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Abstract

Standard machine learning algorithms typically assume that data is sampled inde-
pendently from the distribution of interest. In attempts to relax this assumption,
fields such as adversarial learning typically assume that data is provided by an
adversary, whose sole objective is to fool a learning algorithm. However, in reality,
it is often the case that data comes from self-interested agents, with less malicious
goals and intentions which lie somewhere between the two settings described
above. To tackle this problem, we present a Stackelberg competition model for
least squares regression, in which data is provided by agents who wish to achieve
specific predictions for their data. Although the resulting optimisation problem
is nonconvex, we derive an algorithm which converges globally, outperforming
current approaches which only guarantee convergence to local optima. We also
provide empirical results on two real-world datasets, the medical personal costs
dataset and the red wine dataset, showcasing the performance of our algorithm rela-
tive to algorithms which are optimal under adversarial assumptions, outperforming
the state of the art.

1 Introduction

Many machine learning algorithms perform under the assumption that data is sampled independently
and identically from the distribution of interest. In reality, this assumption does not hold in many
applications. A canonical example of this is spam email classification. Spammers are constantly
adapting and changing the formatting of their emails in an attempt to bypass spam filters. In order
to apply machine learning in such settings, approaches such as adversarial machine learning and
robust optimisation instead typically assume that data is provided by an adversary who is attempting
to fool the learning algorithm. This is a worst-case assumption that is well suited to problems such
as spam classification. However, in many scenarios this assumption is overly pessimistic, and, thus,
prevents the learning algorithm from achieving high performance (as it always assumes worst-case
manipulation).

Instead of such extreme assumptions, we should consider the individuals or organisations that
provide data samples and how their motives might influence the data distribution. In many cases, the
motivation of data providers is not to hinder generalization but to manipulate the learning algorithm
into selecting an outcome which is beneficial for them. In other words, data providers should
be viewed as strategic agents seeking to achieve a high payoff. By including the motivations of
agents directly in our optimisation process, we can consider a smaller set of possible adversarial
manipulations and cease our concerns over adversarial manipulations which are irrational.

Less pessimistic models of data provider manipulation were first considered by Brückner and Scheffer
[4], who formulated prediction from manipulated data as a Stackelberg competition. In this framework,
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the learner acts as the "leader" by first selecting a learning model with the goal of minimising their
own loss. Following this, with full information regarding the model chosen by the learner, data
providers modify and submit their data with the aim of minimising their own loss function. The goal
of the learner is to select a good model under the assumption that data providers will manipulate their
data optimally. Formally, the learner is tasked with solving a bilevel optimisation problem, known as
a Stackelberg prediction game (SPG).

Whilst SPGs are nonconvex optimisation problems which are generally NP-hard, it is possible to
find local optima via sequential quadratic programming when both the loss functions of the learner
and the data provider are convex. However, there is no guarantee that these local optima perform
well compared to globally optimal solutions, and thus, existing methods still fail to provide good
performance in many scenarios.

To overcome this issue, we present a subclass of SPGs, which include a number of important
problems, for which we can find global solutions. In particular, this class consists of least squares
linear regression problems in which the learner is interested in predicting one set of outputs whilst data
providers are interested in manipulating the learner into predicting another set of outputs. Moreover,
we make no assumptions with respect to the output labels of either the learner or the data provider,
and, as result, this subclass can be used to model a wide variety of data providers with different
motivations.

In more detail, our contributions are as follows: For the first time, we show that solving an SPG
of this type is equivalent to solving a quadratically constrained quadratic fractional program with a
single constraint using elementary linear algebra. Next, by using a novel combination of Dinkelbach’s
lemmas for fractional programming [13] and the S-lemma for quadratic programs [3, 19, 25], we
show that a combination of bisection search and semidefinite programming can be used to converge
to global optima. Finally, we provide numerical results, comparing our algorithm with current
approaches. We show empirically that our algorithm outperforms existing methods on multiple real
world datasets, halving mean squared error (MSE) in some of our empirical experiments.

