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Abstract—The soaring mobile data traffic demands have s-
pawned the innovative concept of mobile edge caching in ultra-
dense next-generation networks, which mitigates their heavy
traffic burden. We conceive cooperative content sharing between
base stations (BSs) for improving the exploitation of the limited
storage of a single edge cache. We formulate the cooperative
caching problem as a partially observable Markov decision
process (POMDP) based multi-agent decision problem, which
jointly optimizes the costs of fetching contents from the local
BS, from the nearby BSs and from the remote servers. To solve
this problem, we devise a multi-agent actor-critic framework,
where a communication module is introduced to extract and
share the variability of the actions and observations of all BSs. To
beneficially exploit the spatio-temporal differences of the content
popularity, we harness a variational recurrent neural network
(VRNN) for estimating the time-variant popularity distribution
in each BS. Based on multi-agent deep reinforcement learning,
we conceive a cooperative edge caching algorithm where the
BSs operate cooperatively, since the distributed decision making
of each agent depends on both the local and the global states.
Our experiments conducted within a large scale cellular network
having numerous BSs reveal that the proposed algorithm relying
on the collaboration of BSs substantially improves the benefits
of edge caches.

Index Terms—Cooperative edge caching, multi-agent system,
deep reinforcement learning, ultra-dense cellular networks.

I. INTRODUCTION

RIVEN by the increased penetration of smart devices,

we have witnessed an unprecedented growth of mobile
data traffic, which imposes a heavy traffic burden on the
today’s already congested cellular networks and backbones
[1]. According to Cisco’s report [2], the global mobile data
traffic is expected to increase sevenfold over the period of
2017 to 2022. To accommodate these soaring traffic demands,
the ultra-dense deployment of small cells in Next-generation
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Networks (NGN) allows the User Equipment (UE) to commu-
nicate using mmWave carriers, which substantially improves
the wireless channel capacity, despite its potentially reduced
power consumption [3]. However, the relatively slow backhaul
links that connect the heterogeneous NGN base station (BS)
[4], such as pico-cell base stations (PBSs), femto-cell access
points (FAPs) and relays, to the network’s backbone have
become the bottleneck [5]. Qiu and Cao [6] have revealed
that most of the backhaul bandwidth is occupied by multiple
transmissions of some popular contents. Hence, mobile edge
caching [7] is emerging as a promising technique of alleviating
the traffic burden on the backhaul by offloading some popular
contents to the edge of the network. Thereby, a large number
of requests asking for the same contents can be directly
accommodated by the edge caches, which shortens the content
delivery distance and reduces the service delay [8].
However, the massive deployment of edge caches imposes
additional challenges on the coordination of distributed cache
placement. Due to the unique preference of each user, the
content popularities in different BSs may present a some-
what surprising spatio-temporal difference [9]. This situation
requires each BS to run a unique popularity evaluation al-
gorithm, which is capable of learning and making its own
caching decisions. However, the independent decision making
of each BS would significantly reduce the efficiency of cache
utilization [10], especially when the storage of a single BS is
quite limited, since some popular contents may be redundantly
cached by the BSs. In reality, the cached contents can be
shared between different BSs through the Xn interface in 5G
[4]. By avoiding the backbone and core network, the cost of
fetching contents from the nearby BSs is much lower than
transferring them from the content servers. When relying on
content sharing, a BS may prefer not to cache a popular
content which can be found in the nearby BSs, so that the
limited edge storage can be utilized for caching some other
contents and accommodate a larger number of content request-
s. Naturally, the caching decisions of different BSs are tightly
intertwined with each other. However, each BS only knows its
own caching decision, rather than the decisions of other BSs,
since they rely on synchronous decision making. Moreover,
we have to decide not only what but also where to cache in
the geographically separate edge caches. The dimension of the
caching action increases with the number of BSs and contents
[11], which inevitably enhances the complexity of the problem
to be solved. These obstacles make it harder to coordinate the
massive number of BSs in ultra-dense NGN for efficiently



TABLE 1
COMPARISON OF THE EXEMPLARY RELATED WORKS ON EDGE CACHING.

| Cooperative Caching Distributed Variations of Learning- | Heterogeneous| Content Popularity .
References (Content Sharing) Decision | user distribution| based Content Size | Model Solving Method
[14-15] X X X X v stationary convex programming
[16] v X X X X stationary integer-linear
programming
[17] v X X v X spatial dynamics | transfer learning
[18-191 | X X X X v Spatial dynamics | ZY2PUn0V
optimization
[20] v X X X X (si;})/alllt;;i;nporal echo state network
spatio-temporal reinforcement
(1] v X X v X dynamics learning
temporal deep reinforcement
[22-23] o o X v X dynamics learning
temporal deep deterministic
[24] v X X X v dynamics policy gradient
spatio-temporal deep reinforcement
[25] X v/ X v v dynamics learning
[26] X v X v X spatio-temporal multi-agent Q learn-
dynamics ing
[27] v v X v X stationary convex optimization
spatio-temporal multi-agent deep
Proposed | v/ v v v v dynamics reinforcement learning

exploiting the distributed edge caches [12].

To overcome these obstacles, most of the existing research
in cooperative edge caching has been focused on optimizing
the cache placement based on centralized decision making. In
[13], a joint optimization problem was formulated by Gregori
et al. for determining the optimal caching and transmission
policies. By assuming that the user preferences are known in
advance, the problem was addressed using finite-dimensional
convex programming. By dynamically coordinating the user
association, Hachem et al. [14] struck a trade off between the
transmission cost and the storage cost. For a given popularity
profile, Jiang et al. [15] derived an optimal cooperative content
caching and transmission policy based on an integer-linear
programming formulation. Although the above mentioned
contributions have improved the cache hit rate or reduced the
transmission delay, they relied on the idealistic assumption
that the content popularity was known a priori. To avoid this
assumption, Bharath et al. [16] conceived a transfer learning-
based approach for each BS for estimating the unknown
popularity profiles. However, their estimation technique relied
on a training set, which might have different popularity-
profiles from that of the actual content popularity. In [17],
Kwak et al. formulated the content caching problem as a
Lyapunov optimization problem by modeling the dynamics
of the content requests as a virtual queue, which maximized
the transmission rate, whilst satisfying a specific constraint
on the max service delay. Kwak et al. [18] also made a
step forward by jointly considering the content caching and
BS association problem. In [19], the content popularity dis-
tribution was estimated by Chen et al. using an echo state
network, while only relying on a limited number of request
distribution samples and a sublinear algorithm was proposed
for coordinating the content placement. In [20], the content
requests were modeled as Markov processes by Sadeghi et

al. and a reinforcement learning algorithm was proposed for
finding the optimal caching strategy. Motivated by the recent
advances in artificial intelligence, several recent studies solved
the above problem by using the popular deep reinforcement
learning (DRL) method. In [21] and [22], a deep Q-learning
network (DQN) was used for making caching decisions. Since
the DQN was unable to handle a large action space, a cooper-
ative edge caching scheme was proposed by Qiao et al. [23]
relying on a deep deterministic policy gradient (DDPG) model.
In summary, by collecting all information from the distributed
BSs, the centralized decision making failed to deal with the
cooperative edge caching problem having an excessive search-
space, given the high number of available contents and BSs.

