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Abstract—An unmanned aerial vehicle (UAV)-aided secure
communication system is conceived and investigated, where the
UAV transmits legitimate information to a ground user in the
presence of an eavesdropper (Eve). To guarantee the security,
the UAV employs a power splitting approach, where its transmit
power can be divided into two parts for transmitting confidential
messages and artificial noise (AN), respectively. We aim to
maximize the average secrecy rate by jointly optimizing the
UAVs trajectory, the transmit power levels and the corresponding
power splitting ratios allocated to different time slots during
the whole flight time, subject to both the maximum UAV speed
constraint, the total mobility energy constraint, the total transmit
power constraint, and other related constraints. To efficiently
tackle this non-convex optimization problem, we propose an iter-
ative algorithm by blending the benefits of the block coordinate
descent (BCD) method, the concave-convex procedure (CCCP)
and the alternating direction method of multipliers (ADMM).
Specially, we show that the proposed algorithm exhibits very
low computational complexity and each of its updating steps can
be formulated in a nearly closed form. Besides, it can be easily
extended to the case of three-dimensional (3D) trajectory design.
Our simulation results validate the efficiency of the proposed
algorithm.

Index Terms—Physical layer security, UAV, artificial noise,
trajectory design, power allocation.

I. INTRODUCTION

Unmanned aerial vehicular (UAV) communications have

recently attracted growing research interests in both academia

and industry [1]–[9], given their unique benefits of prompt on-

demand deployment, low latency as well as agility and flexibil-

ity. Since UAVs are generally expected to operate at a higher
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altitude than conventional cellular base stations (BSs), the line-

of-sight (LoS) component dominates the air-to-ground/ground-

to-air channels in many practical scenarios [10]. Hence UAV-

aided LoS links tend to have better channel quality than typical

terrestrial channels, which often suffer from severe fading and

shadowing effects. However, unfortunately the UAV-aided LoS

links suffer from an increased eavesdropping probability [11]

due to the open broadcast nature of wireless channels. From

this perspective, the LoS propagation of UAVs becomes a

double-edged sword, since additionally the terrestrial com-

munications are also potentially exposed to malicious UAVs.

Therefore, the delicate handling of the underlying security

issues holds the key to unlocking the potential of UAV-aided

communications.

Recently, physical layer security has drawn significant atten-

tion in UAV-enabled communication systems as a promising

technique of protecting legitimate transmissions against eaves-

dropping attacks and also as a complement of conventional

encryption techniques [12], [13]. Focusing on resource allo-

cation/management for secrecy communication performance

maximization, a range of physical layer security (PLS) tech-

niques have been considered in the literature, such as UAV-

mounted BSs [14]–[18], UAV-enabled relaying [19] and UAV-

assisted cooperative jamming [2], [20]–[24], etc. In partic-

ular, a single-UAV communication system was investigated

in [14], where the UAV sends confidential information to a

legitimate ground user (Bob) in the presence of a ground-

based eavesdropper, and the secrecy rate is maximized by

jointly allocating the UAV’s transmit power and optimizing

its flight trajectory. The authors of [15] have considered

a scenario of multiple users and maximized the minimum

secrecy rate for ensuring fairness among the users. By contrast,

the authors of [16] considered coordinated multi-point (CoMP)

reception of the legitimate users and three-dimensional (3D)

trajectory optimization in the presence of multiple malicious

eavesdroppers. In [17], the total transmit power of the UAV-

mounted BS was minimized through joint beamforming op-

timization. As a further development, the authors of [19]

studied the security problems of UAV-aided relaying systems

and judiciously shared the transmit power between the source

and the UAV.

Furthermore, in addition to exploiting the agile maneuver-

ability of the UAVs for improving their secrecy performance,

UAVs can also be employed as cooperative friendly jam-

mers [25] that are able to send artificial noise (AN) (can be

viewed as external interference) to assist the legitimate users
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[2], [20]–[24]. Specifically, in [2], a dual-UAV-aided secure

communication scheme has been proposed, where a second

UAV was employed to jam a number of eavesdroppers on

the ground. In [20], the impact of the UAV’s jamming power

and position on the outage probability and intercept proba-

bility have been examined. In order to improve the secrecy

rate, in [21] a mobile UAV-aided jammer was harnessed for

opportunistically interfering with the potential eavesdroppers.

The authors of [22] studied the associated secrecy vs. energy

efficiency maximization problem, where multiple source UAVs

and jamming UAVs work cooperatively to serve the ground

users. In [23], AN-beamforming and cooperative jamming

were utilized, whilst only relying on location and statistical

channel state information (CSI) of the eavesdroppers, where

imperfect CSI knowledge of the link between the UAV-

aided jammer and the destination was considered. Finally,

the authors of [24] considered the worst-case secrecy rate

maximization problem by taking into account the uncertainty

of Eves location.

Against the above backdrop, we investigate a UAV-aided

secure communication system, where the UAV transmits le-

gitimate information to a ground-user Bob in the presence

of a ground-based Eve. In contrast to prior studies, we

conceive a power-splitting aided secure transmission scheme

for protecting the UAV’s communications. Explicitly, the UAV

divides its transmit power into two parts, where a portion

ρ of the signal power is used for transmitting confidential

messages to Bob, while the remaining portion 1−ρ is devoted

to transmitting AN to interfere with Eve’s reception. Note that

in the conventional secrecy communication systems operating

without UAV-assiatnce, injecting AN has been widely applied

for improving the secrecy transmission rates of Bob [26]–[28].

By relying on this power-splitting approach and exploiting the

nimble mobility of the UAV, we aim for jointly optimizing

the trajectory of the UAV and the communication/jamming

power levels over time for maximizing the average secrecy

rate of the UAV-Bob link, subject to the maximum UAV speed

constraint, the total propulsion energy constraint, the total

transmit power constraint, and other related constraints. To

solve the resultant highly non-convex optimization problem

efficiently, we propose a low-complexity iterative algorithm

by combining the benefits of the block coordinate descent

(BCD) method [29], the concave-convex procedure (CCCP)

method [30] and the alternating direction method of multipliers

(ADMM) [31].

Specifically, in order to address the related optimization

variable coupling issues, we propose to decompose the orig-

inal problem into two subproblems, i.e. the power allocation

subproblem and the trajectory optimization subproblem, by

applying the BCD method. The resultant subproblems, al-

though much simplified compared to the original problem,

they still remain non-convex. Therefore, by exploiting the fact

that the underlying non-convex parts admit a difference-of-

convex (DC) structure, we propose to transform them into

more tractable forms with the aid of first-order approximations.

We first show that a nearly closed-form optimal solution of the

approximated power allocation subproblem can be devised by

resorting to its Lagrangian dual problem. Then, by tactfully

introducing auxiliary variables, the approximated trajectory

optimization subproblem can be iteratively and globally solved

by the ADMM method, and we demonstrate that each updating

step therein can also be expressed in closed form. Given

the fact that the existing algorithms suitable for solving joint

power and trajectory optimization problems usually involve

standard convex solvers, such as CVX [32], the proposed algo-

rithm exhibits a very attractive and unique feature, namely that

the optimization can be formulated almost in closed form, thus

imposing a low computational complexity. Furthermore, the

proposed algorithm is proved to be monotonically convergent.

Our numerical results show the benefits of the power spitting

approach proposed.

The main contributions of this treatise are as follows:

1) We formulate a joint power and trajectory optimization

problem for a UAV-aided secure communication system

relying on a power splitting approach for improving the

secrecy performance.

2) To solve this challenging optimization problem, we pro-

pose a low-complexity iterative algorithm and show that

each step in the proposed algorithm can be represented in

a nearly closed form. Fyrthermore, we illustrate that the

proposed algorithm can be easily extended to the case of

3D trajectory design.

3) We provide comprehensive numerical results for charac-

terizing the efficiency of the proposed algorithm and the

power splitting approach advocated. We then demonstrate

the impact of the key system parameters on the average

secrecy rate. In particular, we show that by appropriately

splitting the transmit power of the UAV, the overall

system performance can be substantially improved as

compared to that without power splitting. Furthermore,

compared to the existing algorithms using CVX, the

running time of the proposed algorithm is at least 30
times lower.

This paper is structured as follows. In Section II, we

introduce the considered UAV-enabled secure communication

system and formulate the joint optimization problem. In Sec-

tion III, we propose an efficient iterative algorithm to solve the

considered problem with very low complexity and guaranteed

convergence. Simulation results are presented in Section IV

to show the effectiveness of our proposed algorithm and

conclusions are drawn in Section V.

Notations: Scalars, vectors and matrices are respectively

denoted by lower case, boldface lower case and boldface upper

case letters. For a matrix A, AT denote its transpose. For a

vector a, ‖a‖ represents its Euclidean norm. | · | denotes the

absolute value of any real or complex scalar. Rm×n denotes

the space of m× n real matrices. The set difference is defined

as A\B , {x|x ∈ A, x /∈ B}. [x]+ , max(x, 0).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and formu-

late the optimization problem of interest.

A. System Model

We consider a secure communication system where a UAV

transmits confidential information to Bob in the presence of
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a potential Eve, as shown in Fig. 1. In order to improve the

security of the UAV-Bob link, the UAV also sends jamming

signals (through injecting AN) to interfere Eves signal recep-

tion and increase the secrecy capacity.

