
Generalised regression estimation given
imperfectly matched auxiliary data

Abstract

Generalised regression estimation allows one to make use of available auxiliary

information in survey sampling. We develop three types of generalised regression

estimator when the auxiliary data cannot be matched perfectly to the sample units,

so that the standard estimator is inapplicable. The inference remains design-based.

Consistency of the proposed estimators is either given by construction or else can be

tested given the observed sample and links. Mean square errors can be estimated.

A simulation study is used to explore the potentials of the proposed estimators.
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1 Introduction

Let {yi : i ∈ s} be the values observed in a sample s from the population U = {1, ..., N}.
Design-unbiased estimation of the population total Y =

∑N
i=1 yi can be achieved using

the sample inclusion probabilities πi = Pr(i ∈ s) for i ∈ U . Let xi be the vector of known

auxiliary values for each i ∈ U . By incorporating these auxiliary values, the generalised

regression (GREG) estimator (e.g. Särndal et al., 1992) can often improve the efficiency

of estimation. The GREG estimator of Y is given by

ŶGR = Ŷ + (X − X̂)>b = X>b+
∑
i∈s

(yi − x>i b)/πi (1)

where Ŷ =
∑

i∈s yi/πi is the Horvitz-Thompson (HT) estimator of Y and X̂ that of

X =
∑

i∈U xi, and b =
(∑

i∈s cixix
>
i /πi

)−1(∑
i∈s cixiyi/πi

)
is a weighted least-squares

estimate of the coefficients of a linear regression model of yi on xi. The constants ci can

be introduced given heterogeneous regression errors; it is also common to set ci ≡ 1.

To calculate the GREG estimator (1), one needs the (x, y)-values for each sample unit.

However, it may be impossible to match the sample and the auxiliary database perfectly,

because one does not have a common, unique identifier in both sources. Record linkage

based on linking variables (e.g. Fellegi and Sunter, 1969; Herzog et al., 2007; Christen,

2012; Harron et al., 2015), such as name and birth date, will be imperfect if some of them

are incorrectly recorded in either source, so that any pair of (x, y) associated with a link

may not actually refer to the same unit. This causes the problem for GREG estimation

in situations where the auxiliary data cannot be perfectly matched.

While there exists a growing literature on linear regression analysis based on linked

datasets — see e.g. Lahiri and Larsen (2005), Chambers (2009), Chambers and Da Silva

(2020) and Zhang and Tuoto (2020) under the frequentist framework of inference, our

perspective is different here. The interest is not the regression relationship itself. The

aim is to utilise the auxiliary information to improve the efficiency of population total

estimation, using an assisting linear model (Särndal et al., 1992), and the inference is based
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on the sampling design rather than the model. For instance, in regression analysis the

auxiliary population total may be of little consequence, whereas it is of central importance

to GREG estimation, and the ostensible total of the x-values in the auxiliary database,

denoted by XA over A, cannot be used directly when the matching between A and U is

incomplete, i.e. they are not one-one matched in truth.

To the best of our knowledge, Breidt et al. (2018) is the only previous work that

addresses the problem from our perspective. In their motivating example, the population

U consists of recreational fishing boat trips along the Atlantic Coast of South Carolina

each year, and the y-value is the catch on each boat trip. The auxiliary database consists

of the boat’s logbook (including data of catch) required to be reported to the South

Carolina Department of Natural Resources. The quality of record linkage is rather poor,

and one cannot be sure that all the trips are reported in the logbooks. Breidt et al. (2018)

consider a difference estimator, which makes use of multiple links for the sample trips.

Although the estimator is biased, one is able to reduce the mean squared error (MSE)

of estimation. The difference predictor is a special case of GREG predictor given fixed

regression coefficients. As these authors point out, there is a need for developing methods

which allow the predictor to be estimated from the sample actually observed.

We shall develop three types of GREG estimators and their approximate variance

estimators, when the matching between the population and the auxiliary database is

incomplete and record linkage between them is imperfect. The conditions for design-

consistent estimators are specified, which can be tested given the observed sample and

links, if the conditions cannot be verified directly based on linking the entire population

and auxiliary database. Thus, the MSE of estimation can be estimated.

In Section 2 we outline the underlying linkage structure of the problem and the infer-

ence framework. The GREG-estimators are developed in Section 3. A simulation study

is used to study the relative merits of the proposed estimators in Section 4, also in com-

parison to the HT estimator that ignores the auxiliary information and the hypothetical

ideal GREG estimator. Some conclusions and final remarks are given in Section 5.

2 Entity ambiguity and inference framework

Imperfect matching between separate data files arises from the ambiguity surrounding

the set of unique entities underlying these data files. Record linkage, or entity resolution,

results in one or several links between a record in one file and the records in another.

A link between a pair of records is a match if the records refer to the same entity, the

link is false otherwise. False links and missed matches are caused by errors of the linking

variables used for record linkage, in the absence of a true identifier (i.e. a perfect linking

variable). While the formulation can be extended to include duplicated records in the

same file, we shall assume that duplicates are absent in the following.

Denote by M = {(i, ιi)} the matches between the population U and the auxiliary

database A, where ιi in A is the matching record of i in U . Let NA = |A| be the size of

A, which may differ to N = |U |, e.g. if U and A are not one-one correspondent in terms
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of the matches. For each i ∈ U , let αi contain the records in A, which are linked with it,

i.e. (i, `) is a link for any ` ∈ αi ⊂ A. Denote these links by {i}×αi. Let di = |αi| be the

cardinality of αi, or the number of links in {i} × αi. Denote by L the population (set of)

links between U and A, which is the union of {i} × αi for all i ∈ U .

