kuijf (KK) relations among

color-ordered amplitudes [29,30]

A(X1Y, n) = (−1)|X|A(1(X�Y ), n) (2.14)

expressed now as a general statement about L ∗ under the numerator homomorphism from

the Lie polynomial amplitude (1.3). Indeed we will see that the KK relations follow for any

theory whose connected Feynman diagrams give rise to colour factors of the form (2.20).

We will also use basis expansions in Ln−1. If Γ ∈ Ln−1, then it has a basis expansion:

Γ =
∑

Q

(1Q,Γ) ℓ[1Q] , (2.15)

where the sum is over all permutations, Q, of 23...n− 1. For example, this gives

[[1, 2], [3, 4]] = ℓ[1234]− ℓ[1243], (2.16)

which can also be verified directly using the Jacobi identity.

Finally, we will need to use the adjoints of ℓ and r, which we write as ℓ∗ and r∗ :

(ℓ∗(P ), Q) = (P, ℓ(Q)), (r∗(P ), Q) = (P, r(Q)). (2.17)

It follows from (2.2) that the adjoints can be computed recursively as

ℓ∗(123 . . . n) = ℓ∗(123 . . . n− 1)n− ℓ∗(23 . . . n)1, ℓ∗(i) := i , (2.18)

r∗(123 . . . n) = 1r∗(23 . . . n)− nr∗(123 . . . n−1), r∗(i) := i ,

Likewise, the explicit formulas (2.11) are equivalent to the following formulas [31]

ℓ∗(A) =
∑

A=XiY

(−1)|X| i(X�Y ) , r∗(A) =
∑

A=XiY

(−1)|Y |(X�Y )i . (2.19)

Note that ℓ∗ and r∗ are well-defined on L
∗ as ℓ∗(P�Q) = 0 = r∗(P�Q) for nonempty

P,Q. This follows from (ℓ∗(P�Q), R) = (P�Q, ℓ[R]) which vanishes due to (2.6).

5 Another way to find (2.12) is to prove the following identity at the level of words:

BiA− (−1)|B|i(A�B) = −
∑

XY =B
X 6=∅

(−1)|X|X�(Y iA) . (2.13)

This is stated in [26] and proven in [27] (see also equation (41) in [28]).
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1 2 3 4

1

s12s34s1234

Fig. 1 The product of propagators 1

sΓ
and the planar binary tree associated to the Lie monomial

[[1, 2], [3, 4]] according to the definition (2.24).

2.2. Binary trees and colour structures

For any Lie monomial Γ ∈ Ln−1, there is a rooted binary tree TΓ [32]. The inductive

definition is as follows. T[1,2] is the tree with two leaves, 1 and 2, connected by one vertex

to the root. If Γ = [Γ′,Γ′′], then TΓ is the tree formed by connecting (or ‘grafting’) the

roots of TΓ′ and TΓ′′ to make a new vertex. Every pair of brackets in Γ corresponds to a

vertex in TΓ. An example is shown in fig. 1 for Γ = [[1, 2], [3, 4]].

Fix n elements of a Lie algebra: tai ∈ g, for i = 1, ..., n− 1. For any choice of the ti,

there is a map t : Ln−1 → g. For a Lie monomial Γ ∈ Ln−1, t(Γ) is obtained by writing

Γ as a nested bracketing of 1, ..., n − 1, and replacing every commutator bracket by the

Lie bracket of g. If tr is the invariant inner product on g, then for every Lie monomial

Γ ∈ Ln−1, the associated colour factor is

cΓ = tr(t(Γ)tn). (2.20)

The replacement Γ 7→ cΓ defines a homomorphism out of Ln−1; in particular c−Γ = −cΓ.

If TΓ is treated as a cubic Feynman diagram in a gauge theory with Lie group g, then (up

to a sign) cΓ is the colour factor of that diagram.6

2.3. Mandelstam variables.

Massless scattering amplitudes are functions of external momenta, kµi , i = 1, ..., n, with

ki · ki = 0.The Mandelstam variable sij is

sij := ki · kj . (2.21)

6 The caveat about signs is because a cubic tree Feynman diagram in gauge theory is not just

a tree: the orientations at each vertex are important, and so the Feynman diagrams are sometimes

drawn as quark graphs.

9



For every subset I ⊂ N with at least two elements, write

sI :=
∑

{i,j}⊂I

sij , kµI :=
∑

i∈I

kµi , (2.22)

so that kI · kJ =
∑

i∈I,j∈J sij .

Consider the Laurent ring with the variables sI , for all subsets I (with at least two

elements). Then let S be the subring of this Laurent ring defined by the relation, (2.22).

For example, 1/(s12+ s23) is not a function in S. Whereas 1/(s12+ s23+ s13) is a function

in S, because
1

s12 + s23 + s13
=

1

s123
. (2.23)

The functions in S are the kind that arise in scattering amplitudes.

Fix a Lie monomial Γ ∈ Ln−1. When written as a nested bracket expression, each pair

of brackets in Γ defines a subset of {1, ..., n − 1}. If I is a subset that appears like this,

write I ∈ Γ, and define

sΓ :=
∏

I∈Γ

sI . (2.24)

For example, s[[1,2],[3,4]] = s12s34s1234, as in fig. 1.

The inverse, 1
sΓ
, is the product of propagators of the tree graph, TΓ, associated to Γ,

including a propagator for the root of TΓ.

3. Berends-Giele recursion and Lie polynomials

Berends-Giele (BG) recursion [12] computes currents J(P )µ, labelled by permutations P ,

that can be used to find the on-shell gauge theory tree amplitudes. In [14] Berends-Giele

recursion is applied to biadjoint scalar theory. This led to double colour-ordered currents

b(P |Q) labelled by two permutations P and Q.7 The BG recursion from [14] satisfied by

b(P |Q) induces a BG-like recursion for a parent object that was denoted b(P ) in [13]. In this

approach to Berends-Giele, b(P ) is a Lie polynomial with coefficients in the Mandelstam

variables. These b(P ), and the associated partial Lie polynomial amplitudes, are the basic

subject of the subsequent sections.

In the following we re-derive the results of [14] and the appendix of [26] using fields

with values in Lie polynomials. Yang-Mills fields are similarly treated in appendix A.

7 In [14] these were denoted φ(P |Q).
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3.1. Berends-Giele recursion for biadjoint scalar theories

Biadjoint scalars are scalar fields that take values in the tensor product of two Lie algebras

Φ ∈ g ⊗ g̃. Let these have structure constants fabc and f̃ ãb̃c̃ and invariant inner products

for which we take an orthonormal basis. Then the Lagrangian is

LBS =
1

2
∇µΦaã∇

µΦaã +
1

3!
fabcf̃ãb̃c̃Φ

aãΦbb̃Φcc̃ , (3.1)

where µ = 1, . . . , d is a space-time index and a, b ã, b̃ are Lie algebra indices for g,g̃. The

field equations are

�Φaã =
1

2
fabcf̃ãb̃c̃Φ

bb̃Φcc̃ . (3.2)

Consider the field Φ(x) ∈ L ⊗ L rather than g⊗ g̃ now satisfying

�Φ =
1

2
[[Φ,Φ]] , (3.3)

where [[ , ]] is the symmetric operation:

[[Γ1 ⊗ Γ̃1,Γ2 ⊗ Γ̃2]] := [Γ1,Γ2]⊗ [Γ̃1, Γ̃2] . (3.4)

Inverting the wave operator in (3.2) gives the recursion

Φn = Φ1 + projL≤n⊗L≤n
�

−1 1

2
[[Φn−1,Φn−1]] , (3.5)

for a perturbative solution in the form of fields Φn ∈ L≤n ⊗ L≤n, where L≤n is the

subspace spanned by Lie monomials Γ with length |Γ| ≤ n. The iteration is seeded by the

following homogeneous solution to �Φ1 = 0:

Φ1 =
∑

j∈N

eikj ·x j ⊗ j ∈ L ⊗ L . (3.6)

By our definition of L , the letters appearing in monomials in Φn are distinct.8 The coef-

ficient of a word P in Φn has x dependence eikP ·x. The inverse wave operator, �−1, acts

on such a term to give 1/k2P = 1/sP . By construction, Φn is symmetric in its two factors:

Φn =
∑

j

φjΓj ⊗ Γj , (3.7)

for some coefficients φj , and Lie monomials Γj . It follows that, for a word P , pairing with

the left or right factor of Φn gives (P,Φn)L = (P,Φn)R. So write

Φ(P ) := (P,Φ)L = (P,Φ)R. (3.8)

Define now the Berends-Giele currents to be

b(P ) = e−ikP ·xΦ(P ) ∈ Ls := L ⊗ S , (3.9)

i.e., Lie polynomials multiplied by rational functions of the Mandelstams, where the factor

of e−ikP ·x removes the x dependence.

8 In the perturbiner approach this is enforced by introducing nilpotents into each seed solution.
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Proposition [13]. The Berends-Giele currents satisfy

b(P ) =
1

sP

∑

XY =P

[b(X), b(Y )] , b(i) = i , (3.10)

where the sum is over all deconcatenations, P = XY , of P .

Proof. This follows by pairing (3.5) with P and using the identity

(P, [Γj1,Γj2 ])⊗ [Γj1,Γj2 ] =
∑

XY =P

[(X,Γj1)Γj1 , (Y,Γj2)Γj2 ] + [(X,Γj2)Γj2 , (Y,Γj1)Γj1 ].

(3.11)

which together with the symmetry of Φ gives

1

2
[[Φ,Φ]](P ) =

∑

XY =P

[Φ(X),Φ(Y )]. (3.12)

which gives (3.10).

