
Robust performance of virtual sensing methods for active noise
control

Jin Zhang, Stephen J. Elliott, Jordan Cheer

Institute of Sound and Vibration Research, University of Southampton SO17 1BJ, United Kingdom

Abstract

This paper investigates the effect of changes in the environment on the performance of two widely-

used virtual sensing methods for active noise control (ANC): the remote-microphone method and

the additional-filter method. Robust performance of adaptive feedforward control algorithms incor-

porating such virtual sensing techniques is essential to achieving noise attenuation at the designated

locations in practice, when subject to uncertainties in the control environment. Off-line simulations

using the data measured with a headrest ANC system in a running car are initially conducted, to

evaluate the performance of the two virtual sensing methods under practical conditions. The dif-

ferences between the two methods are further studied by using an analytical model and numerical

simulations of the headrest ANC system. It is shown that in general the additional-filter method

is sensitive to uncertainties in the properties of the reference signals used for feedforward control,

whereas the remote-microphone method is sensitive to changes in the plant responses related to the

monitoring microphones. This study, therefore, can be used to guide the choice of virtual sensing

methods in different applications.
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1. Introduction

Active noise control (ANC) systems combined with virtual sensing techniques can achieve

noise reduction at locations where the physical sensors cannot be placed [1, 2]. A popular practical

example is the headrest ANC system, which aims to attenuate the noise at the listener’s ears in

a vehicle [3–5]. The techniques of virtual sensing initially started by using off-line modelling to5

achieve noise reduction at the designated locations, although the performance of such systems is

inevitably restricted by the accuracy of the modelling [6]. Improvements were made by introducing

a preliminary identification phase, during which physical microphones are placed at the locations of

the virtual error microphones [2]. This procedure aims to obtain a design containing the information

about the system, which will later be used to obtain the control filter to realise control of the noise10

disturbance at the virtual microphones when the physical microphones are removed. The position

of the virtual sensors can also be adapted, using head tracking for example Refs. [2, 7].
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Two main methods have been suggested for virtual sensing in ANC systems. One is known as

the remote-microphone (RM) method [2, 6–8], which provides an estimate of the noise disturbance

at the virtual error microphones from the disturbances at the monitoring microphones via an15

observation filter. Analyses in terms of both numerical simulations and practical experiments have

been conducted to investigate the RM method [9–11]. The results of these studies show that the

RM method can achieve noise reduction over a wide frequency range, up to about 1 kHz in the

laboratory. Later tests using measurements from a running vehicle also demonstrate the practical

noise cancellation capability of this method [9].20

Another method, which is called the additional-filter (AF) method in this paper, is funda-

mentally a model reference adaptive control strategy [1, 12]. This method is realised by initially

minimising the noise at error microphones placed at the virtual sensor positions. An additional

filter is then trained to model the responses from the reference signals to the monitoring micro-

phones when the signals at the virtual sensor locations have been minimised. During the control25

phase, the adaptive controller minimises the difference between the monitoring microphones and

the output of the additional filter. The latest measurements with the implementation of the AF

method provide promising outcomes in terms of noise attenuation at the virtual microphones [13].

Due to the fundamentally different natures of these two methods, their performances will differ,

especially when there are perturbations in the environment. An understanding of this would30

potentially instruct the future implementations of the virtual sensing techniques to achieve the

optimal noise reduction. In this paper, the formulations of the two virtual sensing methods are

presented in Sec. 2. In Sec. 3, measured data recorded in the cabin of a running car is utilised

to simulate the performance of the virtual sensing methods in reducing the noise at the ears of

a dummy head. By manipulating the measured data, the robust performance of the two virtual35

sensing methods under different conditions is simulated. A simple numerical model of a headrest

ANC system is presented in Sec. 4, in which perturbations can be systematically introduced. A

combination of analytical formulations and numerical simulations is used to explain the differences

between the results obtained from the measurements. The conclusions are presented in Sec. 5,

where guidelines for future implementations of the virtual sensing methods are given.40

2. The virtual sensing methods

In this section, the two virtual sensing methods, the remote microphone (RM) method and the

additional filter (AF) method, are explained using a multichannel frequency-domain formulation.

All signals are assumed to be stationary random to ensure their spectral densities are time-invariant.

For notational simplicity, their frequency dependence is suppressed.45

The RM method and the AF method are each assumed to be implemented on the same ANC

system, which consists of Nx reference sensors, Nu secondary sources, Nm monitoring microphones

and Ne virtual error sensors that are placed at the designated location(s) for noise reduction.