2 Related Work

Stackelberg competition was originally introduced to model market behaviour and has since been
applied in many other contexts. Perhaps the most notable of which being Stackelberg security games
(SSGs) [1, 21], in which a defender must commit to a randomised allocation of resources to defend a
number of targets from a best responding attacker. Finding the optimal defense strategy is equivalent
to solving multiple linear programs [10, 16] and it has been shown that a near-optimal defense strategy
can be found in a polynomial number of queries to the attacker [2]. SPGs are similar to SSGs in the
sense that they formulate learning an optimal strategy as a bilevel optimisation problem. However,
SPG’s are tailored specifically to address manipulation of machine learning algorithms.

SPGs themselves have been studied widely since their introduction by Brückner and Scheffer [4].
However, most of the literature focuses on modelling data providers who are either only partly
adversarial or are adversarial with limited capabilities. For example, Dong et al. [14] examine an
online learning problem akin to spam filtering in which data providers are honest or adversarial at
each time step. More recently, Chen et al. [8] provided an online learning algorithm with sublinear
Stackelberg regret for binary classification in which data providers may neither be entirely adversarial
or honest. In contrast, we consider offline SPGs for linear regression, as opposed to online binary
classification. To the best of our knowledge, our paper is the first to consider SPGs for linear least
squares regression.

For linear regression, there has been much focus on the development of algorithms which are
strategyproof i.e. ensuring that data providers can gain no benefit by manipulating their data. In this
vein, Dekel et al. [12] studied a learning scenario in which multiple data providers are selfish and
wish to secure the best fitting model for the subset of the training set they hold and gave bounds on the
accuracy of any algorithm which is strategyproof in this setting. Many algorithms for strategyproof
linear regression are inspired by the strategyproofness of the median for single-peaked preferences
[7, 17, 18]. We are not concerned with strategyproofness in our scenario, but only about finding the
best performing model regardless of the data manipulation which may take place.

Learning in the presence of noise is closely related to our problem setting. Specifically, worst-case
optimisation in the presence of bounded noise is equivalent to minimising loss in the presence of an
adversary with limited capability. In particular, El Ghaoui and Lebret [15] proved that minimising
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least squares error in the presence of noise bounded in `2-norm is equivalent to solving a ridge
regression problem with a specific choice of hyperparameter. Similar results also hold for noise
bounded in `1-norm [26]. In fact, our proof techniques share many similarities with those of El
Ghaoui and Lebret [15], including the application of an S-lemma. In contrast, we are looking beyond
the worst-case, and the subclass of SPGs we consider allow us to model data providers with more
nuanced motivations, which we believe are more likely to arise in practice. More specifically, we
consider a setting in which the adversarial assumption, made in the worst-case noise setting, is
replaced by the assumption that data providers will manipulate their data with the aim of minimising
their own, predetermined, objective function.

3 Model

We consider a scenario in which a learner is tasked with choosing a linear predictor, w ∈ Rn. Data
providers sample tuples of the form (x, y, z) from a distribution D. The first output, y ∈ R is the
output label of interest to the learner, while the output label z ∈ R is the output label of interest to
the data provider, and x ∈ Rn is the input example. We assume the learner has access to a sample,
S = {(xi, yi, zi)}mi=1, of unmodified data points which it can use as a training set. For example, such
a training sample may be obtained from a reliable, but costly verification process. While it may be too
expensive to verify every single data point, the learner may be able to verify a small sample for the
purpose of training. After training is completed, the learner must commit to a single linear predictor.

At test time, data providers will continue to sample input examples from the distribution D. With
knowledge of the linear predictor chosen by the learner at training time, the data provider is allowed
to modify the input examples in each test example. However, the data provider pays a cost of c(x, x̂)
for modifying an input example x into a different input example x̂. In what follows, we assume that
c(x, x̂) = γ||x − x̂||22, where γ > 0 is a parameter which controls the tradeoff the data provider
makes between low cost data manipulations and bringing the learner’s prediction as close to z as
possible.