For example, the recursion (3.10) gives

b(12) =
[1, 2]

s12
, (3.13)

b(123) =
[[1, 2], 3]

s12s123
+

[1, [2, 3]]

s23s123
,

b(1234) =
[[[1, 2], 3], 4]

s12s123s1234
+

[[1, [2, 3]], 4]

s123s1234s23
+

[[1, 2], [3, 4]]

s12s1234s34
+

[1, [[2, 3], 4]]

s1234s23s234
+

[1, [2, [3, 4]]]

s1234s234s34
.

Since Φ ∈ L ⊗ L , Ree’s theorem implies that

b(R�S) = 0 , (3.14)

for nonempty R, S. Thus b : P 7→ b(P ) defines a map

b : L
∗
s → Ls . (3.15)

To obtain an n-particle amplitude from a Berends-Giele current, remove the last prop-

agator by multiplying by s12...n−1, and imposing momentum conservation this becomes k2n

which we then set to zero. Thus we define the L -valued “amplitude” by

m(P, n) = lim
sP→0

sP b(P ) ∈ LS , (3.16)

for permutations P of 12...n− 1 (although (3.14) in fact gives P ∈ L∗
n−1.)
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

[[[1,2],3],4]
s12s123s1234

[[1,[2,3]],4]
s23s123s1234

[[1,2],[3,4]]
s12s34s1234

[1,[2,[3,4]]]
s34s234s1234

[1,[[2,3],4]]
s23s234s1234

+ + + +

+ + + +

Fig. 2 The Catalan expansion b(1234) from (3.10). Viewed as cubic graphs and removing the

overall propagator 1/s1234, they correspond to the expansion of a color-ordered five-point tree

amplitude A(12345) [3]. Note the leg 5 does not enter in the Lie elements in the numerators and

that the root is unlabeled. By labelling the root and assigning leg 5 to the Catalan expansion of

b(5) one recovers the free Lie algebra correspondence (3.22) for the case n = 5.

3.2. The tree diagram expansion of b(P )

The Feynman diagrams of biadjoint scalar theory are trivalent trees. Berends-Giele re-

cursion generates the Feynman graphs with one off-shell leg decorated with an off-shell

propagator, with the remaining legs on-shell. So b(P ) can be written as a sum over binary

trees as follows. Write

b :=
∑

Γ

Γ⊗ Γ

sΓ
∈ L ⊗ L , (3.17)

where the sum is over all Lie monomials (up to sign), and where sΓ is the product of

variables sI defined in (2.24). Then pairing b with a word P gives

b(P ) =
∑

Γ

(P,Γ)Γ

sΓ
, (3.18)

which is a sum over all planar rooted trees with respect to the ordering P .

The following Lemma shows that (3.18) is indeed the solution to the Berends-Giele

recursion discussed in §3.1.

Lemma. The formula in (3.18) satisfies (3.10).

Proof. For any Lie monomial Γ there are Γ1 and Γ2 so that Γ = [Γ1,Γ2], and these mono-

mials are unique up to sign. So, for a fixed Lie monomial Γ,

(P,Γ)Γ

sΓ
=

(X,Γ1)(Y,Γ2)[Γ1,Γ2]

sP sΓ1
sΓ2

−
(Y,Γ1)(X,Γ2)[Γ1,Γ2]

sP sΓ1
sΓ2

, (3.19)

where P = XY and |X | = |Γ1|, |Y | = |Γ2|. Summing over all Lie monomials (up to sign),

Γ1 and Γ2, that have length strictly smaller than |P | gives (3.10).
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Regarding b as a map from L
∗
S to LS it follows from (3.17) that b is self-adjoint:

b(P |Q) := (P, b(Q)) = (b(P ), Q) = b(Q|P ) , (3.20)

for any P,Q ∈ L ∗
S . Since b(P ) is a Lie polynomial it can be expanded in a basis as

b(P ) =
∑

R

b(P |iR)ℓ[iR], (3.21)

where i is some letter in P and we used (2.15).

The usual biadjoint scalar partial tree amplitude is [14]

m(Pn,Qn)) =: lim
sP→0

sP b(P |Q) = (Q,m(Pn)) . (3.22)

We will see in §7 how b(P ) can be dressed with BCJ numerators to give BG currents and

hence amplitudes for certain coloured theories.

4. A Lie bracket for tree-level scattering amplitude relations

This section introduces a Lie bracket on L ∗
S , and uses it to prove the fundamental BCJ

relation. Following [13], this Lie bracket is then used to define a generalized KLT matrix

in §5 and to prove the identities conjectured in [13].

4.1. The S-bracket

The S-map was introduced in [6,15] to express the BCJ relations for super-Yang–Mills

amplitudes from its action on Berends-Giele currents MP from [33]. It was abstracted to a

map acting on words in [13] and the off-shell BCJ relations for b(P ) was conjectured, but

no general proof was given. Here we will see that the S-map defines a Lie bracket on L ∗

and this will lead to a proof of the fundamental BCJ relations.

Definition (S bracket). Define a multilinear pairing { , } : L∗ ⊗ L∗ → L∗ by [13]

{P,Q} := r∗(P ) ⋆ ℓ∗(Q), (4.1)

where r∗ and ℓ∗ are defined in (2.18) and

Ai ⋆ jB := sij AijB (4.2)
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for words A,B and letters i, j. Equivalently, for P,Q ∈ L
∗, equation (2.19) gives [6]

{P,Q} =
∑

XiY =P

RjS=Q

sij (X�α(Y ))ij(α(R)�S). (4.3)

Alternatively, a recursive definition is given by

{iAj, B} = i{Aj,B} − j{iA,B}, (4.4)

{B, iAj} = {B, iA}j − {B,Aj}i,

{i, j} = sij ij

as can be verified from the explicit form of the adjoint maps ℓ∗ and r∗ in (2.19). For

example,

{1, 2} = s1212, (4.5)

{1, 23} = s12123− s13132,

{12, 3} = s23123− s13213,

{1, 234} = s121234− s131324− s131342 + s141432,

{123, 4} = s341234− s241324− s243124 + s143214,

{12, 34} = s231234− s241243− s132134 + s142143.

Given that the adjoints r∗ and ℓ∗ annihilate proper shuffles, the definition (4.1) manifestly

satisfies {A�B,C} = 0.

The S bracket is antisymmetric in L ∗. Indeed, by (4.3),

{Q,P} =
∑

XiY =P

RjS=Q

sij (R�α(S))ji(α(X)�Y ) ∼ −(−1)Q+P {P,Q}, (4.6)

because, in L ∗, X is shuffle equivalent to −(−1)XX. Using (2.8) this means that,

{P,Q} ∼ −{Q,P}. (4.7)

In fact, we show in §5.1 that the S bracket is a Lie bracket on L ∗
S , and so it also satisfies

the Jacobi identity.
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4.2. The BCJ amplitude relations

This section proves the main property of the S bracket which amounts to a generalization of

the well-known off-shell fundamental BCJ relation [16]. Following [6], we call the relations

implied by the S bracket BCJ amplitude relations. The on-shell identities follow directly

from the off-shell relations, as is explained at the end of this section.

Proposition. For P,Q ∈ L ∗, the S-bracket satisfies

b({P,Q}) = [b(P ), b(Q)] , (4.8)

i.e., b maps the S bracket to the Lie bracket.

The proposition is proved in appendix B. It is interesting to observe that the property

(4.8) mimics the identity obeyed by the Poisson bracket {, } of Hamiltonian vector fields

Xf : X{f,g} = [Xf , Xg] for functions f and g.

Corollary (Fundamental off-shell BCJ relations [16]). Taking P = i, a single letter,

we obtain

b({i, Q}) :=
∑

Q=XjY

sijb(ijα(X)�Y ) = [i, b(Q)], (4.9)

where α(X) = (−1)|X|X.

The expression in (4.9) can also be written as

{i, Q} ∼
∑

Q=XY

ki · kY XiY (4.10)

To see this, use (2.10) to write the RHS (4.10) in the basis of words beginning with the

letter i,
∑

Q=XY

(ki · kY )XiY ∼
∑

Q=XY

(ki · kY ) i(α(X)�Y ) (4.11)

Further manipulations give

RHS =
∑

Q=XjY

(ki · kjY ) ij(α(X)�Y )− (ki · kY ) ij(α(X)�Y ), (4.12)

=
∑

Q=XjY

sij ij(α(X)�Y ),

where we use the property (2.5) of the shuffle product.
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Corollary (BCJ relations). The tree-level partial amplitudes (3.16) satisfy

m({P,Q}, n) = 0 , (4.13)

where P and Q are words that partition 1, 2, ..., n− 1 into two parts.

Proof. By the definition (3.16),

m({P,Q}, n) = lim
sPQ→0

sPQb({P,Q}) = lim
sPQ→0

sPQ[b(P ), b(Q)] = 0 . (4.14)

The last term vanishes because neither b(P ) nor b(Q) has a 1/sPQ pole.

The original fundamental BCJ relations are [34,35]

m({i, Q}n) =
∑

Q=RS

(ki · kS)m(RiSn) = 0, (4.15)

which follows from (4.10). For example, by (4.5), [3]

0 = m({1, 23}4) = s12m(1234)− s13m(1324), (4.16)

0 = m({1, 234}, 5) = s12m(12345)− s13m(13245)− s13m(13425) + s14m(14325).

But, as observed in [6,15], (4.13) also implies other BCJ relations, such as

0 = m({12, 34}, 5) = s23m(1234, 5)−s13m(2134, 5)−s24m(1243, 5)+s14m(2143, 5), (4.17)

while similar formulas using the shuffle product appear in [36,37,38]. The BCJ relations

for Yang–Mills theory were first proven from the field-theory limit of string theory in [36]

and [37]. By now these relations have been proven for a variety of theories at tree-level.