The population of links (L) can also be given in the other direction. For each ` ∈ A, let

β` contain the records in U , which are linked with it, i.e. (i, `) is a link for any i ∈ β` ⊂ U .

Let m` = |β`| be the cardinality of β`, or the number of links in β` × {`}. We have

L =
⋃
i∈U

{i} × αi =
⋃
`∈A

β` × {`} and |L| =
∑
i∈U

di =
∑
`∈A

m`

Notice that, insofar as U is the target population and A the auxiliary database, we can

allow β` to be empty for some ` in A, although αi is assumed to be non-empty for any i

in U , i.e. any population unit in U must have at least one linked record in A, but not all

the records in the auxiliary database need to have links to the population units.

Some explanations are needed for this set-up. In a situation where one is able to link

U and A, it is possible to impose a restriction that any record ` ∈ A is linked to at least

one unit in U as well. However, in practice, it is often the case that links can only be made

between the sample units in s and A, for s ⊂ U , but not between U \ s and A, because

the linking variables are only observed in s but not U \ s. This is indeed the situation

considered by Breidt et al. (2018). Thus, to ensure general applicability, we assume that

the direction of linkage is from U to A, i.e. for any given unit i ∈ U , one looks for records

in A that can be linked to it, but one does not look for the units in U that can be linked

to any given record ` ∈ A. It follows that β` may be empty for some records in A. (Of

course, the methods developed in this paper remain applicable if all β` are non-empty.)

Moreover, we shall assume that one makes sure each unit i ∈ U is linked to at least one

record in A, i.e. di ≥ 1 for all i ∈ U . We make this assumption mainly to simplify the

exposition, and we notice that any of the proposed GREG estimators remains applicable,

if one chooses to reject the implausible links (below a given threshold), and simply set

di = 0 and xi = 0 for these unlinked population units.

Given the population links L from U to A, αi is fully observed for any sample unit in s,

as well as the sample links Ls =
⋃
i∈s{i}× αi ⊂ L. Whereas β` for any ` ∈ A may not be

fully observed in Ls, based on which one only observes s` = s∩ β` for ` ∈ α(s) =
⋃
i∈s αi.

The example below provides an illustration.

Example Let N = 6 and NA = 6. The records in A are enumerated ` = 1, ..., 6 as

they are known in A, and ι1, ..., ι5 in parentheses according to their unknown matches in

U , where the matches are shown as dashed lines. Notice that U and A are not one-one

correspondent in terms of the matches, despite N = NA. The population unit i = 6 in

U is an unmatched unit and the record ` = 6 represents an unmatched entity in A. The

population links L are given by the solid arrows.
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A :
` = 1

(ι2)

` = 2

(ι1)

` = 3

(ι3)

` = 4

(ι4)

` = 5

(ι5)

` = 6

(−)

U : i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Let the sample be s = {2, 3, 4} from U . The sample links are

Ls = {(2, ι1), (3, ι3), (3, ι4), (4, ι3), (4, ι4), (4, ι5)}

such that α2 = {ι1}, α3 = {ι3, ι4} and α4 = {ι3, ι4, ι5}. These are fully observed in Ls.

Moreover, we observe s` for ` ∈ α(s) = {ι1, ι3, ι4, ι5}, where sι1 = {2}, sι3 = sι4 = {3, 4}
and sι5 = {4}. However, any observed s` can differ from β`, since it is possible for other

units in U \ s to be linked to the records in α(s), such as βι1 = {1, 2} 6= sι1 . Finally,

for these sample units, the missing match is (2, ι2) for i = 2; the false links are (2, ι1) for

i = 2, (3, ι4) for i = 3, and (4, ι3) and (4, ι5) for i = 4. �

Generally, in the presence of entity ambiguity, we have L 6= M , where the false links

are L\M , and the missing matches are M \L. For the methods of GREG estimation given

imperfectly matched auxiliary data and the associated uncertainty assessment, we shall

treat (U,A) and all the associated the linking variables as fixed, whatever the underlying

stochastic mechanism of the linking-variable errors and the chosen linkage method. Hence,

the population links L are fixed as well. The expectation and variance of an estimator

will be evaluated only with respect to the sampling design.

3 Estimators

We consider two settings: (I) linkage from U to A is possible and L is known, (II) linkage

is only possible from s to A and one observes only Ls associated with s. Of the three

types of GREG estimators below, the first type is only feasible under setting-I, while the

other two types are applicable under both settings.

3.1 Setting-I: given L

We observe fully β` for any ` ∈ α(s), since L is known. Let ωi` be the incidence weights

that are non-negative constants of sampling, where ωi` = 0 for i 6∈ β`, and∑
i∈β`

ωi` = 1 (2)

In the special case of ωi` ≡ 1/m` for i ∈ β`, the weights are referred to as the multiplicity

weights. One can vary ωi` subjected to the constraint (2), e.g. based on the comparison

scores used for record linkage (Fellegi and Sunter, 1969). In any case, the weights are

constants of sampling given U , A, L and the associated linking variables.
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Let zi be the constant auxiliary value for each i ∈ U , which is given by

zi =
∑
`∈αi

ωi`x`

Notice that we have Z =
∑

i∈U zi =
∑

`∈A x` = XA, if m` > 0 for all ` ∈ A, since

Z =
∑
i∈U

zi =
∑
i∈U

∑
`∈αi

ωi`x` =
∑
`∈A

x`
∑
i∈β`

ωi` = XA

by virtue of (2). However, we do not assume this to be the case generally. For an

illustration using Example earlier, given the sample s = {2, 3, 4}, we have z2 = ω22x2 for

i = 2 where ω12+ω22 = 1 for ` = 2, and z3 = ω33x3+ω34x4 and z4 = ω43x3+ω44x4+ω45x5,

where ω33 +ω43 = 1 and ω34 +ω44 = 1 and ω45 = 1. In particular, the multiplicity weights

are given by ω22 = ω33 = ω43 = ω34 = ω44 = 1/2, since β2, β3 and β4 are all of size 2. The

population total Z is given by Z =
∑6

`=2 x` = XA − x1.
We observe the population total Z =

∑
i∈U zi given L and {x` : ` ∈ A}. A population

incidence (PI) GREG estimator can be given by (1) based on zi instead of xi, i.e.