Without loss of generality, we consider a 3D Cartesian

coordinate system with Bob and Eve located at (0, 0, 0) and

(L, 0, 0), respectively, i.e., Bob and Eve are both on the ground

with a distance of L meters (m). For simplicity, we focus on

the UAVs operation during a finite duration of N seconds

(s) and ignore its take-off and landing phases. We further

assume that the UAV is flying at a fixed altitude H , which

is considered as the minimum altitude that is required for

terrain or building avoidance.1 Then, the time interval N is

discretized into T equally spaced time slots, i.e., N = Tδt,
where δt denotes the elemental slot length that is chosen

to be sufficiently small. Thus, the time-varying trajectory

of the UAV (x(t), y(t), H) over the considered time period

can be approximated by the T -length sequence (x[i], y[i], H),
i ∈ T , {1, · · · , T}, where (x[i], y[i]) denotes the UAVs

x− y coordinate at time slot i. Furthermore, let (x1, y1) and

(xT , yT ) denote the initial and final locations of the UAV and

let Vmax denote the maximum UAV speed, then we have the

following mobility constraints:

x[1] = x1, y[1] = y1, x[T ] = xT , y[T ] = yT , (1)

√

(x[i]− x[i+ 1])2 + (y[i]− y[i+ 1])2

δt
≤ Vmax, ∀i ∈ T \T.

(2)

Besides, the UAV’s mobility is also constrained by its energy

budget. Specifically, the energy consumed by the UAV engine

at time slot i is in proportion to the square of the velocity

at this time slot and according to (2), the energy consumed

by the UAV engine at time slot i, denoted as Emov[i], can be

expressed as [33], [34]

Emov[i] = κ((x[i]− x[i+ 1])2 + (y[i]− y[i+ 1])2), (3)

where we have κ = 0.5Mδt and M denotes the UAVs mass,

including its payload. Thus, we have the following energy

constraint for the mobility of the UAV:

T−1
∑

i=1

Emov[i] ≤ Etr, (4)

where Etr is the total mobility energy stored at the UAV, i.e.,

the UAVs energy budget.

We assume that the UAV altitude H is sufficiently large

such that the LoS components dominate the channels of the

UAV-Bob and UAV-Eve links, which is consistent with the

channel models in the Third Generation Partnership Project

(3GPP) TR 36.777 specification [35] (e.g., larger than 40 m

in the rural macro with aerial vehicles (RMa-AV) scenario

and 100 m in the urban macro with aerial vehicles (UMa-

AV) scenario) and the channel measurement results in [36].

Therefore, we consider LoS channel models and the channel

1The proposed algorithm can also be extended to 3D trajectory optimiza-
tion, which will become clear later.

x
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Fig. 1: The considered UAV-enabled secure communication

system.

power gains of the UAV-Bob and UAV-Eve links at time slot

i follow the free-space path loss model2 given by [4], [14]

gI[i] =
γ0
d2I [i]

, gE[i] =
γ0
d2E[i]

, (5)

where γ0 is the power gain at the reference distance of 1
m which depends on the carrier frequency and the antenna

gains at the transmitter and receiver, dI[i] and dE[i] denote

the distances from the UAV to Bob and Eve at time slot i,
respectively, which can be expressed as

dI[i] =
√

x2[i] + y2[i] +H2,

dE[i] =
√

(x[i]− L)2 + y2[i] +H2.
(6)

Let p[i] denote the transmit power of the UAV at time slot i, we

divide it into two parts where a portion of p[i]ρ[i] is used for

information transmission and the other p[i](1−ρ[i]) is utilized

for transmitting AN to block Eve from successfully recovering

the confidential information, where ρ[i] is the power splitting

ratio which satisfies

0 ≤ ρ[i] ≤ 1, ∀i ∈ T . (7)

Note that the AN can be eliminated by Bob but not necessarily

by Eve [41]. The transmit power levels {p[i]} are constrained

by the limitation of both average power and peak power, which

can be expressed as follows:

1

T

T
∑

i=1

p[i] ≤ P̄ , (8)

0 ≤ p[i] ≤ Pmax, ∀i ∈ T , (9)

where P̄ and Pmax denote the average and peak power budgets,

respectively. Equivalently, the average power constraint (8) can

be rewritten as
T
∑

i=1

p[i] ≤ P, (10)

where P = T P̄ represents the total power available during

the whole flight. Then, the signal-to-noise ratio (SNR) of the

UAV-Bob link at time slot i is given by

SNRI[i] ,
γ0p[i]ρ[i]

d2I [i]σ
2
, (11)

2There may exist other UAV-to-ground communication scenarios in prac-
tice, where the UAV-Bob/Eve channels follow the probabilistic LoS channel
model [37]–[39] or the Rician channel model [40]. How to optimize the
UAVs trajectory, the transmit power levels and the power splitting ratios with
low complexity under these channel models and further investigation into the
multi-antenna case are interesting topics that are left for future works.
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where σ2 is the additive white Gaussian noise (AWGN)

variance at the receiver of Bob. Similarly, the signal-to-

interference-plus-noise ratio (SINR) of the UAV-Eve link at

time slot i can be expressed as

SINRE[i] ,
γ0p[i]ρ[i]

d2E[i]
(

γ0(1−ρ[i])p[i]
d2

E
[i]

+ σ2
)

=
γ0p[i]ρ[i]

γ0(1− ρ[i])p[i] + σ2d2E[i]
.

(12)

Based on (11) and (12), the secrecy rate of the UAV-Bob link

at time slot i is given by [42]

Rs[i] , [log(1 + SNRI[i])− log(1 + SINRE[i])]
+, (13)

and the average secrecy rate can be written as

Ras({x[i], y[i], p[i], ρ[i]}) , 1
T

∑T
i=1 Rs[i].

B. Problem Formulation

To this end, our objective is to maximize the average secrecy

rate Ras subject to the UAVs mobility constraints in (1), (2)

and (4), and the average and peak transmit power constraints

in (10) and (9). Therefore, we can formulate the following

optimization problem:

max
{x[i], y[i], p[i], ρ[i]}

Ras({x[i], y[i], p[i], ρ[i]})

s.t. (1), (2), (4), (7), (9) and (10),
(14)

where the optimization variables include the UAV’s trajectory

{x[i], y[i]}, the transmit power levels {p[i]} and the power

splitting ratios {ρ[i]}.

Problem (14) is difficult to address due to the following

two reasons. First, the operator [·]+ makes the objective

function of problem (14) non-smooth. Second, the variables

{p[i], ρ[i], x[i], y[i]} are tightly coupled in the objective func-

tion, which makes problem (14) highly non-convex. Besides,

even with fixed trajectory {x[i], y[i]} and without [·]+, the

variables {p[i]} and {ρ[i]} are still coupled in the objective

function, therefore problem (14) is potentially more complex

than the one considered in [14]. In the next section, instead

of using the existing convex solvers such as CVX [32], we

exploit the special structure of problem (14) and propose an

efficient algorithm to tackle it with low complexity by blending

the benefits of the BCD method, the CCCP method and the

ADMM method.

III. PROPOSED LOW-COMPLEXITY ALGORITHM

First, in order to handle the non-smoothness of the objective

function of (14), we can simply ignore the operator [·]+ in the

objective function since if the secrecy rate is negative at an

arbitrary time slot, say l, we can always let the corresponding

transmit power p[l] be 0 such that Rs[l] = 0 is satisfied. There-

fore, ignoring the operator [·]+ causes no loss of optimality

for problem (14), and we can obtain the following equivalent

problem:

max
{x[i], y[i], p[i], ρ[i]}

R̄as({x[i], y[i], p[i], ρ[i]})

s.t. (1), (2), (4), (7), (9) and (10),
(15)

where

R̄as({x[i], y[i], p[i], ρ[i]})

,
1

T

T
∑

i=1

(

log
(

1 +
γ0p[i]ρ[i]

d2I [i]σ
2

)

− log
(

1 +
γ0p[i]ρ[i]

γ0(1− ρ[i])p[i] + σ2d2E[i]

))

.

(16)

Then, it can be observed that the constraints of problem

(15) are all convex, and the optimization variables are only

coupled in the objective function. Thus, we can apply the BCD

method to solve this problem by dividing the optimization

variables into two blocks (i.e., {p[i], ρ[i]} and {x[i], y[i]})

and optimizing them in an alternative manner. Specifically,

with fixed trajectory, the power allocation subproblem can be

expressed as

max
{p[i], ρ[i]}

R̄as({p[i]}, {ρ[i]})

s.t. (7), (9) and (10),
(17)

while by fixing the transmit power levels and power splitting

ratios, the trajectory optimization subproblem can be written

as
max

{x[i], y[i]}
R̄as({x[i], y[i]})

s.t. (1), (2) and (4).
(18)

In other words, we can handle problem (15) by solving

subproblems (17) and (18) iteratively, which yields a high-

quality suboptimal solution, as detailed in the following two

subsections.

A. Solving the Power Allocation Subproblem

In this subsection, we focus on problem (17) and propose to

first convert it into a convex problem through proper transfor-

mation and approximation. Then, an efficient algorithm is pre-

sented to solve the resulting convex problem by employing the

Lagrange duality method, where the basic idea is to build some

complicated constraints into objective functions and then solve

the dual problem instead of the original problem. It is worth

mentioning that in [28], a similar power allocation/splitting

optimization problem was considered (with a static transmitter

and an additional energy harvesting constraint at the Eve),

where both optimal and suboptimal solution were obtained and

the approaches therein can also be employed to solve problem

(17). However, the optimal solution in [28] requires a one-

dimensional search to find the optimal power splitting ratio

for each i while the suboptimal solution relies on an iterative

procedure to alternately optimize the transmit power alloca-

tions and power splitting ratios, which both exhibit relatively

high computational complexity. Note that compared with these

existing methods, the proposed algorithm can provide lower

computational complexity and by combining with the ellipsoid

method, the proposed algorithm can also be easily extended

to solve the problems in [28].

