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Abstract: Moringa oleifera Lam. (MO) is a medicinal plant distributed across the Middle East,
Asia, and Africa. MO has been used in the traditional treatment of various diseases including cancer.
This study aimed to perform bioassay-guided fractionation and identification of bioactive
compounds from MO leaf against MDA-MB-231 breast cancer cells. MO leaf was sequentially
extracted with hexane, ethyl acetate (EtOAc), and ethanol. The most effective extract was subjected
to fractionation. MO extract and its derived fractions were continuously screened for anti-cancer
activities. The strongest fraction was selected for re-fractionation and identification of bioactive
compounds using LC-ESI-QTOF-MS/MS analysis. The best anticancer activities were related to the
fraction no.7-derived crude EtOAc extract. This fraction significantly reduced cell viability and
clonogenic growth and increased cells apoptosis. Moreover, sub-fraction no 7.7-derived fraction no.7
was selected for the identification of bioactive compounds. There were 10 candidate compounds
tentatively identified by LC-ESI-QTOF-MS. Three of identified compounds (7-octenoic acid,
oleamide, and 1-phenyl-2-pentanol) showed anticancer activities by inducing cell cycle arrest and
triggering apoptosis through suppressed Bcl-2 expression which subsequently promotes activation
of caspase 3, indicators for the apoptosis pathway. This study identified 10 candidate compounds
that may have potential in the field of anticancer substances.

Keywords: Moringa oleifera; triple negative breast cancer; MDA-MB-231; oleamide; 7-octenoic acid;
1-phenyl-2-pentanol; LC-ESI-QTOF-MS/MS

1. Introduction

Breast cancer is the most frequently diagnosed cancer in women and is one of the leading causes
of cancer death for women. Worldwide, over 1.3 million cases of invasive breast cancer are diagnosed
and more than 450,000 women die from breast cancer annually [1,2]. Breast cancer is a heterogeneous
disease with distinct pathological entities and therefore needs diverse therapeutic interventions.
Approximately 10-20% of invasive breast cancers are triple-negative breast cancer (TNBC) which is
defined as the absence of estrogen receptor, progesterone receptor, and human epidermal growth
factor receptor (HER) 2 [3]. TNBC is associated with poor prognosis, and the survival after metastasis
is worse compared to other subtypes [3,4]. Unfortunately, due to lack of targeted therapy,
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radiotherapy and chemotherapy remain the only recommended option for TNBC [3,5,6]. Therefore,
it is urgent to develop new alternative therapies for TNBC.

Moringa oleifera Lam. (MO) is a highly valued medicinal plant native to India and now
distributed widely across the Middle East, Africa, and Asia, including Thailand. It belongs to the
family Moringaceae and is commonly referred to as Drumstick tree [7-9]. All parts of the MO possess
medicinal properties, and the leaf has the highest nutritional value [10]. MO leaves (MOL) contain
high levels of vitamins C and A, potassium, calcium, iron, and proteins. Besides, the leaves contain
phytochemicals like carotenoids, alkaloids, flavonoids, and amino acids such as cystine, lysine,
methionine and tryptophan [10-12]. In vitro and in vivo studies have demonstrated that MOL extract
has various biological activities and therapeutic effects, including cardioprotective [13],
hypocholesterolaemic [14], neuroprotective [15], anti-inflammatory [16], antioxidant [17-19], anti-
hypertensive [20,21], antidiabetic [22,23], antibacterial [24,25], immunomodulatory [26,27] and
anticancer properties [28-30].

With regard to the anticancer properties, MOL extracts have been shown to disrupt the
proliferation of different cancer cell lines, for example the hot aqueous MOL extract induced
apoptosis in human lung cancer A549 cells by affecting mitochondrial viability in a ROS-dependent
manner [29]. It also can induced cell cycle arrest in murine B16F10 melanoma cells by increasing of
p53, p21WAFICpl and p27Xie! proteins [30]. The methanolic MOL extract induced apoptosis in human
cervical cancer HeLa cells by promoting DNA fragmentation [31]. Moreover, oral administration of
cold aqueous MOL extract induced apoptosis of human hepatocellular carcinoma HepG2 cells by
affecting the apoptosis-related proteins Bcl-2 and caspase-3 [32]. In breast cancer, most of the previous
studies of MOL extracts have used the MCF-7 cell line, a hormone receptor-positive breast cancer

model%%? Only one study has investigated the effect of MOL on the TNBC cell line, MDA-MB-

231: the authors found that ethanol MOL extract arrested these cells at the G2/M phase and effectively
induced apoptosis [32]. However, the underlying mechanism and the bioactive compounds involved
have not yet been fully elucidated.

In this study, we investigated the in vitro anticancer effect of MOL extract against MDA-MB-231
cells by bioassay-guided fractionation, and identification of potential bioactive compounds
responsible for the observed effects. We found that MOL extracts and derived fractions showed a
remarkable anticancer activity with a significant decrease of cell viability, striking reduction of colony
formation, and induction of apoptosis and cell cycle arrest at the G2/M phase. Besides, we tentatively
identified 10 bioactive compounds by LC-ESI-QTOF-MS analysis. Three of them (7-octenoic acid,
oleamide, and 1-phenyl-2-pentanol) can arrest the cell cycle and induce apoptosis of MDA-MB-231
cells. We also demonstrated the anticancer properties of oleamide on human myelogenous leukemia
cell K562 and human squamous cell carcinoma SCC-15.

