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W. Böhningc, N. Guhad, P. Sönksenc, D. Cowane

aS3RI and School of Mathematical Sciences
University of Southampton, SO17 1BJ, UK

bNovartis Pharma AG
Basel, 4002, Switzerland

cHuman Development and Health Academic Unit
Faculty of Medicine, Southampton General Hospital

University of Southampton, SO16 6YD, UK
dChemical Pathology and Metabolic Medicine Department of

Clinical Biochemistry, John Radcliffe Hospital
Oxford, OX3 9DU, UK

e Drug Control Centre, Department of Pharmacy & Forensic Science
King’s College London, London SE1 9NH, UK

∗ w.liu@maths.soton.ac.uk

1



Abstract

This paper is motivated by the GH-2000 biomarker test, though the discussion is
applicable to other diagnostic tests. The GH-2000 biomarker test has been developed
as a powerful technique to detect growth hormone misuse by athletes, based on the GH-
2000 score. Decision limits on the GH-2000 score have been developed and incorporated
into the guidelines of the World Anti-Doping Agency (WADA). These decision limits are
constructed, however, under the assumption that the GH-2000 score follows a normal
distribution. As it is difficult to affirm the normality of a distribution based on a finite
sample, nonparametric decision limits, readily available in the statistical literature,
are viable alternatives. In this paper, we compare the normal distribution based and
nonparametric decision limits. We show that the decision limit based on the normal
distribution may deviate significantly from the nominal confidence level 1−α or nominal
false positive rate γ when the distribution of the GH-2000 score departs only slightly
from the normal distribution. While a nonparametric decision limit does not assume any
specific distribution of the GH-2000 score and always guarantees the nominal confidence
level and false positive rate, it requires a much larger sample size than the normal
distribution based decision limit. Due to the stringent false positive rate of the GH-
2000 biomarker test used by WADA, the sample sizes currently available are much
too small, and it will take many years of testing to have the minimum sample size
required, in order to use the nonparametric decision limits. Large sample theory about
the normal distribution based and nonparametric decision limits is also developed in
this paper to help understanding their behaviours when the sample size is large.

Keywords: Asymptotic distribution; Decision Limits; GH-2000 score; Growth hormone mis-
use detection; Nonparametric methods; Tolerance intervals; Tolerance limits.
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1 Introduction

Growth hormone is an endogenous anabolic agent of considerable therapeutic value but also
misused in sport for its anabolic and lipolytic properties (cf. Holt, 2009). In order to preserve
the fairness of competition, its use is prohibited by the World Anti-Doping Agency (WADA)
(WADA, 2016). Two methods are presently available and approved by WADA to detect its
misuse: the isoform test developed by Bidlingmaier et al. (2000) (see also WADA, 2014,
2016) and the GH-2000 biomarker test developed by the GH-2000 and GH-2004 projects (cf.
Holt et al., 2015). The latter method depends on the measurements of two growth hormone
(GH) sensitive biomarkers, insulin-like growth factor-I (IGF-I) and the amino-terminal pro-
peptide of type III collagen (P-III-NP), both of which rise in response to exogenous GH
administration (cf. Longobardi et al., 2000, and Dall et al. 2000). The measurements are
used, adjusted for sex and age of an athlete, to calculate a score, the GH-2000 score, based on
which the compliance of an athlete’s sample is determined. The biomarkers are measured by
either immunoassay or mass spectrometry. WADA has approved three IGF-I assays and two
P-III-NP assays. Each assay generates slightly different results and so the decision limits for
the GH-2000 score are assay-specific. The decision limits of both the isoform and GH-2000
biomarker test have been developed using parametric statistics with the aim of controlling
the false positive rate (FPR) to less than 1 in 10,000. In this paper, we will use data collected
by the GH-2004 team to discuss and illustrate the use of decision limits.

Let X denote an assay-specific GH-2000 score of an athlete without GH misuse and assume
that X is a continuous random variable with cumulative distribution function (cdf) F (·) and
probability density function (pdf) f(·). WADA (2016) requires that the FPR is controlled
at a pre-specified small value γ, leading to a critical value c = F−1(1− γ) such that

P{X > c} = 1− F (c) = γ, (1)

where F−1 denotes the inverse or quantile function of F . Currently γ is set at 1/10, 000 =
0.0001 by WADA (2016).