Ŷz = Ŷ + (Z − Ẑ)>bz = Z>bz +
∑
i∈s

(yi − z>i bz)/πi (3)

where bz =
(∑

i∈s ciziz
>
i /πi

)−1(∑
i∈s ciziyi/πi

)
. Let Bz =

(∑
i∈U ciziz

>
i

)−1(∑
i∈U ciziyi

)
.

The variance of the PI-GREG estimator is approximately given by that of

êz =
∑
i∈s

eiz/πi where eiz = yi − z>i Bz

The estimator (3) is design-consistent as n,N →∞, provided the ideal GREG estimator

(1) is consistent. This is a main advantage that L and Z are known under setting-I.

3.2 Setting-II: given Ls

Suppose only Ls is observed over s × α(s), where Ls ⊂ L. Since we observe only s` but

not necessarily β` for any ` ∈ α(s), the incidence weights by (2) are unknown. This is

the situation considered by Breidt et al. (2018), who set ωi` heuristically according to the

assessed quality of the links in Ls. Now, provided M \ L = ∅, i.e. all the matches are

among the links in L although one does not know them all, one may let

ωi` = Pr
[
(i, `) ∈M |β` 6= ∅

]
be the probability that a link (i, `) is the match for `, so that the constraint (2) is satisfied.

However, one still would not know the total Z of the corresponding {zi : i ∈ U}, as long

as L is unknown. Moreover, the probability above cannot be calculated correctly for all

i ∈ s` without knowing the other links (β` \ s`) × `, even if the error mechanism of the

linking-variables were known. In short, this is not a viable option. Below we consider two

5



types of estimators, where ωi` is fully determined given the observed αi for any i ∈ s.

3.2.1 Reverse incidence weights

Let the reverse incidence weights be such that, for each i ∈ U , we have∑
`∈αi

ωi` = 1 (4)

While the incidence weights (2) sum to one for any record ` in A with m` > 0, the weights

(4) sum to one in the opposite direction over αi for any unit i ∈ U . Hence, the adjective

reverse. While the incidence weights require the knowledge of the population links L, the

reverse incidence weights are always available given the sample links Ls.

Let xiω =
∑

`∈αi
ωi`x` be constructed x-value of i ∈ U based on the reverse incidence

weights. Again, one may define the weights according to the relative plausibility of the

links in {i}×αi based on record linkage. The weights are then constants of sampling given

U , A, L and the associated linking variables. Let Xω =
∑

i∈U xiω. When L is known, a

population reverse incidence (PRI) GREG estimator can be given as

Ỹω = X>ω bω +
∑
i∈s

(yi − x>iωbω)/πi = Ŷ + (Xω − X̂ω)>bω

where X̂ω =
∑

i∈s xiω/πi and bω =
(∑

i∈s cixiωx
>
iω/πi

)−1(∑
i∈s cixiωyi/πi

)
. The variance

of the PRI-GREG estimator is approximately given by that of

êω =
∑
i∈s

eiω/πi where eiω = yi − x>iωBω and Bω =
(∑
i∈U

cixiωx
>
iω

)−1(∑
i∈U

cixiωyi
)

For the general case where Xω is unknown because L is unknown. The sample reverse

incidence (SRI) GREG estimator of Y is given as

Ŷω = NX̄>A bω +
∑
i∈s

(yi − x>iωbω)/πi = Ŷ + (NX̄A − X̂ω)>bω (5)

where X̄A = XA/NA is the mean of the x-values over A. Writing Ŷω =
∑

i∈swiyi as a

linear estimator with the sample weights {wi : i ∈ s}, we have
∑

i∈swixiω = NX̄A. The

SRI-GREG estimator has the same approximate variance as the PRI-GREG estimator,

since the first-order approximations of the two only differ by a constant N(X̄A− X̄ω)>Bω

where X̄ω = Xω/N . However, insofar as X̄ω 6= X̄A, the estimator (5) will be biased under

repeated sampling. An additional assumption is needed for design-consistency, i.e.

lim
N→∞

(X̄ω − X̄A) = 0 (6)

Intuitively, this assumption may seem reasonable, as long as the errors of the linking

variables associated with U and A are unrelated to the x-values in A. A more detailed

condition will be given later in Section 3.2.2. For the moment, notice that in practice the
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assumption can be tested based on the observed statistic ̂̄Xω − X̄A.

A special case of the reverse incidence weights is worth mentioning. For each i ∈ U ,

let `i be the best link among all ` ∈ αi. Let ωi`i = 1 and ωi` = 0 for any other ` ∈ αi.
It should be pointed out that this is not a special case of incidence weights (2), since `i
is chosen among αi not β`i and it is possible for any given ` ∈ A to be the best link for

more than one unit in U . Let x∗i = x`i be the best-link x-value of i ∈ s. This can be

relevant for secondary users, who are only given these best-link auxiliary values, but have

no access to the other links because the linkage is performed by another party.