2. Results

2.1. Screening for cytotoxic effects of crude hexane, EtOAc, and EtOH extracts of MOL

To compare the cytotoxic effects of crude MOL extracts, MDA-MB-231 cells were plated into 96-
well plates and incubated with serial concentrations of the crude hexane, crude EtOAc, and crude
ethanolic (EtOH) extracts for 24 h. Cell viability was assessed using the MTT assay. Crude EtOAc
extract exhibited the lowest ICs value (233.5 pg/mL) followed by crude EtOH extract (241.1 pg/mL),
and crude hexane extract (342.6 pg/mL), respectively (Figure 1A-B). The crude EtOAc MOL extract
was subjected to further fractionation.
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Figure 1. Effects of crude hexane, EtOAc, and EtOH extracts of MOL on the viability of MDA-MB-231
cells. (A) Cells were plated into 96-well plates and incubated with each extract for 24 h. ICso values
were calculated using GraphPad Prism 6.0 software. Each dot represents mean + SEM of three
independent experiments. (B) Cell viability after treatment with each extract at ICso concentrations for
24 h. One-way ANOVA was performed with multiple comparison correction (Dunnett test). Data
represent the mean + SEM of three independent experiments. IC50, the half-maximal inhibitory
concentration; EtOAc, ethyl acetate; EtOH, ethanol.

2.2 Cytotoxic effects of EtOAc extract of MOL and its derived fractions on MDA-MB-231 cells

To examine the inhibitory effects of crude EtOAc extract and its derived fractions, MDA-MB-231
cells were incubated with crude EtOAc extract and fractions no. 1-11 at concentrations of 75, 100, and
150 pg/ml for 24 h. Cell viability was determined using the MTT assay (Figure 2A). Cell viability was
significantly decreased after treatment with crude EtOAc extract and fractions no. 5-8 and 10-11.
There was a noticeable difference with fractions no. 6-8 showing a significant decrease in cell viability
in a dose-dependent manner. The fraction no. 7 showed the strongest cytotoxicity, and thus this
fraction was investigated further at different times points (Figure 2B). Cell viability was significantly
decreased in time-dependent manner after treatment with 100 pg/ml of fraction no.7. As fractions no.
6-8 exhibited notable effects on viability, we further investigated the impact of crude EtOAc extract
and fractions no. 6-8 on the clonogenic growth of MDA-MB-231 cells (Figure 2C and Supplement
Figure 2). Cells were incubated with crude EtOAc extract or fractions no. 6-8 for 24 h. After
incubation, cells were cultured for 14 days in complete medium and then#tained with crystal violet
to visualize the colonies. Fractions no. 6-8 at concentrations 50-150 pg/ml showed a significant
reduction in the number of colonies. These results suggest that the clonogenic growth of MDA-MB-
231 cells was completely inhibited by fractions no. 6-8 of MOL extract.
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Figure 2. Cytotoxic effect of EtOAc extract and its derived fractions on MDA-MB-231 cells. (A) Cells
were treated with crude EtOAc extract and fractions no.1-11 at concentrations 70, 100, and 150 pg/ml
for 24 h. (B) Cells were treated with 100 ug/ml of fraction no. 7 in various times. (C) Colony formation
assay. One-way ANOVA was performed with multiple comparison correction (Dunnett test). Data
represent the mean + SEM of three independent experiments. (*p < 0.05, **p < 0.01, **p < 0.001).
EtOAc, ethyl acetate; Fr, fraction.

2.3 Effect of crude EtOAc extract and fractions no. 6-8 on MDA-MB-231 cell apoptosis and cell-cycle arrest

To evaluate the role of crude EtOAc extract and fractions no. 6-8 on cell apoptosis and cell-cycle
regulation, MDA-MB-231 cells were incubated with crude EtOAc extract and fractions no. 6-8 (150
pg/ml) for 24 h. After incubation, cells were stained with Annexin V/7-AAD and analysed by Muse
cell analyser (Figure 3A and Supplement Figure 3). Crude EtOAc extract and fractions no. 6-8
significantly increased the proportion of late apoptotic cells up to 16.0, 23.9, 44.2, and 39.8%,
respectively. The proportion of dead cells also increased to 43.6, 75.8, 54.2, and 60.1%, respectively.
In addition, the alteration of the cell-cycle distribution was also analysed (Figure 3B and Supplement
Figure 4). Treatment with fractions no. 6 and 8 resulted in the accumulation of cells at the G0/G1
phase. This varied from 53.5% (control) to 61.8% and 63.4%, respectively. Fraction no. 7 resulted in
the accumulation of cells at the G2/M phase (from 26.2% to 38.4%). Therefore, these results suggest
that fractions no. 6-8 promoted cell cycle arrest and induced apoptosis of MDA-MB-231 cells.