See the recent review [5] and references therein.

5. The KLT map

This section introduces a canonical KLT map S : LS → L ∗
S . S is the inverse of b, and

this implies that the S-bracket is a Lie bracket. When S is written out in terms of a pair

of bases for L and L ∗, the matrix elements of S are the generalized KLT matrix S(P |Q)

proposed in [13]. We prove the properties conjectured in [13] as well as additional ones.
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5.1. The KLT map

Let Γ be a Lie monomial, and write it as a nested bracketing. Let {Γ} ∈ L ∗ be obtained

by replacing every commutator [ , ] in the bracketed expression of Γ with a { , }. This

is well defined because the S-bracket is antisymmetric. By nested applications of (4.8), it

follows from the proposition in the previous section that for any Lie monomial Γ,

Γ = b({Γ}). (5.1)

For example,

[[1, 2], [3, 4]] = b({{1, 2}, {3, 4}}) (5.2)

= s12s34
(

s23b(1234)− s24b(1243)− s13b(2134) + s14b(2143)
)

.

where we used {{1, 2}, {3, 4}} = s12s34{12, 34}, the example (4.5) and the relations among

Mandelstam invariants.

Define the KLT map S : LS → L ∗
S by

S : Γ 7→ {Γ}, (5.3)

for Lie monomials Γ. As written, it is not obvious that S is well defined. The reason (5.3)

is well defined is that it turns out that S-bracket is Lie. This is shown in the proof of the

following main proposition:

Proposition. The maps b : L ∗ → L and S : L → L ∗ are inverses. In particular, b is

invertible.

Proof. Choose an ordering of A, which defines dual Lyndon bases of L
∗(A) and L (A), as

in §2.1. Then define a map, S′:

S′ : ℓ(a) 7→ {ℓ(a)}, (5.4)

for monomials ℓ(a) in the given basis of L (A). We show that (i) S′ and b are inverse, and

(ii) that the S′ in (5.4) is the map, S, in (5.3). This proves that (5.3) is well-defined.

By (5.1),

b(S′(Γ)) =
∑

P∈Basis

(Γ, P )b({ℓ(P )}) =
∑

P∈Basis

(Γ, P )ℓ(P ) = Γ. (5.5)
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Conversely,

S′(b(P )) =
∑

Q∈Basis

(b(P ), Q){ℓ(Q)}. (5.6)

Expanding {ℓ(Q)} ∈ L ∗ in the given basis gives (by (2.10)),

{ℓ(Q)} =
∑

R∈Basis

({ℓ(Q)}, ℓ(R))R. (5.7)

But notice that

({Γ},Γ′) = ({Γ}, b({Γ′})) = (b({Γ}), {Γ′}) = (Γ, {Γ′}), (5.8)

by the self-adjointness of b. Combining (5.7) and (5.8) gives that

S′(b(P )) =
∑

Q,R∈Basis

b(P,Q)(ℓ{Q}, ℓ(R))R=
∑

R∈Basis

(P, ℓ(R))R = P. (5.9)

So b is invertible, with inverse S′. But b({Γ}) = Γ, by (5.1). So S′(Γ) = {Γ}.

Notice that the self-adjointness of b implies (as in (5.8)) that the KLT map, S, is self

adjoint:

(S(Γ),Γ′) = (Γ, S(Γ′)). (5.10)

Corollary. The S-bracket is Lie.

Proof. Given that S and b are inverse, (4.8) shows that { , } is the pull back of [ , ] from

L to L ∗ by b−1. i.e. { , } is skew and satisfies the Jacobi relation.

5.2. The generalized and standard KLT matrix

This section finds explicit formulas for the KLT map, S, in terms of the matrix elements of

S. In the next section, it is shown how these reduce to the standard formula for the KLT

matrix elements.

If Pi,Γi is a pair of dual bases for L
∗ and L , then

S : Γ 7→
∑

i,j

(Pi,Γ)({Γi},Γ
′
j)P

′
j . (5.11)

In other words, the matrix elements of S are

S(Γ1,Γ2) = ({Γ1},Γ2), (5.12)
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for two Lie monomials Γ1,Γ2.

For the rest of this section, we again take pairs of dual Lyndon bases: P ∈ L ∗ for

every Lyndon word P , and ℓ[P ] ∈ L for every Lyndon word P . In these bases, the matrix

elements, (5.12), are labelled by Lyndon words. So define the generalized KLT matrix

(introduced in [13])9 to be these matrix elements:

Sℓ(P |Q) := (ℓ{P}, ℓ[Q]). (5.13)

In this formula, we introduce the notation ℓ{P} for {ℓ[P ]}.10 This is given explicitly by:

ℓ{12...n} := {...{1, 2}, ..., n}. (5.14)

For example,

ℓ{12} = s1212, (5.15)

ℓ{123} = s12s23123− s12s13213,

ℓ{1234} = +s12s23s341234− s12s23s241324− s12s13s342134 + s12s13s142314

− s12s13s243124− s12s23s243124 + s12s13s143214 + s12s14s233214.

Some example entries of the generalized KLT matrix are

Sℓ(12|12) = s12,

Sℓ(12|21) = −s12,

Sℓ(123|123) = s12(s13 + s23),

Sℓ(312|123) = −s12s13.

Sℓ(132|123) = s12s13,

Sℓ(321|123) = s12s23.
(5.16)

The generalized KLT matrix is the matrix of coefficients that arises in the basis expansion

of ℓ{P}:

ℓ{P} ∼
∑

Q∈Basis

(ℓ{P}, ℓ[Q])Q =
∑

Q∈Basis

Sℓ(P |Q)Q, (5.17)

as in (5.7). As pointed out in [13], the generalized KLT matrix Sℓ(P |Q) can be defined for

any two words P,Q, instead of restricting P,Q to a set of Lyndon words.

9 Alternative formulas for the generalized KLT matrix arise by choosing any pair of dual

bases. E.g. one can define Sr(P,Q) := (r{P}, r(Q)), but as P,Q ∈ L , by Lemma 1.7 of [1],

r{P} = −ℓ{α(P )} and r(P ) = −ℓ(α(P )) so Sr(P |Q) = Sℓ(P |Q). These alternative choices

explain redefinitions w.r.t reversal of permutations P → P , see e.g. footnote 10 in [39].
10 In [13] the map ℓ{A} was denoted σ(A).
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It follows from (5.8) that the generalized KLT matrix is symmetric:

Sℓ(P |Q) = Sℓ(Q|P ). (5.18)

Moreover, (5.5) implies that the generalized KLT matrix satisfies

ℓ[P ] =
∑

Q∈Basis

Sℓ(P |Q) b(Q). (5.19)

Or, equivalently,

(R, ℓ[P ]) =
∑

Q∈Basis

Sℓ(P |Q) b(Q|R), (5.20)

and so, also:

b(P |Q) =
∑

X,Y ∈Basis

b(P |X)Sℓ(X |Y ) b(Y |Q). (5.21)

We now show that the standard KLT matrix arises from the restriction [13]

S(P |Q)i := Sℓ(iP |iQ), (5.22)

for some fixed letter i, called the ‘fixed leg’. An explicit formula for S(P |Q)i was given in

[17,18]. This explicit formula can be recovered11 from (5.22) using the following recursion,

originally conjectured in [40].

Lemma. The standard KLT matrix (5.22) can be recursively computed using

S(Aj|BjC)i = kj · kiB S(A|BC)i, (5.23)

where i is the fixed leg. The recursion is seeded by S(∅|∅)i := 1.

Proof. By definition, ℓ{Aj} = {ℓ{A}, j}. Using the formula (4.10) for {P, j},

ℓ{Aj} =
∑

X,Y

kj · kX (XY, ℓ{A})XjY. (5.24)

Since S(Aj|BjC)i = (ℓ{iAj}, ℓ(iBjC)), it follows from (5.24) that

S(Aj|BjC)i =
∑

X,Y

kj · kX(XY, ℓ{iA})(XjY, ℓ(iBjC)). (5.25)

11 An alternative explicit derivation using (5.22) is given in appendix C, where the steps are

closer in spirit to the argument in [16].
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Expanding ℓ{iA} in a basis, as in (5.17),

ℓ{iA} =
∑

P

S(A|P )i iP. (5.26)

So (5.25) becomes

S(Aj|BjC)i =
∑

X,Y,P

kj · kXS(A|P )i(XY, iP )(XjY, ℓ(iBjC)). (5.27)

The only contributions in the sum come from words, X = iX ′, that begin with the letter

i. Expanding ℓ(iBjC), one sees that (iX ′jY, ℓ(iBjC)) = δX′,BδY,C .

The identity, (5.20), together with the definition (5.22) is a purely algebraic proof that

the standard KLT matrix is the inverse to the biadjoint scalar BG double current:

∑

R

Sℓ(P |R)ib(iR|iQ) = δP,Q . (5.28)

This is in accord with the discussions of [8] and [14].

5.3. The momentum kernel and the KLT gravity formula

The (n− 2)! version of the KLT relation, as given by [18,35], is

Mn = lim
s1P→0

∑

P,Q∈Sn−2

1

s1P
A(1Pn)S(P |Q)1Ã(1Qn), (5.29)

where Ã(1Qn) is obtained from its left-moving counterpart by replacing the polarization

vectors, eµi , by some other set of polarization vectors, ẽµi . It takes some effort to see directly

that the limit on the RHS of (5.29) is well defined. The cancellation of the 1/s1P pole on

the RHS is easily understood in terms of the above discussion of S(P |Q)1 in §5.1.