Multichannel signals are denoted as lower case bold vectors, e.g. m and e for the signals of the
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monitoring and error sensors, and the matrices of frequency responses are denoted as upper case50

bold matrices, e.g. Gm and Ge for the responses form the secondary sources to the monitoring and

error sensors. The two virtual sensing methods can both be divided into two phases: the identifica-

tion (tuning or training) phase and the control phase. In the first phase, physical microphones are

temporarily placed at the locations of the virtual error sensors. Two filters are obtained by utilising

these physical error sensors, the observation filter Ô for the RM method and the additional filter55

Ĥ for the AF method, where (̂·) denotes the estimates obtained during the identification phase,

During the control phase, where the temporarily-placed sensors are removed, these filters are then

applied to optimise the feedforward control filter W to achieve sound reduction at the virtual

sensors, which are remote from the physical monitoring sensors.

2.1. Remote microphone method60

Fig. 1 shows the block diagram of the RM method during the identification and control phases.

The observation filter Ô, as shown in Fig. 1(a), is the identified transfer matrix between the primary

disturbances measured at the monitoring sensors d̂m = P̂mv̂ and at the error sensors d̂e = P̂ev̂,

where v̂ denotes the primary sources at the identification phase, and P̂m and P̂e are the matrices of

responses from the primary sources to the monitoring sensors and error microphones respectively

during the identification phase. The least square estimate of Ô can be straightforwardly obtained

by minimising the cost function,

JÔ = Tr

{
E

[(
d̂e − Ôd̂m

)(
d̂e − Ôd̂m

)H
]}

(1)

where Tr{·} denotes the trace of the matrix, E{·} denotes the expectation operator and (·)H denotes

the conjugate transpose. As stated in Ref. [9], the observation filter Ô could be ill-conditioned,

and, therefore, may require an addition regularisation term in Eq. (1), which leads to

JÔ = Tr

{
E

[(
d̂e − Ôd̂m

)(
d̂e − Ôd̂m

)H

+ βRMÔÔH

]}
(2)

where βRM is the regularisation factor for Ô. The optimal observation filter ÔOpt is, hence [10, 14],

given by

ÔOpt = Sd̂md̂e

(
Sd̂md̂m

+ βRMI
)−1

= P̂eSv̂v̂P̂
H
m

(
P̂mSv̂v̂P̂

H
m + βRMI

)−1
(3)

where Sv̂v̂ = E
[
v̂v̂H

]
is the power spectral density matrix of v̂, Sd̂md̂e

= E
[
d̂ed̂

H
m

]
is the cross

spectral density matrix between d̂m and d̂e, Sd̂md̂m
= E

[
d̂md̂H

m

]
is the power spectral density

matrix of d̂m and I is an identity matrix that has the same dimensions as Sd̂md̂m
. The inclusion of

the regularisation term can improve the robustness of the method against uncertainties, but this

comes with a trade-off in terms of the ultimate noise attenuation capability [5]. In addition, Ĝm65

and Ĝe, which are the estimates of the plant responses from the secondary sources to both the

monitoring sensors and the error sensors, are also obtained during the identification phase.
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During the control phase, in Fig. 1(b), the signals at the monitoring sensors m are due to both

the primary disturbances dm = Pmv and the secondary sources uRM = WRMx, can be written as

m = dm + GmuRM, (4)

where Pm and Gm are the matrices of the primary paths and secondary paths to the monitoring

sensors during the control phase. Similarly, v denotes the primary sources during the control phase

and x is the vector of the reference signals used to represent the primary field in practice. x can

be expressed in terms of v as

x = Rv (5)

where R is the matrix of responses between primary sources, v and the reference signals. If the

reference signals provide an accurate representation of all the primary sources, then R would be

a simple identity matrix. As shown in Fig. 1(b), an estimate of the primary disturbances, d̃m,

can be obtained by subtracting an estimate of the secondary disturbance from m. Under nominal

condition, the estimation error for the RM method is then [5]

ε = de − ÔOptdm. (6)

This can be considered as representative of the spatial correlation between the monitoring sensors

and the error sensors and indicates the lower limit on the error signals at the virtual microphones

that can be obtained with the RM method. The estimate of the primary disturbance at the virtual

error sensors, d̃e, can consequently be obtained by using ÔOpt in Fig. 1(b). Combining d̃e with

the estimated contribution of the secondary sources, ĜmuRM, the estimated sound pressure at the

virtual error sensors can be obtained as

ẽ = d̃e + ĜeuRM

= ÔOpt

(
m− ĜmuRM

)
+ ĜeuRM.

(7)

By substituting Eq.(4) into Eq. (7),

ẽ = ÔOptdm + GRMWRMx (8)

where GRM, the matrix of the effective plant responses, is given by

GRM = Ĝe + ÔOpt

(
Gm − Ĝm

)
. (9)

The optimal control filter WRM,Opt can be obtained by minimising the cost function of Jẽ =

Tr
{
E
[
ẽẽH

]}
to give [10, 15]

WRM,Opt = −
[
GH

RMGRM

]−1
GH

RMÔOptSxdm
S−1
xx

= −
[
GH

RMGRM

]−1
GH

RMÔOptPmSvvR
H
(
RSvvR

H
)−1

(10)

In practice, however, WRM,Opt is calculated by adaptation using the filtered-reference LMS (FxLMS)

algorithm [14], in which the reference signal is filtered by Ĝe, as obtained in the identification phase.
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The converged control filter then becomes Ref. [15]

WRM,∞ = −
[
ĜH

e GRM

]−1

ĜHÔOptSxdm
S−1
xx

= −
[
ĜH

e GRM

]−1

ĜH
e ÔOptPmSvvR

H
(
RSvvR

H
)−1

.