Since active fraction no. 7 exhibited the strongest anticancer activities, we further investigated
the expression of apoptosis-related proteins and mRNA (Figure 3C-D). The expression of certain pro-
apoptotic markers, including cleaved caspase 3 protein, Bax mRNA, and p53 mRNA were
significantly increased while anti-apoptotic Bcl-2 protein was decreased by fraction no. 7 treatment.
These results suggest that the apoptosis induction by MOL fraction no. 7 is through the inhibition of
Bcl-2 and the activation p53, Bax, and caspase 3.
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Figure 3. Effect of crude EtOAc extract and fractions no. 6-8 on MDA-MB-231 cell apoptosis and cell-
cycle arrest. (A-B) Cell apoptosis and cell cycle progression analysed by using Muse cell Analyser.
Cells were incubated with crude EtOAc extract or fractions no. 6-8 at 150 pg/ml for 24 h. For untreated
control, cells were incubated with complete medium alone. For positive control, cells were incubated
with doxorubicin (1.5 uM). (C) Western blot analysis. (D) mRNA expression by RT-PCR. Cells were
incubated with fraction no. 7 for 24 h. One-way ANOVA was performed with multiple comparison
correction (Dunnett test). Data represent the mean + SEM of three independent experiments. (*p <
0.05, **p <0.01, **p <0.001). EtOAC, ethyl acetate; Fr, fraction; Dox, doxorubicin; NC, negative control;

Fr, fraction; [3-

actin, beta-actin.
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2.4 Sub-fractionation of fraction no. 7 and identification of compounds by LC-ESI-QTOF-MS/MS

To separate the different chemical components in active fraction no. 7, we next re-fractionated
fraction no. 7 using silica gel column chromatography. Eight sub-fractions (no. 7.1-7.8) were obtained
and their cytotoxicity against MDA-MB-231 cells was assessed using MTT assay (Supplement Figure
5). Sub-fraction no. 7.7 strongly reduced the viability of MDA-MB-231 cells compared to the other
sub-fractions. Thus, we attempted to tentatively identify the bioactive compounds from sub-fraction
no 7.7 using LC-ESI-QTOF-MS/MS. This sub-fraction was injected into an Agilent 1260 Infinity Series
HPLC system and the constituents were collected in a 96-well plate with 30 s per well until 33 min.
In total, ten candidate compounds (C1 - C10) were identified. All collected samples were screened
for cytotoxicity using the MTT assay and the acquisition times represented active compounds
between of 10.414 (C1), 12.286 (C2), 17.586 (C3), 20.198 (C4), 21.015 (C5), 22.476 (C6), 26.473 (C7),
30.557 (C8), 32.057 (C9), and 32.606 (C10) min (Figure 4 and Supplement Figure 8). The full tentative
identification is listed in Table 1.

Table 1: Tentative identification of bioactive compounds identified in sub-fraction 7.7 of MOL extract
by LC-ESI-QTOF-MS.

No. RT m/z MS/MS Tentative identification Formula Error
(min)  [M+HJ (ppm)
C1 10.414 197.1166  179.1015,161.0911, 2 -(benzyloxy) butane-1,4-diol C11H1603 3.15
135.1127,107.0822

2 12.286 143.1057  128.0550,101.0912, 7-octenoic acid CsH1402 6.68
83.0814,62.9783,59.
0458,55.0513
C3 17.586 165.1272 147.1157,95.0482 1-Phenyl-2-pentanol CuH160 1.16
C4 20.198 291.1955 273.1828 8-0x0-9,11-octadecadiynoic acid Ci1sH260s3 -0.79

C5 21.015 291.1958  273.1806,171.1019  4-oxo-octadeca-9Z,11E,13E,15Z- Cis8H2603 -1.13

tetraenoic acid, Chrysobalanic

acid
Cé6 22.476 325.2013  291.1925,233.1518, 12-ox0-14,18-dihydroxy- CisH2s0s -1.08
137.0949 97,13E,15Z-octadecatrienoic
acid
c7 26.473 277.2148  135.1125,93.0669,7 3E,97,127,15Z- CisH2s02 5.09
9.0517 Octadecatetraenoic acid
C8 30.557  372.3457  354.3303,337.3052,  13,14-dihydroxydocosanamide C2HssNOs 2.75
319.2933,97.0993,8
3.0840
c9 32.057 354.3379  337.3075,319.2965, N-(11Z-eicosaenoyl)- C2HaNO:2 -3.51
301.2865 ethanolamine
C10  32.606 282.2784 * 9Z-octadecenamide CisH3ssNO 2.63

*data not determined
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Figure 4. Cytotoxic effect and LC-ESI-QTOF-MS/MS analysis of compounds from sub-fraction no. 7.7.
(A) Cell viability of MDA-MB-231 cells after treatment with each eluted compound for 24 h. (B) LC-
ESI-QTOF-MS/MS chromatogram and the identified compounds (C1-C10). One-way ANOVA test
was performed with multiple comparison corrections (Dunnett test). Data represent the mean + SEM
of three independent experiments. (*p < 0.05, **p < 0.01, ***p < 0.001).
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2.5 The role of three-identified compounds, 7-octenoic acid, Oleamide, and 1-Phenyl-2-pentanol on MDA-
MB-231 cells apoptosis and cell cycle progression