When F (·) is given by the normal distribution N(µ, σ2), we have c = µ+ Φ−1(1−γ)σ, which
is equal to µ+3.72σ for γ = 0.0001; Φ(·) and φ(·) denote, respectively, the cdf and pdf of the
standard normal distribution N(0, 1). Clearly, had µ and σ been known, c = µ+Φ−1(1−γ)σ
would have been used as the decision limit as it would give the required FPR γ exactly.
However, µ and σ are unknown and need to be estimated by their sample estimators X̄
and S, the sample mean and sample standard deviation, respectively. Furthermore the
estimated critical value ĉ = X̄ + Φ−1(1 − γ)S is random and it is not guaranteed that
X̄ + Φ−1(1 − γ)S ≥ µ + Φ−1(1 − γ)σ, which is desirable in order to guarantee the FPR γ.
Hence it is necessary to incorporate this uncertainty into the construction of the decision
limit. This can be accomplished by using an additional uncertainty term rS, where r is a
suitably chosen constant, such that

P
{
X̄ + Φ−1(1− γ)S + rS ≥ µ+ Φ−1(1− γ)σ

}
= 1− α . (2)

That is, we aim to construct a decision limit X̄ + Φ−1(1−γ)S+ rS which has a 1−α (large)
confidence level of being greater than the critical value c = µ+ Φ−1(1− γ)σ associated with
FPR γ. Usually 1− α is set at 0.95, which is also used currently by WADA.
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Holt et al. (2015) apply the ∆-method to provide a formula for the constant r so that the
probability in (2) is approximately equal to 1 − α when the sample size of the available
sample (for estimating µ and σ) is large. Realizing from (2) that X̄ + Φ−1(1 − γ)S + rS
is a 1 − α upper confidence bound for c = µ + Φ−1(1 − γ)σ or a (1 − γ)-content and
(1 − α)-confidence upper tolerance limit for the normal distribution N(µ, σ2), Böhning et
al. (2019) point out, by appealing to the available results in the statistical literature (cf.
Krishnamoorthy and Mathew, 2009; Liu et al., 2013; Meeker et al., 2017), that the decision
limit X̄ + Φ−1(1 − γ)S + rS satisfying (2) exactly is given by X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n,

where n is the sample size, zγ = Φ−1(1− γ), and T−1ν;δ (q) is the q-quantile of the non-central
t-distribution with ν degrees of freedom and non-centrality parameter δ.

Note, however, the decision limit X̄−T−1n−1;−
√
nzγ

(α)S/
√
n hinges on the assumption that the

GH-2000 score X has a normal distribution N(µ, σ2). While there are various statistical tests
for detecting the departure of the distribution F (·) from the normal distribution (see, e.g.,
Chantarangsi et al., 2015, and the references therein), a non-rejection of the null hypothesis
that F (·) is a normal distribution does not imply that F (·) is a normal distribution. When
F (·) is not normal, the confidence level that the decision limit X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n is

larger than F−1(1−γ) could be much smaller than the nominal level 1−α, that is, equivalently
(see Section 2 below), the probability of the FPR being larger than γ could be much larger
than α. For example, shown in Section 2, when F (·) is the t distribution with 30 degrees
of freedom (df), which differs little from N(0, 1), the confidence level is 0.010 for γ = 0.001,
α = 0.05 and n = 3100, which is much smaller than 1 − α = 0.95. Hence, in this case, the
probability of the FPR being larger than γ = 0.001 is 1 − 0.010 = 0.990, much larger than
α = 0.05. It is therefore attractive to use a nonparametric decision limit, which guarantees
the nominal confidence level or FPR irrespective of the specific form of F (·).

A nonparametric decision limit can be constructed from the order statistics. Let X1, . . . , Xn

denote the available random sample from the population with cdf F (·), and X[1] < . . . < X[n]

the order statistics of X1, . . . , Xn. It is well-known (cf. Krishnamoorthy and Mathew, 2009)
that F (X1), · · · , F (Xn) are independent, each having a uniform distribution on the interval
(0, 1), and that F (X[k]) has a beta distribution with parameters k and n − k + 1 under the
only assumption that Xi is a continuous random variable.