Let X∗ =
∑

i∈U x
∗
i . The sample best-link (SBL) GREG estimator of Y is given as

Ŷb = NX̄>A b
∗ +

∑
i∈s

(yi − x∗>i b∗)/πi = Ŷ + (NX̄A − X̂∗)>b∗ (7)

where X̂∗ =
∑

i∈s x
∗
i /πi and b∗ =

(∑
i∈s cix

∗
ix
∗>
i /πi

)−1(∑
i∈s cix

∗
i yi/πi

)
. The variance of

the SBL-GREG estimator is approximately given by that of

ê∗ =
∑
i∈s

e∗i /πi where e∗i = yi − x∗>i B∗ and B∗ =
(∑
i∈U

cix
∗
ix
∗>
i

)−1(∑
i∈U

cix
∗
i yi
)

The estimator (7) is design-consistent, provided X∗/N − X̄A → 0, as N → ∞, and the

assumption can be tested based on the observed statistic X̂∗/N − X̄A.

3.2.2 GREG over Ls

Let NL =
∑

i∈U di = |L| be the number of links in L. Let XL =
∑

i∈U
∑

`∈αi
x` and

X̄L = XL/NL be the total and mean of x over L, respectively. Let BL be a vector of

coefficients of the same dimension as XL. Let

ỸL = Ŷ +N(X̄A − ̂̄XL)>BL

where ̂̄XL = X̂L/N̂L, and X̂L =
∑

i∈s
∑

`∈αi
x`/πi, and N̂L =

∑
i∈s
∑

`∈αi
1/πi. Clearly,

ỸL is design-consistent for Y if limN→∞(X̄L− X̄A) = 0, which can be tested based on the

observed statistic ̂̄XL − X̄A. Below we consider first this condition in more details, and

then the estimation of BL given the sample links Ls.

Let {ωi` : (i, `) ∈ L} be the incidence weights (2) associated with L. Let AL be the

link-projection of U onto A, containing the NAL linked records in A. Let a` = 1 if ` ∈ AL
and 0 otherwise. We assume N/NL = O(1) and NAL/NA = O(1), as N →∞. We say ωi`
and a` are non-informative of the x-values asymptotically, as N →∞, if lim

N→∞

∑
(i,`)∈L ωi`x`

NL
−

∑
(i,`)∈L ωi`

NL
X̄L = 0

lim
N→∞

∑
`∈A a`x`
NA

−
∑

`∈A a`
NA

X̄A

(8)

In other words, as N → ∞, the empirical covariance of ωi` and x` over L tends to 0,

as well as that of a` and x` over A. We have then limN→∞(XAL/NAL − X̄L) = 0, since

7



∑
(i,`)∈L ωi` = NAL and

∑
(i,`)∈L ωi`x` = XAL =

∑
`∈AL

x` in the first part of (8), and

limN→∞(XAL/NAL−X̄A) = 0 due to the second part of (8). It follows that X̄L−X̄A → 0,

as N →∞, and the estimator ỸL above is consistent.

Moreover, we have limN→∞(X̄ω − X̄L) = 0, if the first part of (8) holds when ωi` are

the reverse incidence weights (4), where
∑

(i,`)∈L ωi` = N and
∑

(i,`)∈L ωi`x` = Xω. Thus,

the condition (6) for the SRI-GREG estimator (5) is satisfied if the reverse incidence

weights are non-informative of the x-values in addition to (8). Notice that requiring the

first part of (8) to hold for both types of weights is essentially the same as requiring it

to hold for either type of weights, since it is hard to imagine a real situation where the

condition holds only for one type of weights but not the other type.

To reveal the estimator of BL, we observe that

ỸL = NX̄>ABL +
∑
i∈s

1

πi

(∑
`∈αi

ωi`yi −
N

N̂L

∑
`∈αi

x>` BL

)
given any reverse incidence weights (4). Thus, BL can be set according to GREG of ωi`yi
on x`/r̂ over Ls, where r̂ = N̂L/N . A sample link-set (SLS) GREG estimator of Y is

ŶL = NX̄>A bL +
∑
i∈s

(yi − x>iLbL/r̂)/πi = Ŷ +N(X̄A − ̂̄XL)>bL (9)

where xiL =
∑

`∈αi
x`, and bL = r̂

(∑
i∈s
∑

`∈αi
ci`x`x

>
` /πi

)−1(∑
i∈s
∑

`∈αi
ci`x`ωi`yi/πi

)
,

since πi is the inclusion probability of a link (i, `) in Ls. The target of bL over sampling

is BL = r
(∑

i∈U
∑

`∈αi
ci`x`x

>
`

)−1(∑
i∈U
∑

`∈αi
ci`x`ωi`yi

)
, where r = NL/N .

The first-order Taylor expansion of the SLS-GREG estimator (9) is given by

ŶL
.
= (X̄A − X̄L)>bL + Ŷ − r−1X̂>LBL + r−1X̄>LBLN̂L = (X̄A − X̄L)>bL +

∑
i∈s

e′iL/πi

where e′iL = eiL + di/r, and eiL = yi − x>iLBL/r is the sum of population link-set GREG

residuals over αi, for i ∈ U . The extra term di/r arises from the estimator N̂L. Given

(8), an approximate variance estimator can be that of
∑

i∈s e
′
iL/πi.

3.3 Relative efficiency

Of the three types of GREG estimators above, the PI-GREG estimator (3) is based on

the incidence weights (2), the SRI-GREG estimator (5) and the SLS-GREG estimator (9)

are based on the reverse incidence weights (4); the first two are based on GREG over s,

and the last one is based on GREG over Ls. A key factor to the relative efficiency is the

covariance between the dependent and independent variables of the regression.