(11)

A sufficient convergence condition for the adaptive algorithm is that [7]

Re
(

eig
[
ĜH

e GRM

])
= Re

(
eig
[
ĜH

e Ĝe + ĜH
e OOpt

(
Gm − Ĝm

)])
> 0 (12)

By using Eqs. (9) and (11), the signal that would actually be measured at the virtual error

sensors if the control filter converged to the solution given by Eq. (11) can be obtained as

eRM = de + GeWRM,∞x

= de −Ge

{
ĜH

e

[
Ĝe + ÔOpt

(
Gm − Ĝm

)]}−1

ĜeÔOpt×

PmSvvR
H
(
RSvvR

H
)−1

Rv.

(13)

(a)

(b)

Figure 1: The block diagram of the RM method: (a) identification phase; (b) control phase.

2.2. Additional filter method

Fig. 2(a) shows the block diagram of the AF method during the identification phase. This

phase includes the training of two filters, an initial control filter ŴAF, designed to minimise the

mean square error signals, and the additional filter Ĥ, designed to model the response from the

reference signals to the monitoring signals once the error signals have been controlled. The control
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filter ŴAF is only utilised to drive the secondary sources during the identification phase, but its

response is then implicit in the additional filter Ĥ. ŴAF,Opt can be obtained by minimising the

signals at the error sensors, ê, which corresponds to solving the cost function

JŴAF
= Tr

{
E

[(
d̂e − ĜeŴAFx̂

)(
d̂e − ĜeŴAFx̂

)H
]}

, (14)

to give

ŴAF,Opt = −
[
ĜH

e Ĝe

]−1

ĜH
e Sx̂d̂e

S−1
x̂x̂

= −
[
ĜH

e Ĝe

]−1

ĜH
e P̂eSv̂v̂R̂

H
(
R̂Sv̂v̂R̂

H
)−1

,

(15)

where Sx̂d̂e
= E

[
d̂ex̂

H
]

is the cross spectral density matrix between reference signals and the

primary disturbance at the error sensors. The additional filter, which is used to estimate the

signals at the monitoring sensors via the reference signals, is then introduced after the convergence

of ŴAF. Therefore, the optimal additional filter can be obtained by minimising the cost function

JĤ = Tr

{
E

[(
m̂− Ĥx̂

)(
m̂− Ĥx̂

)H
]}

, (16)

where m̂ is the vector signals measured at the monitoring sensors, which is given by

m̂ = d̂m + ĜmŴAF,Optx̂. (17)

The optimal solution to Eq. (16) is given as

ĤOpt =
(
Sx̂d̂m

+ ĜmŴAF,OptSx̂x̂

)
S−1
x̂x̂

=

(
P̂m − Ĝm

[
ĜH

e Ĝe

]−1

ĜH
e P̂e

)
Sv̂v̂R̂

H
(
R̂Sv̂v̂R̂

H
)−1

.
(18)

During the control phase, the sound reduction at the virtual error sensors is achieved by min-

imising the effective error signals ẽAF, which is the difference between the measured signals at the

monitoring microphones and the estimate of these signals when the error is minimised,

ẽAF = m− ĤOptx = dm + GmWAFx− ĤOptx. (19)

The optimal control filter WAF,Opt that minimises JWAF
= Tr

{
E
[
ẽAFẽ

H
AF

]}
is given by

WAF,Opt =
(
GH

mGm

)−1
GH

m

(
ĤOptSxx − Sxdm

)
S−1
xx

=
(
GH

mGm

)−1
GH

m

[
ĤOpt −PmSvvR

H
(
RSvvR

H
)−1
]
.

(20)

In practice, however, WAF,Opt is obtained by the adaption of the FxLMS algorithm in Fig. 2(b)

with the reference signals filtered by Ĝm, in which case the converged control filter WAF,∞ is [14]

WAF,∞ =
(
ĜH

mGm

)−1

ĜH
m

[
ĤOpt −PmSvvR

H
(
RSvvR

H
)−1
]
. (21)

A sufficient the condition for the convergence of WAF,∞ is that

Re
(

eig
[
ĜH

mGm

])
> 0 (22)
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The combined contribution of the primary sources and the optimally-controlled secondary

sources at the virtual error sensors is then given by

eAF = de + GeWAF,∞x

= de + Ge

(
ĜH

mGm

)−1

ĜH
m

[
ĤOpt −PmSvvR

H
(
RSvvR

H
)−1
]
Rv.

(23)

(a)

(b)

Figure 2: The block diagram of the AF method: (a) identification phase; (b) control phase.