Cytotoxicity of compounds on MDA-MB-231 cells was measured by incubating with serial
concentrations of 7-octenoic acid, cis-9-octadeceneamide (oleamide), and 1-phenyl-2-pentanol for 24
h (Supplement Figure 6). The result showed that cytotoxic dose of oleamide was less than both 1-
phenyl-2-pentanol and 7-octenoic acid. To determine the anticancer effect of compounds, we
examined the morphologic changes by Hoechst 33342 staining (Figure 5A). An apoptotic morphology
was observed after treatments with 7-octenoic acid, oleamide, and 1-phenyl-2-pentanol for 24 h,
whereas control cells were round and homogeneously stained. Then apoptosis was assessed by
AnnexinV/7-AAD staining with Muse cell analyser (Figure 5B-C). Treatment with 7-octenoic acid
significantly increased the proportion of late apoptotic cells. Oleamide and 1-phenyl-2-pentanol
significantly increased the proportion of both early and late apoptotic cells. Moreover, the expression
of apoptotic-associated proteins; Bcl-2, Bax, pro-caspase 3 and cleaved caspase-3 were measured by
Western blot (Figure 5D). We observed an increase of cleaved caspase-3 with the decrease of Bcl-2 in
cells treated with the compounds. Additionally, Muse cell analyser indicated cell cycle arrest (Figure
5E-F). The accumulation of cells in the GO/G1 phase was significantly increased in oleamide treated
cells, while 7-octenoic acid and 1-phenyl-2-pentanol resulted in the accumulation of cells at the G2/M
phase. These results suggested that the three-identified compounds, 7-octenoic acid, oleamide, and
1—pheny1—2—pentanol can induce cell cycle arrest and apoptosis of MDA-MB-231 cells.
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Figure 5. 7-octenoic acid (7-Oct), oleamide (Ole), and 1-phenyl-2-pentanol (1-Phe) induced apoptosis
and cell cycle arrest in MDA-MB-231 cells. (A) Hoechst 33258 staining. (B-C) Apoptosis analysis using
AnnexinV/7-AAD staining. (D) Western blot analysis. (E-F) Cycle cell progression. Cells were
incubated with 7-octenoic acid (2.5 mg/ml), oleamide (70 pg/ml), 1-phenyl-2-pentanol (600 pg/ml), or
doxorubicin (Dox; 1.5 uM) for 24 h in all experiments. Data represent the mean + SEM of three
independent experiments. (*p < 0.05, **p < 0.01, ***p < 0.001). 7-Oct, 7-octenoic acid; 1-Phe, 1-Phenyl-
2-pentanol; Ole, oleamide; dox, doxorubicin.
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2.6 Bioactive compounds suppressed MDA-MB-231 cell migration and induced apoptosis in different cancer
cell lines

TNBC is an aggressive form of breast cancer with high metastasis. We determined the effects of
the compounds on MDA-MB-231 cell migration using the in vitro scratch assay (Figure 6A-B). The
number of migratory cells across the wound regions was significantly decreased after treatment with
7-octenoic acid, oleamide, and 1-phenyl-2-pentanol. This result indicated that 7-octenoic acid,
oleamide, and 1-Phenyl-2-pentanol may have the ability to inhibit MDA-MB-231 cell migration. As
oleamide exhibited notable anticancer effects against MDA-MB-231, we further investigated the effect
of oleamide on two different cancer cell lines, including human myelogenous leukemia cell K562 and
human squamous cell carcinoma lines SCC-15. Result revealed that treatment with 70 and 100 pg/ml
of oleamide increased late apoptosis in both K562 (13.76% and 87.11%) and SCC-15 (11.37% and
24.47%) when compared to the control (Figure 6C). Besides, cell cycle analysis indicated that oleamide
induced cell cycle arrest at GO/G1 phase in both K562 (36.8% to 54.7%) and SCC-15 (47.9% to 51.5%)
when compared to the control (Figure 6D). The results suggested that oleamide has potential as an
anticancer treatment for MDA-MB-231 TNBC and other cell lines.
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Figure 6. Effect of 7-octenoic acid, oleamide, and 1-phenyl-2-pentanol in vitro cell migration. (A)
MDA-MB-231 cells were scratch wounded and incubated with compounds, doxorubicin, or complete
medium (control). The wound areas were imaged at 0, 6, 12, and 24 h post-scratching. (B) Wound area
(%) summarised from triplicate data. One-way ANOVA test was performed with multiple
comparison corrections (Dunnett test). Data represent the mean + SEM of three independent
experiments. (*p < 0.05, **p <0.01, ***p <0.001). (C) Apoptosis and (D) cell cycle analysis by Muse cell
analyser. Cells were treatment with compounds for 24 h in all experiments. 7-Oct, 7-octenoic acid; 1-
Phe, 1-Phenyl-2-pentanol; Ole, oleamide; dox, doxorubicin.
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2.8 Preliminary prediction of compound-targets interactions with drug target commons

Understanding the binding target of compounds provides important insights into the
therapeutic approach. In this study, we preliminary predicted the blinding target of oleamide based
on similarity-based approaches and then query the target profiles in drug target commons platform
(Table 2) [34]. We found 16 target molecules, including 4 transmembrane receptors, 9 enzymes, and
3 nuclear proteins. However, the prediction of certain blinding-targets required the combinations of
data from multiple platforms such as DrugBank, BindingDB, and Protein Data Bank.

Table 2: Prediction of oleamide blinding-targets with drug target commons
(https://drugtargetcommons.fimm.fi/) [34].