Consider the simple linear regression model as the assisting model, where the model

covariance (yi, xi) is a scaler that is easy to comprehend. The PI-GREG estimator depends

on the covariance between yi and zi =
∑

`∈αi
ωi`x`, the SRI-GREG estimator on that

between yi and xiω =
∑

`∈αi
ωi`x`, and the SLS-GREG on that between ωi`yi and x`. For
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any given i ∈ U and fixed choice of ωi` over αi, we have

Cov(yi, ωi`x`) = Cov(ωi`yi, x`) =

{
ωi`Cov(yi, xi) if ` = ιi

0 if `i 6= ιi

where Cov(yi, xi) refers to the model covariance between yi and the matched xi, and

Cov(yi, xj) = 0 for two different units i 6= j. Thus, given the presence of false links

and the fact that ωi` ∈ [0, 1], the model covariance is reduced given imperfectly matched

auxiliary values, and the population GREG slope coefficient will be attuned towards 0

compared to that given matched auxiliary values. This is the main reason why GREG

estimation given imperfectly matched auxiliary values will lose efficiency compare to the

ideal situation where the matches are known.

Meanwhile, what is important in practice is whether using the constructed auxiliary

values based on the sample links Ls can still improve the efficiency compared to the

HT-estimator that ignores the auxiliary information altogether. It is possible to equate

the HT-estimator with the GREG estimator that uses an intercept-only assisting model,

where the covariance between yi and the constant independent variable xi ≡ 1 is zero by

definition. Using either the incidence weights or the reverse incidence weights, we have

Cov(yi,
∑
`∈αi

ωi`x`) =

{
ωi`Cov(yi, xi) for ` = ιi given ιi ∈ αi
0 if ιi 6∈ αi

Thus, even though one does not know which links are the matches, as long as the links

can cover a certain amount of matches, GREG estimation that makes appropriate use of

the auxiliary data via the links still has the capacity to improve the HT-estimator.

It is more difficult to draw general conclusions regarding the relative efficiency of the

different types of GREG estimator. Take for instance the PI-GREG and the SRI-GREG

estimators. The population GREG residual is eiz = yi − z>i Bz under the former, where

zi =
∑

`∈αi
ωi`x`; the residual is eiω = yi−x>iωBω under the latter, where xiω =

∑
`∈αi

ωi`x`.

Although both zi and xiω are weighted sums of x` over the same αi, the weights sum to 1

for any ` in A for the former whilst they sum to 1 for i in U for the latter. The relative

magnitude of the residuals cannot be determined generally for each i ∈ U on its own,

because it also depends on how the other units are linked. This makes it difficult to draw

any general conclusions. In the next section, we shall use a simulation study to explore

the relative efficiency of the different estimators.

4 Simulation study

4.1 Set-up

First, we generate a set of values {(yi, xi) : i ∈ U}, where

yi = 1 + 5xi + εi and xi ∼ Uniform(0, 1) and εi ∼ Normal(0, σ2
i )
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The model variance of εi is σi = σxγi for 0 ≤ γ ≤ 1. We present the results under simple

random sampling without replacement, where the sample size is n. Size-related unequal

probability sampling does not yield any extra insight regarding the relative efficiency of

the different estimators, because their relative merits are chiefly determined by how the

population links L are distributed over U × A, regardless the sampling design.

We let A = U , so that we can easily calculate the ideal GREG estimator (1). The

population matches and links are generated according to the parameters below.

• Let pd be the proportion of population units with di = d, where d = 1, 2, 3 and∑
d pd = 1. For example, if p = (0.4, 0.3, 0.3), then 40% of the units in U have only

one link to A, 30% of them have two links and the rest 30% have 3 links.

• Let pM be the proportion of units in U that have a match in A, where p1 < pM < 1. By

setting pM < 1, one can emulate the general situation where U and A are not one-one

correspondent in terms of the matches, and the ideal GREG estimator that uses all

{(yi, xi) : i ∈ s} is unattainable in reality even if one knew all the matches. We let all

the unique links be matches, the other N(pM − p1) units with matches are randomly

selected, independently of whether a unit has 2 or 3 links. For each i ∈ U with di > 1,

all its false links are randomly selected from A \ {i}.

• Let pML be the proportion of units in N whose matches are identified as the best

links, where p1 ≤ pML ≤ pM . Setting pML = pM implies that the best-link choice is

perfect given (M,L), in which case the SBL-GREG estimator (7) reaches its maximum

potential. Setting pML = p1 means that all the known correct links are presented as

the unique links. Using the SBL-GREG estimator is then unlikely to be a good option,

because one could have obtained additional correct links among the N(pM − p1) units

just by guessing randomly. Thus, the SBL-GREG estimator improves as pML varies

from p1 to pM . Moreover, setting pML close to pM signifies situations where one has

good knowledge of the linkage quality, whereas setting pML closer to p1 signifies the

opposite. The N(pML − p1) units with di > 1 and correct best links are randomly

chosen from the relevant N(pM − p1) units. The best links for the rest N(1 − pML)

units are randomly chosen among the relevant false links in the respective αi.

Given each sample s, we calculate the following estimates and their variance estimates.

• The HT-estimator, and the ideal GREG estimator (1), or simply Ideal.

• The subsample GREG-estimator, or simply Sub, which is only based on the sample

units with di = 1, i.e. with known correct links. This is a practical option, because in

most applications of record linkage one can identify a subset of unique links that are

virtually error-free, no matter how large or small this subset is in a given situation.

• The PI-GREG-estimator (3) with multiplicity weights ωi` = 1/m` or unequal incidence

weights as explained below, designated as PI-m and PI-q, respectively.

• The SBL-GREG estimator (7), or simply SBL, and the SRI-GREG estimator (5) with

reverse incidence weights as explained below and designated as SRI-q.
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• The SLS-GREG estimator (9), or simply SLS, with the same weights as SRI-q.