3. Application of the virtual sensing methods using measured data70

In this section, the two virtual sensing methods presented in the previous section are applied

to data recorded in the cabin of a large SUV as measured and discussed by Jung et al [9]. The

SUV was tested on two different road surfaces, referred to as ”smooth” and ”coarse” in Ref. [8],

and for two different speeds, 30 mph and 50 mph, for which the road noise was the dominant

component of the internal noise in the vehicle. There were in total 14 monitoring microphones75

mounted in the cabin, attached to the trim panels with duct tape, and two error microphones were

located in the ears of a dummy head, as shown in Fig. 3. Two loudspeakers, which were used

as the secondary sources, were placed either sides of the headrest and are positioned 35cm away

from each other. In the following simulations, microphones number 1, 2, 13 and 14 in Fig. 3 are

used as the monitoring microphones [9], and 8 reference microphones signals were were obtained80
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from transducers placed close to suspensions of the vehicle, to measure the components of the road

noise that constitute the primary field to be controlled in this case used to measure the primary

field. The plant responses for the secondary sources to the error and monitoring microphones were

measured during the initial identification phase when the car was stationary. By firmly installing

the dummy head and the loudspeakers, the plant responses of the secondary paths are assumed85

to be unchanged during the driving measurements. The details of the disturbances and the plant

responses used in this section can be found in Ref. [9].

(a) (b)

Figure 3: The installation of the microphones inside the cabin of the test car: (a) on-site view, (b) plan view.

Microphones No. 1, 2, 13 and 14 were used as the monitoring microphones and the error microphones are located

in the ears of the dummy head [9].

3.1. Performance under the nominal condition

In this section, the set of data measured on the coarse road at a car speed of 50 mph has

been used to calculate the filters ĤOpt and ÔOpt. The same set of data is then used to evaluate90

the control performance. In this case, all plant responses are identical for both the identification

phase and the control phase. This situation, where the road condition and all plant responses are

unchanged, is defined as the nominal condition.

Fig. 4(a) shows the spectrum of the A-weighted sound pressure levels (SPL) at the error mi-

crophones both before control and also after active control using each of the two virtual sensing

methods. Above about 600 Hz, the AF method has slightly superior performance compared to

the RM method, in which ÔOpt has been calculated without regularisation. Fig. 4(b) shows the

corresponding levels of attenuation Latt, which is defined by

Latt = −10log10 [Tr (See) /Tr (Sdede
)] (24)

in which See and Sdede
are the respective power spectral density matrices of the overall error, e,

and the primary disturbance, de. The level of the estimation error for the RM method, as defined95

in Eq. (6), is also shown, which limits the performance of the RM method above 600 Hz. Below this

frequency, the performance of both control signals is determined by the limited coherence between

the reference signals and the microphone signals.
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Figure 4: The 1/12 octave spectra of: (a) the A-weighted sound pressure level (SPL) at the error microphones with

and without ANC using each of the two the virtual sensing methods; (b) the corresponding levels of noise attenuation

with the additional solid line showing the estimation error of the RM method. The original uncontrolled spectrum,

i.e. the solid line in (a), is recorded by running the test car on a coarse road at a speed of 50 mph. The same data

set is used for identification phase of both virtual sensing methods.
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3.2. Performance with different reference signals

For practical applications, to maximise the attenuation performance, it is best that the primary100

field during the identification phase is the same as, or at least similar to, that measured during

the control phase, for training the filters of OOpt and ĤOpt. In practice, however, the reference

signals used to train the virtual sensing filters will usually differ from those used at the control

phase. To investigate this scenario, the training set used to identify ÔOpt and ĤOpt is altered to

the smooth road conditions and other speeds.105

Fig. 5 shows the A-weighted SPL at the error microphones before and after control using the

two virtual sensing methods using three different sets of measured data in the identification phase,

but with the control phase implemented using the 50 mph coarse road data. No regularisation is

used in the generation of the RM results presented in this figure. In Fig. 5(a), when the training

road condition is changed to smooth, but the vehicle speed remains at 50 mph, the spectrum of110

the RM method is similar to its counterpart given in Fig. 4. The higher performance of the AF

method above 600 Hz, seen in Fig. 4(a), is, however, no longer observed. In Figs. 5(b) and (c)

show the results obtained when the training sets were measured at a lower speed of 30 mph on the

coarse and smooth roads. For the RM method, the lower operation speed does not cause significant

reduction in performance, especially at low frequencies, although a small decrease in performance115

of around 1 dB can be seen when the frequency is above 600 Hz. For the AF method, however, the

noise reduction is significantly reduced compared to the RM method across the entire frequency

range.

