The University of Southampton
University of Southampton Institutional Repository

Development of a novel 3D nanofibre co-culture model for characterisation of neural cell degeneration

Development of a novel 3D nanofibre co-culture model for characterisation of neural cell degeneration
Development of a novel 3D nanofibre co-culture model for characterisation of neural cell degeneration
Neurodegenerative diseases are prolonged and progressive. In general, they affect individuals in the latter stages of their lives. The pathology of neural cell degeneration is widely researched, and most current therapeutic strategies aim to delay its progression by either promoting neuronal regeneration, resurrecting the lost brain function with stimulation electrodes or by cell replacement therapies. Neuronal and glial cells are researched to better understand the physiological condition and to find a cure for degenerative diseases. In current in vitro techniques, cells dissociated from their natural three-dimensional (3D) tissue and cultured on flat surfaces present a significant drawback in drug discovery and cell therapy research. Communication and various signal transduction between neuronal and glial cells in the in vivo system are purely based on a dynamic convoluted systematic network constructed and expanded in a 3D manner. Recently, electrospun 3D nanofibre scaffolds have gained attention among researchers for their ability to mimic the natural 3D microenvironment that cells inhabit. Developing an in vitro system which emulates the in vivo 3D habitat of neural cells has been a significant challenge. This thesis reports on the advantages of using novel 3D suspended nanofibre membrane technology to create better models for both drug discovery and therapeutic implants. In this study, we focused on developing a suitable sterile nanofibre porous membrane using Polyacrylonitrile (PAN), and Jeffamine® ED-2003 modified polyacrylonitrile (PJ) to provide favourable conditions for neuronal and glial proliferation, differentiation and survival. The study was designed, engineered and optimised three different state-of-the-art fully suspended nanofibre models that are highly multi-functional and suitable for investigating several diseases and chronic conditions. We have characterised the growth and survival of human SH-SY5Y neuroblastoma, human U-87MG glioblastoma, human ReNcell CX neural progenitor and primary neural cells from E18 rat hippocampal tissue on both PAN and PJ nanofibre scaffolds. Our investigations and chronic studies have shown extended survival of cells on a scaffold in comparison to these cells cultured on the base of cell adherent tissue culture plates (TCP). Differentiation cell culture trials have demonstrated that both PAN and PJ are capable of supporting cell differentiation and immunofluorescence and western blot analysis has shown elevated levels of key differentiation marker proteins on the cells cultured on the suspended scaffolds compared to TCP. Our findings indicate that the new 3D suspended nanofibre scaffolds support improved growth, survival and differentiation of both cell populations as well as increasing the sensitivity of the cells to Toxins when compared to the sensitivity of cells growth of the base of TCPs. Moreover, chronic exposures to Toxins using the novel co-culture scaffold model has shown prolonged neuronal survival in the presence of astrocytes. Together, our findings suggest the potential for the 3D nanofibre approach to improve in vitro therapeutic studies and our co-culture system, which creates a better mimic, should lead to a reduced number of animals used for pharmaceutical development and in the screening of compounds to find neuroprotective compounds to prevent degeneration of neural cells.
British Library
Chemmarappally, Joseph
0d6cada6-6bb5-48e9-af93-34b93e935c84
Chemmarappally, Joseph
0d6cada6-6bb5-48e9-af93-34b93e935c84
Stevens, Bob
63cee635-da1b-4834-9579-d903e4d4713f
De Girolamo, Luigi
c8fedb87-1aab-44e7-a493-beef4a2e63c0
Hargreaves, Alan
8eaffc1d-13bf-4df3-9fed-a0fd660e6a8f

Chemmarappally, Joseph (2019) Development of a novel 3D nanofibre co-culture model for characterisation of neural cell degeneration. School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom, Doctoral Thesis, 280pp.

Record type: Thesis (Doctoral)

Abstract

Neurodegenerative diseases are prolonged and progressive. In general, they affect individuals in the latter stages of their lives. The pathology of neural cell degeneration is widely researched, and most current therapeutic strategies aim to delay its progression by either promoting neuronal regeneration, resurrecting the lost brain function with stimulation electrodes or by cell replacement therapies. Neuronal and glial cells are researched to better understand the physiological condition and to find a cure for degenerative diseases. In current in vitro techniques, cells dissociated from their natural three-dimensional (3D) tissue and cultured on flat surfaces present a significant drawback in drug discovery and cell therapy research. Communication and various signal transduction between neuronal and glial cells in the in vivo system are purely based on a dynamic convoluted systematic network constructed and expanded in a 3D manner. Recently, electrospun 3D nanofibre scaffolds have gained attention among researchers for their ability to mimic the natural 3D microenvironment that cells inhabit. Developing an in vitro system which emulates the in vivo 3D habitat of neural cells has been a significant challenge. This thesis reports on the advantages of using novel 3D suspended nanofibre membrane technology to create better models for both drug discovery and therapeutic implants. In this study, we focused on developing a suitable sterile nanofibre porous membrane using Polyacrylonitrile (PAN), and Jeffamine® ED-2003 modified polyacrylonitrile (PJ) to provide favourable conditions for neuronal and glial proliferation, differentiation and survival. The study was designed, engineered and optimised three different state-of-the-art fully suspended nanofibre models that are highly multi-functional and suitable for investigating several diseases and chronic conditions. We have characterised the growth and survival of human SH-SY5Y neuroblastoma, human U-87MG glioblastoma, human ReNcell CX neural progenitor and primary neural cells from E18 rat hippocampal tissue on both PAN and PJ nanofibre scaffolds. Our investigations and chronic studies have shown extended survival of cells on a scaffold in comparison to these cells cultured on the base of cell adherent tissue culture plates (TCP). Differentiation cell culture trials have demonstrated that both PAN and PJ are capable of supporting cell differentiation and immunofluorescence and western blot analysis has shown elevated levels of key differentiation marker proteins on the cells cultured on the suspended scaffolds compared to TCP. Our findings indicate that the new 3D suspended nanofibre scaffolds support improved growth, survival and differentiation of both cell populations as well as increasing the sensitivity of the cells to Toxins when compared to the sensitivity of cells growth of the base of TCPs. Moreover, chronic exposures to Toxins using the novel co-culture scaffold model has shown prolonged neuronal survival in the presence of astrocytes. Together, our findings suggest the potential for the 3D nanofibre approach to improve in vitro therapeutic studies and our co-culture system, which creates a better mimic, should lead to a reduced number of animals used for pharmaceutical development and in the screening of compounds to find neuroprotective compounds to prevent degeneration of neural cells.

This record has no associated files available for download.

More information

Published date: 28 October 2019

Identifiers

Local EPrints ID: 445633
URI: http://eprints.soton.ac.uk/id/eprint/445633
PURE UUID: ab419087-6f0c-41f2-ad80-bb25c7688716

Catalogue record

Date deposited: 04 Jan 2021 17:35
Last modified: 05 Jun 2024 17:18

Export record

Contributors

Author: Joseph Chemmarappally
Thesis advisor: Bob Stevens
Thesis advisor: Luigi De Girolamo
Thesis advisor: Alan Hargreaves

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×