The goal of the data provider is to manipulate the learner into predicting z whilst ensuring that the
cost of manipulation is low. Formally speaking, the data provider is tasked with solving the following
optimisation problem for each test example:

x∗ = argmin
x̂

∣∣∣∣wT x̂− z
∣∣∣∣2 + γ ||x− x̂||2

Meanwhile, the goal of the learner is to choose a linear predictor which accurately predicts the correct
label y for the manipulated data point x̂ submitted by the learner in expectation:

w∗ = argmin
w

E
[∣∣∣∣wTx∗ − y

∣∣∣∣2]
As the learner does not have access to the distribution D, but only a sample S, the learner can only
hope to minimise an empirical version of their loss:

argmin
w

1

m

m∑
i=1

∣∣∣∣wTx∗i − yi
∣∣∣∣2

s.t. x∗i = argmin
x̂i

∣∣∣∣wT x̂i − zi
∣∣∣∣2 + γ ||xi − x̂i||2 i ∈ [m]

By constructing a matrix, X ∈ Rm×n, whose ith row corresponds to input example xi in the sample
S, and vectors y, z, whose ith elements correspond to output examples yi and zi respectively, we can
rewrite this optimisation problem as follows:

argmin
w

||X∗w − y||2

s.t. X∗ = argmin
X̂

∣∣∣∣∣∣X̂w − z
∣∣∣∣∣∣+ γ

∣∣∣∣∣∣X̂ −X∣∣∣∣∣∣2
F

(1)

In the remaining sections, we will develop a practical algorithm which finds global solutions to this
optimisation problem.
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4 Preliminaries

Before we proceed with technical details, we will give a brief overview of how our algorithm is
derived, and the optimisation tools used. We begin by reformulating the SPG (1) as a fractional
programming problem. We will then claim that such problems can be solved by bisection search by
leveraging the classical results of Dinkelbach [13]. Each step of this bisection search requires solving
a nonconvex optimisation problem. We will show that this nonconvex optimisation problem can be
solved via semidefinite programming through the application of an S-lemma, an equivalence theorem
which states when one quadratic inequality is a consequence of a set of other quadratic inequalities.

4.1 Dinkelbach’s Lemmas for Fractional Programming

Consider the following fractional program:

min
w

N(w)

D(w)
s.t. w ∈ W (2)

where both N : Rn → R and D : Rn → R are continuous functions andW is a compact subset of
Rn. We can consider the following parameterised family of mathematical programs:

min
w

N(w)− qD(w) s.t. w ∈ W (3)

where q ∈ R is a parameter. In what follows, we will refer to these programs as Dinkelbach Programs.
Furthermore, we can define a function F : R→ R mapping any q to the solution of its corresponding
Dinkelbach Program. Dinkelbach [13] uncovered a number of relationships between F and the
fractional program (3), which we shall use in our own analysis:
Lemma 1 (Dinkelbach [13]). The function F (q) is continuous in q and is strictly monotonically
decreasing. Moreover if w ∈ W and

q =
N(w)

D(w)
then F (q) ≤ 0.
Theorem 1 (Theorem 1 from Dinkelbach [13]). F (q∗) = 0 has a unique solution. Furthermore q∗
is the solution to the Fractional Program (3) if and only if F (q∗) = 0.

In particular, in Section 6, we shall exploit Theorem 1 to circumvent the nonconvexities present in
the fractional formulation of our SPG.

4.2 S-lemma with Equality

Consider a pair of quadratic functions:
f(w) = wTAw + 2aTw + c ≥ 0

h(w) = wTBw + 2bTw + d = 0

where A,B ∈ Rn×n are symmetric matrices, a,b ∈ Rn and c, d ∈ R. An S-lemma with equality is
a theorem which specifies the conditions under which the following two statements are equivalent:

(i) h(w) = 0 =⇒ f(w) ≥ 0 ∀w ∈ Rn

(ii) There exists a number λ such that
f(w) + λh(w) ≥ 0 ∀w ∈ Rn

Nearly all S-lemmas with equality assume that the dual Slater condition holds:
Assumption 1 (Dual Slater Condition). There exists w1 ∈ Rn and w2 ∈ Rn such that h(w1) < 0
and h(w2) > 0.