Similar to the requirement in (2), a nonparametric decision limit D(X1, . . . , Xn) satisfies

P
{
D(X1, . . . , Xn) ≥ F−1(1− γ)

}
≥ 1− α . (3)

From this, one realizes that D(X1, . . . , Xn) is just a (1 − γ)-content and (1 − α)-confidence
(nonparametric) upper tolerance limit for the distribution F (·). Nonparametric tolerance
limits/regions are studied first in Wilks (1941) and extended in Wald (1943) and Tukey
(1947) among many others. Excellent overviews are provided in Guttman (1970, 2006),
Krishnamoorthy and Mathew (2009) and Meeker et al. (2017). The R package tolerance

of Young (2010) allows the computation of many tolerance intervals/regions. It is known
(cf. Krishnamoorthy and Mathew, 2009) that one can set D(X1, . . . , Xn) = X[k], where the
natural number k is chosen such that

P
{
X[k] ≥ F−1(1− γ)

}
4



= P
{
F (X[k]) ≥ 1− γ

}
(4)

= 1−Bk,n−k+1(1− γ) ≥ 1− α (5)

where Bk,n−k+1(·) denotes the cdf of the beta distribution with parameters k and n− k + 1.

Note that there may not exist a natural number k such that 1−Bk,n−k+1(1− γ) ≥ 1− α for
given α, γ and n. The existence of such a natural number k (that satisfies the inequality in
(5)) is guaranteed if and only if the inequality in (5) is satisfied with the largest possible value
of k given by k = n, that is, 1−Bn,1(1−γ) ≥ 1−α, which is equivalent to n ≥ ln(α)/ ln(1−γ)
(cf. Krishnamoorthy and Mathew, 2009).

For γ = 0.0001 and α = 0.05 used currently by WADA, we have ln(α)/ ln(1− γ) = 29955.8
and so the smallest sample size required is n = 29956. Hence if n = 29956 then the largest
order statistic X[n] is a 0.9999-content and 0.95-confidence upper tolerance limit for F (·),
and if n < 29956 then the largest order statistic X[n] is no longer a 0.9999-content and 0.95-
confidence upper tolerance limit for F (·). While reflecting the stringent requirement of the
very small FPR γ = 0.0001 used currently by WADA, this sample size is extremely large
considering the sample sizes of the currently available samples in GH-2000 study (Holt et
al., 2015) are less than 1,000. For n = 1000, for example, X[n] is a 0.9970-content and 0.95-
confidence upper tolerance limit, and a 0.9999-content and 0.0952-confidence upper tolerance
limit. Even with the latest available data, the sample size is n = 5053, still much smaller
than the minimum sample size n = 29956 required. For n = 5053, X[n] is a 0.9994-content
and 0.95-confidence upper tolerance limit, and a 0.9999-content and 0.3967-confidence upper
tolerance limit.

At the current speed of accruing observations by WADA, it will take many years to reach
the required minimum sample size n = 29956 for γ = 0.0001 and α = 0.05. Hence, for the
purpose of illustration, we will use n = 5053 based on the latest available data with the less
stringent values γ = 0.001 and α = 0.05.

It should be emphasized that n ≥ ln(α)/ ln(1 − γ) is a requirement on the sample size so
that a (1 − γ)-content and (1 − α)-confidence upper tolerance limit of the form X[k] can be
constructed. When n ≥ ln(α)/ ln(1 − γ), there may exist more than one natural number k
that satisfies the inequality in (5). In this case, the smallest natural number k that satisfies
the inequality in (5) should be used, and the corresponding X[k] is the nonparametric decision
limit used in the rest of the paper. This smallest k can be computed straightforwardly from
the inequality in (5) since Bk,n−k+1(·) can be routinely computed in most statistical packages
such as R by using the built-in incomplete beta function, or by using the R package tolerance
of Young (2010).