To further highlight the changes in performance caused by a difference in the reference signals,

Table 1 shows a summary of L̄att, the levels of attenuation in the mean square pressure averaged120

over the full bandwidth of the measurement. When the reference signals used at the identification

phase are the same as the ones used during the control phase, the AF method is predicted to

provide an averaged attenuation level of around 7.2 dB, which is 0.4 dB higher than that of the

RM method. When the data set for the smooth road with a speed of 50 mph is used for training,

however, L̄att,AF drops to 6.3 dB and the advantage over the RM method is lost, which has an125

L̄att,RM of 6.6 dB. When training data is used from the coarse and smooth roads at 30 mph, L̄att,RM

falls by only 0.2 dB, where L̄att,AF, drops down by another 1.2 dB or 1.3 dB. In general, the RM

method that displays better performance than the AF method when the reference signals change.

3.3. Performance with changes in the plant responses

In addition to changes in the disturbance, it is quite common that the interior environment130

of the car changes in some way. For instance, changes could be introduced by movement of the

listener’s seat or simply the presence of another object in the cabin. such changes inevitably

lead to changes in the plant responses. With the help of other assisting system, for example

the head-tracking system presented in Ref. [15], the two internal filters OOpt and ĤOpt could be

updated with the changes in the environment, to achieve a new nominal performance. However,135
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(c) trained by using data set of smooth road, 30 mph

Figure 5: The 1/12 octave Spectra of the A-weighted sound pressure level (SPL) at the error microphones with and

without active control using the virtual sensing methods. The original spectrum (solid line) is recorded by running

the test car on a coarse road with a speed of 50 mph. The identification phase for the virtual sensing techniques,

however, were carried and using the data sets measured in the same test car under different road conditions and

speeds.
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Table 1: Summary of the levels of attenuation L̄att of the three virtual sensing methods averaged over 1/12 octave

band obtained by using different measured data for training and the coarse road at 50mph for control.

Training set L̄att,RM, dB L̄att,AF, dB

Coarse road, 50 mph

(Nominal)
6.8 7.2

Smooth road, 50 mph 6.6 6.3

Coarse road, 30 mph 6.4 5.1

Smooth road, 30 mph 6.4 5.0

when the changes cannot be accurately measured, they will influence the attenuation performance.

To investigate the effect of changes in the plant responses in the performance of the two virtual

sensing methods, a second set of plant response measurements were utilised [16], measured with an

in-car ANC system with a similar loudspeaker/microphone layout to that shown in Fig. 3. These

additionally-measured plant responses were acquired under several different conditions that caused140

perturbations in the acoustic responses. These measured plant changes were then added to the

original plant responses to investigate the influence of changes in the plant responses Gm and Ge

on the control performance of the two virtual sensing methods.

Figs. 6(a) and 6(b) show the SPL of the two virtual sensing methods after these perturbations

are introduced in Gm and Ge respectively. The regularisation factor for the RM method βRM is145

initially set to 0. The spectra under the nominal condition for both methods are also given for

comparison. In Fig. 6, the perturbation in Gm causes significant deterioration in the performance

of the two methods at frequencies below around 100 Hz. Fig. 6(b), where the perturbation of Ge

is introduced, similarly shows obvious attenuation reductions for both methods. The RM method

that does not perform as well as the AF method for perturbation in Gm, whereas the two methods150

behave in a similar way for the considered perturbation in Ge.

The robustness of the RM method to changes in plant response could be improved by including

regularisation in the design of the observation filter, as will be discussed in Sec. 4.4.

4. Theoretical performance and numerical simulations of an idealised headrest system

The results obtained based on the measurements indicate that the two virtual sensing methods155

respond differently under different conditions. Therefore, numerical simulations for an idealised

geometry are conducted to investigate the causes of these differences and provide additional insight.

The loudspeaker and microphone configuration used for the simulations is shown in Fig. 7. The

dimensions in the figure are normalised by a reference length L, which is the distance between the

virtual error microphones, which is set to 0.15 m in the simulations. A normalised frequency kL160

is defined by the wavenumber k = ω/c and the reference length L, where kL is also equal to 2π

times L divided by the wavelength. Therefore, kL = 0.28 corresponds to 100 Hz and kL = 2.8
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Figure 6: The 1/12 octave band spectra of the two virtual sensing methods with and without the perturbations in

the plant responses of (a) Gm and (b) Ge. The two methods are trained and tested on the 50 mph coarse road

data. The regularisation is not applied for the RM method.
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corresponds to 1 kHz. This configuration resembles the headrest ANC system implemented for

the in-car measurements. It consists of 2 secondary sources and 4 monitoring microphones and

2 error microphones that are symmetrically distributed about the y-axis. An approximation to a165

diffuse field is used as the primary field for both identification and control. This field is realized

by 491 uncorrelated monopoles with uniform source strength, v, evenly distributed on the surface

of a sphere of diameter of 1.5m, [10, 17], which ensures that the power spectral matrices of Sv̂v̂

and Svv, above, are identity matrices.

-2 0 2

-3

-2

-1

0

1

2

3

Figure 7: The loudspeaker and microphone configurations used for the virtual sensing methods: *, the secondary

sources; ◦, the monitoring microphones; ×, the virtual error microphones.