Despite its importance, there is a paucity of literature on
distributed edge caching. In [24], Jiang et al. proposed a
multi-agent reinforcement learning framework for finding the
optimal caching policy, when the state transition probabilities
were unknown. Due to the large size of the state and action
space, maintaining the Q-value for every action might exhaust
the memory of each BS. Hence Zhong et al. [25] proposed
a actor-critic DRL framework for decentralizing the caching
decisions, where each actor (i.e., BS) made its own decision
independently and a critic was used for estimating the overall
reward. However, the edge caches would be under-utilized,
since the contents sharing between the edge caches was not
taken into account. The caching decision of each BS was
purely based on the local observations without considering
the actions and states of the cooperating BSs. In [26], a multi-
armed bandit method was used by Song et al. for estimating
the unknown content popularity and then a distributed caching
algorithm was proposed based on the alternating direction
method of multipliers. In order to coordinate the caching
decisions, each BS had to broadcast its local state to all BSs,
which would cause a high communication overhead among



BSs. The multi-armed bandit based popularity estimation
assumed the popularity distribution to be stationary, which
might not always be true in practice. Additionally, in order
to find the optimal caching strategy, the algorithm in [26] had
to iterate over all feasible actions which might lead to a high
computation complexity. We compare the key characteristics
of the related studies and our current work on edge caching
in Table 1.

However, the aforementioned solutions tend to suffer ei-
ther from a high computational complexity or from a high
exchange overhead between BSs, both of which actually
increase with the number of BSs and the amount of contents.
This problem is aggravated by ultra-dense cellular networks
having a large number of BSs. Hence, we circumvent these
impediments by designing a distributed cooperative caching
algorithm for coordinating the caching decisions of the BSs, at
a low information exchange overhead. Due to the movement of
UEs, a user may not be able to completely download the whole
content while crossing a small cell. We solve this problem
by conceiving a coded caching system [27] in which each
video clip is chopped into many small segments and can be
flexibly requested by the UEs distributed across the coverage
area of the BSs. Explicitly, we have to decide what, where
and how many segments to cache in the edge caching system.
Due to the fact that each BS is only directly aware of its
local observation, the problem is formulated as a partially
observable Markov decision process (POMDP) [28] based
multi-agent decision problem, which jointly optimizes the
costs of fetching contents from the local BS, from the nearby
BSs and from the remote servers. In order to coordinate the
caching decisions of a massive set of BSs, we devise a multi-
agent actor-critic cooperation framework, where the variations
rather than the full states of the environment are extracted and
shared among the BSs. To deal with the large state and action
space, we propose a cooperative edge caching algorithm where
each BS makes its own caching decision based on both the
local and global states. The contributions of this paper are
summarized as follows:

o We formulate the cooperative edge caching problem
as a POMDP based multi-agent decision problem, that
maximizes the cumulative discounted reward for all edge
caches. This formulation ensures the coordination of the
edge caches by jointly optimizing the cost of content
caching in the local BS, the cost of content sharing
between the BSs and the cost of content retrieval from
the servers.

o We devise a multi-agent actor-critic framework for our
cooperative edge caching problem, where we spot and
share any changes rather than handling the entire full
dimensional environment, which significantly reduces the
data exchange amongst the agents.

« By considering the time-dependent popularity distribution
variations, we propose a variational recurrent neural net-
work (VRNN) [29] based popularity estimation algorithm
capable of learning without any prior knowledge of the
user-preferences. To handle the time-variant geographic
distribution of the UEs in the BSs’ coverage area, we
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Cooperative caching system over ultra-dense small-cell cellular

develop a long short term memory (LSTM) [30] based
access state estimation model. Based on our powerful
multi-agent deep reinforcement learning technique, we
develop a cooperative edge caching algorithm, where the
distributed decision making mitigates the complexity of
problem solving.

o We evaluate the performance of our proposed algorithm
using the real UE movement trajectories in a large-
scale cellular network relying on numerous BSs and
rich contents. The experimental results verify that our
algorithm beneficially reduces the content retrieval and
improves the edge caching hit rate by facilitating the
collaboration of the edge caches.

The rest of this paper is organized as follows. Section II
introduces our system model and problem formulation. In
Section III, we propose a cooperative edge caching algorithm
based on multi-agent deep reinforcement learning. The simu-
lation results are discussed in Section IV. Finally, a conclusive
discussion is offered in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us now discuss our system model, and then formulate
the cooperative edge caching problem as a POMDP based
multi-agent decision problem.

A. System model

We consider a typical content delivery system for the UEs
of a NGN, which is illustrated in Fig. 1. The ultra-dense
deployment of small cells allows the UEs to communicate at
mmWave frequencies, which provides a high channel capacity
but at a short coverage range. All BSs are connected to the
NGN through backhaul links by means of the next generation
(NG) interface [4]. Equipped with a memory device, each BS
has a certain storage capacity so that some popular contents
can be offloaded to the edge of the network. The UEs can
fetch the contents directly from content servers through the
core network. Alternatively, the same content may also be
readily accommodated by the edge caches. The edge caching
pushes the contents closer to the UEs, which significantly
mitigates the traffic burden imposed on the backhaul and core



TABLE I
NOTATION USED IN THE PAPER

be B index of edge BS

f €F  index of content file

N caching capacity of BS b

ng number of segments required for recovering the content f
Co,f number of segments of the content f in BS b

cp cache state of BS b

mp number of UEs accessing BS b during time slot ¢

Wy average sojourn time for the UEs in BS b

Vp access state of BS b

Db, f popularity of the content f in BS b

Tp request state of BS b

ay, f number of segment allocated to the content f in BS b
ap action taken by BS b

op local state of BS b

R immediate reward for all edge caches

g global state of the system

peom function estimated by the communication module
piec function estimated by the decision module

T function estimated by the critic module

networks, hence reducing the delivery delay. Although the
storage space of a single BS is actually quite limited, the
cached contents can be shared among the BSs through the Xn
interface [4], which enables us to coordinate the BSs to take
full advantage of the distributed edge caches. The user plane
function (UPF) of NGNs would forward the user’s request
either to the central server or to the edge caches according to
the contents placement. Therefore, the essential problem is to
develop an efficient cooperative content caching and sharing
strategy, so that the cost of fetching the requested contents can
be minimized, which is also the optimization objective of our
paper. The mathematical models of the aforementioned system
can be described as follows.

1) Content caching model: Due to the short propagation
distance of mmWave carriers, the UEs may only retrieve
a portion of the requested contents from the BS accessed
during a short sojourn time. Therefore, there is no need to
retain the entire content file while conducting edge caching.
Assume that each content is encoded by the rateless Fountain
code [27] into multiple segments, so that a UE may recover
the requested contents by collecting sufficient segments. Let
F = {1,---,f,---,F} denote the set of contents files
requested by the UEs. All the F' contents can be retrieved
from the remote content server. Different contents consist
of different numbers of segments, each of which has the
same segment size. Let ny represent the minimum number of
different segments required, so that the original content f can
be successfully recovered. Actually, since different segments
of the same content may be distributed across many BSs,
there may be more than n; segments in the edge caches for
the content f, but for simplicity, we assume that there is no
duplication of segments in the edge caches.

The set of BSs supporting edge caching is denoted by
B = {1,---,b,---,B}. For simplicity, we only consider
the scenario, where a UE is associated with a single BS.
This association is usually based on the distance between
the UE and the BS. Thereby, the content sharing among the
BSs has to rely on backhaul resources. We assume that each
BS has the same caching capacity which can afford storing

N segments. Indeed, the limited storage of a single BS is
clearly not enough to accommodate all the contents, hence
we have N < Z?:l nys. The content placement is refreshed
periodically and the time slot is indexed by ¢t = 0,1, - - - . Since
in a stationary scenario the content popularity changes slowly
with time, the slot duration is long enough to complete the
download of the updated contents from the content server.
Let ¢p s(t) denote the number of segments of the content f
cached in the BS b. Naturally, there is no need to cache over
ny segments for a single content in each BS:

bef(t)gnﬁVbGB,fE}—. (D)

Meanwhile, the total number of segments that have been
cached in BS b has to satisfy the constraint

Zfef e, (t) < N,Vb € B. (2)

The local cache state of BS b is defined as cp(t) =
{Cb;[(t) e vajf[(t) }, where %(t) € [0,1].