For example, with γ = 0.001, α = 0.05 and n = 5053 (which is larger than ln(α)/ ln(1−γ) =
2994.2), the smallest k that satisfies the inequality in (5) is given by k = 5052, and so
X[5052] = 10.18 is the required nonparametric decision limit. The normal distribution based
decision limit in this case is X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n = 8.426. Hence the nonparametric

decision limit is larger, and so less sensitive, than the normal distribution based decision
limit; but the normal distribution based decision limit requires the assumption of normal
distribution.
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The purpose of this paper is to compare this nonparametric decision limit, denoted as NonpL
hereafter, and the normal distribution based decision limit X̄−T−1n−1;−

√
nzγ

(α)S/
√
n, denoted

as NormL henceforth. In Section 2, NonpL and NormL are compared for finite sample size
behaviour. In particular, we demonstrate by simulation that the true confidence level of
NormL can be much smaller than the nominal level 1 − α (correspondingly, the probability
of the FPR being larger than γ can be much larger than α) even if the true distribution
F (·) departs only slightly from the normal distribution. We also assess by simulation the
efficiency loss of NonpL relative to NormL when the true distribution F (·) is normal. To
have a deep understanding of NormL and NonpL, their large sample asymptotic behaviours
are studied in Section 3. Finally Section 4 contains a brief discussion.

The dataset containing 5053 GH-2000 scores and the R codes for reproducing the results in this
paper are available on the journal’s web page http://onlinelibrary.wiley.com/doi/xxx/
suppinfo as Supporting Information.

2 Finite sample comparison of the decision limits

In this section, NormL and NonpL are compared numerically. Note firstly that NormL can
be applied only if the score X distribution F (·) is normal but NonpL is applicable as long as
X is a continuous random variable. Secondly, NormL only needs the sample size n to be at
least two (so that sample variance is available for estimating σ2) but NonpL requires a much
large sample size n, at least ln(α)/ ln(1− γ), as pointed out in Section 1.

Although it is difficult to affirm the exact distribution of F (·) based on a finite sample, NonpL
always guarantees that the FPR is no more than γ with 1−α confidence about the randomness
in the sample X1, . . . , Xn, in contrast to NormL. In Subsection 2.1, the performance of NormL
is assessed when F (·) departs from the normal distribution in several scenarios. On the other
hand, when F (·) does have a normal distribution, NonpL is less efficient than NormL, which
is tailor-made for the normal distribution. In Subsection 2.2, the efficiency loss of NonpL
relative to NormL is assessed when the distribution F (·) is normal.

2.1 Distribution F (·) is not normal

In this subsection, we assess the probability

P
{
X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n > F−1(1− γ)

}
(6)

when F (·) is not a normal distribution. This probability is the confidence level that NormL
is larger than F−1(1 − γ). We show that it can be substantially smaller than the nominal
level 1− α when F (·) is not a normal distribution.

After the sample of observations being collected, NormL X̄ − T−1n−1;−
√
nzγ

(α)S/
√
n can be
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Figure 1: Plots of the four pdfs overlaying the N(0, 1) pdf

calculated. When NormL is applied to future observations, the FPR is given by

P
{
X > X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n
}

= 1− F
(
X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n
)

(7)

where X denotes a future observation from F (·) independent of the sample, and the proba-
bility is calculated with respect to X since the same NormL is used to all future observations.
Clearly the FPR in (7) depends on X̄ and S, and so is random. Furthermore, the FPR is
smaller than γ if and only if X̄−T−1n−1;−

√
nzγ

(α)S/
√
n > F−1(1−γ). Hence the probability in

(6) is also the probability that the FPR is smaller than γ, which can be substantially smaller
than the nominal level 1 − α when F (·) is not a normal distribution as shown in Table 1
below.

The probability in (6) can be computed easily by using statistical simulation. For a given
distribution F (·) and γ, compute F−1(1 − γ) first. Then simulate a simple random sample
of size n from F (·), compute the corresponding statistic X̄ −T−1n−1;−

√
nzγ

(α)S/
√
n, and check

whether the statistic is larger than F−1(1 − γ). Repeat this process R times, and use the
proportion of times out of the R replications that the statistic is larger than F−1(1 − γ) as
the probability in (6). The value R = 1, 000, 000 is used in all our simulations in this paper

so that this proportion from simulation is within 2.576
√
p(1− p)/R ≤ 0.0013 of the true

probability in (6) with 99% confidence level about the randomness in the simulation.