For SRI-q, the reverse incidence weight (4) assigned to the best link is ωi`i = q in cases

of di > 1, where 0 < q < 1, and ωi` = (1− q)/(di − 1) for the other links in i× αi.

• For a unit with di = 2, setting q = 0.5 would mean that one has no plausible guess

which of the two links is more likely to be correct; for a unit with di = 3, the indifferent

choice would be q = 1/3. For an easy presentation without unnecessary finesse, we

simply set q = 0.4 whether of di = 2 or 3, which refers to a choice where the weights

are more or less indifferent over the multiple links of unit i in U .

• Of course, in cases where pML is much higher than p1, it is no longer reasonable to set

q = 0.4. To take advantage of the knowledge of linkage quality, one can raise the value

of q, in accordance with the proportion of units with correct best link given di > 1,

which is (pML − p1)/(1 − p1). For example, if (p1, pML) = (0.2, 0.8), then setting q

around (0.8− 0.2)/(1− 0.2) = 0.75 would not be an unnatural choice in practice.

For the incidence weights (2), the multiplicity weight 1/m` is the indifferent choice. For

unequal weights of PI-q when m` > 1, we proceed as follows: if the matched population

unit is in β`, assign the value q to the match, where 0 < q < 1, and (1−q)/(m`−1) to the

other links in β`×`; otherwise, assign q to a randomly selected link, and (1−q)/(m`−1) to

the others. The value of q can be large, if one has good knowledge of the linkage quality,

such as when pML = p1. Setting a lower value of q, e.g. q = 0.4, emulates a situation

where one has only vague ideas about the linkage quality. Given how the population links

L are generated above, the range of m` over A is greater than that of di over U , although

a large majority of the records in A would have m` between 0 and 3.

Finally, based on K independent samples, the Monte Carlo expectation and variance

of an estimator, generically denoted by t(k) for k = 1, ..., K, are given by

t̄ =
1

K

K∑
k=1

t(k) and v(t) =
1

K − 1

K∑
k=1

(t(k) − t̄)2

We obtain the MSE of the estimator accordingly. Moreover, the Monte Carlo expectation

of the associated variance estimator, denoted by ν(k) for k = 1, ..., K, is given as

ν̄(t) =
1

K

K∑
k=1

ν(k)

4.2 Results

The population values of yi are generated with σi ≡ 1.5, where N = 5000. The sample

size is n = 100. Let the population mean Ȳ be the target of estimation.

For the results in all the tables, SE is the square root of v(t) of the corresponding

estimator and ESE the square root of ν̄(t). The variance estimator of an estimator works

well, if its SE and ESE are close to each other. The relative efficiency (RE) of an estimator
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is given by the ratio between its variance and that of the HT-estimator, whereas RMSE

designates the ratio of their MSEs. The bias of an estimator is small compared to its

variance if its RMSE and RE are close to each other.

The columns in all the tables refer to the different estimators by their shorthands given

above. We simply set ci ≡ 1 for GREG over s, and ci` ≡ 1 for GREG over Ls.

4.2.1 Low linkage quality

Table 1 provides a set of results in a situation where the linkage quality is very low. We

have p = (0.2, 0.4, 0.4), such that one is only confident about 20% of the units whose

links are matches. Next, we have pM = 0.4, such that the matches are missed from the

relevant links for 60% of the population units. The choice of the best link deteriorates as

pML decreases from pM to p1. We set q = 0.4 for all the results in Table 1, which is not

unreasonable given the low linkage quality here.

Table 1: Results given low linkage quality, N = 5000, n = 100, K = 5000

p = (0.2, 0.4, 0.4), pM = 0.4, pML = 0.4, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.204 0.148 0.328 0.204 0.204 0.197 0.198 0.201
ESE 0.203 0.146 0.327 0.201 0.201 0.194 0.195 0.199
RE 1 0.525 2.595 1.002 1.001 0.930 0.939 0.968
RMSE 1 0.525 2.596 1.002 1.001 0.931 0.940 0.968

p = (0.2, 0.4, 0.4), pM = 0.4, pML = 0.3, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.205 0.148 0.332 0.205 0.205 0.203 0.199 0.203
ESE 0.204 0.146 0.325 0.202 0.202 0.198 0.195 0.200
RE 1 0.522 2.623 0.999 1.001 0.977 0.943 0.977
RMSE 1 0.522 2.625 0.999 1.001 0.979 0.944 0.978

p = (0.2, 0.4, 0.4), pM = 0.4, pML = 0.2, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.202 0.146 0.332 0.202 0.202 0.201 0.194 0.198
ESE 0.203 0.147 0.325 0.201 0.201 0.200 0.194 0.199
RE 1 0.522 2.691 1.000 0.998 0.984 0.924 0.959
RMSE 1 0.522 2.692 1.000 0.998 0.985 0.924 0.960

First, since HT and Ideal do not depend on L, their Monte Carlo variance and MSE

all have the same expectations in Table 1, such that the variations across the three blocks

reflect directly the magnitudes of the Monte Carlo simulation errors. It is seen that the

results are reliable within a range of 10−2. Although the variation is greater for Sub, as

it is only based on about 20 sample units, it is clearly the least efficient estimator here.

Next, as can be expected, the performance of SBL worsens as pML decreases. Its RE

is about 1 when pML = p1 = 0.2. However, since pML is unlikely to be as low as p1 in

practice, one can still expect it to be slightly more efficient than HT.
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Given constant q = 0.4 in Table 1, only small variations of the results can be detected

across the three blocks, regarding the variance and MSE of each of the other estimators.