2) Content request model: The requested contents can be
transmitted from either the edge caches or the content server.
Let pp ¢(t) denote the number of requests for the content f
received by BS b during the time slot t. The popularity of
the content f can be approximated by its request probability,

which is as follows

_ bog(t)
Pos(t) = Y rerbust)

Naturally, the content having a higher request probability is
more popular among the users, and thus it is more likely to
be cached in the edge. Actually, we have to decide not only
which contents but also how many segments of a content file
has to be cached. Hence, the number of segments requested
by the users also has to be considered. We assume that the
users in BS b request ¢y, #(t) segments of the content f during
slot ¢. For simplicity, we normalize g ;(t) to a range of [0, 1]:

3)

ws(t) = 210, @)
Q’I'TL(I“’L'

where ¢4, 1S the maximum value that the number of request-

ed segments may reach in a slot. The content request state of

BS b is defined as xp(t) = {po(t), qn(t)}, Where pp(t) =

{poa(t).- pop (D)} and qu(t) = {1 (1), - s ar (D)},

3) User access model: Due to the stochastic nature of a
user’s movement, the user distribution may exhibit geographic
differences between the various BSs. We assume that the
UEs have the same chance of requesting a specific content.
Naturally, having more access users or longer sojourn time
may lead to more content requests. Due to the inhomoge-
neous distribution of the UEs in the BSs’ coverage area, the
content requests may exhibit regional deviations. In order to
characterize the effect of the non-uniform user distribution on
content requests, we have to model the user access process.
The UEs subscribing to the content delivery service compose a
set £ ={1,---,e, -, F}. In a time-slotted system, a mobile
UE may cross the covered area of multiple BSs during a time
slot. Let wp ((t) denote the sojourn time of the UE e € &
in the coverage area of BS b during the time slot ¢, which is
maintained by the access and mobility management function



(AMF) in NGNs [31]. The total number of UEs that have
access to BS b can be represented by

my(t) = Zeeg Iwpe(1)], (5)

where I(-) is an indicator function which is given by

I(x) = 1, ifx>0, ©)
7= 0, otherwise.

Specifically, I(wp (t)) = 0 means that the UE e has no access
to BS b within the duration of [t,¢ + 1). Here, we can also
define the UEs’ average sojourn time in BS b as

E ce Wh e(1)
wy(t) = =&=—2— =, (7)
b( ) mb(t)
Here, we normalize 7y, and 7y, to the range of [0, 1]:
_ my _ Wy
= — = — 8
My = s Wo = 17> )

where M is the maximum number of cache users, and At is
the time duration of a slot which is also the maximum sojourn
time in a slot. Therefore, the access state of any BS b in the
t-th time slot can be represented by vy (t) = {mp(t), mp(t)}-

B. Problem Formulation

Since the states of the cache placement, the content request
and the user access at the next moment are only related to the
current states and the caching decision, but they have nothing
to do with the earlier states, we can model the evolution
of the states by a Markov process. Each BS can explicitly
know its local cache placement cp(t) while making a caching
decision at the start of time slot ¢. However, because the
request state xp(t) and the access state vp(t) are two statistics,
which respectively reflect the content popularity and the user
distribution during the time interval [¢, ¢ + 1), neither of them
can be observed until the end of time slot ¢. The fact that
the full information concerning the states is not completely
observable at the time of making caching decisions motivates
us to formulate our caching decision problem as a POMDP. We
define the states, actions, observations and rewards as follows.

1) State: The local state sp (¢t) of BS b at time slot ¢ is
defined as

sp(t) = {cb(t), o (t), v (1)} 9

which consists of three parts, including the local cache
state cp, access state v, and request state xp. Then,
the state of the whole system is defined as s(t) =
{Sl(t)a T ,Sb(t), T 7SB(t)}‘

2) Action: In order to accommodate the dynamic changes
of the content popularity, each BS is expected to actively
adjust its local cache placement by removing some unpopular
contents or adding other popular contents. Let a; ; denote
the cache size (quantified by the number of segments) that
BS b decides to assign to the content f while observing the
state o(t). At the time instant ¢, let us assume that there are
¢, 7 (t) segments of the content f in the BS b. While taking the
action ap f(t), BS b assigns ay, ¢(t) segments for the content f.
Compared to the slot duration, the time required for updating
the cache replacement is usually trivial. Hence, at time instant

t + 1, there are ay f(t) segments for the content f in the BS
b, i.e. we have ¢p(t + 1) = a(t). In order to indicate the
changes of the cache placement after taking the action ay f,
we compare ap, r to ¢y ¢. Specifically, if we have ay 5 > ¢ 7,
then |ap,f — ¢, ¢| segments of the content f are added to the
BS b. If we have ap s > ¢, f, then |ap s — cp,f| segments of
the content f are removed from BS b. Otherwise, there is no
adjustment of the content f. At time instant ¢, the action taken
by BS b is defined as

ap (t) = {ap(t), - sap,r(t)}

Notably, the action ap ¢ should also meet the constraints (1)
and (2). The action for the whole system is defined as a =
{ai,-- ,ap, - ,ap}.

3) Observation: At the decision time ¢, the BSs cannot be
explicitly aware of the current content request state x;(¢) and
user access state v, (¢), but can readily acquire their previous
states x,(t — 1) and v,(t — 1) by counting the number of
requests for each content, the number of access UEs and the
average sojourn time during the time interval [t — 1,¢). Due
to the time-dependent nature of the state dynamics, we can
estimate the current states of user access and content request
based on the historical state sequences {xp(t — 1), xp(t —
2),---} and {vp(t—1),vp(t—2),- - - }. Hence, the observation
is defined as the state estimation at time instant ¢

op(t) = {eb(t), Tu(t), vb(1) }, (11)

where Tp(t) and vp(t) denote the estimates of the request
state and the access state, specifically. The observation for the
whole system is denoted by o = {01, ,0p, -+ ,0B}.

4) Reward: In the cooperative caching system, the user
requests may be accommodated by the content server, local BS
or nearby BS as depicted in Fig. 2, depending on the content
placements. In particular, the BS currently being accessed by
the UE is called the local BS, while the other BSs are termed
as nearby BS. The three optional ways of fetching the content
often correspond to different costs, which are listed as follows.
In practice, the cost may be defined in different forms such as
monetary cost, transmission delay, bandwidth requirement or
a combination of them.

aa‘b,f(t)v"' (10)

(a) If the requested contents have been cached in the local
BS, they can be delivered to the UEs directly using a
high bandwidth and low latency. Let o, denote the cost of
delivering a segment from the local BS b. Assume that BS
b has fetched r(t) segments from its local cache during
the time slot ¢. Thereby, the cost of service by the local
BS is given by a,rb(t).

(b) In the cooperative caching system, the segments belonging
to the same content may be distributed to multiple BSs.
If the local BS has insufficient segments for the requested
content but nearby BSs keep them, the user requests can be
accommodated by sharing the contents among those BSs.
Due to the fairly limited cache space, if a requested content
segment is fetched from a nearby BS, it will be directly
forwarded to the user. Let 8F (k € B,k # b) denote the
cost of delivering a segment from the nearby BS £ to a
UE, which accesses the BS b. Since the contents sharing
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Fig. 2. The transmission paths for different content placement.

among the distributed BSs would consume the backhaul
resource, the cost of fetching segments from nearby BSs
is much higher than that from the local BS, i.e. we have
ﬁ,’f > ap. Notably, the value of 55 depends on the distance
between BS b and k. Assume that BS b has fetched 7 (t)
segments from BS £ in time slot ¢. Thereby, the cost of
service by the nearby BSs 3", 5 ., 8575 (1).