Four specific non-normal distributions of F (·) are investigated in our simulation study. Figure
1 plots each pdf of the four distributions, overlaying the pdf of N(0, 1). The first is the
standard Cauchy distribution (top left panel of Figure 1), whose pdf has a bell-shape too but
much larger tails than N(0, 1). The second is the central t distribution with thirty df (top
right panel of Figure 1), T30, whose pdf has only very slightly larger tails than N(0, 1). Indeed,
the results of Chantarangsi et al. (2015, Table 3) indicate that even the T6 distribution is not
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Table 1: The confidence level in expression (6) of NormL when F (·) is not a normal distri-
bution and α = 0.05

γ n k NonpCL Cauchy T30 MixN1 MixN2

0.01 900 897 0.979 0.933 0.813 0.749 0.983
1000 996 0.971 0.946 0.802 0.739 0.985
1100 1095 0.963 0.956 0.793 0.728 0.986
1500 1492 0.963 0.981 0.752 0.688 0.990

0.001 3100 3100 0.955 0.341 0.010 0.000 0.905
3500 3500 0.970 0.361 0.005 0.000 0.905
5053 5052 0.961 0.425 0.000 0.000 0.901
10000 9996 0.971 0.567 0.000 0.000 0.893

0.0001 30000 30000 0.950 0.129 0.000 0.000 0.000
50000 49999 0.960 0.166 0.000 0.000 0.000

easily distinguishable from N(0, 1) by the usual tests of normality when the sample size is not
very large. The third distribution is the mixed normal distribution 0.99Φ(x) + 0.01Φ((x −
1.5)/2.5) (bottom left panel of Figure 1), denoted as MixN1, which is only very slightly
skewed to the right. Again, there are only very small differences between this distribution
and N(0, 1). The fourth distribution is the mixed normal distribution 0.99Φ(x) + 0.01Φ((x+
1.5)/2.5) (bottom right panel of Figure 1), denoted as MixN2, whose pdf is the reflection
about the vertical line x = 0 of the pdf of the MixN1 above, and so only very slightly skewed
to the left. Overall the Cauchy pdf has much larger tails than N(0, 1) pdf, and there is little
difference between the other three distributions from N(0, 1).

Table 1 presents the simulation results on the confidence level in (6) for α = 0.05 and various
combinations of FPR γ and sample size n. The last four columns gives the true confidence
levels of NormL, whilst the column NonpCL gives the true confidence levels of NonpL. The
k value for given α, γ and n is for NonpL X[k]. The true confidence level of X[k] is given by
1−Bk,n−k+1(1−γ) in (5) which is also computed and agrees to three decimal places with the
corresponding simulated value given in the column NonpCL for all the cases in Table 1. This
indicates that the simulation results on the confidence level of NormL can also be expected
to be accurate to three decimal places.

It is clear from Table 1 that the true confidence level of NormL is drastically smaller than
the nominal level 1− α = 0.95 for most cases, and close to zero (to three decimal places) in
several cases. This is surprising especially for the T30 distribution which seems very close to
N(0, 1) as shown in Figure 1. As expected, the true confidence level of NonpL is at least 1−α
and has nothing to do with the specific distribution of F (·). The key message from Table 1
is that if the true distribution F (·) departs only very slightly from the normal distribution
then the nominal confidence level of NormL can be seriously breached. Hence NormL should
be used only if one is comfortable with the assumption that F (·) is a normal distribution.