4.1. Nominal condition170

The nominal condition is considered first, where all the plant responses are identical in the

control and the identification phases. By assuming the reference signals perfectly represent the

primary sources R̂ = R = I in Figs. 1 and 2, the nominal responses for the two virtual sensing

methods, following Eqs. (13) and (23), are simply

e0,RM = de −Ge0

[
GH

e0Ge0

]−1
GH

e0ÔOptdm (25)

and

e0,AF = de −Ge0

[
GH

e0Ge0

]−1
GH

e0de (26)

where the subscript (·)0 denotes the nominal condition. Since, as shown in Fig. 7 the number of

secondary sources is equal to the number of the error microphones, the term Ge0

[
GH

e0Ge0

]−1
GH

e0

becomes the identity matrix, which further simplifies the nominal responses. e0,RM is then identical

to the expression for the estimation error in Eq. (6), whereas, e0,AF becomes zero, which indicates

an infinite level of attenuation for the AF method at the error microphones.175

Fig. 8 shows the estimation error, and hence the attenuation for the RM method under nominal

condition, using the configuration shown in Fig. 7 at different frequencies. No regularisation was

used in the calculation of ÔOpt here. The level of attenuation gradually decreases with increasing

of the normalised frequency kL, which is an indication of the deterioration in the spatial correlation
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between the microphones, as explained in Ref. [5]. This is consistent with the measurement result180

in Fig. 4(b) and since the AF method is theoretically capable of infinite attenuation at the error

microphones, it is clearly superior to the RM method in terms of the attenuation under nominal

conditions.
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Figure 8: The nominal attenuation of the RM method for the configuration shown in Fig. 7, which is due to the

estimation error.

Fig. 9 shows the spatial distribution of the attenuation in the mean square level of the primary

field over the whole space shown in Fig. 7, to further compare the two virtual sensing methods185

under the nominal condition. These results show that, at low frequencies, the two methods have

very similar attenuation distribution away from the immediate vicinity of the error microphone.

At higher frequencies, the AF method achieves better performance compared to the RM method,

especially around the locations of the error microphones.
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Figure 9: The spatial distribution of Latt,AF and Latt,RM under the nominal condition at different frequencies.

From left to right, kL = 0.25, 0.5, 1.
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4.2. Error due to incomplete reference signals190

In practice, an imperfect coherence between the reference and the error signals will affect the

attenuation performance of both virtual sensing methods, as noted in Sec 3.1. This phenomenon

is modelled by using an incomplete set of reference signals in this section.

The incomplete set of reference signals can be simulated by modifying R, the response from

the primary sources to the reference signals under nominal condition in Figs. 1 and 2, which is

assumed to have a size of N ×N , and to be of the form

R =

Rc 0

0 Ru

 (27)

where Rc denotes the paths of the primary sources that are perfectly represented by the reference

microphones, where Rc = I(K×K) and K denotes the number of the primary sources that can be

accurately represented. On the other hand, Ru denotes the plants of the primary sources that

are not perfectly represented by the reference signals. For simplicity, it is assumed that Ru = 0,

and therefore, no knowledge of those primary sources is available. The primary sources that are

not captured by the reference microphones will thus not be attenuated by the feedforward control

system, but will contribute directly to the virtual error microphones, which, consequently, will

deteriorate the attenuation performance achieved by the virtual sensing control methods. Assum-

ing that each primary source contributes equally to the mean square disturbance, a theoretical

attenuation can then be obtained as

Latt = 10log10

N

N −K
(28)

where N is the number of primay sources with equal strength and K is the number of reference

signals.195

Fig. 10(a) shows a comparison between the theoretical attenuation given by Eq. (28) and the

attenuations achieved by simulating the two virtual sensing methods. According to this figure, the

AF method matches the theoretical result perfectly. Whereas, the RM method has slightly lower

levels of attenuation, due to the contribution of the estimation error at high frequencies. This is

demonstrated more clearly in Fig. 10(b), which shows the attenuations for the two virtual sensing200

methods as a function of normalised frequency, kL, where a quarter of the primary sources are not

captured by the reference microphones. The estimation error for the RM method is also shown.

Clearly, at low frequencies, where the estimation error is small, the incomplete set of references

signals determines the performance limits for both the RM method and the AF method in a very

similar way. The attenuation is around 6 dB in both cases, which corresponds to the theoretical205

calculation provided by Eq. (28). At high frequencies, where the estimation error for the RM

method gradually increases, the attenuation achieved by the RM method is determined by the

estimation error and hence falls off. Similar features to those described here can also be found for

the results predicted from the in-car measurements in Fig. 4(b).
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Figure 10: Attenuations for the two virtual sensing strategies with incomplete reference signals: (a) attenuation

with only K reference signals but N primary signals; (b) the attenuation spectra obtained from simulation of the

two virtual sensing methods when K/N = 3/4.