To proceed, we introduce two groups of auxiliary variables

a[i] and b[i], which satisfy

a[i] = p[i]ρ[i], b[i] = p[i](1− ρ[i]). (19)
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As a result, problem (17) can be equivalently reformulated as

max
{a[i], b[i]}

T
∑

i=1

gi(a[i], b[i]) (20a)

s.t. a[i] + b[i] ≤ Pmax, a[i] ≥ 0, b[i] ≥ 0, ∀i ∈ T ,
(20b)

T
∑

i=1

(a[i] + b[i]) ≤ P, (20c)

where

gi(a[i], b[i]) , log

(

1 +
γ0a[i]

d2I [i]σ
2

)

− log

(

1 +
γ0a[i]

γ0b[i] + σ2d2E[i]

)

.

(21)

Although problem (20) is much simplified as compared with

problem (17), it is still a non-convex problem which cannot

be solved efficiently in general. However, it can be readily

seen that gi(a[i], b[i]) can be viewed as the subtraction of two

concave terms, i.e., log
(

1 + γ0a[i]
d2

I
[i]σ2

)

+ log
(

γ0b[i] + σ2d2E[i]
)

and log
(

γ0b[i] + σ2d2E[i] + γ0a[i]
)

, or equivalently, (20a) can

be expressed in a DC form. Therefore, by employing the

CCCP method [30], [43], [44], the lower bound of (20a) can

be obtained as
T
∑

i=1

gi(a[i], b[i]) ≥
T
∑

i=1

ĝi(a[i], b[i]; af [i], bf [i]), (22)

where {af [i], bf [i]} is the given feasible solution of problem

(17)3 and

ĝi(a[i], b[i]; af [i], bf [i]) , log

(

1 +
γ0a[i]

d2I [i]σ
2

)

− log
(

γ0bf [i] + σ2d2E[i] + γ0af [i]
)

+ log
(

γ0b[i] + σ2d2E[i]
)

− γ0
γ0bf [i] + σ2d2E[i] + γ0af [i]

(a[i]− af [i] + b[i]− bf [i]).

(23)

Note that the equality in (22) holds when a[i] = af [i] and

b[i] = bf [i]. Consequently, problem (20) can be approximated

by the following convex problem:

max
{a[i], b[i]}

T
∑

i=1

ĝi(a[i], b[i]; af [i], bf [i])

s.t. (20b) and (20c).

(24)

Then, we note that without the total power constraint

(20c), the other constraints in problem (24) are separable over

different time slots i ∈ T . Inspired by this observation, we

introduce a Lagrange multiplier (dual variable) λ ≥ 0 to (20c)

and define the partial Lagrangian associated with problem (24)

as [45]

L({a[i]}, {b[i]}, λ) =
T
∑

i=1

ĝi(a[i], b[i]; af [i], bf [i])

− λ

T
∑

i=1

(a[i] + b[i]) + λP.

(25)

3In the following, the subscript f is used to denote the feasible variable
obtained in the previous BCD iteration.

With (25), the dual function, denoted by d(λ), can be written

as [45]

d(λ) , max
{a[i], b[i]}

L({a[i]}, {b[i]}, λ)

s.t. (20b).
(26)

Let {a[i](λ)} and {b[i](λ)} denote an optimal solution of

problem (26) with fixed λ. It is not difficult to see that,

if {a[i](0), b[i](0)} satisfy the total power constraint (20c),

then {a[i](0), b[i](0)} is optimal for problem (24), since when

λ = 0, problem (26) becomes a relaxed version of problem

(24) without the total power constraint (20c) and if (20c) is

automatically satisfied in this case, the only possibility is that

{a[i](0), b[i](0)} is optimal. Otherwise, we need to increase

λ to enhance the dominance of −λ
∑T

i=1(a[i] + b[i]) + λP
in L({a[i]}, {b[i]}, λ) and force {a[i](λ), b[i](λ)} to satisfy

(20c).

Since problem (24) is convex and strong duality [45] holds,

we have popt = d(λopt) ≤ d(λ) for any λ ≥ 0, where popt is

the optimal objective value of problem (24) and λopt denotes

the optimal dual variable. Hence, in order to solve problem

(24), we can instead solve the following dual problem:

min
λ≥0

d(λ). (27)

Since d(λ) is a convex function with respect to λ and

P − ∑T
i=1(a[i] + b[i]) is a subgradient of d(λ) [46, pp.

12], we can infer that if {a[i](λopt), b[i](λopt)} satisfies (20c)

and λopt
(
∑T

i=1(a[i](λ
opt) + b[i](λopt)) − P

)

= 0, then

{a[i](λopt), b[i](λopt)} is an optimal solution of problem (24).

To this end, our main focus is on solving the dual prob-

lem (27) and this can be conducted by using the Bisection

method [45] with the aid of the subgradient P −∑T
i=1(a[i] +

b[i]). We summarize the proposed Lagrange duality method

in Algorithm 1, where Steps 1-4 check whether or not

{a[i](0), b[i](0)} is the optimal solution, Steps 5-10 represent

the Bisection method to solve the dual problem (27) globally.

Note that in Step 9, we increase λ when the subgradient

P −
∑T

i=1(a[i] + b[i]) is positive and decrease λ otherwise,

so as to find the optimal dual variable. In the following, we

show that problem (26) can be solved globally in closed form

with given λ.

Algorithm 1 Proposed Algorithm for Solving Problem (24)

1: Let λ← 0 and solve problem (26) to obtain {a[i](0), b[i](0)}.
2: if

∑T

i=1
(a[i](0) + b[i](0)) ≤ P then

3: output {a[i](0), b[i](0)} and exit the algorithm.
4: end if
5: λl ← 0, find λr such that that

∑T

i=1
(a[i](λr) + b[i](λr)) ≤ P .

6: repeat
7: λ← (λl + λr)/2.
8: Obtain {a[i](λ), b[i](λ)} by solving problem (26).

9: if
∑T

i=1
(a[i](λ) + b[i](λ)) < P then λr ← λ, else λl ← λ.

end if
10: until |

∑T

i=1
(a[i](λ) + b[i](λ)) − P | is less than a certain

threshold.
11: output ({a[i](λ), b[i](λ)}.

It is readily seen that problem (26) can be divided into

T independent subproblems for each time slot i. Since each

subproblem can be solved similarly, we only need to focus on



6

one particular subproblem, and the corresponding optimization

problem can be expressed as (the time slot index is omitted

here for simplicity)

max
a, b

g̃(a, b)

s.t. a+ b ≤ Pmax, a ≥ 0, b ≥ 0,
(28)

where g̃(a, b) , ĝ(a, b; af , bf )− λ(a+ b). It can be observed

that problem (28) is convex and there are only two opti-

mization variables. With fixed a, g̃(a, b) is a strictly concave

function with respect to b since log(1 + x) (x ≥ 0) is strictly

concave. In what follows, we show how problem (28) can be

efficiently solved with low complexity.

First, we recast problem (28) as the following equivalent

two-tier maximization problem:

max
0≤a≤Pmax−b

max
0≤b≤Pmax−a

g̃(a, b). (29)

For given a, the optimal b (it is unique since g̃(a, b) is strictly

concave with fixed a), denoted as b̄(a), can be obtained by

resorting to the first-order optimality condition of the inner

maximization problem, i.e.,

dg̃(a, b)

db
=

γ0
γ0b+ σ2d2E

− γ0
γ0bf + σ2d2E + γ0af

− λ = 0,

(30)

and we can obtain the stationary point of g̃(a, b) as bs =
1/Cb − σ2d2E/γ0, where Cb , λ+ γ0

γ0bf+σ2d2
E
+γ0af

.

Since the inner maximization problem is a univariate convex

problem with a bound constraint, its optimal objective value

must be attained either on the boundary of the constraint or

at the stationary point bs. To be specific, the optimal solution

of the inner maximization problem can be obtained by

b̄(a) =







0, if bs ≤ 0,
bs, if 0 < bs < Pmax − a,
Pmax − a, otherwise.

(31)

Substituting b̄(a) into the objective function of the outer

maximization problem of (29), it can be recast as follows with

a as the only variable:

max
a

ḡ(a)

s.t. a+ b̄(a) ≤ Pmax, a ≥ 0,
(32)

where ḡ(a) , g̃(a, b̄(a)). As discussed above, for a univariate

optimization problem with a bound constraint, the optimal

objective value must be attained at either the endpoints of

the bound interval or some feasible stationary point of the

objective function. Accordingly, the optimal value of prob-

lem (32) must be attained either at the point that satisfies
dḡ(a)
da = 0 (0 < a < Pmax − b̄(a)), or a ∈ {0, Pmax − b̄(a)}.

Therefore, our basic idea to solve problem (32) is to search

over all stationary points and boundary points and then choose

the one that achieves the maximum objective value.

Next, we solve problem (32) by considering the above

mentioned two cases. By taking the derivative of ḡ(a) with

respect to a, we have

dḡ(a)

da
=

γ0
γ0a+ σ2d2I

+
γ0

db̄(a)
da

γ0b̄(a) + σ2d2E

−
( γ0
γ0bf + σ2d2E + γ0af

+ λ
)

(1 +
db̄(a)

da
).

(33)

1) Case I (0 < a < Pmax − b̄(a)): According to (31), we

need to further consider the following two cases: b̄(a) = bs or

b̄(a) = 0. For both cases, we have
db̄(a)
da = 0. By plugging

db̄(a)
da = 0 into (33) and letting (33) equal to 0, we have

γ0

γ0a+σ2d2
I

= γ0

γ0bf+σ2d2
E
+γ0af

+ λ. Accordingly, a can be

obtained by

a =
γ0bf + σ2d2E + γ0af

γ0 + λ(γ0bf + σ2d2E + γ0af )
− d2I σ

2

γ0
. (34)

2) Case II (a ∈ {0, Pmax − b̄(a)}): In this case, a can take

on two possible values, i.e., a = 0 or a = Pmax − b̄(a). If

a = 0, we have b = b̄(0), otherwise, if a = Pmax − b̄(a), this

implies that b̄(a) = Pmax − a and
db̄(a)
da = −1. Consequently,

we have
dḡ(a)
da = γ0

d2
I
σ2+γ0a

− γ0

d2
E
σ2+γ0(Pmax−a)

= 0, which can

be further simplified to a linear equation and its solution can

be easily obtained by

a =
(σ2(d2E − d2I ) + γ0Pmax)

2γ0
. (35)

Then, by checking the abovementioned four sub-cases and

discarding those do not satisfy the case conditions 0 < a <
Pmax − b̄(a) or a ∈ {0, Pmax − b̄(a)}, we can obtain several

feasible solutions of problem (28). Consequently, problem (28)

can be globally solved in closed form by choosing the feasible

solution that achieves the maximum objective value.