It follows that the population variations of (M,L) and best links across the blocks do not

affect the following conclusions based on these results. Using the incidence weights, PI-m

and PI-q do not yield any gains over HT, although they are more difficult and costly to

implement because they require the knowledge of L. Between SRI-q and SLS, both based

on the reverse incidence weights, the former is somewhat more efficient. In particular,

SRI-q is able to improve HT, even when pML is as low as p1, whereas it is about as efficient

as SBL when pML = 0.4 and the latter is at its best.

Comparing RE and RMSE, one can see that the bias is negligible compared to the

variance of SBL, SRI-q and SLS that only require the sample links Ls. Finally, comparing

SE and ESE, one can see that the variance estimators work well in all the cases.

Table 2: Results given low linkage quality, N = 5000, n = 100, K = 5000

p = (0.2, 0.4, 0.4), pM = 0.8, pML = 0.8, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.206 0.149 0.333 0.199 0.198 0.171 0.186 0.192
ESE 0.204 0.146 0.324 0.194 0.194 0.168 0.183 0.190
RE 1 0.524 2.622 0.933 0.932 0.691 0.818 0.876
RMSE 1 0.524 2.624 0.933 0.932 0.691 0.822 0.878

p = (0.2, 0.4, 0.4), pM = 0.8, pML = 0.8, q = 0.7
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.206 0.149 0.325 0.198 0.193 0.172 0.174 0.191
ESE 0.204 0.146 0.326 0.195 0.189 0.169 0.172 0.190
RE 1 0.519 2.481 0.924 0.872 0.694 0.716 0.861
RMSE 1 0.519 2.482 0.924 0.873 0.697 0.719 0.861

p = (0.2, 0.4, 0.4), pM = 0.8, pML = 0.2, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.206 0.149 0.333 0.199 0.199 0.205 0.186 0.194
ESE 0.204 0.147 0.328 0.195 0.195 0.201 0.182 0.191
RE 1 0.519 2.599 0.931 0.930 0.983 0.815 0.883
RMSE 1 0.519 2.604 0.931 0.930 0.983 0.818 0.884

Table 2 provides another set of results, where p remains the same but pM is increased

to 0.8, such that 80% of the population units now have their matches included in the

links, although one can only be confident that about 20% of the sample units are linked

correctly. This provides a scenario where one can possibly have good knowledge of the

linkage quality, although the available linking variables are rather noisy. Sub cannot

improve given the same p1. SBL is much better when pML = pM , where it uses correctly

matched auxiliary data for 80% of the units, and its RE is about 0.69 in Table 2 compared

to 0.93 in Table 1 when pML = pM . But the gain easily evaporates as pML decreases

towards p1. Although the results for PI-m and PI-q are better than before, they are still

dominated by SRI-q and SLS based on the reverse incidence weights, and the same pattern
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as before remains of the relative merits of the latter two. Again, the bias is negligible

compared to the variance and the variance estimators work well in all the cases.

A notice is worthwhile regarding the second block of results in Table 2. Now that

pML = 0.8 is much higher than p1 = 0.2, it is no longer reasonable to set q = 0.4, where

the weights are more or less indifferent over the multiple links. To take advantage of the

good knowledge of linkage quality, one can raise the value of q. Setting q = 0.7 is not

hard to justify here, given (pML − p1)/(1 − p1) = 0.75. While this clearly improves the

results for SRI-q, where the RE is 0.71 against 0.82 given q = 0.4 in the first block, it

does not have any noteworthy effect for SLS. In the case of SLS, GREG is over Ls instead

of s, and it seems more difficult to assign the unequal weights sensibly for this estimator.

PI-q is also clearly better given larger q, where its RE is 0.87 compared to 0.93 in the first

block where q = 0.4, although the improvement is not as large as for SRI-q.

Finally, GREG estimation is much more efficient than the HT-estimator, at least in

these results, even when one can only be certain that about 20% of the sample units are

correctly matched, as long as L covers a large part of M . For instance, the SRI-GREG

estimator achieves about 20% variance reduction in the last block, only based on more or

less indifferent reverse incidence weights for the units with multiple links.

4.2.2 Better linkage quality

Two more sets of results are given in Table 3, given better linkage quality than above.

For the first two blocks of results, we have p = (0.4, 0.3, 0.3) and pM = 0.9, such that 90%

of the population units have matches among the links, although one is only certain about

nearly half of them. This will be referred to as the medium linkage quality scenario. For

the last two blocks, we have p = (0.8, 0.1, 0.1) and pM = 0.98, such that only 2% of the

population units have missing matches in L, and nearly 80% of the matches are given as

unique links. This will be referred to as the high linkage quality scenario.

The following features are essentially the same as the results in Tables 1 and 2 given

low linkage quality. In all the cases, the bias is negligible compared to the variance

and the variance estimators work well. PI-m and PI-q using incidence weights are still

largely dominated by SRI-q and SLS using reverse incidence weights. For the former two

estimators, PI-q can improve PI-m given good knowledge of the linkage quality, i.e. when

pML = pM ; for the latter two estimators, SRI-q is still better than SLS.