(c) If the requested content is not offloaded to the edge caches,
the user would fetch it from the content server. Let 6,
denote the cost of delivering a segment from the original
server to a UE, which accesses the BS b. Due to the
resource consumption of both the backhaul and the core
network, the cost of serving by the content server is much
higher than that by the edge caches, i.e. we have 6, > j3F.
Here, we refer to 0 as the index of the content server.
Assume that 7 segments are transmitted from the content
server during time slot ¢. Then the cost of service by the
content server is 0,79 (t).

Given the above, the cost of content delivery during time slot
t can be represented by

Qb0+ 3 PO + 002 0).

Additionally, after making a decision to adjust its local
cache, the BS removes some of the less popular contents and
adds more popular contents. We assume that all the added
contents are downloaded from the content server. The cache
replacement may impose additional backhaul requirements on
the core network. Therefore, the total cost of content delivery
relying on edge caches should contain not only the cost of
transferring data to UEs from the local BS, nearby BSs and
content server, but also the cost of updating the cache place-
ment. During time slot ¢, the number of segments replaced
in BS b can be represented by >, rlap f(t) — cbr()]7,
where we define (z)™ £ max(x,0). Let &, denote the cost of
replacing a segment in BS b. The cost of cache replacement
is

(12)

D7 e r Oolan s (6) = e p (D] (13)
Upon using edge caches, the total cost is a sum of (12) and
(13).

Without edge caches, all user requests have to be han-
dled by the content servers and the corresponding cost is
> wen Obri(t) + Opr(t). By pushing the contents closer to
the users, the edge cache can help reduce the cost of content
delivery. Hence, the cost associated with using edge caches
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Fig. 3. The multi-agent actor-critic cooperation framework.

is usually much lower than without. The higher the cost
saving, the more effective the edge caching. We can define
the immediate reward of BS b as the cost saving attained by
edge caching, which is formulated as:

Ry(t) =0y = cu)rg(W) + 3, o (O = BE)ri ()
=D vl g (1) — e (1)

where the parameters «y, 8p,6, and 6, are predefined con-
stants, and ¥ (k € B) is readily obtained by evaluating the
statistics of the number of segments transmitted from BS k&
during the time interval [¢,¢ + 1). We cannot calculate the
reward until the end of time slot ¢. Maximizing this reward
also corresponds to minimizing the cost of content delivery
with edge caches. Due to the existence of 7, the immediate
reward of BS b depends both on its own cache placement
as well as on the cache placement of nearby BSs. Then, the
immediate reward for the whole system is given by

R(t) = ZbEB Ry (t).

The model formulated can also be applied to the multiple-
input-multiple-output (MIMO) scenario [32], [33], where a
single UE can simultaneously establish multiple connections
with its nearby BSs. With the aid of MIMO schemes, the UE
can directly fetch contents both from the local and from the
nearby BSs, without requiring any backhaul resources. Hence,
the cost of service by nearby BSs may be the same as that by
the local BS.

In the distributed edge caching system, each BS can be con-
sidered as an agent, which has to decide its own cache place-
ment according to the system states. Let @ = {my, -+ ,7p}
represent the caching strategy, which maps a state s to a
legitimate action a, i.e a = 7(s). Since the agent’s action
has an impact both on the immediate reward as well as
on the long-term reward, all agents are expected to work
cooperatively to find an optimal strategy 7* that maximizes
the long-term reward. Here, we assume that the long-term
reward is discounted by a discount factor of v € (0,1).
Then, the cooperative caching problem can be formulated as
a multi-agent decision problem that maximizes the cumulative
discounted reward:

(14)

15)

max

ax  V(s)=E |3 4'R(1) |s(0) = .7,
t=0

S.t. (1) and (2),

(16)
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when starting from an initial state s, where V7(s) is the
state value function. Given its Markovian nature, the optimal
strategy 7* follows Bellman’s function:

V™ (s) = Ris, 7" () +9,_ PasV™ (),

where Psg is the state transition probability from s to s’.
However, without any prior knowledge, Pss/ is actually un-
known.

Due to the unique preference of each user, the requests
received by different BSs may present a remarkable difference.
Each BS is expected to run a unique popularity learning
algorithm and makes its own decisions as to which contents
and how many segments should be stored in its local cache.
Meanwhile, because the cached contents can be shared among
the BSs, the caching decisions of different BSs are tightly
intertwined with each other. Particularly, the BS may not cache
any segments of a popular content, which can be found in the
nearby BSs, so that the limited edge storage can be utilized to
support a larger number of user request by caching some other
contents. Hence, the independent decision making of a specific
BS is also affected by the states and actions of other BSs.
However, each BS only explicitly know its local observation
rather than the full states and actions of the environment. To
address this problem, in the next section, we will introduce a
multi-agent deep learning based caching algorithm.

a7

III. MULTI-AGENT DEEP REINFORCEMENT LEARNING
BASED COOPERATIVE EDGE CACHING

Motivated by the recent advances in artificial intelligence,
we present a multi-agent actor-critic framework for coopera-
tive edge caching. Although the local state is not completely
observable, we can observe the states sequence of previous
intervals. Aided by the time-dependent nature of the state
dynamics, we can estimate the current states of user access
and content request based on the historical observations.
Hence, we develop an LSTM based access state estimation
model and a VRNN based request state estimation model. In
order compress and share the global states among the BSs,
a communication model is introduced. Finally, we propose a
cooperative edge caching algorithm based on multi-agent deep
reinforcement learning.

A. Multi-Agent Actor-Critic Cooperation Framework

The multi-agent actor-critic cooperation framework for edge
caching is presented in Fig. 3, which consists of three modules:

actor, critic and communication.

1) Actor: Each agent has an actor network, which learns
a unique strategy function 7 that maps the state, including
the local observation sp and the global state g shared by the
communication module, to a legitimate action. However, as
depicted in the formulations, the local access state vp(t) and
the local request state xp(t) are not explicitly known at the
time of making the caching decisions. Fortunately, the states
of previous slots can be readily acquired. Due to the temporal
dependence of the states variation, this inspires us to estimate
the current state based on the historical state sequences. As
shown in Fig. 4, we develop a user access estimation model as
well as a content request estimation model for estimating the
current request state Zp(t) and the current access state Up(t)
based on the time sequences {xp(t — 1), xp(t — 2),--- } and
{vp(t —1),vp(t —2),-- - }. Based on the estimated states, the
caching decision module will decide which specific contents
and how many segments are cached in the local BS.

2) Critic: The centralized critic network is used for estimat-
ing the action-value function, which gives the overall reward,
while taking the action a based upon the observations o and
the global state g. In practice, we can deploy the critic network
in the central NGN core network so that the observations and
actions of all agents can be easily collected. The error between
the critic output and the actual reward is used for updating the
parameters of the actor networks.

3) Communication: In order to make the agents act coop-
eratively, the independent decision making of a specific agent
is expected to take not only its local observations, but also
the global state, i.e. the observations o and actions a of other
agents, into account. A communication module is designed to
collect and share the global state among all agents. However,
since the number of full states of @ and o expands with the
number of agents and content files, the overhead of sharing
the full states of a and o directly with each agent is actually
unfeasible. Hence, the communication module has to reduce
the dimensionality by encoding the observations and actions
of the agents. Actually, the communication module can be also
deployed in the NGN core network.

B. Request State Estimation

Since the content requests are usually continuous in time,
the transitions of request state obey certain time-dependence.
The temporal dependencies of the requested states make it
possible to predict the variability of content request based on
previous state sequence.