Together with Algorithm 1, the approximated power allo-

cation subproblem (24) can be efficiently solved and with

the optimized {a[i], b[i]}, we can easily obtain {p[i], ρ[i]}
according to (19).

B. Solving the Trajectory Optimization Subproblem

In this subsection, we focus on solving the trajectory

optimization subproblem (18) with fixed {p[i], ρ[i]}. Note

that although the constraints of problem (18) are convex, its

objective function is non-concave with respect to {x[i], y[i]}
and it cannot be solved optimally in general. In order to resolve

the difficulty caused by the non-concave objective function,

we introduce two sets of auxiliary variables {u[i]} and {t[i]},

which satisfy

u[i] ≥ x2[i] + y2[i] +H2, ∀i ∈ T , (36)

t[i] ≤ (x[i]− L)2 + y2[i] +H2, ∀i ∈ T . (37)

As a result, we have the following equivalent optimization

problem:

max
{x[i], y[i], u[i], t[i]}

R̃as(u[i], t[i])

s.t. (1), (2), (4), (36) and (37),
(38)
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where

R̃as(u[i], t[i]) ,

T
∑

i=1

(

log
(

1 +
γ0p[i]ρ[i]

u[i]σ2

)

− log
(

1 +
γ0p[i]ρ[i]

γ0(1− ρ[i])p[i] + σ2t[i]

))

.

(39)

We note that constraints (36) and (37) in problem (38) must

be satisfied with equality at optimality since otherwise, we

can always slightly decrease u[i] and increase t[i] such that

a larger objective value can be achieved without violating

any constraint. Therefore, problem (18) and problem (38) are

equivalent.

It can be observed that the term log
(

1 + γ0p[i]ρ[i]
u[i]σ2

)

in

R̃as(u[i], t[i]) and the term (x[i]−L)2+y2[i] in (37) are convex

with respect to u[i] and {x[i], y[i]}, respectively. Therefore,

although R̃as(u[i], t[i]) is non-concave and constraint (37) is

non-convex, they can be expressed in DC forms and problem

(38) can be addressed by employing the CCCP method.

Specifically, we propose to approximate problem (38) to a

convex one and then present an ADMM-based algorithm to

solve it globally. First, the proposed algorithm assumes a given

solution {xf [i], yf [i], uf [i], tf [i]} in the previous BCD itera-

tion which is feasible to (38). Then, by employing the first-

order Taylor approximation, we construct the lower bounds for

(x[i]− L)2 + y2[i] +H2 and log
(

1 + γ0p[i]ρ[i]
u[i]σ2

)

as follows:

−x2
f [i] + 2xf [i]x[i]− 2x[i]L+ L2 − y2f [i]

+ 2yf [i]y[i] +H2 ≤ (x[i]− L)2 + y2[i] +H2,
(40)

log

(

1 +
γ0p[i]ρ[i]

u[i]σ2

)

≥ log(1 +
γ0p[i]ρ[i]

uf [i]σ2
)

− γ0p[i]ρ[i](u[i]− uf [i])

u2
f [i]σ

2 + γ0p[i]ρ[i]uf [i]
.

(41)

Similarly, we also approximate the second term in (39),

i.e., ̟(t[i]) , log
(

1 + γ0p[i]ρ[i]
γ0(1−ρ[i])p[i]+σ2t[i]

)

, and obtain the

following upper bound:

log

(

1 +
γ0p[i]ρ[i]

γ0(1− ρ[i])p[i] + σ2t[i]

)

= log(γ0p[i] + σ2t[i])− log
(

γ0(1− ρ[i])p[i] + σ2t[i]
)

≤ log(γ0p[i] + σ2tf [i]) +
σ2(t[i]− tf [i])

tf [i]σ2 + γ0p[i]

− log(γ0p[i](1− ρ[i]) + σ2t[i]).
(42)

Note that although replacing ̟(t[i]) by its upper bound in

(42) is mathematically unnecessary since it is already a convex

function, it will be clear later that with this approximation,

the resulting problem is easier to handle. Moreover, we will

show in the simulation results that even with such additional

approximation, the performance achieved by the proposed low-

complexity algorithm is similar to that achieved by using the

CVX solver. After the above mentioned approximations, it is

not difficult to see that the original non-concave objective func-

tion R̃as(u[i], t[i]) and non-convex constraint (37) in problem

(38) can be approximated by

t[i] ≤ −x2
f [i] + 2xf [i]x[i]− 2x[i]L+ L2

− y2f [i] + 2yf [i]y[i] +H2, ∀i ∈ T ,
(43)

Řas(u[i], t[i])

,

T
∑

i=1

(

− γ0p[i]ρ[i](u[i]− uf [i])

u2
f [i]σ

2 + γ0p[i]ρ[i]uf [i]

− σ2(t[i]− tf [i])

tf [i]σ2 + γ0p[i]
+ log(γ0p[i](1− ρ[i]) + σ2t[i])

)

,

(44)

respectively.4 Therefore, problem (38) can be approximated as

the following convex problem:

max
{x[i], y[i], u[i], t[i]}

Řas(u[i], t[i])

s.t. (1), (2), (4), (36) and (43).
(45)

It is noteworthy that the approximation in (42) will not affect

the convergence of the proposed algorithm [47], since the re-

sultant objective function Řas(u[i], t[i]) is a global lower bound

of R̃as(u[i], t[i]) and the first-order behaviors of Řas(u[i], t[i])
and R̃as(u[i], t[i]) are the same at the point of approximation.

Subsequently, we develop a low-complexity ADMM-based

algorithm to globally solve problem (45) efficiently. By ex-

ploiting the special structure of problem (45), we show that by

tactfully introducing auxiliary variables, it can be efficiently

solved and each step in the proposed ADMM method can

be carried out in closed form. For completeness, a brief

introduction of the ADMM method is provided in Appendix

A. It can be seen that problem (45) is not in the standard

form of problem (66), therefore, it is difficult to directly apply

the ADMM method. The main difficulties lie in: 1) how to

partition the optimization variables of problem (45) into two

groups, as in the ADMM framework, 2) how to decompose

each group problem for much easier implementation. To

proceed, we introduce four redundancy copies of the variables

{x[i], y[i]} to help address the abovementioned difficulties,

i.e.,

x[i] = x̄[i], y[i] = ȳ[i], x[i] = x̃[i], y[i] = ỹ[i], (46a)

x[i] = x̂[i], y[i] = ŷ[i], x̂[i] = ẍ[i], ŷ[i] = ÿ[i], ∀i ∈ T .
(46b)

Then, due to the introduction of (46), constraints (2), (4), (36)

and (43) are modified as follows without loss of optimality:

(x[i]−x̄[i+1])2+(y[i]−ȳ[i+1])2 ≤ V 2
maxδ

2
t , ∀i ∈ T \T, (47)

T−1
∑

n=1

(

(ẍ[i]− ẍ[i+ 1])2 + (ÿ[i]− ÿ[i+ 1])2
)

≤ Etr

κ
, (48)

u[i] ≥ x̃2[i] + ỹ2[i] +H2, ∀i ∈ T , (49)

t[i] ≤ −x̃2
f [i] + 2x̃f [i]x[i]− 2x̃[i]L+ L2

− ỹ2f [i] + 2ỹf [i]ỹ[i] +H2, ∀i ∈ T .
(50)

4Note that in (44), some constant terms are ignored for simplicity.
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Next, by dualizing and penalizing the equality constraints

in (46) to the objective function, we can obtain the augmented

Lagrangian (AL) function of problem (45), which is given by

Lδ(Q,U) = Řas(u[i], t[i])−
δ

2

T
∑

i=1

(

(x[i]− x̄[i]− λxi
/δ)2

+ (y[i]− ȳ[i]− λyi
/δ)2 + (x[i]− x̃[i]− ηxi

/δ)2

+ (y[i]− ỹ[i]− ηyi
/δ)2 + (x[i]− x̂[i]− ωxi

/δ)2

+ (y[i]− ŷ[i]− ηyi
/δ)2 + (x̂[i]− ẍ[i]− θxi

/δ)2

+ (ŷ[i]− ÿ[i]− θyi
/δ)2

)

,

(51)

where Q , {x[i], y[i], x̄[i], ȳ[i], x̂[i], ŷ[i], x̃[i], ỹ[i], ẍ[i], ÿ[i],
u[i], t[i]}, δ is the penalty parameter, U , {λxi

, λyi
, ηxi

, ηyi
,

ωxi
, ωyi

, θxi
, θyi

}, {λxi
, λyi

}, {ηxi
, ηyi

}, {ωxi
, ωyi

} and

{θxi
, θyi

} are the dual variables associated with the constraints

in (46), respectively. Accordingly, we have the following AL

problem:
max
Q

Lδ(Q,U)

s.t. (1), (46) − (50).
(52)

Note that in (51), we have dualized and penalized the equality

constraints in (46), and moreover added some constant terms

in order to complete the square terms. The added constants

will not affect the optimality of the AL problem (52).