Some additional points are worth noting. Sub becomes more efficient than HT given

high linkage quality where p1 = 0.8. However, just like Ideal, it is infeasible in reality,

because one cannot be sure if the auxiliary total XA is equal to
∑

i∈U xi. We have set

A = U here to ensure the two are equal, only so that these two estimators can be easily

calculated, in order to provide references for the performance of the GREG estimators

developed in this paper. In the high linkage quality scenario, the RE is about 0.66 for

Sub, so that it is dominated by SBL and SRI-q, because they use the additional auxiliary

information for the population units with multiple links. Moreover, the RE of SBL and

SRI-q are 0.55 when pML = pM = 0.98 and q = 0.9, which is about the same as 0.53 for

Ideal, suggesting that the auxiliary information is almost fully utilised.
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Table 3: Results given medium-high linkage quality, N = 5000, n = 100, K = 5000

p = (0.4, 0.3, 0.3), pM = 0.9, pML = 0.9, q = 0.7
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.205 0.149 0.232 0.194 0.183 0.160 0.164 0.184
ESE 0.203 0.146 0.233 0.191 0.181 0.157 0.160 0.181
RE 1 0.532 1.278 0.900 0.800 0.612 0.638 0.805
RMSE 1 0.532 1.279 0.901 0.800 0.615 0.641 0.806

p = (0.4, 0.3, 0.3), pM = 0.9, pML = 0.65, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.204 0.147 0.229 0.191 0.192 0.183 0.173 0.184
ESE 0.203 0.146 0.233 0.190 0.191 0.181 0.173 0.183
RE 1 0.519 1.262 0.878 0.891 0.804 0.723 0.810
RMSE 1 0.519 1.263 0.879 0.892 0.804 0.723 0.811

p = (0.8, 0.1, 0.1), pM = 0.98, pML = 0.98, q = 0.9
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.201 0.145 0.164 0.174 0.155 0.148 0.149 0.162
ESE 0.204 0.146 0.165 0.175 0.155 0.149 0.150 0.164
RE 1 0.526 0.667 0.753 0.593 0.547 0.548 0.651
RMSE 1 0.526 0.675 0.753 0.593 0.549 0.549 0.651

p = (0.8, 0.1, 0.1), pM = 0.98, pML = 0.89, q = 0.4
HT Ideal Sub PI-m PI-q SBL SRI-q SLS

SE 0.205 0.149 0.166 0.179 0.182 0.162 0.158 0.165
ESE 0.204 0.146 0.165 0.174 0.178 0.160 0.156 0.164
RE 1 0.532 0.660 0.763 0.793 0.625 0.596 0.652
RMSE 1 0.532 0.666 0.764 0.794 0.626 0.596 0.654

The settings (pM , pML) = (0.4, 0.65) and (0.8, 0.89) emulate random selection of the

best link among the available links, where pML = p1 + p2/2 + p3/3 in the first case and

approximately so in the second case. For either case, the reverse incidence weights given

q = 0.4 are also more or less indifferent over the available links. The RE is 0.72 for SRI-q

against 0.80 for SBL in the medium quality scenario, and it is 0.60 for SRI-q against

0.63 for SBL in the high quality scenario. Thus, it is possible to improve the simplistic

SBL-GREG estimator through the choice of reverse incidence weights, even though one

has no precise knowledge about the correct link given multiple links.

As discussed before, when pML = pM and the choice of best link is perfect for the given

(M,L), it is reasonable to use a higher value of q. The choice of q = 0.7 is not unnatural

in the medium quality scenario where (pML−p1)/(1−p1) = 0.83, and similarly for q = 0.9

in the high quality scenario where (pML − p1)/(1 − p1) = 0.9. The RE is 0.64 for SRI-q

against 0.61 for SBL in the medium quality scenario, and it is 0.55 for SRI-q against 0.55

for SBL in the high quality scenario. This suggests that it is not difficult for SRI-q to

make most out of the good knowledge of linkage quality, characterised as pML = pM , by

assigning appropriate reverse incidence weight to the best link accordingly.

Meanwhile, changing the value of q has basically no affect on SLS in either scenario,
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indicating again that it may be more difficult to assign unequal weights sensibly for this

estimator. Raising the value of q does much good for PI-q, where its RE is improved from

0.89 to 0.80 in the medium quality scenario, and from 0.79 to 0.59 in the high quality

scenario. Nevertheless, it is dominated by SRI-q and SBL. We notice that m` varies more

over A than di over U , due to directional linkage from U to A, where one can easily control

the range of di but not m`. Thus, when it is possible to link the entire U and A, one may

be able to improve PI-q by adopting a two-way linkage method.

5 Conclusions and final remarks

Three types of GREG estimators are developed given imperfectly matched auxiliary data,

where the standard GREG estimator is inapplicable. Simulation results show that they

can improve the estimation efficiency, compared to the HT-estimator that ignores the

auxiliary information, even when the linkage quality is as low as that given for Table 1.

Other simulations, omitted here to save space, yield results that are consistent with those

reported in Section 4.2, as the sample size varies between n = 30 and n = 1000, or when

the regression model variance is as heterogenous as σi = 2xi.

The first type of PI-GREG estimator (3) is design-consistent, but costly or impossible

to implement, because it is based on the incidence weights (2) that require one to link

the entire population and auxiliary database. While it lacks efficiency compared to the

other two types of GREG estimators in the simulation study, one may be able to improve

it by adopting a two-way linkage method, provided one can obtain good knowledge of the

linkage quality, as discussed at the end of Section 4.2.

The other two types of GREG estimators are practical, as they are based on the

reverse incidence weights (4), for which one only needs to link the sample to the auxiliary

database. A special case is the simplistic best-link estimator (7) that may be relevant

for secondary users who have no access to the auxiliary database or the record linkage

procedure. The additional assumptions for these estimators to be design-consistent can

be tested given the observed sample and links, and MSE can be used as the uncertainty

measure instead of sampling variance if the bias is not negligible. The simulation study

demonstrates that the SRI-estimator (5) can more easily be made efficient, compared to

the SLS estimator (9), through the weights assigned to the best links.

In summary, the SRI-GREG estimator is easy to implement and, at this stage, seems

often the most efficient given sensible choices of the reverse incidence weights. Future

research will hopefully provide better theoretical insights to the relative efficiency of the

estimators, and it will be intriguing whether the PI-GREG and SLS-GREG estimators

can be made more competitive, or if there are potentially other effective approaches to

devising GREG estimators given imperfectly matched auxiliary data.
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