4.3. Error due to uncertainties in the reference signals210

Changes in the statistical properties of the reference signals can be simulated by introducing

uncertainties into the response, R, between the secondary sources and the reference signals. This

would be similar to the changes in the vehicle reference signals discussed in Sec. 3.2, which might

arise from changes in the road or driving conditions. It is assumed that during the identification

phase, R̂ = R0, and in the control phase, a perturbation matrix ∆R is added to R̂. The pertur-

bation matrix ∆R is assumed to be unstructured [17]. The unstructured uncertainty of ∆R has

zero mean and is uncorrelated with the corresponding nominal responses [17], and so

E [∆R] = 0 (29)

E
[
∆RHR0

]
= 0. (30)

The elements of ∆R are also assumed to be mutually uncorrelated, and satisfy

E
[
∆RH∆R

]
= γ∆RI (31)

where γ∆R, the power of the uncertainty ∆R, is given by

γ∆R =
1

N
ε2

∆R ||R0||2F , (32)

where ε∆R is the level of relative uncertainty. This parameter can be defined as

ε2
∆R = ||∆R||2F / ||R0||2F . (33)

The properties defined in Eqs. (29) to (33) are realised by modelling the real and imaginary parts

of ∆R respectively by using the function ‘randn’ embedded in MATLAB. Enough samples are
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required for the numerical modelling of the unstructured uncertainties to satisfy the properties

given previously. Here, 250 realisations are used to obtain the expectation values.

By introducing ∆R to both of the virtual sensing methods, the overall error signal e is given

by the superposition of the nominal response e0 and the error caused due to ∆R, euncert . The

expressions of euncert for the two virtual sensing methods can be derived, based on Eqs. (13) and

(23), as

euncert,RM = −ÔOptPm0∆Rv (34)

euncert,AF = −
(
Ge0

[
GH

m0Gm0

]−1
GH

m0Pm0 −Pe0

)
∆Rv

−Ge0

[
GH

m0Gm0

]−1
GH

m0Pm0∆Rv,

(35)

where

∆R = RH
(
RSvvR

H
)−1

R−RH
0

(
R0SvvR

H
0

)−1
R0. (36)

The elements of ∆R are very small, even when ε∆R is significant, which consequently makes the

terms related to ∆R become negligible. Therefore, Eqs. (34) and (35) can be approximately given

by

euncert,RM = 0 (37)

euncert,AF = −
(
Ge0

[
GH

m0Gm0

]−1
GH

m0Pm0 −Pe0

)
∆Rv (38)

Fig. 11 shows the results of simulations based on those described in Sec. 4.2 in which, apart from215

the imperfect reference signals, ε∆R is set to 0.15. The nominal attenuations, from Fig. 10(b), are

also given for comparison. the attenuation achieved by the RM method s is relatively unaffected,

whereas a significant reduction can be observed at high frequencies for the AF method, which

has the same tendencies found for the change in the attenuations due to the two methods based

on the measured data in Fig. 5. Both numerical and measured-data based results imply that the220

AF method is more sensitive to perturbations in R compared to the RM method, and this is

supported by the theoretical results in Eqs. (37) and (38) which predict attenuations very close

to those in Fig. 11. Perturbations in the reference signals that present a fundamental problem

for the AF method, which is based on the strategy of model reference control. Whereas, the RM

method relies more on the spatial correlation between the monitoring microphones and the error225

microphones, but is adaptive to changes in the reference signals.

4.4. Error due to a change in the plant responses

A similar method to that described in the previous section can be applied to introduce unstruc-

tured perturbations into the plant responses of the primary and secondary paths. In this section,

the errors due to changes in the plant responses ∆Gm, ∆Ge, ∆Pm and ∆Pe are discussed via230

both analytical and numerical methods. The analytical expressions for the errors caused by the

changes in the plant responses for the two methods are listed in Table 2. The numerical simulations
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Figure 11: Attenuations for the two virtual sensing strategies with unstructured perturbations in R, ε∆R is set to

0.15. The same incomplete reference signals were used as in Fig 10(b).

are shown in Fig. 12. For all numerical simulations presented here, an imperfect reference, with

K/N = 3/4, is used to make the simulated results comparable to the measured-data based results

in Sec. 3. ε is again set to 0.15 for each case. All the results in Fig. 12 are shown both with and235

without regularisation of the observation filter in the RM method, as in Eq. (3). The regularisation

factor, βRM, is set to 0.2 at frequencies below kL = 0.9 and then gradually decreases to 0 at higher

frequencies.

In Table 2, the perturbation in ∆Gm is included in ∆Gm,RM and ∆Gm,AF. Fig. 12(a) shows the

simulated results for uncertainties in Gm and it can be seen that the RM method is most significant240

affected when no regularisation is used in the observation filter. The essential difference between

the two methods is that ∆Gm is multiplied by the observation filter for the RM method, whereas

it is directly proportional for the AF method. Jung et al [5] show that increasing the regularisation

factor will reduce the effect of the condition number of Sd̂md̂m
in Eq. (3), which makes the RM

method robust against perturbations. The simulation results for unstructured perturbation in Pm245

are shown in Fig. 12(b). Once again, the attenuation is more compromised for the RM method than

for the AF method, although appropriate regularisation improves the RM results. The simulation

results are again well predicted by the theoretical results in Table 2, in which the perturbation for

the RM method is again multiplied by the observation filter and so is sensitive to its regularisation.