Target Preferred name Gene names Target class References
1. GABA-A receptor 33 subunit GABRB3 Ion channel [35,36]
2. Cannabinoid receptor 1 (CB1) CNR1 GPCR [36]
3. 5-HT2a receptor HTR2A GPCR [37,38]
4. P2Y receptors P2RY GPCR [39]
5. Fatty acid amide hydrolase FAAH Enzyme [40-42]
6. Acyl coenzyme A: cholesterol Soat1 Enzyme [43]
acyltransferase 1
7. Cytochrome p450 2c19 Cyp2c19 Enzyme Pubchem bioassay
8.  Cytochrome p450 2¢19 Cyp2c19 Enzyme Pubchem bioassay
9. Cytochrome P450 2C9 Cyp2c9 Enzyme Pubchem bioassay
10. Cytochrome P450 2D6 Cyp2d6 Enzyme Pubchem bioassay
11. Cytochrome P450 3A4 Cyp3a4 Enzyme Pubchem bioassay
12. Cytochrome p450 1a2 Cypla2 Enzyme Pubchem bioassay
13. Ubiquitin carboxyl-terminal Usp1 Kinase Pubchem bioassay
hydrolase 1
14. NEF-kappa-B, p105 subunit Nfkb1 Nuclear receptor =~ Pubchem bioassay
15. Proto-oncogene c-jun Jun Nuclear receptor ~ Pubchem bioassay
16. Cellular tumor antigen p53 Tp53 Nuclear receptor =~ Pubchem bioassay

3. Discussion

MO is a widely consumed traditional plant in many Asian and South East Asian countries. MO
possesses many bioactive compounds with potential health benefits including anti-inflammatory,
antioxidant, and anticancer properties [10]. Although much research supports the anticancer effect of
MOL, the actual bioactive compounds responsible have not been well characterised. In this study, we
explored the anticancer effect, conducted bioassay-guided fractionation, and identified bioactive
compounds from MOL extract against the MDA-MB-231 TNBC cell line. We demonstrated that MOL
crude EtOAc extract showed the greatest anticancer activity but was non-toxic to primary human
macrophage cells (Supplement Figure 1). Crude EtOAc extract and its derived fractions were
screened for in vitro anticancer activities. Fraction no. 7 was subjected for re-fractionation and finally,
the 10 candidate compounds were tentatively identified from the active sub-fraction no. 7.7 using
LC-ESI-QTOF-MS. Moreover, we explored the biological activity of 3 compounds, including 7-
octenoic acid, 1-phenyl-2-pentanol, and oleamide against MDA-MB-231, SCC-15 and K562 cell lines.

Previous studies indicated that the tumor suppressor p53 gene plays an important role in
response to DNA damage and other genomic instability. Activation of p53 is crucial in inducing a
p53-dependent pathway leading to cell cycle arrest or apoptosis [44]. The up-regulation in p53 gene
expression following MOL fraction no. 7 treatment may explain the cell cycle arrest and apoptosis
caused by this fraction (Figure 3). Caspase-3 is a protein that is cleaved and thus activated upon the
initiation of apoptosis. Cleaved caspase-3 propagates the apoptotic signal by cleaving downstream
executioner caspases at their intersubunit linker [45]. We found that fraction no. 7 treatment of MDA-
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MB-231 cells resulted in concentration-dependent activation of caspase-3 (Figure 3). The Bcl-2 family
of proteins are the central regulators of the mitochondrial cell-intrinsic apoptosis [46]. In contrast, an
increase in expression of Bax induces cell death and leads to the elimination of tumor cells [46,47].
Therefore, we measured the expression of Bcl-2 family proteins, and we found that fraction no. 7
treatment resulted in increased expression of Bax and decreased expression of Bcl-2. Collectively, our
results reveal that MOL fraction no. 7 up-regulates pro-apoptotic p53, cleaved caspase-3, and Bax,
while down-regulating anti-apoptotic Bcl-2 protein levels.

On the other hand, flow cytometry analysis with annexin V and PI staining indicated that MOL
fraction no. 7 was not only able to induce apoptosis but also triggered necrotic cell death in MDA-
MB-231 cells. This mechanism might be caused by the activation of caspase-3 which triggers cross-
talk to necrotic signaling, resulting in secondary necrosis [48,49]. The main features of secondary
necrosis are osmotic cell swelling and lysis that lead to leakage of the cell contents; thereby it may
cause tissue injury and induction of inflammation and other immune responses if the dying cells are
not quickly removed by phagocytes [48,49]. MOL fraction no. 7 induced MDA-MB-231 cell cycle
arrest at G2/M phase similar to the study of Al-Asmari ef al., that found increased MDA-MB-231 cell
accumulation in the G2/M phase after treatment with crude EtOAc extract [50].