In our system, although the current state of content request
xy(t) is not completely observable at the decision time ¢, the
states of the previous slots, i.e. {xp(t — 1), xp(t — 2), -},
are exactly known. However, the dimension of the content
request state, by definition, is proportional to the number of
content files, which would be very large in practice. This
makes it intractable to explicitly model the complex variability
of the high-dimensional sequential data using standard RNNss,
since the conditional output probability models of standard
RNNs are usually based on a simple unimodal distribution
[29]. Fortunately, because the Variational Autoencoder (VAE)
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[34] is capable of modeling the data, which includes multi-
modal conditional distributions, by extending the VAE into a
recurrent framework, the VRNN offers an effective paradigm
for characterizing the complex relationship among the output
variables at different time steps. Hence, we develop a VRNN
model for estimating the request state.

In time slot ¢, the VAE can encode the variations of the high-
dimensional state xp(t) into a set of latent random variables
zp, which extracts the structural features of x;. The temporal
dependencies between the latent random variables z; across
neighboring time slots are integrated into the RNN’s hidden
state hj. The operations of VRNN-based content request
estimation are illustrated in Fig. 5, which are as follows.

1) Encoding the observed states: At time instant ¢, given
the previous state @, (¢ — 1) and the recent hidden state hy,(t —
1), the posterior on the latent variable is approximated by

zp(t = D|zp(t — 1) ~ Npy, ., diag(a; )], (18)

where (4, -, 03,.) = ¢ (" (@3 (1~ 1)), iyt~ 1)), while p .
and o, , respectively denote the mean and variance, which can
be estimated by a neural network ¢®(-). Furthermore, ¢ (-)
can also be a neural network, which extracts the features from
xp. Since hy(t — 1) represents the historical variations of the
sequence {xp(t—2), xp(t—3),- - - , }, the encoding of hy(t—1)
and x;,(t — 1) can extract the temporal dependencies into the
latent random variables zy.

2) Updating the hidden states: The hidden state is updated
using the recurrence equation:

Fle® (e (t = 1)), 97 (2(1)), (= 1)],

where f(-) is the transition function which can be estimated
by an RNN, and ¢*(-) is also a neural network that extracts
the features from zp.

3) Generating the next latent variable: The prior on the
latent random variable follows the distribution:

hy(t) 19)

2(t) ~ Ny o, diag(a )], (20)

where (g, 0, 05,0) = ©P"[hy(t)], while g, o and o, o denote
the mean and variance, which can be estimated by a neural
network ¢¢(-). Given a h;(t), we can generate a Z,(t) by
randomly sampling the distribution in (20).

()

The operations of VRNN-based content request prediction. (a) Encoding the observed states. (b) Updating the hidden states. (c) Generating the next

4) Predicting the content request: The conditional distribu-
tion of the content request state can be estimated by:

& (t)| 23 (t) = N[py, ., diag(ai )],

where (1,4, 05,2) = ¢*[p*(26(t)), ho(t)], while g, and
0y, are the parameters of the conditional distribution, which
can be estimated by the decoder of the VAE. Given the
generated latent variable Z,(¢), we can infer the next content
request state &p(t).

Each BS relies on a VRNN model, which is trained by
the unique traces of the historical content request received by
the BS. The training objective function is to maximize the
variational lower bound:

21

T
Ey(aifen) Y | 08P(@l2) = KL(a(z0l20)Ip(=0)|, 22)

t=1

where p(xp|zp) is the conditional probability defined in (21)
and K L(-) is the Kullback-Leibler divergence between the
approximate posterior probability ¢(z|x;) defined in (18) and
the prior probability p(z;) defined in (20).

C. Access State Estimation

Since users are randomly distributed across the coverage
area of the BSs, the access states exhibit geographic variations.
Each BS employs a learning model to get its unique variation
of the access states.

According to the research results in [35],the users’ posi-
tions and movements are usually predictable based on their
historical trajectory, which makes it possible to estimate the
current access state vy, (t) based on the previous state sequence
{vp(t — 1), vp(t — 2),--- }. Given that the access state vy is
only two-dimensional, we can adopt a simple LSTM networks
to model the dynamics of the user access state, and to capture
the temporal dependencies present in the state transitions.

Like conventional RNNs, a typical LSTM network has a
chain structure which consists of an input layer, multiple
hidden layers and an output layer. The difference is that the
hidden layer is a memory block which consists of an input
gate, a forget gate, multiple memory cells and an output gate.
In LSTM, the output values are decided by both the current
inputs and the previous inputs that are represented by the
hidden states of the neural network.



At time instant ¢, the previous access state v,(t — 1) is
used as the input of the LSTM network and the output is an
estimate of the current access state. The parameters of the
memory block are updated as follows:

1) The Forget Gate will selectively forget the input state.

The activation vector is

fi=0Wy(t —=1)+Ush'(t = 1) +bs],  (23)

where W is the weight between the input and the forget
gate, U ; is the weight between the previous hidden state
h’(t — 1) and the forget gate, by is the bias and o (-) is
the logistic sigmoid function.

2) The Input Gate will selectively remember the input states
and it is updated by

1y = O'[Wi’vb(t — 1) + Uihl(t — 1) + bl],

C, = tanh[W v,(t — 1) + U h/(t — 1) + b.],
where W, and W are the weights between the input
state v,(t — 1) and input gate, while U; and U . are the
weights between the previous hidden state h/(t — 1) and

the input gate. Finally, tanh () is the hyperbolic tangent
function. The cell state vector is updated by

C,=f,0C(t-1)+i,6C,,

where © denotes the Hadamard product operator.
3) The Output Gate will predict the next state. The hidden
state is updated by
o, = a[W,vu(t) + UR'(t — 1) + b,],
h'(t) = o ® tanh(C}),

(24)

(25)

(26)

where W, is the weight between the current input v;(t)
and the output gate, Uy is the weight between the
previous hidden state h’(t — 1) and the output gate. The
next state is predicted by

p(t) = o[Wh'(t)], 27

where W, is the weight vector of the output gate.

The LSTM model is trained in advance using the historical
access state sequences collected by the BSs. The error between
the real state and the predicted state can be used for updating
the weight parameters W and U.

D. Cooperative Caching Decision Based on Multi-Agent Deep
Reinforcement Learning

Due to the synchronous decision makings of all agents, at
time instant ¢, the agent b must independently take an action
before knowing the actions and observations of other agents.
Hence, the shared global state g is expected to represent the
evolution of the actions and observations of all agents. For this
purpose, the communication module adopts a LSTM network
to extract the time-dependent variability of the actions and
observations of all agents into its hidden state. We can define
the global state as the hidden state of the LSTM network:

g(t) = ¢"o(t),al(t), gt — 1); o™, (28)

where ¢ denotes the function estimated by the LSTM
network and ¢°°™ denotes the network parameters. The LSTM

network will update the global state over time by collecting
the recent observation and actions.

Additionally, sharing the global state g rather than the full
states of o and a among the agents will significantly reduce
the overhead of data interaction. Let G denote the dimension
of g. We assume that the data for each dimension can be
represented as a float. The overhead of transferring the global
state g to all the B agents is B -G floats. By contrast, without
the communication module, exchanging the full states of a(t)
and o(t) directly with all the B agents requires B? - (4F +2)
floats, since the dimensions of o(t) and a(t) are B - (F +
2F 4+ 2) and B - F, respectively. Because the LSTM extracts
the variation of the sequences o(t) and a(t) into g(t), the
dimension of g(t) is usually much smaller than that of o(¢)
and a(t), i.e. we have G < B - (4F + 2). Hence sharing the
global state g rather than the full states of o and & among the
agents will significantly reduce the data interaction.