The main application of S-lemmas is their use in transforming quadratically constrained quadratic
programs with a single constraint (QC1QPs) into convex semidefinite programs (SDPs), which can
be solved efficiently via interior point methods [3]. After we derive our bisection search algorithm,
we will see that each step of bisection search requires solving a QC1QP. We will make use of the
following S-lemma with equality, proved by Xia et al. [25], to reformulate the QC1QP at each
iteration into an SDP.
Theorem 2 (Theorem 3 from Xia et al. [25]). Assume that assumption 1 holds. In addition, assume
that B 6= 0. Then statements (i) and (ii) are equivalent.
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5 Problem Reformulation

Before we can apply the theorems described in the previous section, we first need to reformulate our
optimisation problem into a more amenable form. We start by noting that the lower level optimisation
problem in SPG (1) is in fact convex and therefore its solution can be found by finding a point at
which the gradient with respect to X̂ is equal to zero. This yields a closed form solution for X∗
which can be used to rewrite the constraint in problem (1):

argmin
w

||X∗w − y||2

s.t. X∗ = (zwT + γX)(wwT + γI)−1

Substituting the right hand side of the constraint directly into the objective allows us get rid of
constraints entirely. Moreover, applying the Sherman-Morrison formula [3] to the matrix wwT + γI
allows us to derive an equivalent nonlinear least squares problem:

argmin
w

∣∣∣∣∣
∣∣∣∣∣
1
γ zw

Tw +Xw

1 + 1
γw

Tw
− y

∣∣∣∣∣
∣∣∣∣∣
2

(4)

Intuitively, we can see that the learner is minimising the error of a weighted average between the
target labels z of the adversary and the predictions their chosen model would make on the true data
matrix X . As the learner chooses a model bigger in Euclidean norm, predictions will be slowly
pushed towards the desired labels of the adversary. This makes sense, as the adversary is constrained
in Frobenius norm, so by making the weight vector bigger in `2-norm, the learner makes it cheaper
for the adversary to manipulate. We also see that, as γ grows, the slower the weight on the target
labels of the adversary grows as the `2-norm of the weight vector increases.

By moving y into the fraction we can express problem (4) as the following fractional programming
problem:

argmin
w

∣∣∣∣∣∣ 1γ zwTw +Xw − y − 1
γw

Twy
∣∣∣∣∣∣2

(1 + 1
γw

Tw)2

To get rid of high degree terms, we introduce a new variable α ∈ R and set it equal to wTw:

argmin
w,α

∣∣∣∣∣∣αγ z +Xw − y − α
γ y
∣∣∣∣∣∣2

(1 + α
γ )2

s.t. α = wTw (5)

We are now left with a quadratic fractional programming problem with a nonconvex feasible set. At
this point, we are ready to begin applying the techniques discussed in Section 4 in order to develop a
practical algorithm.

6 Solving the Fractional Program

We will now apply the theorems and lemmas of Dinkelbach to construct an algorithm for solving
problem (5). To begin, we first consider the Dinkelbach problems associated with problem (5):

F (q) = min
w,α

∣∣∣∣∣∣∣∣αγ z +Xw − y − α

γ
y

∣∣∣∣∣∣∣∣2 − q(1 +
α

γ

)2

s.t. α = wTw

By Theorem 1, we know that finding a q∗ ∈ R such that F (q∗) = 0, implies that the linear predictor
w∗ corresponding to F (q∗) is a global solution to problem (5), and therefore, the original SPG. We
also know from Lemma 1 that F is a concave monotonically decreasing continuous function. As a
result, given q1, q2 ∈ R for which F (q1) ≤ 0 and F (q2) ≥ 0 we can employ bisection search to find
q∗. This procedure is described formally by Algorithm 1.

Given the description of our algorithm, we now show that it indeed converges linearly to a globally
optimal solution. In particular, we have the following:
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Algorithm 1 Bisection search for q∗

Input: data matrix X , learner’s labels y, data provider’s labels z, tolerance ε
Initialize q1 = 0
Initialize q2 = yTy
repeat
q = (q1 + q2)/2
if F (q) ≥ 0 then
q1 = q

else
q2 = q

end if
until q2 − q1 ≤ ε
return q2

Theorem 3. Algorithm 1 takes at most log2( 2yTy
ε ) iterations to return a q ∈ R such that q − q∗ ≤ ε

Proof. For bisection search to converge to q∗ such that F (q∗) = 0 we require two points. One point,
q1 ∈ R, for which F (q1) ≥ 0, and another point, q2 ∈ R, for which F (q2) ≤ 0. We begin by
claiming that setting a = 0 and b = yTy satisfies these conditions.