Figs. 12(c) and 12(d) show that the attenuations with unstructured perturbations in Ge and Pe250

are far less affected than for perturbations in Gm and Pm, for both virtual sensing methods. These

results are well predicted by the theoretical results in Tabel 2, where it can be seen that the effect

of perturbations in Pe are predicted to be small, but the same, for both RM and AF methods.

In general, the AF method is more robust against perturbations in the plant responses than

the RM method. For the AF method, when the perturbations are relatively small, the errors255

caused by these perturbations are insignificant compared to the errors introduced by the incomplete

references. The RM method is susceptible to perturbations in Gm and Pm, unless appropriate

regularisation is used.
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Figure 12: Attenuations for the two virtual sensing strategies with unstructured perturbations in (a) ∆Gm, (b)

∆Pm, (c) ∆Ge and (d) ∆Pe. ε = 0.15 is used for all four perturbations, and incomplete reference signals, as in

Fig. 10(b), were again assumed.
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Table 2: The expressions of euncert of the two virtual sensing methods caused by perturbations in the plant responses.

Perturbation Method euncert

∆Gm

RM
−∆Gm,RMÔOptdm,

where ∆Gm,RM = Ge0

[
GH

e0

(
Ge0 + ÔOpt∆Gm

)]−1

GH
e0 − I

AF
−
(
Ge0∆Gm,AF

[
GH

e0Ge0

]−1
GH

e0

)
de,

where ∆Gm,AF =
[
GH

m0 (Gm0 + ∆Gm)
]−1

GH
m0Gm0 − I

∆Pm

RM −ÔOpt∆Pmv

AF −
(
Ge0

[
GH

m0Gm0

]−1
GH

m0

)
∆Pmv

∆Ge

RM −∆GeÔOptdm

AF −∆Ge
de

∆Ge
= ∆Ge

[
GH

e0Ge0

]−1
GH

e

∆Pe

RM ∆Pev

AF ∆Pev

5. Conclusions

This paper explains the fundamental differences between the performance of the RM method260

and the AF method under various conditions. The difference lies in the different strategies used to

estimate the disturbance at the virtual error microphones. The RM method explicitly estimates

the disturbance at the virtual microphones from the monitoring microphone signals, by using the

observation filter, whereas, the AF method implicitly estimates the disturbance at the virtual

microphones from the reference signals by using a reference model.265

For a virtual sensing ANC system in a car cabin, such as that described in this paper, the

AF method is superior compared to the RM method under nominal conditions, especially at high

frequencies. This is due to the estimation error associated with the RM method, which limits its

performance and generally increases with frequency. In practice, however, the reference signals

cannot exactly represent the primary sources, so that the unrepresented primary sources are not270

controlled by the ANC system and will increase the error. The simulations show that having

incomplete reference signals has a similar impact on the two virtual sensing methods.

The robust performance of the two methods is also quite different, when uncertainties are

introduced in the various plant responses between the identification and control phases of the

algorithms. For perturbations in the reference signals, the RM method tends to be very robust275

since the design of the observation filter is not significantly affected by the reference signals. The

AF method, however, heavily relies on the form of the reference signals, and deteriorates with an

increase in the perturbation, unless the additional filter is scheduled on the characterisation of the

measured reference signals, as suggested by Shi et al. [18]. Perturbations in the plant responses of
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the primary and secondary paths also introduce different effects for the two virtual sensing methods.280

All four perturbations have very limited effects for the AF method, which indicates its robustness

against changes in these plant responses. For the RM method, the plant responses related to the

error microphones also have a small effect on the level of attenuation. However, the RM method is

quite sensitive to the plant perturbations related to the monitoring microphones. The analytical

formulation demonstrates that the errors due to these two perturbations are multiplied by the285

observation filter, which contains an inverse of a matrix that is often ill-conditioned. This ill

conditioning leads to an increase in the size of the observation filter, and consequently, amplifies

the perturbations and deteriorates the attenuation performance of the RM method. The robustness

of the RM method can greatly be improved by introducing appropriate regularisation.

Therefore, it can be concluded that the best virtual sensing method to use for active control290

depends on the details of the application, not just in terms of their nominal performance but also

in terms of their robustness. The AF method is preferred when the noise sources to be controlled

can be accurately measured, for example, for measurements performed in the laboratory, since

the model-reference methods are robust against changes in the primary and secondary paths. For

active noise control in an environment where the reference signals can change, however, as in many295

practical applications, for example the one presented in this paper, the RM method may be the

better option, due to its insensitivity to the detailed properties of the reference signals.
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