To solve problem (52), we need to divide the primal

variables Q into two groups (corresponding to x and z in

Appendix A), as the ADMM can diverge for certain patholog-

ical problems when the number of blocks is larger than two

[48]. For this purpose and to facilitate parallel implementation,

we group the variables Q\{ẍ[i], ÿ[i]} according to the parity

of their corresponding time slot indices, while the variables

{ẍ[i], ÿ[i]} are handled in one group since they all appear

in constraint (48). Besides, we also classify these variables

into three different types according to the forms of their

corresponding optimization subproblems, as shown in Fig. 2.

In the following, we elaborate the details on how to solve these

subproblems efficiently.

!"#$%&'

!"#$%&(

)*%+&' )*%+&,)*%+&(

Fig. 2: Grouping and classification of the optimization vari-

ables.

1) Group 1: The Type 1 subproblem is involved with vari-

ables {x[2i], x̄[2i+1], y[2i], ȳ[2i+1]} and the corresponding

optimization problem can be expressed as

max
x[2i], x̄[2i+1], y[2i], ȳ[2i+1]

Lδ,1

s.t. (x[2i]− x̄[2i+ 1])2 + (y[2i]− ȳ[2i+ 1])2 ≤ V 2
maxδ

2
t ,
(53)

where Lδ,1 , − δ
2

(

(x[2i] − x̄[2i] − λx2i

δ )2 + (y[2i] − ȳ[2i] −
λy2i

δ )2+(x[2i]−x̃[2i]− ηx2i

δ )2+(y[2i]−ỹ[2i]− ηy2i

δ )2+(x[2i]−
x̂[2i]− ωx2i

δ )2 + (y[2i]− ŷ[2i]− ωy2i

δ )2 + (x[2i+ 1]− x̄[2i+

1]− λx2i+1

δ )2+(y[2i+1]− ȳ[2i+1]− λy2i+1

δ )2
)

. Problem (53)

is a quadratically constrained quadratic programming (QCQP)

problem with only one constraint, therefore, it can be globally

solved and the detailed derivation of its optimal solution is

relegated to Appendix B. Note that for each time slot i, the

corresponding variables can be optimized in parallel.

The Type 2 subproblem involves the optimization of {x̃[2i+
1], ỹ[2i+ 1], u[2i+ 1], t[2i+ 1]}, which can be written as

max
x̃[2i+1], ỹ[2i+1], u[2i+1], t[2i+1]

Lδ,2

s.t. u[2i+ 1] ≥ x̃2[2i+ 1] + ỹ2[2i+ 1] +H2,

t[2i+ 1] ≤ −x̃2
f [2i+ 1] + 2x̃f [2i+ 1]x̃[2i+ 1]

+ L2 − 2x̃[2i+ 1]L− ỹ2f [2i+ 1]

+ 2ỹf [2i+ 1]ỹ[2i+ 1] +H2,

(54)

where Lδ,2 , −a[2i + 1]u[2i + 1] − σ2t[2i+1]
tf [2i+1]+γ0p[2i+1] +

log(γ0(1 − ρ[2i + 1])p[2i + 1] + σ2t[2i + 1]) − δ
2

(

(x[2i +

1]− x̃[2i+1]− ωx2i+1

δ )2 + (y[2i+1]− ỹ[2i+1]− ωy2i+1

δ )2
)

and a[2i + 1] = γ0p[2i+1]ρ[2i+1]
u2
f
[2i+1]σ2+γ0p[2i+1]ρ[2i+1]uf [2i+1]

. It can

be observed that problem (54) is a convex problem with

two quadratic constraints. Although there is no closed-form

solution for such kind of optimization problems in general,

we show that it can be efficiently solved in closed form by

exploiting its special structure and the details are provided

in Appendix C. It is important to note that this closed-form

solution is easier to obtain when the term ̟(t[i]) in (39)

is approximated by its upper bound in (42); otherwise, the

derivation would be very involved as the gradient of ̟(t[i])
with respect to t[i] is 1

γ0p[i]+σ2t[i] − 1
γ0(1−ρ[i])p[i]+σ2t[i] and the

Lagrangian function associated with problem (76) would be a

quadratic function of t[i], thus rendering it difficult to obtain

the optimal dual variable.

The Type 3 subproblem involves the optimization of {x̂[2i+
1], ŷ[2i+ 1], ẍ[i], ÿ[i]} and we can obtain the following prob-

lem:

max
{x̂[2i+1], ŷ[2i+1], ẍ[i], ÿ[i]}

Lδ,3

s.t. (1),

T−1
∑

n=1

(

(ẍ[i]− ẍ[i+ 1])2 + (ÿ[i]− ÿ[i+ 1])2
)

≤ Etr

κ
,

(55)

where Lδ,3 , − δ
2

∑T
n=1

(

(x̂[i]− ẍ[i]− θxi

δ )2 + (ŷ[i]− ÿ[i]−
θyi
δ )2 +(x[i]− x̂[i]− ηxi

δ )2 +(y[i]− ŷ[i]− ηyi

δ )2
)

. Similar to

problem (53), problem (55) is also a convex QCQP problem

with only one constraint and strong duality holds for this

problem. Therefore, it can be globally solved in closed form

and the details are presented in Appendix D.

2) Group 2: The Type 1 subproblem in group 2 can be

obtained by changing the time slot indices in problem (53)

from 2i and 2i+1 to 2i+1 and 2i+2, respectively. Therefore,

it can be solved by resorting to Appendix B, the details are

not shown here for brevity. Similarly, the Type 2 subproblem

can be obtained by changing the time slot indices in problem
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(54) and it can be efficiently solved according to Appendix C.

Besides, the Type 3 subproblem is given by

max
{x̂[2i], ŷ[2i]}

Lδ,3. (56)

Since problem (56) is an unconstrained convex problem, its

global optimal solution can be easily obtained by (resorting to

the first-order optimality condition)

x̂opt[2i] =
ẍ[2i] + x[2i]

2
+

θx2i
− ηx2i

2δ
,

ŷopt[2i] =
ÿ[2i] + y[2i]

2
+

θy2i
− ηy2i

2δ
.

(57)

Finally, the dual variables can be updated by

λxi
= λxi

+ δ(x̄[i]− x[i]), λyi
= λyi

+ δ(ȳ[i]− y[i]),

ηxi
= ηxi

+ δ(x̂[i]− x[i]), ηyi
= ηyi

+ δ(ŷ[i]− y[i]),

ωxi
= ωxi

+ δ(x̃[i]− x[i]), ωyi
= ωyi

+ δ(ỹ[i]− y[i]),

θxi
= θxi

+ δ(ẍ[i]− x̂[i]), θyi
= θyi

+ δ(ÿ[i]− ŷ[i]).
(58)

Overall, the proposed algorithm to solve problem (45) is

summarized in Algorithm 2. Note that if the 3D trajectory op-

timization is considered, we can similarly introduce auxiliary

variables for the altitudes of the UAV and solve the resulting

subproblems accordingly without much difficulty.

Algorithm 2 Proposed ADMM Method for Problem (45)

1: Let U = 0, set a threshold ǫ and the penalty parameter δ.
2: repeat
3: Update the variables in group 1 by solving subproblems (53),

(54) and (55).
4: Change the time slot indices in subproblems (53) and (54) and

update the variables in group 2 by solving subproblems (53),
(54) and (56).

5: Update the dual variables according to (58)
6: Calculate the primal residual r and dual residual s using (69).
7: until max(‖r‖, ‖s‖) < ǫ.
8: output {x[i], y[i]}.

C. Overall Algorithm and Analysis

To summarize, the proposed algorithm can find a suboptimal

solution of problem (15) by applying the BCD method, i.e.,

the power allocation subproblem (17) and the trajectory opti-

mization subproblem (18) are solved alternately in an iterative

manner. The detailed steps of the proposed algorithm are listed

in Algorithm 3. Furthermore, regarding to the convergence of

Algorithm 3, we have the following proposition:

Proposition 1. The sequence of the objective values generated

by Algorithm 3 is guaranteed to converge.

Proof. Since problems (17) and (18) are equivalent to

problems (20) and (38), respectively, and the latter two

can be approximated by problems (24) and (45) through

the first-order approximations, we can infer that the so-

lution obtained in the (t − 1)-th iteration of Algo-

rithm 3, denoted by {pt−1[i], ρt−1[i], xt−1[i], yt−1[i]}, is

feasible to problem (15). Besides, due to the fact that

Algorithm 1 and Algorithm 2 can obtain the opti-

mal solutions of problems (24) and (45), respectively, it

can be readily seen that R̄as({xt[i], yt[i], pt[i], ρt[i]}) ≥
R̄as({xt−1[i], yt−1[i], pt−1[i], ρt−1[i]}). Together with the fact

that the objective value of problem (15) is upper bounded

by a certain value due to the power constraints (8) and (9),

we conclude that the sequence {R̄as({xt[i], yt[i], pt[i], ρt[i]})}
guarantees to converge. This completes the proof.

Algorithm 3 Proposed Algorithm for Problem (15)

1: Initialize Q, {p[i], ρ[i]} and set a threshold τ .
2: repeat
3: Solve problem (24) using Algorithm 1 with fixed trajectory

and obtain {p[i], ρ[i]}.
4: Solve problem (45) using Algorithm 2 with fixed {p[i], ρ[i]}

and obtain Q.
5: Qf ← Q, {pf [i], ρf [i]} ← {p[i], ρ[i]}.
6: until The fractional increase of the objective value of problem

(15) is below the threshold τ .
7: output {p[i], ρ[i], x[i], y[i]}.

Besides, Algorithm 3 exhibits very low computational com-

plexity and the detailed analysis is presented as follows.