Finding a q2 such that F (q2) ≤ 0 is simple. Lemma 1 tells us that we can choose any feasible point
for problem 5) and simply set q2 to the value of the objective at the chosen point. Thus we choose the
zero vector which leads to an objective value of yTy.

To find a q2 such that F (q) ≥ 0, we employ both Lemma 1 and Theorem 1. Since F (q∗) = 0 and
F is strictly monotonically decreasing, any value which lower bounds q∗ will map to a nonnegative
value when passed to F . Since the objective of problem (5) is always nonnegative, we can select
q2 = 0 as a lower bound.

Since F (q1) is nonnegative, F (q2) is nonpositive and F is continuous, q∗ must lie in the interval
[q1, q2] by the intermediate value theorem. Thus q = q1+q2

2 , the mid-point of [q1, q2], is at most
| q1−q22 | in distance from q∗. Note that, in Algorithm 1, q1 is initialised at 0 and q2 is initialised at
yTy. Thus, initially |q1 − q2| = yTy.

At each iteration, the interval [q1, q2] is updated and halved in length. Therefore, after log2( 2yTy
ε )

iterations |q − q∗| ≤ ε
2 . After the same number of iterations q2 − q = ε

2 . Therefore, q2 − q∗ ≤ ε. As
q2 is returned by Algorithm 1, we have proved the result.

Theorem 3 essentially states that, if it is possible to evaluate F (q), then it is possible to converge
linearly to a global solution. In contrast, existing methods can only guarantee convergence to
stationary points which satisfy the Karush-Kuhn-Tucker (KKT) Conditions. In addition, Theorem 3
indicates that this subclass of bilevel optimisation problems are easy in comparison to general bilevel
optimisation problems as long as F (q) can be evaluated cheaply.

A disadvantage of Algorithm 1 is that each iteration of the algorithm requires an evaluation of F ,
where F itself is in general a nonconvex optimisation problem. Fortunately, F (q) is a QC1QP. We
can see this by rewriting F (q) as follows:

min
ŵ

f(ŵ) = ŵTAŵ + 2aT ŵ + c

s.t. h(ŵ) = ŵTBŵ + 2bT ŵ = 0
(6)

where

ŵ =

[
w
α

]
, b =

[
0
1

]
, a =

[
−XTy

− 1
γ (z− y)Ty − q

γ

]
, B =

[
−I 0
0T 0

]
, c = yTy − q

and

A =

[
XTX 1

γX
T (z− y)

1
γX

T (z− y) 1
γ2 (z− y)T (z− y)− q

γ2

]
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We can now proceed with an S-procedure (the application of an S-lemma), in order to reformulate
problem (6) as an SDP, which is convex and can be solved via interior point methods. First, we
rewrite problem (6) as the following equivalent problem:

max
τ

τ s.t. h(ŵ) = 0 =⇒ f(ŵ)− τ ≥ 0 ∀ŵ ∈ Rn+1

Since B 6= 0 we can apply Theorem 2 to rewrite the constraint by introducing a new variable λ ∈ R:

max
τ,λ

τ s.t. f(ŵ)− τ + λh(ŵ) ≥ 0 ∀ŵ ∈ Rn+1
(7)

Furthermore, note that the constraint is equivalent to the following inequality:[
ŵ
1

]T [
A+ λB a + λb
aT + λbT c− τ

] [
ŵ
1

]
≥ 0 ∀ŵ ∈ Rn+1

In what follows, we will refer to the matrix in the above constraint by M . It is easy to see that the
constraint above is equivalent to a positive semidefinite constraint onM . For the sake of contradiction,
suppose that ∃x ∈ Rn+2 such that xTMx < 0, but the constraint above holds. If the final coordinate
of x is nonzero, we can simply rescale x by this coordinate to achieve a contradiction. If the final
coordinate of x is nonzero, then we can use the continuity of quadratic forms to argue that there must
exist a x̄ whose final coordinate is not equal to zero such that x̄TM x̄ < 0, bringing us back to the
nonzero case. Thus, we can replace the constraint in (7) as follows:

max
τ,λ

τ s.t.
[
A+ λB a + λb
aT + λbT c− τ

]
� 0 (8)

Thus, evaluating F (q) corresponds to solving the SDP (8), which can be solved efficiently using
interior point methods. Assuming that strong conic duality holds, then a value for ŵ which attains
F (q) can be found by taking a rank-1 decomposition of dual variables. A description of the dual
program can be found in the supplementary materials.