If one is directly interested in the FPR in (7), which is a random variable taking values in
the interval (0, 1), one can simulate its value for a large number R times as above to study

8



0.000 0.001 0.002 0.003 0.004

0
10

0
20

0
30

0
40

0

x

de
ns

ity
 fu

nc
tio

n

Figure 2: Estimate of the pdf of the FPR in (7)

its properties. When n = 5053, γ = 0.001, α = 0.05 and F (·) is the standard Cauchy
distribution, the kernel density estimate (cf. Wand and Jones, 1995, and the companion R

package KernSmooth) of the pdf of the FPR, based on the R = 1, 000, 000, is given in Figure
2, where the vertical line indicates the nominal FPR γ = 0.001. In Figure 2, the probability
that the FPR is smaller than γ is given by the area under the curve to the left of the vertical
line, which is given by the corresponding entry 0.425 in Table 1 due to relationship pointed
out under expression (7). From Figure 2, it is clear that the FPR in (7) can be substantially
larger than γ = 0.001. Of course, a decision limit that has inflated FPR will also increase its
chance of detecting true positives.

Subsections 3.1 and 3.2 below investigate the asymptotic distributions of X̄−T−1n−1;−
√
nzγ

(α)S/
√
n

and X[k], which provide insights on NormL and NonpL from a different perspective.

2.2 Distribution F (·) is normal

In this subsection, the efficiency loss of NonpL relative to NormL is assessed when F (·) is
a normal distribution N(µ, σ2). Specifically, the difference between the two decision limits

X[k] −
[
X̄ − T−1n−1;−

√
nzγ

(α)S/
√
n
]

= σD0 is of interest, where

D0 =
X[k] − µ

σ
−
[
X̄ − µ
σ
− T−1n−1;−

√
nzγ

(α)
S/σ√
n

]
. (8)

Note that D0 does not depend on µ or σ and hence, without loss of generality, we assume
µ = 0 and σ2 = 1 when studying D0. We will focus on the distribution of D0 and, in
particular, P{D0 > 0} which gives the probability that NonpL is larger than NormL. These
can be assessed again by simulation. To simulate one D0, one generates a simple random
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Table 2: The values of P{D0 > 0} (top), E(D0) (middle) and sd(D0) (bottom) when F (·) is
a normal distribution and α = 0.05

γ n = 900 1,100 1,500 3,000 5053 10,000 30,000 50,000 ∞
0.01 0.924 0.873 0.872 0.877 0.859 0.841 0.834 0.828 0.824

0.220 0.147 0.120 0.080 0.055 0.035 0.019 0.014 0
0.163 0.132 0.107 0.070 0.051 0.035 0.019 0.015 0

0.001 NA NA NA 0.908 0.925 0.940 0.927 0.905 0.897
0.381 0.276 0.187 0.088 0.059 0
0.323 0.211 0.128 0.062 0.045 0

0.0001 NA NA NA NA NA NA 0.933 0.944 0.929
0.368 0.265 0
0.287 0.187 0

sample of size n from N(0, 1) and compute D0 using (8) with µ = 0 and σ = 1. Repeat this
R = 1, 000, 000 times to generate a simple random sample of R observations of D0, based on
which one can approximate accurately the distribution of D0 and P{D0 > 0}. Based on the
R simulated observations of D0, we use the kernel density estimate as before to assess the
pdf of D0. We use the proportion of times D0 > 0 in the R replications as P{D0 > 0}, and
use the sample mean and standard deviation as E(D0) and sd(D0) respectively.

Table 2 presents some results on P{D0 > 0}, E(D0) and sd(D0), given by the top, middle
and bottom entries respectively. The entry ‘NA’ represents the case that, for the given
values of α, γ and n, there is no k that satisfies the inequality in (5) and so NonpL cannot be
constructed. As expected, P{D0 > 0} is larger than 0.5 for each case and so NonpL is larger
than normL most times. However, P{D0 > 0} < 1 and so NonpL is smaller than NormL
with a positive probability, that is, for some samples of observations X1, . . . , Xn, NonpL is
smaller than NormL. For example, for the case of γ = 0.01 and n = 10, 000 in Table 2, NonpL
is actually smaller than NormL for 100× (1− 0.84)% = 16% of the samples.