For example, starting from (5.28), we recover the well known fact that the KLT matrix

(5.13) annihilates the on-shell biadjoint scalar amplitudes,

∑

Q

Sℓ(1P |1Q)m(1Q, n|R, n) = 0 , (5.30)

where m(1Q, n|R, n) = limsiP→0 siP b(1Q|R). The expression vanishes because there is no

1/siP pole in (5.28). This is a remarkable identity, because the components S(P,Q)i do

not have siP as a factor. On the other hand, b(iP, iQ) does have a 1/siP . This cancellation

is the key reason why (5.29) is well defined.
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In the rest of this section, we explain how a Lie polynomial version of (5.29) follows

immediately from the main result in §5.1. We have already shown, in (5.21), that the KLT

matrix satisfies the following off-shell, (n− 2)! KLT relation

b(P |Q) =
∑

R,U

b(P |iR)S(R|U)ib(iU |Q). (5.31)

To obtain a relation of the form (5.29), write

A(1P, n) := s1P b(1P ) = s1P
∑

R∈Sn−2

b(1P |1R)ℓ[1R], (5.32)

for the Lie polynomial ‘precursor’ of a gauge theory amplitude. And write

Mn =
∑

P,Q∈Sn−2

s1P ℓ[1P ]b(1P |1Q)ℓ[1Q] (5.33)

for the precursor of a gravity amplitude. Notice that, by (3.21), (5.33) is equivalently

written as

Mn = s12...n−1

∑

|Γ|=n−1

Γ⊗ Γ

sΓ
. (5.34)

Then (5.31) implies the following KLT relation

Mn = lim
s1P=0

∑

P,Q∈Sn−2

1

s1P
S(P |Q)1m(1Pn) ⊗ m(1Qn). (5.35)

All the double poles from the right-hand side of (5.29) are manifestly absent in its free Lie

algebra version (5.35) due to the generalized KLT matrix property (5.31). The only poles

in (5.31) are those that appear in b(1P |1Q).

Our results also make it clear why the existence of a ‘BCJ form’ for gravity is equivalent

to the KLT relation. As an example, the four-point “gravity” amplitude has the following

double copy expansion:

M4 = s123

(

b(123|123)ℓ̃[123]ℓ[123] + b(123|132)ℓ̃[123]ℓ[132] (5.36)

+ b(132|123)ℓ̃[132]ℓ[123] + b(132|132)ℓ̃[132]ℓ[132]
)

=
[[1, 2], 3]⊗ [[1, 2], 3]

s12
+

[[1, 3], 2]⊗ [[1, 3], 2]

s13
+

[1, [2, 3]]⊗ [1, [2, 3]]

s23
,

where we used ℓ[123]− ℓ[132] = [1, [2, 3]].
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5.3.1. Generalized Jacobi identities

The main property of the bracket the S-bracket is that

b({P,Q}) = [b(P ), b(Q)]. (5.37)

Since b and S are inverse, this is equivalent to

{P,Q} = S([b(P ), b(Q)]). (5.38)

The bracket {P,Q} is polynomial in the Mandelstam variables, whereas S([b(P ), b(Q)]) is

naively a rational function of the Mandelstam variables. The cancellation of the poles in

[b(P ), b(Q)] by the KLT matrix is not at all obvious from its concrete formula.

As observed in §5.1, (5.38) implies that the S-bracket is Lie, and so satisfies

{1, 2} ∼ −{2, 1} {{1, 2}, 3}+ {{2, 3}, 1}+ {{3, 1}, 2} ∼ 0, (5.39)

as identities in L ∗
S . It follows that the S-bracket satisfies generalized Jacobi identities [1]

ℓ{PiQ} ∼ −ℓ{iℓ[P ]Q} (5.40)

which can be deduced from two applications of (2.3). This makes it clear that the definition

of Sℓ(P,Q), given in (5.13) also satisfies such generalized Jacobi identities in P and Q [13],

S(XiY |Q) = −S(iℓ[X ]Y |Q). (5.41)

Notice that this property of the generalized KLT matrix has no analog for the standard

KLT matrix, S(XiY |Q)j, because of the fixed leg j.12

Finally, another consequence of (5.38) is that

∑

XY =P

{X, Y } ∼ sPP . (5.42)

This follows immediately from (3.10), by acting with the KLT map on both sides.

12 The identity (5.41) motivated the introduction of the generalized KLT matrix in [13]. In the

multiparticle pure spinor superfield framework, where VP are local superfields satisfying general-

ized Jacobi identities and MQ are Berends-Giele current superfields satisfying shuffle symmetries,

we have the relation ViA =
∑

B
S(A|B)iMB [39]. However, the fixed leg i prevents the Jacobi

identities of ViA being manifest.
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6. The contact term map as a Lie co-bracket

A series of studies of string theory correlators and BCJ numerators led to the so-called

contact term map [22] appearing in the action of the pure spinor BRST operator on local

multiparticle superfields [6]. This section identifies the contact term map as the Lie co-

bracket dual to the S-bracket and proves its main properties as a result of this identification.

Definition (Contact term map). The contact term map, C : LS → LS ∧ LS , is the

dual of the S-bracket; i.e. for a Lie monomial, Γ,

(P ⊗Q,C(Γ)) := ({P,Q},Γ). (6.1)

An explicit formula for C(Γ) follows from (6.1) by choosing a basis, for example:

C(Γ) =
∑

P,Q

({P,Q},Γ) ℓ[P ]⊗ ℓ[Q], (6.2)

where the sum is over a Lyndon basis of L ∗.13

Defining P ∧Q := P ⊗Q−Q⊗ P , the first few examples of the map C are

C([1, 2]) = (k1 · k2)(1 ∧ 2), (6.3)

C([1, [2, 3]]) = (k2 · k3) ([1, 2] ∧ 3 + 2 ∧ [1, 3]) + (k1 · k23) (1 ∧ [2, 3]) .

C satisfies the dual Jacobi identity (A is the swap map, X ⊗ Y 7→ Y ⊗X .)

(C ⊗ Id) ◦ C − (Id⊗ C) ◦ C − (Id⊗A) ◦ (C ⊗ 1) ◦ C = 0, (6.4)

which is equivalent to the Jacobi identity for the S-bracket. Also, recall the main property,

b({P,Q}) = [b(P ), b(Q)]. (6.5)

This is equivalent to:

13 Other explicit formulas follow from choosing different pairs of dual basis. e.g. we could write

a ‘left-right’ version of (6.2): C(Γ) =
∑

P,Q
({P,Q},Γ)ℓ[P ] ⊗ r[Q], which is related to (6.2) by

Q ∼ (−1)QQ and ℓ[Q] = (−1)Qr[Q].
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Lemma. C satisfies [22]

C(b(P )) =
∑

P=XY

b(X) ∧ b(Y ). (6.6)

Proof. (6.5) implies that

(P ⊗Q,C(b(R))) = ([b(P ), b(Q)], R). (6.7)

The RHS can be expanded by deconcatenation (as in the derivation of (3.10)):

RHS =
∑

R=XY

(b(P ), X)(b(Q), Y )− (X ↔ Y ). (6.8)

But b is self-adjoint, and so

(P ⊗Q,C(b(R))) =
∑

R=XY

(P, b(X))(Q, b(Y ))− (X ↔ Y ), (6.9)

and this is equivalent to (6.6). (6.6) can also be checked using the formula, (6.2).

The rest of this section derives a recursive formula for C. First define the standard

extension of the adjoint representation of L to L ⊗ L :

[P,X ⊗ Y ] := [P,X ]⊗ Y +X ⊗ [P, Y ],

[X ⊗ Y,Q] := [X,Q]⊗ Y +X ⊗ [Y,Q].

This makes L ⊗ L into an adjoint representation of L .

Lemma (Recursion). For Γ1,Γ2 ∈ L , the action of C on [Γ1,Γ2] is given by

C([Γ1,Γ2]) := k1 · k2 Γ1 ∧ Γ2 + [C(Γ1),Γ2] + [Γ1, C(Γ2)], (6.11)

where k1 and k2 are the momenta associated to Γ1 and Γ2. With C(i) := 0, (6.11) can be

taken as a definition of C, as in [22].

Proof. This is a consequence of the identity, (B.5), used in the proof of the defining property

of the S bracket, (6.5). We again use deconcatenation (as in (6.7), above) to write

({P,Q}, [Γ1,Γ2]) = (δ{P,Q},Γ1 ⊗ Γ2)− (1 ↔ 2). (6.12)

Then (B.5) gives

(P ⊗Q,C([Γ1,Γ2])) = kP · kQ(P,Γ1)(Q,Γ2) (6.13)

+
∑

P=XY

(X,Γ1)({Y,Q},Γ2)−
∑

Q=XY

({P,X},Γ1)(Y,Γ2)− (1 ↔ 2).
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But ({Y,Q},Γ2) = (Y ⊗ Q,C(Γ2)) and ({P,X},Γ1) = (P ⊗ X,C(Γ1)), and so (6.13)is

equivalent to (6.11).

The recursive relation, (6.11), can be solved to find an explicit formula for C(Γ). To

see this, write

D(Γ) := k1 · k2 Γ1 ∧ Γ2, (6.14)

for Lie monomials Γ = [Γ1,Γ2]. Nesting (6.11) leads to a sum over the edges in the tree

TΓ. For I ∈ Γ an edge in the tree TΓ, let ΓI be the associated Lie monomial. For example,

if Γ = [[1, 2], [3, 4]], then Γ12 = [1, 2]. Then the solution to the recursion, (6.11), is

C(Γ) =
∑

I∈Γ

Γ/ΓI [D(ΓI)], (6.15)

where Γ/ΓI [D(ΓI)] denotes the replacement, in Γ, of ΓI by D(ΓI).