As shown in Fig. 4, given the global state g and the local
observation o, the remaining problem is to find the optimal
caching action that maximizes the overall reward. To solve this
problem, the caching decision module adopts a fully connected
neural network to estimate the function relationship between
the state and the action, which is as follows:

ap(t) = @i “len(t), (1), Bo(t), g(t — 1); 65,

where ap = {Gp1,--- ,ap,r} is the outputted action vector
and ¢°° denotes the parameter of the neural network. Gener-
ally, we use a softmax layer in the output layer to normalize
the output values to the range of [0,1], that is d, y € [0,1].
Since the output vector @ of the actor network is continuous,
the actual action performed by each BS has to be discretized
during the execution phase, which is given by

s Lap,r N}

where |-| is the rounding down operation. Naturally, a; f = 0
means that BS b decides not to retain the content f in its local
cache.

Taking the three modules in Fig. 4 as a whole, the actor
adopts an integrated neural network to estimate the strategy
function that maps the current local observation op(t) and the
previous global state g(t — 1) to the action vector @p, which
can be represented by

ap(t) = wplep(t), zo(t — 1), vp(t — 1), g(t — 1); ¢p]
= pplob(t), g(t — 1); du],

where ¢, denotes the parameter of the actor network.

In order to assess the effects of the actions, the centralized
critic module adopts a fully connected neural network to
estimate the action-value function, which is as follows:

Qlo(t).g(t —1),a(t)] = ¢™'[o(t), g(t — 1), a(t)],

where ¢°" is a neural network that gives the long-term reward
V' after taking the actions a upon the observations o.

In practice, although the actual system parameters may be
different from what we expect, the parameters of the multi-
agent actor-critic model can be updated as depicted in Fig. 6.
In order to speed up the training process, we usually train the

(29)

ap = LdeJ = {L&b,lNJ; s (30)

&1y

(32)
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Fig. 6. The training process of the multi-agent actor-critic model.

model using the historical data set before deploying it online.
In time slot ¢, the agents send the local observations o(t)
along with the actions @(t) taken by each actor to the critic.
After executing the actions in the environment, the immediate
reward R(t) and the subsequent observations o(t + 1) are
fed back to the critic. Then, the parameters of the critic
network are updated by minimizing the least squares temporal
difference:

L(g) = E{y(t) — " [o(t), g(t — 1), &(t)}}2 :

where we have y(t) = R(t) + v [o(t + 1),g(t), a(t + 1)].
The caching decision network is updated by maximizing the
expected long-term reward of

J(pp) = E{ ¢ [0p(t), @n(t),g(t — 1)]
las (t)=0b (05 (1),9(t—1)560) 5

(33)

(34)

when the actor b takes the action Gp. Following the chain rule,
the gradients of the caching decision network parameters are
given by
Vo d ($) = E{ Va, ¢ [0b(t), an(t). g(t — 1)]Vs,
pvlon(t), g(t — 1); ¢b]
The parameters of the caching decision network are updated
by ¢p(t + 1) = ¢p(t) + &V, J(¢p), wWhere § is the learning

rate. The parameters of the communication model are updated
by minimizing the loss:

(o™ = E{ [u(t) — 7 (0(t), gt — )] ] 0y

peomloti-ta(t-1).9(-) | — E{ ¢ [o(0),

(35)

ap(t)=wp(0n(t),g(t—1) } ’

(36)

g(t—1)] |g(t—l):wm[o(t—l),a(t—l),g<t—2)} }

The softmax layer of the actor networks ensures that the
sum of all elements of the vector G, is equal to 1. Naturally,
the constraint with Eq.(2) is satisfied. However, in practice,
any BS b may decide to cache over ny segments for a single
content f,i.e. ap, ¢ > n¢. The constraint associated with Eq.(1)
is violated. Hence, we propose an action adjustment algorithm,
which is listed in Algorithm 1. We first divide the elements of
the vector @y into two parts: the legitimate actions Z and the
illegitimate actions K. Then, the total storage exceeding the
limit is denoted by A = 37, - ap 1 N. We assign the storage
A equally to the contents having a legitimate action (line 3 to
line 12). Finally, the adjusted action is given by ap = |apV |
according to (30).

Algorithm 1 Caching Action Adjustment.

Input: The output vector of the actor network b: ap;
Output: The adjusted action for the BS b: ap;
1: Divide the elements of vector ap into two parts:
7= {Z |€Lb,iN < n;, Vi € .7:}
K= {k ‘&b,kN > ng, Vk € .7'—}
2 A= ZkEB &b,kN
3: while A > 0 do
w= %, where |Z| is the size of set 7
for ah 1 €7 do
if 11 > n; — ap ;N then
Remove ¢ from the set Z
end if
CALb’Z' = min{ni, (AlbviN + [L}
10: A=A —min{u,n; — ap; N}
11:  end for
12: end while
13: ap = I_deJ

R A

Given the above, the training process of the proposed multi-
agent actor-critic network used for cooperative edge caching
is summarized in Algorithm 2. Firstly, given the historical
user request traces, we can train a VRNN model for content
requests and a LSTM model for user access. Then, we generate
FE sample tracks, each of which has T" samples (line 3 to line
16). Lastly, we update the parameters ¢?€°*, ™% $°°™ of the
neural networks based on the experience pool replay (line 17
to line 28). During the online execution phase, the NGN core
network employs a well-trained communication network and
each BS employs a well-trained actor network, which carries
out the optimal action based on the observations.

E. Convergence and Complexity

In order to analyze the convergence of distributed learning,
we re-formulate the content placement algorithm of our edge
caching system as a strategic game. Each agent is a game
player, who independently takes an action before knowing the
actions taken by the other players. After taking an action a,
each player b will obtain a payoff R;. As defined in (14),
the payoff of each player b is a function of the combinations
of actions carried out by all the players instead of its own
action ap only, because the number of segments transmitted
from BS k to the BS b, i.e. rf (k € B,k # b), is determined
by the cache placements of other BSs. The action space of
each player is a closed bounded set and the payoff function
is continuous. Since the payoff is a linear function of the
action, the payoff function is strictly quasi-concave. According
to Debreu’s theorem [36], these conditions ensure that a pure
strategy Nash equilibrium exists. The system will converge to
a stable state, where no single player can take a unilaterally
action to achieve an increased payoff, which is a manifestation
of the Nash equilibrium. Therefore, the existence of Nash equi-
librium theoretically ensures the convergence of the proposed
distributed learning algorithm.

The time complexity of the offline training process is
proportional to the amount of training data as well as the



Algorithm 2 Training of the Multi-Agent Actor-Critic Model.

Require: Given the traces of the historical content request 7.
and the traces of the historical user access 7g;

Initialization: Initialize the parameters of the neural networks
pdecs | ¢t o™ the target network ¢! = ¢ the
replay buffer D; exploration coefficient ¢;

1: Train VRNN model for content request prediction with 7.

2: Train LSTM model for user access prediction with 7,

3: for each training step do

4:  for episode=1to FE do

5: Initialize g(0) and let ¢t = 1;

6: while ¢ < T do

7: Generate an observation o; based on 7, and 7,;

8: For each agent b, the actor network output an
action vector ap(t) = @p(0p(t),g(t —1));

9: Action exploration @p(t) = ap(t) + < ;

10: Obtain adjusted action ap(t) using Algorithm 1;

11: Execute action ap(t) and get reward Ry () and the
subsequent observation op(t + 1);

12 g(t) = o (o(t), a(t), g(t — 1));

13: t=t+1;

14: end while

15: Store episode {g(0),0(1),a(1),R(1);---; g(T—-1),

o(T),a(T), R(T); } in D;

16:  end for
17:  Randomly sample a minibatch of episodes M from D;
18:  for each episode in M do

19: for t =T down to 1 do

20: Update the ¢°"* by minimizing the loss (33);
21: for all agents b € 5 do

22: Update ¢ by maximizing loss (34);

23: end for

24: Update ¢“°™ by minimizing loss (36);

25: end for

26: Update (btar by (btar — T(bcm' + (1 7_) (btar;
27:  end for

28: end for

training time, and thus we only focus on the running process.
The time complexity of the running process is jointly decided
by the structure of neural networks and the scales of both the
state space and action space. As depicted in Fig. 3, the running
process includes B actor networks and a communication
network.