Previously, MOL has been described as containing many phenolic compounds that exert
anticancer effects including quercetin, kaempferol, isothiocyanate, and gallic acid [12,51]. Moreover,
long-chain fatty acids and their derivatives are also considered as anticancer compounds. In this
study, based on bioassay-guided fractionation and LC-ESI-QTOF-MS analysis, we identified 10
candidate anticancer compounds (Table 1), including two aromatic compounds (C1 and C3), five
fatty acids (C2, C5-C8), two fatty amides (C9 and C10) and a lactone compound (C4). Octadecadienoic
acid and oleamide have been previously described in MOL extracts [52-54] as seen here. Based on
commercially available compounds, we selected three candidate compounds (oleamide, 7-octenoic
acid, and 1-phenyl-2-pentanol) to explore cytotoxicity against MDA-MB-231 cells. Oleamide, also
known as oleyl amide or 9-octadecenamide, belongs to the class of fatty amides. These are carboxylic
acid amide derivatives of fatty acids, that are formed from a fatty acid and an amine. Oleamide was
discovered in the cerebrospinal fluid of sleep-deprived cats [55]. It has been observed that oleamide
possesses several biological activities especially sleep induction [56] and immunological suppression
[57]. Moreover, oleamide has been reported to inhibit gap junction communication on human breast
cancer MDA-MB-231 cells [58,59]. It has been reported that 9-octadecenoic acid found about 20.89%
in MOL [60]. 7-octenoic acid is a long-chain fatty acid and 1-phenyl-2-pentanol is used as a flavoring
agent. There biological activity has not been reported before. In the present study, we demonstrate
the anticancer activity of these compounds against breast cancer cells; we found that oleamide
exhibits the strongest anticancer activity when compared to the other two compounds. However, of
1-phenyl-2-pentanol and 7-octadecenoic acid may act in combination or synergistically with other
compounds to enhance their activitylWe present preliminary results of the synergistic effect of
identified compounds (Supplement Figure 7) after incubation for 24 h. This requires further
investigation. Our research provides ten candidate bioactive compounds that might be useful for
investigating for anti-cancer activity and future development of treatments for TNBC and other type
of cancer. Although we identified the potential compounds by studying their mechanisms of actions,
their interaction or combination effect remains unclear. Several previous studies demonstrated that
combination therapy can improve the efficacy of the drug in TNBC cell lines [61-63]. For example,
combination treatment of selumetinib (MEK1/2 inhibitor) with buparlisib (PI3K inhibitor) is
synergistic in MDA-MB-231 cells [61]. Therefore, the future investigation of anticancer drugs and
active natural product combination with chemotherapy, radiotherapy, and other treatments is
important. Besides, the limitation of this study is performed only MDA-MB-231, TNBC model. It is
unclear whether these compounds still show the same efficacy as other TNBC cell lines. Thus, further
study should be performed in other TNBC cell lines such as MDA-MB-175, MDA-MB-435, and MDA-
MB-436 [64]. However, this study demonstrated that the anticancer efficacy of oleamide with other
cancer cell lines, including human myelogenous leukemia cell K562 and human squamous cell
carcinoma lines SCC-15, which revealed that oleamide has potential anticancer activity for other
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cancer types. Recently, patient-derived cancer models have been proposed to gradually replace the
cancer cell lines for translational research [65-67]. For example, lung cancer patients derived samples
were studied the effective drug combination responds [65]. T-cell prolymphocytic leukemia-derived
model were successfully used for identification and prediction of drug combination treatment [67].
In the present study, we demonstrate the bioassay-guided fractionation and identification of the
potential anticancer compounds from MOL extract against TNBC cell lines MDA-MB-231. There are
10 compounds were tentatively identified by LC-ESI-QTOF-MS analysis. Moreover, also
demonstrates the anticancer properties of compounds no.2 (7-octenoic acid), no.3 (1-phenyl-2-
pentanol), and no.9 (oleamide) against MDA-MB-231 cell and other cancer lines including SCC-15
and K562. Therefore, further investigation of MOL extract and bioactive compounds on TNBC patient
derived samples and patient-derived xenograft models are powerful tool for combination effects and
to overcome the resistance mechanisms.

4. Materials and Methods

4.1 Cell Culture and Chemicals

MDA-MB-231, SCC15, and K562 were obtained from American Type Cell Collection (Manassas,
VA, USA). They were cultured in Dulbecco’s modified eagle medium (Gibco, Carlsbad, CA, USA),
DMEM/F12 (Gibco, Carlsbad, CA, USA) and RPMI 1640 (Gibco, Carlsbad, CA, USA), respectively.
Medium cultured were supplemented with 10% fetal bovine serum (Gibco, Carlsbad, CA, USA) and
1% penicillin/streptomycin (Gibco, Carlsbad, CA, USA). Cells were cultured in a humidified
atmosphere with 5% CO: at 37°C. Primary antibodies against 3-actin, Bax, Bcl-2, caspase-3 were from
Santa Cruz (Santa Cruz, CA, USA), and anti-cleaved caspase-3 was from Affinity Biosciences
(Cincinnati, OH, USA). Mouse anti-human IgG1 Fc secondary antibody conjugated with horseradish
peroxidase (HRP) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) were
from Thermo Fischer Scientific (Waltham, MA, USA). Oleamide, 7-octenoic acid, and 1-phenyl-2-
entanol were from Sigma Aldrich (St. Louis, MO, USA).

4.2 Extraction and fractionation of MOL extract

MOL dried powder (COA Lot.N0.5534) from Khaolaor Laboratories CO., LTD., Samutprakan,
Thailand was subjected to serial exhaustive extraction. 1 kg of MOL powder was sequentially
extracted using hexane, ethyl acetate (EtOAc), and 95 % ethanol (EtOH) as extractants. The extraction
process was repeated three times with 1 liter of each solvent at room temperature (RT). The extracts
were filtered through Whatman no. 3 filter paper and the filtrates were concentrated using a rotary
evaporator (Heidolph Hei-VAP Value HB/G3B) to produce hexane extract (35.37 g), EtOAc extract
(44.78 g), and EtOH extract (66.63 g). The crude EtOAc extract (10 g) was dissolved in hexane-EtOAc
(70-30%) and separated by chromatography on a silica gel column; a gradient sequentially formed of
hexane-EtOAc (90-10%, 80-20%, 70-30%, 60-40%, 50-50%, 40-60%, 30-70%, 20-80%, 10-90%, and 100%
EtOAc), and EtOAc-methanol (MeOH) (90-10%, 80-20%, and 100% MeOH) were used as the mobile
phase for elution. All collected fractions were monitored and combined based on the thin layer
chromatography (TLC) pattern. Next, the active fraction (Fraction no. 7; 135 mg) was dissolved in
hexane-EtOAc (30-70%) and re-fractionated by silica gel column chromatography; a gradient
sequentially formed of hexane-EtOAc (90-10%, 80-20%, 70-30%, 50-50%, and 100% EtOAc), and
EtOAc-MeOH (90-10%) were used as the mobile phase for elution. All sub-fractions (no. 7.1- 7.8) were
tested for anticancer activity using the MTT assay. The strongest active sub-fraction (sub-fraction no.
7.7) was then subjected to the identification of bioactive compounds using at-line-LC-ESI-QTOF-
MS/MS analysis. All extracts were stored at -20°C until use.