For example, if Γ = [[1, 2], [3, 4]], then C(Γ) is

C(Γ) = D(Γ) + Γ/Γ12[D(Γ12)] + Γ/Γ34[D(Γ34)], (6.16)

where

Γ/Γ34[D(Γ34)] = s34[[1, 2], 3⊗ 4] = s34 ([[1, 2], 3]⊗ 4 + 3⊗ [[1, 2], 4]) , (6.17)

and

D(Γ) = k12 · k34 [1, 2] ∧ [3, 4]. (6.18)

6.1.1. The contact-term map and equations of motion

The contact term map plays a role in the equations of motion of the VΓ [6,26,22]. Associ-

ated to the VΓ are SYM Berends-Giele currents, MP = V (b(P )), where V (Γ) := VΓ. For

example,

M1 = V1, M12 =
V[1,2]

s12
, M123 =

V[[1,2],3]

s12s123
+

V[1,[2,3]]

s23s123
. (6.19)

The equation of motion of MP under the action of the pure spinor BRST charge Q is given

by [26]

QMP =
∑

XY =P

MXMY . (6.20)

Whereas the equation of motion for the local superfields VΓ can be written as

QVΓ =
1

2
(V ⊗ V, C(Γ)) =

1

2

∑

P,Q

Vℓ(P )Vℓ(Q)(P ⊗Q,C(Γ)), (6.21)
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where the sum is over a basis. For example,

QV[1,2] = (k1 · k2)V1V2, (6.22)

QV[[1,2],3] = (k1 · k2)(V[1,3]V2 + V1V[2,3]) + (k12 · k3)V[1,2]V3,

QV[1,[2,3]] = (k2 · k3)
(

V[1,2]V3 + V2V[1,3]

)

+ (k1 · k23)V1V[2,3] ,

and it can be checked that these imply (6.20) for P = 123. In fact, given (6.6), equation

(6.21) implies equation (6.20), as explained in [22]. This was previously only known from

explicit calculations at low multiplicities.

7. BCJ numerators

In the previous sections we used Berends-Giele currents to recast and prove relations for our

Lie polynomial version of biadjoint scalar theory. When dressed with BCJ numerators these

results apply directly to other coloured theories. In this section, we first argue that any

coloured theory that admits the Berends-Giele framework can be understood in this way.

There are clear distinctions between the behaviour of numerators for on-shell amplitudes,

versus those for the partially off-shell Berends-Giele currents; for a given Berends-Giele

description we will see that numerators are unique, but the Berends-Giele description itself

has a gauge freedom as exploited in [26]. We then discuss explicit examples of numerators

N theory
Γ for different theories.

7.1. BCJ numerators for coloured theories

Many gauge theories have perturbation expansions that can be expanded in colour factors

of the form (2.20); this is the case for any gauge theory whose Lagrangian is second

order and single trace in the Lie algebra, with interaction terms formed out of total Lie

bracketings. For such a theory, there is an iteration for L -valued fields, analogous to the

one for biadjoint scalar in §3 and for Yang-Mills in appendix A. For a particular gauge

choice, this iteration generates colour ordered Berends-Giele currents, Btheory(P ), with the

partial amplitudes of the theory given by Atheory(Pn) = limsP→0 sPB
theory(P ) · ǫn, where

ǫn is the polarization of the nth particle. These partial amplitudes trivially satisfy shuffle

relations [41] as a consequence of the BG currents being Lie polynomials. The amplitudes
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A(Pn) are invariant under field redefinitions and gauge transformations, but the Berends-

Giele currents Btheory(P ) are not invariant. For a coloured theory in the double copy, we

now consider how the currents Btheory(P ) are related to b(P ).

A BCJ numerator associates every Lie monomial Γ with a function N theory
Γ ∈ Ktheory.

Here Ktheory is the space of functions of the kinematic data. For example, for the nonlinear

sigma model, KNLSM are functions of the Mandelstam invariants. For Yang Mills, KYM

consists of functions that are also multilinear in the polarisation vectors of the gluons. As

observed in [10], the statement of colour kinematics duality is that Γ 7→ N theory
Γ defines a

homomorphism

N theory : L → Ktheory . (7.1)

Instead of considering BCJ numerators for amplitudes, we can look for maps, Ñ theory,

which relate BG currents to b(P ):

Btheory(P ) = Ñ theory(b(P )) . (7.2)

In other words, we regard ÑΓ as (off-shell) BCJ numerators for the BG currents of the

theory. The numerators ÑΓ may have free indices that NΓ does not have (e.g. for YM,

ÑΓ has a free gluon polarization index). This almost trivial change of perspective has an

interesting consequence.

Dropping the superscript ‘theory’ from now on, fix some gauge theory, and, assuming

some gauge choices, let B(P ) be the BG currents of the theory in some gauge. The results

of §5 show that we can invert b(P ) using (5.5) to write

ÑΓ := B({Γ}) . (7.3)

Here {Γ} is only well-defined as an element of L ∗, but B({Γ}) is well defined since, as we

explain above, Btheory(R�S) = 0 for R, S 6= ∅. Moreover, Γ 7→ ÑΓ is a homomorphism,

because the S-bracket is Lie. The key point is that, given some set of B(P ), the ÑΓ defined

by (7.3) are unique.

It might be helpful to describe (7.2) and (7.3) more explicitly in a basis. Using (5.17),

Ñℓ[P ] = B(ℓ{P}) =
∑

Q∈Basis

Sℓ(P |Q)B(Q) , (7.4)

where Sℓ(P |Q) is the generalized KLT matrix. If we multiply by sP , contract free indices

with the nth particle, and take the limit sP → 0, (7.4) becomes a well known formula for
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amplitude BCJ numerators, given in [42](see also the discussion in §5 of [40]). Then (7.2)

reads

N(b(P )) =
∑

Q∈Basis

Nℓ[Q] b(P |Q) =
∑

Q,R∈Basis

Sℓ(Q|R)B(R) b(P |Q) = B(P ) . (7.5)

Thus the existence of ‘off-shell’ numerators is generic and unique, given a choice of Berends-

Giele currents.

This is in sharp contradistinction with the on-shell BCJ numerators for amplitudes.

On-shell BCJ numerators are subject to a gauge freedom spanned by numerators of the

form

Ngauge
Γ =

∑

R,S

CR,S({R, S},Γ), (7.6)

for some arbitrary kinematic functions CR,S ∈ K. These contribute the following to the

BG currents:

Ngauge
Γ (b(P )) =

∑

R,S

CR,Sb(P |{R, S}) =
∑

R,S

CR,S(P, [b(R), b(S)]) , (7.7)

This contribution vanishes on-shell, because the RHS (7.7) has no 1/sP pole, and so van-

ishes when multiplied by sP , in the sP → 0 limit. It was this gauge freedom in a different

guise that led to the original discovery of the BCJ relations in [3], where it was argued that

there are (n − 2)! − (n − 3)! independent pure gauge numerators of this form. However,

(7.7) shows that these no longer vanish off-shell. The off-shell numerators are therefore not

subject to the freedom, (7.6), and are unique once a choice of Berends Giele formulation

has been made.

BCJ numerators for amplitudes, NΓ, are said to be local if they contain no poles

in the Mandelstam variables.14 Local BCJ numerators are known for both the nonlinear

sigma model (NLSM), [42,40] and for (super-)Yang-Mills [43,15,22,44,45,11] (see also [46]

for theories with deformations α′F 3 and α′2F 4) see [5] for a review.

If the off-shell numerators of a theory are local, they restrict to give local on-shell

numerators for the amplitudes of the theory.15 But, for a generic theory there is no reason

14 For a coloured theory, BCJ numerators can be obtained when the fundamental BCJ identities

are satisfied by inverting on an (n− 3)! basis, but this will lead to spurious poles in general.
15 An arbitrary set of local on-shell BCJ numerators for the theory may not be the restriction

of the off-shell numerators, because of the gauge freedom, (7.6).
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to expect that the unique off-shell numerators obtained from (7.3) will be local. Indeed,

an obstruction to locality for Yang-Mills Berends-Giele currents in Lorenz gauge is identi-

fied in [15,22,26]. This led the authors to the introduction of ‘BCJ gauge’ in which local

numerators are obtained.

If a theory does not admit any set of local off-shell numerators, this would prevent it

from participating in a KLT relation:

M =
∑

P,Q∈Basis

Sℓ(P |Q)B(P )B̃(Q) (7.8)

where B̃(Q) might be another coloured theory. Since Sℓ(P |Q) cancels one copy of b(P ) in

the product, locality of the numerators implies that the singularities of M arise only from

one copy of b(P ). In other words, M has singularities consistent with amplitude factoriza-

tion. Without locality of the numerators, the singularity and factorisation structure of M

would not be consistent, and so M would not come from a local field theory. The existence

of local numerators is therefore what makes the theories in the BCJ web special.

If the off-shell numerators, (7.3), of a gauge theory are local, this implies that the

theory satisfies the on-shell BCJ relations. Indeed,

B({P,Q}) = N(b({P,Q})). (7.9)

If N is local, (7.9) will have no 1/sPQ pole, since b({P,Q}) has no 1/sPQ pole. Then the

partial amplitudes associated to B(P ) satisfy

Atheory({P,Q}, n) = lim
sPQ→0

sPQB
theory({P,Q}) · ǫn = 0 , (7.10)

which are the fundamental BCJ relations. Given this, it is reasonable conjecture the con-

verse: that if a theory’s partial amplitudes satisfy the BCJ relations, then there exists a

field redefinition and gauge fixing of its Berends-Giele recursion so that it has local numer-

ators. As discussed in [15], for (super)Yang-Mills the locality of the numerators following

from Berends-Giele currents as in (7.3) is achieved in the so-called BCJ gauge [26]. This

gauge is characterized by multiparticle fields labelled by planar binary trees satisfying gen-

eralized Jacobi identities and can be obtained via a standard finite gauge transformation

of the gauge (super)fields [26,22].