Moreover, as each SDP has rank-1 solution, we can apply standard low-rank approximation schemes
for SDPs in order to cope with data of high dimension [5, 6]. In addition, a variety of first-order
methods tailored to SDPs can be applied in scenarios where evaluating the Hessian is prohibitively
expensive [22].

7 Empirical Evaluation

Given the theoretical performance analysis of our proposed algorithm, we now demonstrate that it
is significantly more accurate in practice compared to state of the art approaches. To this end, we
evaluate Algorithm 1 on two real world datasets and compare it against both ridge regression, which
is the optimal approach under the assumption that data providers are completely adversarial, and to
the single level nonconvex reformulation of the SPG originally proposed by Brückner and Scheffer
[4]. In what follows, we discuss the results with respect to one of these datasets, the medical personal
costs dataset [9], and defer results regarding the second dataset, the red wine dataset [11], to the
supplementary material.

7.1 Medical Personal Costs Dataset

The medical personal costs dataset consists of 1338 instances each with 7 features [9]. Each feature
details information regarding an individual. Some are continuous, such as the individual’s age and
body mass index, while others are categorical, such as region and smoking status. So that we can
perform linear regression on all features, categorical features are transformed into one-hot vectors,
increasing the total number of features from 7 to 13. The response variable is the individual’s medical
costs billed by their health insurance.

We consider a scenario in which insurers would like to predict the medical costs of a new customer in
order to provide a reasonable insurance quote. We assume that individuals may provide fake data
in the hope of receiving a lower quote. Similarly to the experimental design of Tong et al. [24], we
define each data provider’s desired outcome as zi = yi + δi, where δi denotes the change in medical
billing that each individual is striving for. In particular, we consider two types of provider, Amodest,
who wishes to reduce their predicted medical billing by $100 (δmodest = −100.0), and Asevere, who
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wishes to reduce their predicted medical billing by $300 (δsevere = −300.0). Since medical charges
range from $1000 to $63,000, we numerically scale the data labels by dividing them by 100 before
passing them to each algorithm.

In order to evaluate Algorithm 1, we perform 10-fold cross validation and compare its performance
to ridge regression for γ ∈ [1 × 10−5, 1]. For each value of γ, we compute the regularisation
parameter for ridge regression via grid search on 8 logarithmically spaced points in the interval
[1 × 10−5, 1000] during cross validation. For ridge regression, and the SDPs in Algorithm 1, we
use the SDPT3 solver [23] to find global solutions. We also compare Algorithm 1 to the nonconvex
single level reformulation of the SPG originally proposed by Brückner and Scheffer [4]. We employ
the interior point method from the MATLAB optimisation toolbox to find a stationary point for this
problem reformulation. The same error tolerances are used for both Algorithm 1 and the interior
point method we use to solve noncovex problem reformulation proposed by Brückner and Scheffer
[4]. The results of this comparison are given in Figure 1.
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Figure 1: A performance comparison between different algorithms ran on the medical personal costs
dataset. The left plot compares the average MSE of each algorithm during 10-fold cross validation
where data was generated by Amodest, whilst the right plot shows the average MSE where data is
generated by Asevere

7.2 Results Analysis

Figure 1 shows the average mean squared error (MSE) achieved by each algorithm on the medical
personal costs dataset. Firstly, observe that Algorithm 1 outperforms both ridge regression and the
nonconvex problem reformulation for every value of γ. Also note that the MSE of Algorithm 1 is
very stable, whilst the interior point solution seems to behave erratically for higher values of γ.

For values of γ > 0.4, we observe that, for modest data providers, our algorithm is at least $45 more
accurate than ridge regression on average. For severe data providers, we observe an even greater
difference. For example, when γ > 0.5, the predictions made by our algorithm are at least $120 more
accurate than ridge regression on average. As one would expect, the benefits of explicitly modelling
the goals of data providers becomes more beneficial as γ increases, as the data provider’s capability
for manipulation becomes more limited. In the supplementary material we have included numerical
experiments conducted on another real world dataset (the red wine dataset [11]), which yield similar
results.