4.3 At-line-LC-ESI-QTOF-MS/MS analysis

The active subfraction of MOL extract (20 mg/mL) was prepared and injected into an Agilent
1260 Infinity Series HPLC system (Agilent Technologies Inc., Waldbronn, Germany) coupled to an
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Agilent 6540 QTOF-MS spectrometer (Agilent Technologies, Inc., Singapore) with an electrospray
ionization (ESI) source. For HPLC separation, a mobile phase of 0.1% formic acid in water (v/v) (A)
and 0.1% formic acid in acetonitrile (v/v) (B) was used with gradient elution from 20% B to 90 % B in
30 min, hold on 3 min and post-run for 5 min. The sample separation was performed on a Luna C18
(2) 100°A, 4.6 x 150 mm, 5 pm column (serial no. 728946-40; Phenomenex, CA, USA) at a flow rate of
0.5 mL/min, with the column temperature set at 35°C. The eluent was split into two flows using a 9:1
ratio. The major part was collected in a 96-well plate with 30 s per well, while the minor part flowed
to an ESI-QTOF-MS system. The operating parameters for MS detection were as follows: drying gas
(N2) flow rate 10.0 L/min; drying gas temperature 350°C; nebulizer pressure 30 psig; capillary 3500
V; skimmer 65 V; octapole RFV 750 V; and fragmentor voltage 100 V in positive mode. The mass
range was set at m/z 100-1200 amu with a 250 ms/spectrum. The mass fragmentation was operated
on auto ms/ms mode with three collision energies of 10, 20, and 40 eV, respectively. All acquisition
and analysis of data were controlled by Agilent MassHunter Data Acquisition Software B.05.01 and
Agilent MassHunter Qualitative Analysis Software B.06.0, respectively. The micro-fractions in a 96-
well plate were dried using a sample concentrator (Techne, Staffordshire, UK) and kept at —20°C
before being tested.

4.4 Identification of active compounds

The samples from the 96 well plate that showed bioactivity were linked to the LC-ESI-QTOF-
MS/MS chromatogram by time. The active compounds with MS and MS/MS data were tentatively
identified: the mass data were compared with previous reports and using public databases ((the
Human Metabolomics Database; http://www.hmdb.ca; accessed on 30 December 2019), Chemspider
(http://www.chemspider.com; accessed on 30 December 2019), and Metlin database
(https://metlin.scripps.edu; accessed on 30 December 2019)).

4.5 Cell viability assay

The cytotoxicity of the MOL extract and its derived fractions were determined using the methyl
thiazol tetrazolium (MTT) assay. MDA-MB-231 cells were seeded into 96-well plates at a density of 1
x 10¢ cells/well and treated with MOL extract at concentration 75, 100, and 150 pg/ml for 24 h. MTT
salt solution was added and the plate was incubated for 3 h at 37°C. Then, formazan crystals were
dissolved in 100 ul DMSO. The absorbance was measured at 570 nm using an ELISA plate reader
(PerkinElmer, Inc., USA).

4.6 Colony formation assay

MDA-MB-231 cells were seeded into 6-well plates at a density of 500 cells/well and incubated
for 24 h. Cells were treated with MOL extract or its derived fractions for 24 h and the plates were then
cultured for 14 days in complete DMEM. After 14 days, cells were fixed with 10% neutral formalin
and stained with 0.5% crystal violet to visualise colonies and photographed.

4.7 Apoptosis and cell cycle analysis

Cell apoptosis and cell cycle analysis were examined on the Muse Cell Analyzer (EMD Millipore,
USA). MDA-MB-231 cells were plated into 24-well plates at the density of 5 x 10* cells/well. Cells
were incubated with MOL extract (150 pg/ml), fractions no. 1-11 (150 pg/ml), 7-octenoic acid (2.5 and
4 mg/ml), oleamide (70 and 100 pg/ml), 1-phenyl-2-pentanol (600 and 700 pig/ml), or doxorubicin (1.5
puM) for 24 h. Cell apoptosis was examined by staining with Muse™ Annexin V and Dead Cell reagent
(EMD Millipore, USA cat. no. MCH100105). For cell cycle analysis, cells were fixed in chilled 75%
ethanol for 3 h at -20°C. Then cells were washed with PBS and incubated with Muse™ Cell Cycle
Reagent (Millipore, USA; cat. no. MCH100106) for 30 min in the dark at RT. Cells were read on the
Muse cell analyser.
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4.8 Cell migration assay

Migration of MDA-MB-231 cells was examined by using the in vitro scratch assay. MAD-MB-231
cells (1 x 106) were plated into 6-well plates and cultured for 24 h to form monolayers. The wound
area was created by scratching with a SPLScar™ Scratcher. Cells were then incubated with 7-octenoic
acid (1.5 mg/ml), oleamide (40 pg/ml), 1-Phenyl-2-pentanol (250 ug/ml), doxorubicin (1.5 pM), or
media alone for 24 h. The images were captured at 0, 6, 12, and 24 h using an inverted microscope
(Zeiss Microscopy, Germany). The percentage of wound closure was calculated using Image]
software.