Since the input of the communication network includes the
actions and observations of all agents, the input layer consists
of B - (4F + 2) neurons. Let us assume that the number of
memory blocks in the communication network is L; and the
number of hidden units is H;. A memory block contains 4
gates, each of which has a complexity of O(H;[B(4F +2) +
H;]). Then, the total time complexity of our communication
network is O(L;H; BF'), since the size of the input layer is
usually larger than that of the hidden layer, i.e. BF > H;.

The actor network includes three modules: access estima-
tion, request estimation and caching decision, as shown in
Fig. 4. The access estimation relies on an LSTM network,
the input of which is the two-dimensional access state. Let

us assume that the number of memory block is Ly and the
number of hidden units is Hs. Thus, estimating the access
state has a complexity of O(LyH3). The request estimation is
modelled by a VRNN network, which consists of a VAE and a
RNN. The input of VAE is the 2F'-dimensional request state.
Let L3 and H3 denote the number of hidden layers and the
number of neurons in each layer, respectively. The VAE has
a complexity of O(2FHs + H3Ls3). The input of the RNN
is the request state and the latent variable, as seen in (19).
Here, we assume that the RNN consists of L4 cells, each of
which includes H, hidden units. The RNN has a complexity
of O(LyH4(2F +H,)). The inputs of the decision network are
the local observation and the global state. Let us assume that
the number of hidden layers is L5 and the number of neurons
in each layer is Hy. The decision network has a complexity
of O([(2F + G)Hs + HZLs)).

In summary, the total time complexity of the running
process is determined by the sum of a communication module
and B actor modules, i.e. O(B(LiHF + LyH2 + 2FH3 +
H2L3+2L4H F + LyH,H, + 2FHs + GHs + H2Ls)).

I'V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed multi-agent deep reinforcement learning (MADRL)
based cooperative edge caching algorithm. For performance
comparisons, we also implement the following algorithms as
benchmarks:

o Least recently used (LRU): The LRU algorithm [37] will
replace the cached contents, which are requested least
frequently during the recent time slot. Each BS runs a
LRU independently for its own content replacement. We
assume that the LRU can replace 10 segments for a single
content at a time.

o Deep reinforcement learning (DRL): The DRL algorithm
[22] is used for deciding the cache placement of a single
BS. Each BS employs a DDPG network and makes its
own caching decisions independently based on the local
observations. In order to accommodate the distributed
edge caching scenario, the state, actions and rewards of
the DRL model are defined to be the same as that of the
actor network of Subsection II-B.

o Multi-agent actor-critic (MAAC): In MAAC (i.e. the de-
centralized caching algorithm proposed in [25]), the actor
network of each BS is used for deciding the edge cache
placement based solely on the local observations, and the
critic network is used for estimating the overall reward
of the actions. Notably, in contrast to the cooperative
multi-agent actor-critic model proposed in this paper,
there is no communication between agents and thus the
inputs of the actor network do not include the global
state. Furthermore, the actor network is merely a fully
connected neural network operating without considering
the temporal dynamics of content request and user access.

A. Simulation Setup

In order to simulate the random distribution of the UEs
across the coverage area of ultra-dense cellular networks, we



TABLE III
PARAMETERS SETTINGS

Modules Network Structure Parameters

Content Prior: 3 fully . .

requests connected layers Mini-batch size: 8

prediction Generation: 5 fully | Number of epochs: 200
connected layers Sequence length: 5
Recurrence: 5 LSTM | Learning rate: 0.001
layers We¥ght decay coe-

Actor] Inference: 6 fully | [fficient: 0.0001

Experience replay
buffer size: 50000
Discount factor: 0.9

connected layers
6 LSTM layers

Access state

prediction IsC .
Cooperative 3 fully connected Initial exploration
caching layers coefficient: 0.03
decision 1 softmax layer Exploration fading
Critic 3 fully connected | factor: 0.9
layers Target network update
rate: 0.01

Communication 5 LSTM layers

run the algorithms over the Geolife dataset [35], which keeps
track of the real movement trajectories of mobile users. In
the simulations, we divide the geographic area into 77 non-
overlapping hexagons having the same side length, each of
which is regarded as the coverage area of a BS, i.e. B = T77.

A user is associated with a specific BS when his/her moving
trajectory of movement passes the coverage area of the BS.
Due to the users’ random movements, the number of access
users in the various BSs’ coverage area exhibits geographic
differences.

In a real scenario, the content popularity would evolve over
time. In order to simulate the temporal variation of the request
rate for a certain content, the shot noise traffic model proposed
in [38] is adopted in our experiments. Specifically, the request
process for content f is assumed to be a time-inhomogeneous
Poisson process. The instantaneous request rate is thus given
by V- A;(t—7y), where V} is the average request rate during
the lifespan of the content f, A is the power law distribution,
Ty is the time instant when the content f becomes available
to the users and 7 is Poisson distributed. In this way, we can
generate a time-varying content popularity.

Given the above model, we can generate a series of different
request sequences for different contents by changing the
model parameters. Mapping a generated content request to a
trajectory in the Geolife dataset can produce a geographically
distributed request. Naturally, the content requests in our
simulations exhibit spatio-temporal dynamics.

In the simulations, we produce 40,000 requests in an
episode. There are a total of 100 contents available to the
users, i.e. F' = 100. Each content is encoded by a Raptor
code into different number of segments, ranging from 100 to
1000 segments. We assume that each segment has the same
size. The cache capacity of each BS is set to 100 segments,
i.e., N = 100. The cost of delivering a segment from the local
cache of a BS is set to 1, i.e., ap = 1, Vb € B. The cost of
delivering a segment from BS %k to BS b is set to 10, i.e.,
BE =10, Vk,b € B. The cost of fetching a segment from the
content server is set to 50, i.e., 8, = 1, Vb € B. The cost of
replacing a segment is set to 50, i.e., d, = 50, Vb € B.

In reality, different locations of the content may lead to
different download speed. Fetching a content file from the

local cache has the highest speed, which is randomly sampled
from the range from 0.6 to 1 segments per second. The speed
of fetching a content file from the nearby BS varies from
0.3 to 0.5 segments per second, while fetching it from the
content server suffers from the slowest speed, which varies
from 0.1 to 0.3 segments per second. The time duration of
a slot is set to 10 minutes and the training episode is set to
200 slots. The parameter settings of the actor network, critic
network and communication network are detailed in Table III.
The training process and the testing process consist of 2,000
episodes and 100 episodes, respectively. In the simulations, we
run the reference algorithms using the same request traces.
All the simulations are conducted in a computer with an
Intel(R) Xeon(R) Gold 5120 CPU and a Nvidia Tesla P4 GPU.
During the simulations, we observe that each run takes 0.45s
and occupies about 2Gb of physical memory. The time spent
training the MADRL model to achieve convergence is about
30 hours.

B. Performance Metrics

We define three metrics to evaluate the performance:

o The caching reward quantifies the total long-term reward
obtained from edge caching, which is defined as the
sum of the immediate rewards for all BSs, i.e., R =
Zthl R(t), where R(t) is defined in Eq. (14) and T
denotes the time duration of an episode.

o The cache hit rate quantifies the utilization of the edge
caches, defined as the proportion of cached segments that
have been requested by the users in an episode duration,
which is represented by:

ﬁZTZZIbnt

t=1 b=1

(37

where I(-) is an indicator. If the segment n cached in BS
b is requested by the users during slot ¢, then I(-) =
otherwise I(-) = 0.

e The traffic load characterizes how the user requests are
accommodated. Since the requested segments can be
fetched either from the local BS, or from the nearby BSs,
or alternatively from the content servers, we can define
their traffic loads as the proportion of requested segments
accommodated by each of them:

T
Ulocal = L Z ZLBTZ
oca T 2 S(t) ,
T
J _1 Z D beB kB gy Th (38)
nearby T 2 S(t) ;
Userver =1- Zj-local - Unem“bya

where S(t) is the total number of segments requested
by the users during slot ¢ and rl’f denotes the segments
fetched from BS k to BS b, as defined in Subsection 1I-B.