8 Conclusions and Future Work

In this paper, we studied a particular subclass of SPGs, in which data providers have their own goal
of manipulating the learner into selecting a given outcome. We showed that this bilevel optimisation
problem is equivalent to solving a series of QC1QPs. Using a combination of fractional programming
and the S-lemma, we derived an algorithm which linearly converges to a global solution. Lastly, we
evaluated our derived algorithm on real world datasets and showed that our algorithm outperforms
existing methods in terms of mean squared error.
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One disadvantage of our approach is that we require a verified training dataset which details the
motivations of data providers. In many cases, it may not be possible to know the ambitions of data
providers apriori. In future work, we will consider an online version of this problem, in which the
learner must choose a learning model based on the past data it has observed and its current beliefs
regarding the motivations of the data provider. We also assumed that data providers were punished
for making manipulations in the `2-norm. It would be interesting to explore what happens when data
providers are constrained differently, and whether algorithms of similar structure exist in such cases.

9 Broader Impact

The manipulation and fairness of algorithms form a significant barrier to practical application of
theoretically effective machine learning algorithms in many real world use cases. With this work,
we have attempted to address the important problem of data manipulation, which has many societal
consequences. Data manipulation is one of many ways in which an individual can “game the system"
in order to secure beneficial outcomes for themselves to the detriment of others. Thus, reducing the
potential benefits of data manipulation is of worthwhile consideration and focus. Whilst this paper is
primarily of theoretical focus, we hope that our work will form a contributing step towards safe, fair,
and effective application of machine learning algorithms in more practical settings.
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A The Dual Problem

In this section, we describe the dual of the SDP that we solve at each iteration of Algorithm 1. This
dual can be used to obtain a linear predictor at every step of the algorithm. Recall the SDP which is
solved at each time step of Algorithm 1:

max
τ,λ

τ s.t.
[
A+ λB a + λb
aT + λbT c− τ

]
� 0 (9)

We can rewrite this SDP as follows:

max
τ,λ

[
1
0

]T [
τ
λ

]
s.t. λ

[
−B −b
−bT 0

]
+ τ

[
0 0
0 1

]
�
[
A a
aT c

]
Taking the dual yields the following SDP:

min
W∈ Sn+2

[
A a
aT c

]
·W s.t.

[
B b
bT 0

]
·W = 0,

[
0 0
0 1

]
·W = 1, W � 0 (10)

Taking an appropriate rank-1 decomposition of the optimal solution to (10) yields a vector containing
a linear predictor and its squared euclidean norm. As a direct consequence of the results in Section 6,
this linear predictor is optimal for the Dinkelbach program associated with the primal SDP (9).

B Extensions to Kernel Methods

In this section we briefly describe a version of Algorithm 1 based on kernel methods. In some
instances, we may wish to apply a high dimensional feature mapping, φ, to data points before
making a prediction. Typically, it is assumed that the feature mapping φ maps each element of X to
an element of a reproducing Hilbert kernel space (RKHS) F , with corresponding kernel function
k : X ×X → R. In the standard least squares linear regression setting, where data is sampled cleanly
without manipulation, this leaves us with the following optimisation problem:

argmin
w

m∑
i=1

(wTφ(xi)− yi)2

By leveraging the representer theorem [20], it can be shown that there exists an optimal solution
w∗ ∈ F with the following form:

w∗ =

m∑
i=1

βiφ(xi) (11)

where βi ∈ R for all i ∈ [m]. Moreover, the coefficients βi can be characterised by the Gram matrix
K ∈ Rm×m, where Kij = k(xi,xj). In contrast, under the assumption that the feature map φ
is surjective, for the SPG problem setting discussed in this paper, we are left with the following
optimisation problem:

argmin
w

m∑
i=1

(
1
γ ziw

Tw + wTφ(xi)

1 + 1
γw

Tw
− y

)2

In this case, the representer theorem cannot be applied, as the prediction made by a given predictor w
depends on its inner product with each mapped data point and its own norm, rather than just the former.
However, if we optimise over predictors of the form described in equation (11), then we can obtain
a new version of Algorithm 1 which returns the optimal vector of coefficients, β = (β1, . . . βm)T ,
wherein the following terms are redefined:

b =

[
0
1

]
, a =

[
−KTy

− 1
γ (z− y)Ty − q

γ

]
, B =

[
−I 0
0T 0

]
, c = yTy − q

and

A =

[
KTK 1

γK(z− y)
1
γK

T (z− y) 1
γ2 (z− y)T (z− y)− q

γ2

]
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Whilst we cannot guarantee that the predictor output by this algorithm will be optimal, we can
guarantee that the predictor is better than any other predictor in the span of mapped training data
points, which by the representer theorem, contains the optimal predictor for the classical clean data
setting.