4.9 Hoechst staining

To assess the effects of compounds on nuclear material, MDA-MB-231 cells were stained with
Hoechst 33342. MDA-MB-231 cells were seeded at a density of 7 x 105 cells/well in a 6-well plate
containing glass cover slips. Cells were treated with 7-octenoic acid (2.5 mg/ml), oleamide (70 pig/ml),
and 1-phenyl-2-pentanol (600 ug/ml) for 24 h. After incubation, cells were washed with PBS, fixed
with 4% formaldehyde, and stained with Hoechst 33342 (4 pg/ml) for 10 min in dark. Cover slides
were then mounted with 70% glycerol and images were captured with an inverted microscope using
350 nm excitation and 450 nm emission filters (Zeiss Microscopy, Germany). A total of 3 images per
treatment were captured at 40 X magnification.

4.10 Reverse transcription quantitative real-time PCR (RT-gPCR)

MDA-MB-231 cells (1 x 10%) were plated into a 12-well culture plate. Cells were then treated with
fraction no. 7 (75 and 100 pg/ml) for 24 h. For control, cells were incubated with culture medium
alone. The total RNA was isolated by using Trizol reagent (Invitrogen, Carlsbad, CA) according to
the manufacturer’s instructions. First-strand cDNA was synthesized using Tetro cDNA Synthesis Kit
(BIOLINE USA Inc, Taunton, MA). The resulting cDNAs were amplified with different primers
(Supplement Table 1) using the SensiFAST™ SYBR ® No-ROX Kit (BIOLINE USA Inc, Taunton, MA).
Relative differences in gene expression among groups were determined from the quantification cycle
(Cq) values. These values were first normalized to a housekeeping gene ([3-actin) in the same sample
(ACq) and are expressed as the fold-change over control (2-24Cq), Real-time fluorescence detection was
performed using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad).

4.11 Western Blot analysis

MDA-MB-231 cells (7 x 105) were plated into 6-well culture plates. Cells were incubated with
fraction no. 7 (75 and 100 pg/ml), 7-octenoic acid (2.5 and 4 mg/ml), oleamide (70 and 100 pg/ml), 1-
phenyl-2-pentanol (600 and 700 pig/ml), or doxorubicin (1.5 uM) for 24 h. Cells were lysed in RIPA
buffer (Bio Basic Inc.) supplemented with Protease/Phosphatase Inhibitor Cocktail (Sigma Aldrich,
St. Louis, MO, USA) for 30 min and then centrifuged at 14,000 x g for 15 min at 4°C. Protein
concentration was determined by the Bradford assay. Equal amounts of protein samples were heated,
separated in 12% SDS-PAGE (150 V, 1 h), and transferred onto nitrocellulose membranes (100 V, 1.30
h). The membranes were washed and blocked with 2% BSA in Tris-buffered saline containing 0.5%
Tween 20 (TBST) for 1 h at RT. Then the membranes were probed with primary antibodies against [3-
actin, Bax, Bcl-2, caspase-3, or cleaved caspase-3 by incubating overnight at 4°C. The membranes were
then washed three-time with TBST and incubated with secondary antibodies for 1 h at RT. Protein
detection was performed by adding horseradish peroxidase chemiluminescence substrate. The
intensity of each band was analysed using Image Lab Software.

4.12 Statistical Analysis

Data are shown as mean + standard error (SEM) of three independent experiments. For
comparisons of more than two groups one-way ANOVA were performed with multiple comparison
correction (Dunnett test) using GraphPad Prism 6.0 software. P-values < 0.05 were considered
statistically significant.
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5. Conclusions

We demonstrate the bioassay-guided fractionation and identification of the potential anticancer
compounds from MOL extract against TNBC cell lines MDA-MB-231. Crude EtOAc extract and their
fractions were screened for anticancer activity using different bioassay. We tentatively identified 10
compounds from sub-fraction no 7.7 by LC-ESI-QTOF-MS. Moreover, we also investigate the
individual mechanisms of actions of three identified compounds, including 7-octenoic acid,
oleamide, and 1-phenyl-2-pentanol against TNBC cell lines (Figure 7). Our findings suggest that
oleamide has strongest potential as an anticancer treatment by induce apoptosis through suppress
Bcl-2 expression and subsequently promote activation of caspase 3. This is the first report concerning
MOL extract and oleamide activity against MDA-MB-231 cell line.

In vitro bioassay test

Cytotoxicity
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Figure 7. Bioassay-guided fractionation and identification of potential anticancer compounds from
MOL extract against TNBC cell lines MDA-MB-231. Crude EtOAc extract was fractionated (no.1-11)
and screened for anticancer activities with different in vitro bioassay tests. The strongest fraction was
selected for sub-fractionation and identification of bioactive compounds using LC-ESI-QTOF-MS/MS.
Three candidate compounds (1-phenyl-2-pentanol, oleamide, and 7-octenoic acid) exhibited
anticancer effects through inducing cell cycle arrest. Additionally, suppression of Bcl-2 resulting in
the disruption of mitochondrial membrane permeability and subsequent release of apoptogenic
factors such as cytochrome c, which activates caspase 3 and finally causes cell apoptosis.
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