As mentioned in Section III-A, since the power allocation

subproblem is divided into T independent subproblems and

each subproblem is solved efficiently in closed form, the

worst-case complexity of Algorithm 1 is O(NBT ), where NB

denotes the number of iterations required by the Bisection

method. For Algorithm 2, we can see that its complexity

is dominated by solving problem (55) using Gaussian elim-

inations. Since the complexity of solving one instance of

problem (55) scales with T , the complexity of Algorithm

2 can be expressed as O(NANBT ), where NA denotes the

number of ADMM iterations. In summary, the complexity of

Algorithm 3 can be expressed as O(NBCD(NANBT+NBT )),
where NBCD represents the number of BCD iterations. Note

that the complexity of the conventional algorithm in [14] is

O(NBCDT
3.5), therefore, the proposed Algorithm 3 exhibits a

much lower complexity5 and it will be shown in Section IV

that Algorithm 3 can achieve a similar performance with that

of the conventional algorithm using existing convex solvers.

D. Extension to 3D Trajectory Design

In this subsection, we extend the proposed algorithm to the

case of 3D trajectory design, where the UAV’s time-varying

altitudes are also treated as optimization variables. In this case,

problem (15) becomes:

max
{x[i], y[i], z[i], p[i], ρ[i]}

R̄3D
as ({x[i], y[i], z[i], p[i], ρ[i]})

s.t. (1), (4), (7), (9) and (10),

z[1] = z1, z[T ] = zT , zmin ≤ z[i] ≤ zmax, ∀i ∈ T ,

((x[i]− x[i+ 1])2 + (y[i]− y[i+ 1])2

+ (z[i]− z[i+ 1])2)
1
2 /δt ≤ Vmax, ∀i ∈ T \T,

(59)

where R̄3D
as ({x[i], y[i], z[i], p[i], ρ[i]}) , 1

T

T
∑

i=1

(

log
(

1 +

γ0p[i]ρ[i]
d2

I3
[i]σ2

)

− log
(

1 + γ0p[i]ρ[i]
γ0(1−ρ[i])p[i]+σ2d2

E3
[i]

))

, d2I3[i] , x[i]2 +

5Since T is usually on the order of several hundreds, thus T 3.5 ≫
NANBT .
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y[i]2+ z[i]2, d2E3[i] , (x[i]−L)2+y[i]2+ z[i]2, zmin and zmax

denote the UAVs minimally and maximally allowed altitudes,

respectively, while z1 and zT are the initial and final altitudes

of the UAV, respectively. Let R̄3D
as ({x[i], y[i], zmin, p[i], ρ[i]})

denote the average secrecy rate with the altitudes of the UAV

fixed to z[i] = zmin, ∀i ∈ T , then we have the following

proposition:

Proposition 2. For all possible trajectories {x[i], y[i], z[i]} of

problem (59), we have

R̄3D
as ({x[i], y[i], zmin,p[i], ρ[i]})

≥ R̄3D
as ({x[i], y[i], z[i], p[i], ρ[i]}).

(60)

Proof. Please refer to Appendix E.

Proposition 2 implies that the UAV will try to fly as low

as possible to obtain a better performance according to (60),

thus we can safely ignore the constraints z[i] ≤ zmax, ∀i ∈ T
without loss of optimality.

We first consider the special case when the initial and final

altitudes of the UAV are set to zmin, i.e., z[1] = z[T ] = zmin.

According to Proposition 2, we can directly set the altitude of

the UAV at each time slot to zmin, then it can be readily seen

that problem (59) reduces to problem (15) in this case and can

be efficiently solved by Algorithm 3.

For the general case when the initial and final altitudes of

the UAV are not necessarily at zmin, we have an addition

sequence of optimization variables, i.e., {z[i]}, in problem

(59) as compared to those in problem (15). Since the power

allocation subproblem is similar to the 2D case, we mainly

focus on the trajectory optimization subproblem in the sequel.

In particular, similar to the idea in (46), we further introduce

auxiliary variables {z̄[i], z̃[i], ẑ[i], z̈[i]} which satisfy z̄[i] =
z̃[i] = ẑ[i] = z̈[i] = z[i], ∀i ∈ T . Accordingly, constraints

(47)-(50) are modified as follows:

(x[i]− x̄[i+ 1])2 + (y[i]− ȳ[i+ 1])2

+ (z[i]− z̄[i+ 1])2 ≤ V 2
maxδ

2
t , ∀i ∈ T \T,

(61)

T−1
∑

n=1

(

(ẍ[i]− ẍ[i+ 1])2+(ÿ[i]− ÿ[i+ 1])2

+ (z̈[i]− z̈[i+ 1])2
)

≤ Etr

κ
,

(62)

u[i] ≥ x̃2[i] + ỹ2[i] + z̃2[i], ∀i ∈ T , (63)

t[i] ≤− x̃2
f [i] + 2x̃f [i]x[i]− 2x̃[i]L+ L2 − ỹ2f [i]

+ 2ỹf [i]ỹ[i]− z̃2f [i] + 2z̃f [i]z̃[i], ∀i ∈ T .
(64)

We note that the grouping/classification of the variables and

the optimization of these variables can be similarly conducted

as those in the 2D case with proper modifications. Take the

3D version of problem (54) as an example, by following the

derivation in Appendix C, problem (76) becomes

max
x̃, ỹ, z̃, t

Lδ,2,z

s.t. t ≤ −x̃2
f + 2x̃f x̃+ L2 − 2x̃L− ỹ2f

+ 2ỹf ỹ − z̃2f + 2z̃f z̃,

z̃ ≥ zmin,

(65)

where Lδ,2,z , −a(x̃2+ ỹ2+ z̃2)− σ2t
tf+γ0p

+log(γ0(1−ρ)p+

σ2t)− δ
2

(

(x−x̃−ωx

δ )2+(y−ỹ−ωy

δ )2+(z−z̃−ωz

δ )2
)

and ωz is

similarly defined as ωx and ωy . The corresponding Lagrange

function can be expressed as Lδ,2,z,µ̃ , Lδ,2,z + µ̃
(

− x̃2
f +

2x̃f x̃+ L2 − 2x̃L− ỹ2f + 2ỹf ỹ − z̃2f + 2z̃f z̃ − t
)

, where µ̃ is

the Lagrangian dual variable. By checking the first-order opti-

mality condition of problem (65), we can see that the optimal

solutions of x̃, ỹ and t are the same as (77), while the optimal

z̃ can be expressed as z̃opt(µ̃) = max
(

δz−ωz+2µ̃z̃f
2a+δ , zmin

)

.

If the solution {x̃opt(0), ỹopt(0), z̃opt(0), topt(0)} satisfies the

constraint of problem (65), then it is the optimal solution,

otherwise, the optimal dual variable µ̃opt satisfies t(µ̃) =
−x̃2

f + 2x̃f x̃(µ̃) + L2 − 2x̃(µ̃)L − ỹ2f + 2ỹf ỹ(µ̃) − z̃2f +
2z̃f z̃(µ̃). If z̃opt = zmin, the optimal solution of µ̃ is

the same as that in the 2D case with H2 replaced by

−z̃2f + 2z̃fzmin. On the other hand, if z̃opt(µ̃) =
δz−ωz+2µ̃z̃f

2a+δ ,

then we have µ̃opt =
(

−b3D
µ̃ +

√

(b3D
µ̃ )2 − 4a3D

µ̃ c3D
µ̃

)

/(2a3D
µ̃ ),

where a3D
µ̃ =

4(x̃f−L)2+4ỹ2
f+4z̃2

f

2a+δ , b3D
µ̃ =

σ2a3D
µ̃

σ2tf+γ0p
+ d3D

µ̃ ,

c3D
µ̃ =

σ2d3D
µ̃

σ2tf+γ0p
− 1 and d3D

µ̃ = −x̃2
f − ỹ2f − z̃2f + L2 +

γ0(1−ρ)p
σ2 +

2(x̃f−L)(δx−ωx)+2ỹf (δy−ωy)+2z̃f (δz−ωz)
2a+δ . By com-

paring the objective values achieved by these two cases, we

can solve the 3D version of problem (54) efficiently. The

details of the other optimization steps are not elaborated here

for brevity.

To summarize, we can conclude that the proposed low-

complexity algorithm can be easily extended to the case of 3D

trajectory design and its convergence can also be guaranteed

in the 3D case similar to the analysis in Proposition 1.

IV. SIMULATION RESULTS

In this section, we provide numerical results to evaluate

the performance of our proposed low-complexity algorithm

(i.e., Algorithm 3). For comparison, we also provide the

performance of the following three benchmark schemes:

• The fixed trajectory (FT) scheme: the transmit power

levels and power splitting ratios are jointly optimized,

while the UAV is assumed to fly from (x1, y1) to (xT , yT )
straightly at a constant speed.

• The naive power splitting (NPS) scheme: running Algo-

rithm 3 with fixed ρ[i] = 0.5, ∀i.
• The without AN scheme: running Algorithm 3 with fixed

ρ[i] = 1, ∀i.
In our simulations, the channel bandwidth, the noise power

spectrum and the channel power gain are set to 20 MHz,

N0 = −169 dBm/Hz and γ0 = −36 dB, respectively, and

the carrier frequency is set at 5 GHz. Hence, the reference

SNR at a distance of 1 m is γ0

σ2 = 60 dB. The nominal system

configuration is defined by the following choice of parameters

unless otherwise specified: L = 100 m, H = 100 m,

Vmax = 12 m/s, M = 4 kg, N = 125 s, δt = 0.5 s, (x1, y1) =
(−200 m,−150 m), (xT , yT ) = (1000 m,−150 m), P̄ = 0
dBm and Pmax = 4P̄ . The total mobility energy stored at the

UAV Etr is set to 19.40 kJ. The simulations are implemented

in MATLAB R2016b and carried out on a workstation with

Intel Xeon(R) CPU E5-2640 running at 2.6 GHz and with 128

GB RAM.
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1) Convergence property: First, we illustrate in Fig. 3 the

convergence of our proposed Algorithm 2 and 3. From Fig. 3

(a), it is observed that the outer BCD iteration of Algorithm 3

is monotonically convergent and it needs about 10 iterations

to obtain the steady performance. Besides, in Fig. 3 (b) and

(c), we plot the primal and dual residuals ‖r‖ and ‖s‖ versus

the number of ADMM iterations in Algorithm 2. As can be

seen, Algorithm 2 can converge well within 2000 iterations.