C Additional Experiments

In this section, we compare Algorithm 1 to ridge regression and the nonconvex relaxation of Brückner
and Scheffer [4] using the red wine dataset [11]. The red wine dataset [11] contains 1599 instances
each with 11 features. Each feature is a sensory or physiochemical measurement for wine. The
response variable is a wine rating out of 10 points, where 10 is the best rating possible.

We place ourselves in the position of wine producers, who may wish to increase the rating of their
wine by submitting fake input data. We assume that a wine producer is happy with the rating for their
wine if it is greater than or equal to a threshold, t ∈ [0, 10]. Thus, if the true output label associated
with a wine is greater than or equal to the threshold, then the target label of the data provider is
identical to the true output label. Otherwise, the target output label of the data provider is set to t.
Formally:

zi = max{yi, t} (12)

Similarly to experiments conducted on the medical personals costs dataset, we perform 10-fold cross
validation on the dataset and average the MSE of each approach over each fold for γ ∈ [1×10−5, 0.2].
As before, a ridge regression hyperparameter is selected for each γ by grid search on 8 logarithmically
spaced points in the interval [1 × 10−5, 1000]. We define two different data providers, each with
a different threshold: a modest data provider with tmodest = 6, and a severe data provider with
tsevere = 8. The results of the experiments are shown in Figure 2. As in the case of the medical
personal costs daataset, Algorithm 1 outperforms other approaches for all values of γ. For values of
γ > 0.1, we observe that, for modest data providers, our algorithm is at least 0.1 points more accurate
than ridge regression on average. For severe data providers, we observe an even greater difference.
Meanwhile, for severe data providers, Algorithm 1 is more than an entire point more accurate than
ridge regression on average.

D Run Time Comparison

Lastly, we compare the run time of our algorithm to that of the interior point method for finding
local solutions to the nonconvex relaxation of Brückner and Scheffer [4]. For these experiments, we
fix γ = 0.5. Using the medical personal costs dataset, we run our algorithm and the interior point
method on training sets of varying sizes. For each training set size, we create 10 training sets by
sampling uniformly from the entire dataset. This experiment was on run on an AMD Ryzen 1600
3.20GHz six-core processor on a single thread of execution. The error tolerances of the interior point
method and Algorithm 1 are set to 1× 10−2.

Figure 3 shows the mean run time of each algorithm for different problems sizes, with each error
bar representing a 95% confidence interval according to the student t-distribution. Note that, in all
cases, the interior point method quickly grows in run time as the scale of the problem increases,
whilst Algorithm 1 has a similar running time for all problem scales tested. Whilst the interior point
approach is faster on smaller problem instances, it quickly becomes apparent that Algorithm 1 is
faster on larger instances. Also note that the run time of Algorithm 1 is far more consistent, and has
far less variance, especially as the problem scale grows.

It is worth noting that, for every problem scale, we use the same initial upper bound for q in our
bisection search. More specifically, we take the entire medical personal costs dataset and upper bound
q using the inner product of the training labels. As a result, the number of SDPs that need to be
solved to achieve the same error tolerance for different problem scales is roughly equivalent. This
partly explains why the performance of the bisection method stays relatively constant across different
problem scales in our experiments.
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Figure 2: A performance comparison between different algorithms run on the red wine dataset in
which the target labels of each data provider are given by equation (12). The left plot corresponds to
experiments run with tmodest, whilst the right plot corresponds experiments run with tsevere.
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Figure 3: A run time comparison between the interior point method approach and Algorithm 1 using
the medical personal costs dataset. The plot on the left corresponds experiments run with Amodest,
whilst the right plot corresponds to experiments run with Asevere.
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