The following subsections review particular examples.
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7.2. Biadjoint scalar

For the biadjoint scalar theory,16 the numerators take values in KBiadjoint = W i.e., in

words Q representing colour orderings for the second Lie algebra:

N(Q)Biadjoint
Γ = (Q,Γ) . (7.11)

If Γ1 + Γ2 + Γ3 = 0 follows from the Jacobi identity, then NΓ1
+ NΓ2

+ NΓ3
= (Q,Γ1 +

Γ2 + Γ3) = 0 follows immediately. This yields b(P |Q) = (Q, b(P )) as defined earlier.

Following [8], it was pointed out in [14] that this Berends-Giele multiparticle field

b(iP |iQ) gives rise to an efficient algorithm to compute the inverse of the KLT matrix

S(P |Q)i, but no direct algebraic proof was given for this statement [13]17. This has now

been proven in section 5.

The biadjoint amplitudes m(Pn|Qn) are then given by projecting the binary tree

expansion b(Q) of (3.22) against P [13],

m(Pn|Qn) = lim
sP→0

sP (P, b(Q))) = lim
sP→0

sP b(P |Q) . (7.12)

The Kleiss-Kuijf relations follow from Ree’s theorem (2.6) as b(R�S|Q) = 0 because b(Q)

is a Lie polynomial, while the BCJ relations follow from the {, }-bracket as discussed in

section 4.2.

Example of biadjoint amplitudes are obtained from b(123) and b(1234):

m(1234|1234) =
〈123, [[1, 2], 3]〉

s12
+

〈123, [1, [2, 3]]〉

s23
=

1

s12
+

1

s23
, (7.13)

m(12345|14235) =
〈1234, [[[1, 4], 2], 3]〉

s14s124
+

〈1234, [[1, [4, 2]], 3]〉

s124s24
+

〈1234, [[1, 4], [2, 3]]〉

s14s23

+
〈1234, [1, [[4, 2], 3]]〉

s24s234
+

〈1234, [1, [4, [2, 3]]]〉

s234s23
= −

1

s23s234
,

where the expansion of b(123) and b(1234) can be found in (3.13).

16 This was an early example of the benefits of using combinatorial structures; biadjoint scalar

tree amplitudes m(Pn|Qn) were obtained in [8] from planar binary trees. As shown in [14], the

solution to the biadjoint scalar field equations yields a recursion for Berends-Giele currents b(P |Q)

depending on two color orderings from which the amplitudes are obtained via the Berends-Giele

amplitude formula. In [13], these double fields were reformulated as a map on the binary tree

expansion (3.10), given by (3.20).
17 The statement that the KLT matrix is the inverse to the “biadjoint amplitudes” was argued

on general grounds using intersection theory by Mizera [21]. The question in [13] was whether the

two matrices S(P |Q)i and b(P |Q) defined by the precise recursive formulas given in [40] and [14]

could be shown to be mutually inverse directly.

32



7.3. NLSM

NLSM amplitudes can be studied by BG recursion [47], as above for biadjoint scalar theory.

Although we do not prove it here, experimental evidence suggested the following formula

for (off-shell) BCJ numerators for NLSM:

NNLSM
Γ :=

∑

P∈Basis

(P,Γ)Sℓ(P |P ), for |Γ| = n (7.14)

where Sℓ(P |Q) is the generalized KLT matrix. It is clear that Γ 7→ NNLSM
Γ is a homomor-

phism. In particular, if Γ1 + Γ2 + Γ3 = 0 is a triple of Lie monomials that vanishes, then

the corresponding numerators satisfy the BCJ numerator identity NΓ1
+NΓ2

+NΓ3
= 0.

We refer to [24] for an on-shell proof of (7.14) using CHY methods.

The NLSM amplitudes are computed from the correspondence (3.22),

ANLSM(Pn) = lim
sP→0

NNLSM
(

sP b(P )
)

. (7.15)

For example, at 4-points the numerators are

NNLSM([[1, 2], 3]) = s12(s23 + s13),

NNLSM([1, [2, 3]]) = s12(s23 + s13)− s13(s23 + s12) = s23(s12 − s13),

NNLSM([[1, 3], 2]) = s13(s23 + s12).

(7.16)

These satisfy

NNLSM([[1, 2], 3])−NNLSM([1, [2, 3]])−NNLSM([[1, 3], 2]) = 0. (7.17)

Acting on b(123), we get

s123N
NLSM(b(123)) = s12 + s23 , (7.18)

which is the 4 point partial amplitude, ANLSM(1234). From the existence of the map (7.14),

and the discussions in §4, it follows that the KK and BCJ relations are automatically

satisfied by the NLSM amplitudes, as was proved in [48]. In [40], master BCJ numerators

with fixed legs 1 and n of the NLSM amplitudes were observed in examples to be N1|P |n =

(−1)n/2S(P |P )1 for even n. (7.14) has this as a special case.
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7.4. Super-Yang–Mills

String theory OPEs (or supersymmetric BG recursion) can be used to recursively compute

local SYM multiparticle superfields {AΓ
α, A

µ
Γ,W

α
Γ , F

µν
Γ }, µ, ν = 1, . . . , 10, α = 1, . . . , 16, in

the BCJ gauge which are labelled by Lie monomials Γ ∈ L [6,26,22]. These can be taken

to be the SYM numerators, i.e. NSYM
µΓ = AµΓ etc.. As demonstrated in [26,22], the words

labelling these superfields satisfy the same generalized Jacobi identities associated with

the corresponding Lie monomial Γ. For example,

Aµ
[[1,2],[3,4]] = Aµ

[[[1,2],3],4] − Aµ
[[[1,2],4],3]. (7.19)

This leads to a proposal for local BCJ-satisfying numerators NSYM
µ from which SYM tree

amplitudes arise from

ASYM(Pn) = Aµ
n lim

sP→0
sPN

SYM
µ

(

b(P )
)

, (7.20)

where Aµ
n is the polarization vector of the nth particle while the action of NSYM

µ on the

Lie polynomials Γ = [Γ1,Γ2] in (3.10) is given by

Aµ
nN

SYM
µΓ := AnµA

µ
[Γ1,Γ2]

, (7.21)

in terms of the θ = 0 component of the local multiparticle superfield Aµ
[Γ1,Γ2]

[6,22]. This

representation manifestly satisfies the BCJ identities. For example, the five-point color-

ordered amplitudes in the Kleiss–Kuijf basis following from the maps (7.20) and (7.21) are

given by

A(12345) =
(Aµ

[[[1,2],3],4]

s12s45
+

Aµ
[1,[[2,3],4]]

s23s51
+

Aµ
[[1,2],[3,4]]

s12s34
+

Aµ
[[1,[2,3]],4]

s45s23
+

Aµ
[1,[2,[3,4]]]

s51s34

)

A5µ

together with the other 5 permutations of 2, 3, 4. It is straightforward to check that all

BCJ numerator identities are manifestly satisfied. For example, comparing the above

parametrization with the one in [3] leads to

n3 = Aµ
[[1,2],[3,4]]A

µ
5 , n5 = Aµ

[1,[2,[3,4]]]A
µ
5 , n8 = Aµ

[[1,[4,3]],2]A
µ
5 , (7.23)

from which the identity n3 − n5 + n8 = 0 can easily be verified.
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7.4.1. Non-local vs local BCJ numerators from Berends-Giele in the Lorenz vs BCJ gauge

As an example of the definition of BCJ-satisfying numerators (7.3) and its (non)locality

properties, consider the Berends-Giele current of standard Yang-Mills theory [12] for the

color-ordered five-point amplitude. As shown in [15], the standard Berends-Giele current

Jµ(1234) of [12] can be written in terms of multiparticle fields Âµ
[Γ1,Γ2]

in the Lorenz gauge

s1234J
µ(1234) =

Âµ
[[[1,2],3],4]

s12s45
+

Âµ
[1,[[2,3],4]]

s23s51
+

Âµ
[[1,2],[3,4]]

s12s34
+

Âµ
[[1,[2,3]],4]

s45s23
+

Âµ
[1,[2,[3,4]]]

s51s34
, (7.24)

where Âµ
[Γ1,Γ2]

are the recursive multiparticle vector potential

Â[Γ1,Γ2]
µ = −

1

2

[

ÂΓ1

µ (kΓ1 · ÂΓ2) + ÂΓ1

ν F̂Γ2

µν − (Γ1 ↔ Γ2)
]

(7.25)

and FΓ2
µν are the local multiparticle field-strengths defined similarly [26,22], see for example

§4.3 of [22] for the difference between Aµ
Γ and Âµ

Γ.