Although this number is relatively large as compared with the

number of outer BCD iterations, the complexity is low since

each updating step in Algorithm 2 is very simple, this will be

verified in the following results.
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Fig. 3: Convergence behavior of the proposed Algorithm 2 and

3.

2) Performance and complexity: In Fig. 4 and Table I, we

respectively investigate the average running time required by

Algorithm 3 to complete one outer BCD iteration and the

achieved objective value (i.e., the average secrecy rate) in

bits/s/Hz by Algorithm 3. For comparison, we also provide

the performance achieved by replacing Algorithm 1 and 2 in

steps 3 and 4 of Algorithm 3 by using the CVX solver [32].

From Fig. 4, we observe that the running time required by the

proposed algorithm is significantly less than that required by

using CVX. The running time increases with the increasing

of T , however, it increases much slower for the proposed

algorithm. This is consistent with the complexity analysis

in Section III-C and it shows that the proposed algorithm

design is more scalable. Besides, we observe from Table I that

the average secrecy rate achieved by the proposed algorithm

and that by CVX is almost identical. In certain cases, such

as T = 240, the performance of the proposed algorithm is

even better. This is because the CVX solver uses a successive

approximation heuristic method to solve convex optimization

problems involving log(·) functions, which may lead to certain

performance loss due to precision issues.

TABLE I: Achieved Average Secrecy Rate Comparison

Numbers of time slots T

200 220 240 260 280 300

Using CVX 2.2019 2.9532 3.2711 3.5375 3.7640 3.9580
Algorithm 3 2.2019 2.9532 3.2721 3.5375 3.7640 3.9580

3) Average secrecy rate versus the Bob-Eve distance L:

In Fig. 5, we plot the average secrecy rates achieved by the

200 220 240 260 280 300

0

50

100

150

200

250

300

350

Fig. 4: Running time comparison.

considered schemes under various values of L. First, it is

observed that the proposed algorithm achieves the best perfor-

mance among the considered schemes. Second, the achieved

average secrecy rates by all the considered schemes increases

with L, which is expected since it is more difficult for Eve to

intercept the communications between Bob and the UAV when

L is large. Similarly, since transmitting AN is less important

under larger L, the performance of the without AN scheme

approaches that of the proposed algorithm with the increasing

of L. Besides, we observe that the performance of the NPS

scheme is better than that of the FT scheme. This is due to the

fact that optimizing the UAV’s trajectory under the considered

simulation setup enables the UAV to fly close to Bob and away

from Eve to achieve higher secrecy rate, while the performance

gain offered by optimizing the power splitting ratios {ρ[i]} is

not that pronounced.
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Fig. 5: Average secrecy rate versus L.

4) Average secrecy rate versus the total flight time N : In

Fig. 6, we investigate the average secrecy rate versus various

values of N . As can be seen, the performance of all the

considered schemes improves with the increasing of N , except

for the FT scheme. This is because with increasingly large T ,

the UAV is able to hover over its favorable locations for a

longer time, which leads to higher secrecy rate. However, if the
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Fig. 6: Average secrecy rate versus N .

mobility of the UAV cannot be exploited as in the FT scheme,

the achieved average secrecy rate will remain unchanged even

for sufficiently large N . Besides, we can observe that when

N is small (e.g., N = 100 s), the performance of the FT

scheme is better than that of the NPS scheme, since in this

case, the advantage of mobility control cannot be exploited due

to the limited flight time. Moreover, the proposed Algorithm

3 outperforms the other analyzed schemes.

5) Average secrecy rate versus the average transmit power

P̄ : Fig. 7 plots the average secrecy rates of different schemes

versus P̄ . As shown, the proposed Algorithm 3 always

achieves the highest average secrecy rate, while the without

AN scheme provides the lowest average secrecy rate. The

performance achieved by the proposed scheme, the FT scheme

and the NPS scheme all improves with the increasing of P̄ ,

while that by the without AN scheme does not change much.

This is because the Bob-Eve distance is set to L = 100 m,

which is relatively close and thus the qualities of the UAB-

Bob and UAV-Eve links both improve as P̄ increases since

no AN is available to degrade the UAV-Eve link. Besides, we

observe that the performance gain of the proposed algorithm

over the NPS scheme gradually decreases and approaches zero

as P̄ increases. This is reasonable since the achievable rates

of the UAV-Bob and UAV-Eve links are log(·) functions of

{SNRI[i]} and {SINRE[i]}, they tend to gradually saturate as

P̄ increases, which will limit the gain offered by the power

splitting.

6) Trajectories under various values of Eth: Fig. 8 shows

the trajectories of the UAV by employing different schemes

when Eth = 14.55 kJ and Eth = 19.40 kJ. First, we can

see that with larger Eth, the UAV can fly closer to Bob

to achieve a higher secrecy rate and this holds for all the

considered schemes. Second, it is observed that the trajectories

of the proposed algorithm and the without AN scheme differ

significantly with Eth = 14.55 kJ or Eth = 19.40 kJ, especially

when the UAV flies towards Bob. Specifically, with the ability

to transmit AN (in the proposed algorithm and the NPS

scheme), the UAV can fly closer to Bob and Eve, while for the

without AN scheme, the UAV has to keep a certain distance

away from Bob in order to weaken the UAV-Eve link. Besides,
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Fig. 7: Average secrecy rate versus P̄ .

the trajectories of the proposed algorithm and the NPS scheme

are almost identical, which implies that the UAV’s trajectory is

not sensitive to the power splitting ratios under the considered

simulation setups.

7) Trajectories under various values of N : In Fig. 9, we

show the trajectories of the UAV by employing different

schemes when N = 103 s and N = 125 s. We observe that

when the flight time is long enough (i.e., N = 125 s), the

UAV can fly close to Bob and Eve, while when N = 103
s, the UAV has to head back to the final location before it

can reach its most favorable location. Besides, similar to the

results in Fig. 8, the trajectories of the proposed algorithm and

the without AN scheme are different owing to the difference

in the ability of transmitting AN signals.
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Fig. 8: Trajectories of the UAV under various values of Eth.

V. CONCLUSION

In this work, we proposed a power splitting approach to

secure the UAV communication against a potential ground

Eve, by enabling the UAV to transmit confidential information

and AN simultaneously. By exploiting the power splitting

capability of the UAV and its controllable mobility, we max-

imized the average secrecy rate by jointly optimizing the
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Fig. 9: Trajectories of UAV using different algorithms.

UAVs trajectory, the transmit power levels and the power

splitting ratios over time. An iterative algorithm with very

low complexity was proposed to solve the considered op-

timization problem with guaranteed convergence. Numerical

results showed the effectiveness of our proposed algorithm. It

is worth noting that the proposed algorithm and the underlying

techniques that are employed can be extended to other joint

power and trajectory optimization problems for UAV-enabled

communication systems.

APPENDIX A

BRIEF INTRODUCTION TO ADMM

To illustrate the idea of the ADMM, let us consider the

following convex optimization problem:

min
x∈Rn×1, z∈Rm×1

f(x) + g(z)

s.t. Ax+Bz = c, x ∈ C1, z ∈ C2,
(66)

where f(·) : Rn×1 7→ R and g(·) : Rm×1 7→ R are convex

functions, C1 ∈ R
n×1 and C2 ∈ R

m×1 are non-empty convex

sets, A ∈ R
p×n,B ∈ R

p×m, c ∈ R
p×1. Assume that problem

(66) is feasible and strong duality holds.

The ADMM solves problem (66) by resorting to the fol-

lowing AL problem:

min
x∈Rn×1, z∈Rm×1

Lρ(x, z,λ)

s.t. x ∈ C1, z ∈ C2,
(67)

where Lρ(x, z,λ) = f(x)+g(z)+λ
T (Ax+Bz−c)+ ρ

2‖Ax+
Bz − c‖2, λ denotes the dual variable and ρ is the penalty

parameter. Then, the ADMM iterates over the following three

steps:

xk+1 = argmin
x∈Rn×1

Lρ(x, zk,λk), (68a)

zk+1 = argmin
z∈Rm×1

Lρ(xk+1, z,λk), (68b)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c), (68c)

where k denotes the iteration index. The convergence criterion

of the ADMM can be expressed as ‖rk+1‖ ≤ ǫ and ‖sk+1‖ ≤

ǫ, where rk+1 and sk+1 denote the primal residual and dual

residual in the (k + 1)-th iteration, which are defined as

rk+1 = Axk+1 +Bzk+1 − c,

sk+1 = ρAT
B(zk+1 − zk).

(69)

It can be seen that the ADMM alternately performs one

iteration of primal variables updates, i.e., (68a) and (68b), and

one step of outer subgradient update for the dual variable,

i.e., (68c). It converges to the global optimum of problem

(66) under relatively loose conditions, for two-block convex

separable problems. For more details, please refer to [49].