C. Results Analysis

The learning process of the MADRL is shown in Fig.
7. The loss decays rapidly up to about 1,200 episodes and
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Fig. 7. Learning process of the MADRL algorithm. (a) The loss of critic
network. (b) The output value of critic network.
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Fig. 8. The caching reward in each episode.

then gradually stabilizes. Since the loss represents the error
between the critic value as defined in (32) and the actual
reward, the critic value is approaching the actual reward as
the training goes on, which is in accordance with the variation
of the critic value curve. This indicates that the learning
algorithm converges after about 1,200 episodes’ training and
then the well-trained critic network can be used for accurately
estimating the value function.

Fig. 8 shows the caching reward obtained by the four algo-
rithms in each episode during the testing phase. Explicitly, the
MADRL attains the highest reward, followed by the MAAC
and the DRL, and finally the LRU. This indicates that the
MADRL can readily coordinate the BSs to take full advantage
of the distributed edge caches and thus achieves a higher
reward for all BSs. Compared to the MADRL, the MAAC
also adopts the multi-agent actor-critic framework, but there is
no communication among the agents. Specifically, for MAAC,
each BS makes its caching decisions purely based on the local
observations without considering the actions and states of the
nearby BSs. However, the caching reward of each BS, as
defined in (14), depends not only on its own cache placement
but also on the other BSs’ cache placements. Furthermore,
the MAAC uses a simple fully connected neural network as
an actor, which cannot explicitly model the variability of the
observed states. Accordingly, the actor network of the MAAC
cannot estimate the optimal strategy function. Upon comparing
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with the MADRL, we find that the cooperations among the
edge caches can significantly improve the reward, because the
decision making of each BS is entirely independent in DRL.
In Fig. 8, the learning based algorithms, including MADRL,
DRL and MAAC, outperform the LRU which uses heuristic
methods for cache replacement. We also find that the reward
of the LRU remains unchanged vs. the episode index, while
the rewards of the other algorithms vary slightly, although
the request traces used in the testing are the same between
episodes. The reason for this trend is that the learning based
algorithms use the e-greedy policy to explore the new actions,
which may result in small perturbations to the rewards.

We plot the average hit rate of the edge caches in Fig. 9. The
MADRL achieves the highest cache hit rate, which implies
the best utilization of the edge caches. Although the storage
of a single BS is quite limited, the MADRL can make the
BSs work cooperatively by sharing the cached contents among
the BSs, so that the users can fetch the contents both from
the local and from nearby BSs rather than from the content
servers. The collaboration among BSs avoids caching the
same contents redundantly in different BSs, which saves the
edge storages. By contrast, the DRL and the LRU make their
caching decisions independently, and thus the BSs may cache
duplicate contents. They may cache much less contents in the
limited edge storage than the MADRL. As a result, based on
the same request traces, the requested contents are more likely
to activate the edge caches using MADRL than upon using
the DRL and LRU. Hence, the MADRL has a much higher
cache hit rate than the DRL and the LRU. Meanwhile, since
the deep learning model characterizes the variation of content
popularity better than the heuristic model, the DRL achieves
a higher cache hit rate than the LRU. In Fig. 9, we also find
that the MAAC achieves a slightly lower cache hit rate than
the MADRL. For MAAC, the decision making of each BS
does not consider other BSs’ cache placement. As a result, a
BS may cache a popular content even if this content can be
widely found in the nearby BSs. The redundant caching may
waste the limited storage, which is supposed to cache more
contents so as to further improve the cache hit rate.

In order to characterize how the users’ requests are accom-
modated, in Fig. 10, we plot the proportions of the requested
segments that respectively are transmitted from the local BS,
from the nearby BS and from the content server. Observe from
Fig. 10(a) that only about 21% of the requested segments are
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Fig. 10. The proportion of requested segments accommodated by (a) the content servers, (b) the local BS and (c) the nearby BSs.

transmitted from the content servers using the MADRL, which
is far below the proportions of 56%, 43% and 34% upon using
the other algorithms. This result implies that the MADRL can
make the best use of the edge caches for reducing the content
retrieval through the core networks, which is in accordance
with the results of Fig. 8, since the cost of fetching the content
from the servers is higher than that from the edge caches.
Upon comparing Fig. 10(b) to (c), we find that although the
MADRL (43%) has a slightly lower proportion of segments
fetched from the local BS than the DRL (45%), the proportion
of segments fetched from the nearby BSs using the MADRL
(36%) is much higher than that using the DRL (12%). In DRL,
each BS only considers accommodating the requests from its
local users while deciding the cache placement. By contrast,
the MADRL also considers the cooperation among the BSs.
Specifically, for a hot spot, the limited storage of the local
BS is not enough for caching all the popular contents, but the
nearby BSs can help to accommodate some requests by content
sharing. This result indicates that the MADRL mitigates the
traffic burdens imposed on the backhauls.

Fig. 11 shows the performance under different cache sizes,
which range from 50 to 300 segments with a step size of
50 segments. Observe in Fig. 11(a) that the caching reward
increases upon increasing the BS’s cache size. Larger storage
capacities of the edge caches enable us to cache more contents.
Hence the users’ requests are more likely to be accommo-
dated by the edge caches, which significantly alleviates the
traffic burden imposed both on the backhaul and on the core
networks. The reduction of network resources also means the
increase of caching reward. It is also seen in Fig. 11(b) that
the cache hit rate decreases upon increasing the BS’s cache
size. A small cache size only allows us to retain the most
popular contents, thus the cached segments are more likely
to be requested by the users, which results in a high cache
hit rate. By contrast, a large cache size would reduce the
likelihood that the cached contents are eventually activated. We
also find that the performance gaps between the MADRL and
the other algorithms become wider as the cache size increases.
The BS having a larger cache size can retain more contents for
other “hot” BSs, which naturally promotes the content sharing
among the BSs.

A further experiment is conducted for evaluating the perfor-
mance under different numbers of content requests, which are
set to span from 20,000 to 120,000 in an episode. We generate
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the request traces by scaling up the average request rate for
each content, while keeping the content popularity distribution
the same. As shown in Fig. 12(a), the caching reward increases
with the number of contents requests and the performance gaps
among these algorithms become wider. Since the caching re-
ward characterizes the cumulative cost savings for all requests,
the increase of requests may lead to the increase of cost saving.
In Fig. 12(b), the cache hit rate also increases with the number
of contents requests. Since the generation of contents requests
obeys the popularity distribution, the requests for the contents
having a low popularity are more likely to occur as the number
of sample requests increases.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we formulated the cooperative caching prob-
lem as a POMDP-based multi-agent decision problem, which
jointly optimized the costs of fetching contents from the local
BS, the nearby BSs and the content servers. To solve this
problem, we devised a multi-agent actor-critic framework,
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where a communication module was introduced to extract and
share the variations of the global states among the BSs. Since
the full information of the state is explicitly unkonwn, we
proposed a VRNN-based content request estimation model and
an LSTM-based user access estimation model. Accordingly,
we proposed a multi-agent deep reinforcement learning based
cooperative edge caching algorithm, where each BS made its
own caching decisions based on both the local and the global
states. Our experimental results verified that the proposed al-
gorithm facilitated the collaboration between the edge caches,
and thus reduces the traffic loads on the backhaul links, while
improving the edge cache hit rate.
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