Using the prescription (7.3) to obtain BCJ-satisfying numerators one gets, for example

Nµ
[[1,2],[3,4]] = Jµ({{1, 2}, {3, 4}}) ,

Nµ
[1,[2,[3,4]]] = Jµ({1, {2, {3, 4}}}) ,

Nµ
[[1,[4,3]],2] = Jµ({{1, {4, 3}}, 2})

(7.26)

leading to

Nµ
[[1,2],[3,4]] = s12s34

(

Jµ(1234)s23 − Jµ(1243)s24 − Jµ(2134)s13 + Jµ(2143)s14
)

, (7.27)

Nµ
[1,[2,[3,4]]] = s23s34

(

Jµ(1234)s12 − Jµ(1324)s13 − Jµ(1342)s13 + Jµ(1432)s14
)

+ s24s34
(

Jµ(1423)s14 + Jµ(1432)s14 − Jµ(1243)s12 − Jµ(1342)s13
)

,

Nµ
[[1,[4,3]],2] = s13s34

(

Jµ(1432)s23 − Jµ(1342)s24 − Jµ(4312)s12 + Jµ(4132)s23
)

+ s14s34
(

Jµ(1432)s23 − Jµ(3142)s24 − Jµ(1342)s24 + Jµ(3412)s12
)

.

It is easy to see that the BCJ numerator relation n3−n5+n8 = 0 is satisfied by the above

representations as Nµ
[[1,2],[3,4]] − Nµ

[1,[2,[3,4]]] + Nµ
[[1,[4,3]],2] = 0 due to the shuffle symmetry

Jµ(R�S) = 0 (note that the numerators follow from contraction with the polarization Aµ
5 ,

e.g. n3 = Nµ
[[1,2],[3,4]]A

µ
5 ). For example, the terms proportional to s14s24s34 are given by

−Jµ(1342)− Jµ(1423)− Jµ(1432)− Jµ(3142) = −Jµ(3�142) = 0 . (7.28)

All the other BCJ numerator relations can be similarly verified.
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It can be checked by explicitly computing the BG currents in Lorenz gauge that the

numerators (7.27) are not local. But when the Berends-Giele currents are computed in

the BCJ gauge, the right-hand side of (7.27) do become local expressions. Indeed, using

Aµ
[Γ1,Γ2]

in the BCJ gauge (instead of Âµ
[Γ1,Γ2]

in (7.24)), the linear combinations in (7.27)

yield:
Nµ

[[1,2],[3,4]] = Aµ
[[1,2],[3,4]]

Nµ
[1,[2,[3,4]]] = Aµ

[1,[2,[3,4]]]

Nµ
[[1,[4,3]],2] = Aµ

[[1,[4,3]],2]
(7.29)

To see this note that in the BCJ gauge Aµ
[Γ1,Γ2]

satisfies the same relations as the Lie

monomial [Γ1,Γ2] so (7.29) follow from the property Γ = b({Γ}) proved in (5.1).

7.5. Z-theory and the open superstring

In order to upgrade the discussion in the previous subsection to the open superstring with

α′ corrections we will exploit the non-abelian Z-theory method to evaluate α′ expansions

of open string disk integrals. Recall that the string disk integrals are computed via the

Berends-Giele method as

Z(P, n|Q, n) = lim
sP→0

sP b
α′

(P |Q) (7.30)

where the Berends-Giele currents are computed using the equations of motion of the non-

abelian Z-theory [49]. One can promote the setup of [49] to the theory of free Lie algebras

by assuming the existence of α′ corrections to the Catalan expansion (3.10) and defining

bα
′

(P |Q) = (bα
′

(P ), Q) (7.31)

which together with (7.30) implies that Z-theory admits a free Lie algebra representation.

Using the explicit expressions of bα
′

(P |Q) up to α′7 order from [49] one can show that

they indeed admit a Lie-polynomial form,

sP b
α′

(P ) =
∑

XY =P

[bα
′

(X), bα
′

(Y )] (7.32)

+ α′2ζ2
∑

XY Z=P

kX · kY [b
α′

(X), [bα
′

(Z), bα
′

(Y )]]

− α′2ζ2
∑

XY Z=P

kY · kZ [[b
α′

(X), bα
′

(Y )], bα
′

(Z)]

+ α′2ζ2
∑

XY ZW=P

[[bα
′

(X), bα
′

(Y )], [bα
′

(W ), bα
′

(Z)]]

− α′2ζ2
∑

XY ZW=P

[[bα
′

(X), bα
′

(Z)], [bα
′

(W ), bα
′

(Y )]] +O(α′3)
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and so on.

It is important to emphasize that the symmetries of the “domain” P and integrand Q

are different, in particular bα
′

(P |Q) 6= bα
′

(Q|P ). The integrand Q satisfies shuffle symmetry

as bα
′

(P |R�S) = 〈bα
′

(P ), R�S〉 = 0 because bα
′

(P ) is a Lie polynomial. The shuffle

symmetries of the domain P are twisted by the monodromies of the disk integrals as

explained in [49].

Finally, our proposal for obtaining bosonic18 open superstring disk amplitudes includ-

ing α′ corrections is to replace the recursion b(P ) from (3.10) by its α′-corrected bα
′

(P )

from (7.32),

Astring(P, n) = lim
sP→0

sPN
SYM
µ (bα

′

(P ))Aµ
n . (7.33)

This proposal has been explicitly verified for the bosonic components of the disk amplitudes

up to seven points and up to α′3 [50]. While the SYM amplitudes in the field-theory limit

α′ → 0 are correctly obtained using the analogous map NSYM
µ in the Lorenz gauge, the

higher α′ orders of the string disk amplitude (7.33) require the BCJ gauge as in the map

(7.21).

8. Conclusions

We have seen that there is much nontrivial structure in the amplitudes of coloured theories

that can be formulated in the language of Lie polynomials and their dual. These impact

quite generally on the study of tree-level scattering amplitudes for the theories encompassed

by the double copy [5]. Important outstanding questions concern the locality of numerators

and the existence and role of the kinematic algebras that should underpin them. We have

seen that off-shell Berends-Giele numerators are unique up to the choices of Berends-Giele

recursion itself. Since numerators are unique within a Berends-Giele framework, the locality

of the corresponding numerators is a determined question. However, this question of their

locality in the off-shell regime is subject to the choices involved in field redefinition and

gauge; we have seen that they are not local for SYM in Lorenz gauge, but that a BCJ

gauge can be found. A reasonable conjecture is that a Berends-Giele framework can be

found with local numerators for any such theory that factorizes and whose amplitudes

satisfy the BCJ relations.

18 Fermionic amplitudes require corrections following from a Dirac term ∼ km
P WP γ

mWn [15].
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An ongoing topic of research is the identification of the kinematic algebra for a given

theory, see [5] and references therein. For a given theory, take some set of BG current,

B(P ). Then these B(P ), then we can implicitly define a kinematic bracket {, }K on the

associated off-shell numerators NΓ1
and NΓ2

by imposing the relation

N[Γ1,Γ2] = B({[Γ1,Γ2]}) = {B({Γ1}), B({Γ2})}K = {NΓ1
, NΓ2

}K, (8.1)

where { , }K is the antisymmetric operation, implicitly defined by (8.1) on the image of N .

It is a Lie bracket on the image of N , because N is a homomorphism. Imposing linearity

in Mandelstam variables, the definition (8.1) implies an off-shell BCJ-like relation,

B({P,Q}) = {B(P ), B(Q)}K, (8.2)

where { , }K is extended to act on the B(P ) as

{B(P ), B(Q)}K :=
∑ (P,Γ1)

sΓ1

(Q,Γ2)

sΓ2

{NΓ1
, NΓ2

}K. (8.3)

(See [51] for an off-shell BCJ relation for NLSM, but which is not obviously of the form

(8.2).) It is highly nontrivial to find a BG formulation that gives local numerators for NLSM

and YM. But if a particular choice of gauge is known to give local off-shell numerators,

then (8.1) expresses these local numerators as nested bracketings with respect to { , }K.

In this situation, it would therefore be reasonable to call { , }K the “kinematic algebra”

of the theory; a clear goal in the subject is to find an intrinsic definition of such a bracket

on K. However, even given a local Lie bracket { , }K on the NΓ, there is no guarantee that

this bracket admits a consistent extension to a Lie bracket

{ , }K : KP ×KQ → KPQ, (8.4)

on the whole of the kinematic spaces KP .

There are many other directions to explore. Intermediate steps in the calculations of

α′ expansion method from [52] can be described by the same combinatorics as the contact

terms in the equation of motion for QVP [53], therefore they should profit from framing the

results in terms of the contact term map acting on Lie polynomials. Given that the Drinfeld

associator itself is a Lie series this connection promises to reveal more synergies between

mathematical ideas and scattering amplitudes. Similarly, the Berends-Giele formulation of

the non-abelian Z-theory to compute α′ corrections to string disk integrals [49] induces α′
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corrections to the recursion (3.10) of planar binary trees as seen in (7.32). It is natural to

ask whether the recursion (7.32) itself is generated recursively from purely combinatorial

methods. The appearance of factors of kX · kY suggest that the S-bracket may play a role.

The combinatorial understanding of the Drinfeld method discussed in [54] is an encouraging

development in this direction.

Given that the field-theory KLT matrix Sℓ(P |Q)i is the inverse of the biadjoint

Berends-Giele double current b(iR|iS) as in (5.28), it is natural to look for the inverse

of the α′-corrected double current bα
′

(P |Q) from [49] to obtain α′ corrections to the KLT

matrix. Note that these corrections will not coincide with those in the string theory KLT

matrix since odd and multiple zeta values are absent from the latter (see e.g. [19,55]) but

must be present in the former.

Similarly, the structures studied in this paper can be realized in the context of the CHY

formulae, ambitwistor strings and the geometry of M0,n. Much is already well known, for

example [56,57,10], but more appears in [24]. A particular challenge is to better understand

numerators from this perspective.