APPENDIX B

OPTIMAL SOLUTION TO PROBLEM (53)

It can be readily seen that problem (53) is convex and

strong duality holds, therefore, it can be solved by resorting

to the dual problem. Specifically, the Lagrangian function of

problem (53) is given by L1 = Lδ,1−µ((x[2i]− x̄[2i+1])2+
(y[2i]− ȳ[2i+1])2−V 2

maxδ
2
t ), where µ denotes the Lagrangian

multiplier. Then, by setting ∂L1

∂x̄[2i+1] = 0, we have

x̄opt[2i+ 1] =
1

2µ+ δ
(2µx[2i] + δx[2i+ 1]− λx2i+1

). (70)

Substituting (70) into L1 and taking the partial derivative of

L1 with respect to x[2i], we can obtain

− δ
(

x[2i]− x̄[2i]− λx2i

δ
+ x[2i]− x̂[2i]− ηx2i

δ
+ x[2i]

− x̃[2i]− ωx2i

δ

)

− 2µδ

2µ+ δ

(

x[2i]− x[2x+ 1] +
λx2i+1

δ

)

= 0.

(71)

Based on (71), the optimal xopt[2i] can be expressed as

xopt[2i] =
1

3δ + 2µδ
2µ+δ

(

δ(x̄[2i] + x̂[2i] + x̃[2i]) + λx2i

+ ηx2i
+ ωx2i

+
2µδ

2µ+ δ
(x[2i+ 1]− λx2i+1

δ
)
)

.

(72)

Similarly, we have

ȳopt[2i+1] = (2µy[2i]+ δy[2i+1]−λy2i+1
)/(2µ+ δ), (73)

and

yopt[2i] =
1

3δ + 2µδ
2µ+δ

(

δ(ȳ[2i] + ŷ[2i] + ỹ[2i]) + λy2i

+ ηy2i
+ ωy2i

+
2µδ

2µ+ δ
(y[2i+ 1]− λy2i+1

δ
)
)

.

(74)

Then, it is not difficult to see that if x̄opt[2i + 1], xopt[2i],
ȳopt[2i + 1] and yopt[2i] satisfy (xopt[2i] − x̄opt[2i + 1])2 +
(yopt[2i] − ȳopt[2i + 1])2 ≤ V 2

maxδ
2
t when µ = 0, then this is

the optimal solution. Otherwise, we substitute (70), (72), (73)

and (74) into (x[2i]−x̄[2i+1])2+(y[2i]−ȳ[2i+1])2 = V 2
maxδ

2
t
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(due to the complementary slackness). By solving this equation

with respect to µ, we have µopt = (
√
A− 3δ2)/(8δ), where

A =
δ2

V 2
maxδ

2
t

(

(

δ(x̂[2i] + x̃[2i] + x̄[2i]) + ωx2i
+ ηx2i

+ λx2i
+ 3λx2i+1

− 3δx[2i+ 1]
)2

+
(

δ(ŷ[2i] + ỹ[2i] + ȳ[2i]) + ωy2i
+ ηy2i

+ λy2i
+ 3λy2i+1

− 3δy[2i+ 1]
)2
)

.

(75)

Substituting µopt back into (70), (72), (73) and (74), we can

obtain the optimal solution of problem (53).

APPENDIX C

OPTIMAL SOLUTION TO PROBLEM (54)

For notational simplicity, in this appendix, we ignore the

time slot index 2i + 1 in the variables {x̃[2i + 1], ỹ[2i +
1], x[2i + 1], y[2i + 1], u[2i + 1], t[2i + 1], ρ[2i + 1], p[2i +
1], ωx2i+1

, ωy2i+1
} without loss of generality. First, we can

observe that Lδ,2 is a decreasing function with respect to

u, therefore the optimal u, denoted as uopt, must satisfy

uopt = x̃2+ ỹ2+H2. By substituting uopt into Lδ,2, we obtain

Lδ,2 = −a(x̃2+ ỹ2+H2)− σ2t
tf+γ0p

+log(γ0(1−ρ)p+σ2t)−
δ
2

(

(x−x̃−ωx

δ )2+(y−ỹ−ωy

δ )2
)

. Hence, problem (54) becomes

max
x̃, ỹ, t

Lδ,2

s.t. t ≤ −x̃2
f + 2x̃f x̃+ L2 − 2x̃L− ỹ2f + 2ỹf ỹ +H2.

(76)

Since problem (76) is convex, we can globally solve it by

resorting to its dual problem. The corresponding Lagrange

function for problem (76) can be expressed as Lδ,2,µ̃ ,

Lδ,2 − µ̃
(

t + x̃2
f − 2(x̃f − L)x̃ − L2 + ỹ2f − 2ỹf ỹ − H2

)

,

where µ̃ is the dual variable.

By checking the first-order optimality condition, we can

express the optimal solution of problem (76) as a function

of µ̃, i.e.,

x̃opt(µ̃) =
δx− ωx + 2µ̃(x̃f − L)

2a+ δ
,

ỹopt(µ̃) =
δy − ωy + 2µ̃ỹf

2a+ δ
,

topt(µ̃) =
σ2tf + γ0p

µ̃(σ2tf + γ0p) + σ2
− γ0(1− ρ)p

σ2
.

(77)

If the solution {x̃opt(0), ỹopt(0), topt(0)} automatically satisfies

the constraint of problem (76), then it is the optimal solution,

otherwise, we can see that the optimal dual variable µ̃opt

satisfies

topt(µ̃opt) =− x̃2
f + 2(x̃f − L)x̃opt(µ̃opt)

+ L2 − ỹ2f + 2ỹf ỹ
opt(µ̃opt) +H2.

(78)

Substituting (77) into (78) and solving the resulting quadratic

equation, we obtain

µ̃opt =
(

−bµ̃ +
√

b2µ̃ − 4aµ̃cµ̃

)

/(2aµ̃), where aµ̃ =

4(x̃f−L)2+4ỹ2
f

2a+δ , bµ̃ =
σ2aµ̃

σ2tf+γ0p
+ dµ̃, cµ̃ =

σ2dµ̃

σ2tf+γ0p
−

1 and dµ̃ = −x̃2
f − ỹ2f + L2 + H2 + γ0(1−ρ)p

σ2 +
2(x̃f−L)(δx−ωx)+2ỹf (δy−ωy)

2a+δ .

APPENDIX D

OPTIMAL SOLUTION TO PROBLEM (55)

The Lagrangian function of problem (55) can be expressed

as L3 = Lδ,3−φ
T−1
∑

i=1

((ẍ[i]−ẍ[i+1])2+(ÿ[i]−ÿ[i+1])2)+φEtr

κ .

By setting
∂Lδ,3

∂x̂[2i+1] = 0 and
∂Lδ,3

∂ŷ[2i+1] = 0, we have

x̂opt[2i+1] =
1

2

(

ẍ[2i+1]+
θx2i+1

δ
+x[2i+1]− ηx2i+1

δ

)

, (79)

ŷopt[2i+1] =
1

2

(

ÿ[2i+1]+
θy2i+1

δ
+y[2i+1]− ηy2i+1

δ

)

. (80)

Substituting (79) and (80) into L3 and letting ∂L3

∂ẍ[2i+1] = 0

and ∂L3

∂ẍ[2i] = 0, we can obtain the following equations:
(

−4φ− δ

2

)

ẍ[2i+ 1] + 2φ(ẍ[2i+ 2] + ẍ[2i])

+
δ

2

(

x[2i+ 1]− ηx2i+1
+ θx2i+1

δ

)

= 0,

(81)

−(δ+4φ)ẍ[2i]+δx̂[2i]−θx2i
+2φ(ẍ[2i+1]+ ẍ[2i+1]) = 0.

(82)

Similarly, for ÿ[2i+ 1] and ÿ[2i], we have
(

−4φ− δ

2

)

ÿ[2i+ 1] + 2φ(ÿ[2i+ 2] + ÿ[2i])

+
δ

2

(

y[2i+ 1]− ηy2i+1
+ θy2i+1

δ

)

= 0,

(83)

−(δ+4φ)ÿ[2i]+ δŷ[2i]−θy2i
+2φ(ÿ[2i+1]+ ÿ[2i+1]) = 0.

(84)

Together with ẍ[1] = x1, ẍ[T ] = xT , ÿ[1] = y1 and

ÿ[T ] = yT , we can employ the Gaussian elimination [50]

(a celebrated algorithm in linear algebra for solving a system

of linear equations) to solve the above equations for a given

dual variable φ and the optimal φ can be found by using the

Bisection method.

APPENDIX E

PROOF OF PROPOSITION 2

Let g3D
i (x[i], y[i], z[i], p[i], ρ[i]) , log

(

1 + γ0a[i]
d2

I3
[i]σ2

)

−
log

(

1 + γ0a[i]
γ0b[i]+σ2d2

E3
[i]

)

(recall that a[i] = p[i]ρ[i] and b[i] =

p[i](1 − ρ[i]) as defined in (19)), then by taking the partial

derivative of

g3D
i (x[i], y[i], z[i], p[i], ρ[i]) with respect to z[i], we have6

∂g3D
i

∂z[i]
=

{

2z[i](f(dI3[i]
2)− f(γ0b[i]

σ2 + dE3[i]
2)), if g3D

i ≥ 0,
0, otherwise.

(85)

where f(x) , 1
γ0a[i]/σ2+x − 1

x . Note that f(x) is a mono-

tonically increasing function since
∂f(x)
∂x = − 1

(γ0a[i]/σ2+x)2 +
1
x2 > 0. Besides, we have dI3[i]

2 < γ0b/σ
2 + dE3[i]

2 when

g3D
i > 0. Therefore,

∂g3D
i

∂z[i] satisfies
∂g3D

i

∂z[i] < 0, if g3D
i > 0,

and
∂g3D

i

∂z[i] = 0 otherwise. This implies that
∂g3D

i

∂z[i] ≤ 0 is

always satisfied, which means that g3D
i will decrease or remain

unchanged with the increasing of z[i]. Thus, we can see that

(60) holds, which completes the proof.

6In the following, g3D
i (x[i], y[i], z[i], p[i], ρ[i]) is abbreviated as g3D

i for
notational simplicity.
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