Again another challenge is to take these insights to higher loops. Tree level colour

factors are labelled by Lie monomials, and partial tree amplitudes are labelled by permu-

tations. This is just the leading order avatar of the more general story, at arbitrary orders

in the perturbation series, in which colour factors are associated to ribbon graphs, and

partial amplitudes are labelled by marked surfaces with boundary (possibly with punc-

tures and nontrivial genus). The results in the present paper are essentially all derived

from the Jacobi identity satisfied by Lie monomials. More generally, colour factors labelled

by ribbon graphs at higher order satisfy analogous identities; again more appears in [24].

The maps and techniques discussed in this paper show that free Lie algebras permeate

the theory of scattering amplitudes. They also raise the expectations that many more

elegant results are yet to be discovered.
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Appendix A. Berends-Giele recursion for Yang–Mills in the free Lie algebra

Here we repeat the discussion of section 3 replacing the biadjoint scalar by Yang-Mills.

Consider pure Yang–Mills theory in d-dimensions with the Lagrangian

LYM =
1

4
tr(FµνF

µν), Fµν := −[∇µ,∇ν ] . (A.1)

The trace is over the generators ta of a Lie algebra, g, the covariant derivative is given by

∇µ = ∂µ − Aµ and Aµ = Aa
µt

a is the gluon potential. In the Lorenz gauge, ∂µA
µ = 0, the

field equation [∇µ,F
µν ] = 0 becomes

�A
ν(x) = [Aµ(x), ∂

µ
A

ν(x)] + [Aµ(x),F
µν(x)]. (A.2)

We now define a perturbative solution A that takes values in L rather than some

given Lie algebra L. (A.2) leads to the following iteration for A≤n, with values in L≤n:

A
ν
≤n+1 = A

ν
1 + projL≤n+1

�
−1
(

[Aµ
≤n(x), ∂µA

ν
≤n(x)] + [A≤nµ(x),F

µν
≤n(x)]

)

, (A.3)

F
µν
≤n+1 = projL≤N+1

2∂[µ
A

ν]
≤n+1 − [Aµ

≤n,A
ν
≤n].

where projL≤n+1
projects onto the L≤n+1 part. The recursion is seeded by

A
µ
1 =

∑

i∈N

eµi exp(iki · x) i (A.4)

where the letter i replaces the usual generator tai ∈ g and eµi is the polarization vector of

the ith gluon. Note that �−1 acts on momentum eigenstates exp(ik · x) to give −1/k2.

To obtain the amplitude, define the multi-particle field A
µ
n−1, which is the degree n−1

part of Aµ
≤n−1:

A
µ
n−1 := projLn−1

A
µ
≤n−1. (A.5)

In terms of Aµ
n−1, the L -valued version of the amplitude is

An = s12...n−1 e
−ik12...n−1·x enµ A

µ
n−1 , (A.6)

where eµn is the polarization of the nth gluon. The colour polarizations t1, . . . , tn ∈ g define

the map t : L → g, and the YM amplitude is then given by tant(An)
a. The partial tree

amplitudes are given by

An(P, n) := (P,An), (A.7)
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for permutations P .

The Berends-Giele current for an ordering P is

Jµ
P := (P,Aµ) exp(−ikP · x), (A.8)

where the factor of exp(−ikP ·x) removes the x-dependence in (P,Aµ
|P |). J

µ
P is linear in each

ei with i ∈ P , with coefficients that depend only on the momenta. Taking inner products

(A.3) with a word P gives the YM Berends-Giele recursion relation:

Jµ
P =

1

sP

∑

XY =P

[

Jµ
X(kX · JY ) + Jν

XFµν
Y − (X ↔ Y )

]

, (A.9)

Fµν
Y = kµY J

ν
Y − kνY J

µ
Y −

∑

RS=Y

(

Jµ
RJ

ν
S − Jν

RJ
µ
S

)

where Jµ
i for a letter i is equal to the polarization vector eµi of the i-th gluon. Here again

we have used the following deconcatenation identity,

(P,Γ) =
∑

XY =P

(X,Γ1)(Y,Γ2)− (X,Γ2)(Y,Γ1) , (A.10)

for a word P , and a Lie monomial Γ = [Γ1,Γ2].

Since An ∈ L , it follows from Ree’s theorem that

Jm
R�S = 0 , (A.11)

cf. the discussions in [41] and [26]. In terms of Jµ
P , the YM partial tree amplitudes are [12]

AYM(Pn) = sPJP · Jn , (A.12)

which is equivalent to the earlier definition, (A.7).

Appendix B. The main property of the S bracket

This appendix proves the following proposition, from §4.2:
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Proposition. For P,Q ∈ L
∗, the S bracket satisfies

b({P,Q}) = [b(P ), b(Q)] , (B.1)

i.e., b maps the S-bracket to the Lie bracket.

The proof uses the following definitions. The deconcatenation coproduct δ : W →

W ⊗W is defined on words P by

δ(P ) =
∑

XY =P

X ⊗ Y . (B.2)

Write δ′(P ) to be as above but with the sum restricted to non-empty words X, Y . Further,

write

δ∧(P ) =
∑

XY =P

X ⊗ Y − Y ⊗X , (B.3)

and similarly for δ′∧. Finally, define the S-bracket to act on L ∗ ⊗ L ∗ as

{X ⊗ Y,Q} = X ⊗ {Y,Q} , {P,X ⊗ Y } = {P,X} ⊗ Y . (B.4)

Lemma. The deconcatenation of the S-bracket is

δ′{P,Q} ∼ {δ∧P,Q}+ {P, δ∧Q}+ sP,QP ⊗Q . (B.5)

Proof. First note that for non-empty X, Y

δ′(XY ) = δ′(X) · (e⊗ Y ) + (X ⊗ e) · δ′(Y ),+X ⊗ Y , (B.6)

where e is the empty word. So

δ′{P,Q} = δ′r∗(P )⋆ℓ∗(Q)+r∗(P )⋆δ′ℓ∗(b)+
∑

P=XiY,Q=ZjW

sij(X�Y )i⊗j(Z�W ), (B.7)

where we have used the explicit formulas for ℓ∗ and r∗ of (2.19). The KK relations give

XiY ∼ i(X�Y ) ∼ (X�Y )i, so the third term in (B.7) sums to sP,QP ⊗ Q. The decon-

catenation of ℓ∗ and r∗ can be evaluated using (2.19). For example, the deconcatenation

of a single term in (2.19)is

δ(iX�Y ) =
∑

X=X1X2

∑

Y=Y1Y2

iX2�Y2 ⊗X1�Y2. (B.8)
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Total shuffles vanish in L
∗. So, in L

∗ ⊗ L
∗,

δ(iX�Y ) =
∑

Y=Y1Y2

iX�Y2 ⊗ Y2 +
∑

X=X1X2

iX2�Y ⊗X1. (B.9)

This can be used to find that

δ′(ℓ∗(P )) = (ℓ∗ ⊗ 1) ◦ δ′∧(P ), (B.10)

and a similar identity for r∗(Q).

Proof. (of the proposition) When P,Q are single letters, (B.1) follows directly. Note that

BG recursion can be written as

b(P ) =
1

sP

∑

X,Y

(X ⊗ Y, δ′(P )) [b(X), b(Y )] , (B.11)

for any homogeneous P ∈ L ∗. Substituting {P,Q} for P into this recursion, the lemma

gives that

sPQb({P,Q}) =
∑

X,Y

(X ⊗ Y, {δ′∧P,Q}+ {P, δ′∧(Q)}+ sP,QP ⊗Q) [b(X), b(Y )] ,

= sP,Q[b(P ), b(Q)]

+
∑

P=XY

[b(X), b({Y,Q})]− (X ↔ Y )

+
∑

Q=XY

[b({P,X}), b(Y )]− (X ↔ Y ) .

(B.12)

By induction, write b({Y,Q}) = [b(Y ), B(Q)] in the second last line to find

∑

P=XY

[b(X), [b(Y ), b(Q)]−(X ↔ Y ) =
∑

P=XY

[[b(X), b(Y )], b(Q)] = sP [b(P ), b(Q)] , (B.13)

using the Jacobi identity followed by BG recursion. The same argument applied to the

third line shows that the RHS of (B.12) is [b(P ), b(Q)] multiplied by sPQ.

Appendix C. The KLT matrix formula

This appendix obtains again the standard formula for the KLT matrix,

Sℓ(1A|1B) =
n
∏

i=2

si,Ai(AB), (C.1)
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where Ai(AB) is the subset of {1, 2, 3, . . . , n} containing all letters that both precede i in

1B and follow i in 1A. We explicitly compute Sℓ(12...n|1A) by expanding ℓ[12...n], which

is in spirit similar to the argument in [16].

The main idea is to iteratively apply the main property of the S-bracket:

[b(P ), k] = b({P, k}), (C.2)

for a letter k. Using the formula for {P, k} (equation (4.10)), this gives

[. . . [[1, 2]3] . . . , n] = s12[. . . [b(12), 3] . . . , n]

= s12s1,3[. . . [b(132), 4] . . . , n]

+ s12s12,3[. . . [b(123), 4] . . . , n]

= . . .

(C.3)

The RHS is the nested sum,

s12





∑

12=A2B2

s2,A2



. . .





∑

An−1nBn−1−AnBn

sn,An
b(AnnBn)



 . . .







 . (C.4)

Here all the words Ai begin with the letter 1 and by convention si,A = 0 when A is empty.

Sℓ(12 . . . n|1A) is the coefficient of b(1A) in (C.4). Reversing the order of the summations

gives this coefficient as

Sℓ(12 . . . n|1A) =
n
∏

i=2

(

∑

Ci=AiiBi

si,Ai

)

(C.5)

where Ci is the word 1A with the letters 1, . . . , i−1 removed. In other words, Ai is a word

in the letters j such that j < i in the ordering 1A and i < j in the ordering 12 . . . n.
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