More detailed information about the magnitude of D0 is provided by the kernel density
estimate. Figure 3 provides the kernel density estimate for the case of α = 0.05, γ = 0.01 and
n = 1500. Based on the R simulated observations, one can easily compute E(D0) = 0.120
and sd(D0) = 0.107 using the sample mean and standard deviation, for example, which
indicates that the average amount (scaled by σ) by which NonpL is larger than NormL is
E(D0) = 0.120. The density estimate in Figure 3 also indicates that the likely values of D0

are in the interval [−0.2, 0.5].

Subsection 3.3 provides the asymptotic distribution of D0 to provide insight on D0 from a
different viewpoint. The entries in the last column corresponding to n = ∞ of Table 2 are
the asymptotic values of P{D0 > 0}, E(D0) and sd(D0) as n → ∞, using the results in
Subsection 3.3.
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Figure 3: Estimate of the pdf of D0

3 Large sample theory of the decision limits

3.1 NormL

To understand better why the probability in (6) may be different from the nominal confidence
level 1− α when F (·) is not normal, we study the large sample (as n→∞ throughout this
section) behaviour of the probability in (6). Let µ and σ2 denote the mean and variance,
respectively, of the distribution F (·). The readers are referred to van der Vaart (1998) for
the meanings of the standard notations such as o(an) and op(an), and for basic asymptotic
results about the sample mean and variance.

First we show that the constant λ = T−1n−1;−
√
nzγ

(α) used in NormL has the asymptotic
expansion

λ = −zγ
√
n− zα

√
1 + z2γ/2 + o(1) . (9)

Note that, from its definition (via a non-central t distribution), λ satisfies

P
{
Z −
√
nzγ ≤ λ

√
χ2
n−1/(n− 1)

}
= α (10)

where Z denotes a standard normal N(0, 1) random variable, χ2
n−1 denotes a chi-square

random variable with n−1 df, and Z and χ2
n−1 are independent. By writing

√
χ2
n−1/(n− 1) =√

1 + (χ2
n−1 − (n− 1)) /(n− 1) and using Taylor expansion

√
1 + x = 1+x/2+o(x) as x→ 0,

we have
√
χ2
n−1/(n− 1) = 1 + 1

2

(
χ2
n−1 − (n− 1)

)
/(n − 1) + op(1/

√
n) as n → ∞, where

op(1/
√
n) denotes a term that satisfies op(1/

√
n)/(1/

√
n) → 0 in probability as n → ∞.

11



Hence the probability in (10) becomes

P

Z − λ√
2(n− 1)

χ2
n−1 − (n− 1)√

2(n− 1)
− λ · op(1/

√
n) ≤ λ+

√
nzγ

 . (11)

It is therefore clear that, when λ is replaced with the expansion in (9), we have

λ+
√
nzγ → −zα

√
1 + z2γ/2 ,

λ√
2(n− 1)

χ2
n−1 − (n− 1)√

2(n− 1)

L→ N(0, z2γ/2) ,

Z − λ√
2(n− 1)

χ2
n−1 − (n− 1)√

2(n− 1)
− λ · op(1/

√
n)

L→ N(0, 1 + z2γ/2)

due to the independence of Z and χ2
n−1; here ‘

L→’ means convergence in distribution. Hence
the limit of the probability in (11) is α as required by the expression in (10).

From the expression in (9) it is clear that NormL satisfies: X̄ − λS/
√
n
a.s.→ µ+ zγσ. Next we

establish the asymptotic distribution of

(
√
n/σ)

(
X̄ − λS/

√
n− (µ+ zγσ)

)
=
√
n(X̄ − µ)/σ + zγ

√
n(S/σ − 1) +

(
zα
√

1 + z2γ/2 + o(1)
)
S/σ

=
√
nȲ + zγ

√
n(SY − 1) +

(
zα
√

1 + z2γ/2 + o(1)
)
SY (12)

where Ȳ and S2
Y denote, respectively, the sample mean and variance of Y1 = (X1−µ)/σ, · · · , Yn =

(Xn − µ)/σ. Applying the same Taylor expansion for
√

1 + x as in the last paragraph to

SY =
√

1 + (S2
Y − 1) gives

√
n(SY − 1) =

1

2

√
n(S2

Y − 1) + op(1)

=
1

2

√
n

(
1

n

(
n∑
i=1

Y 2
i − n(Ȳ )2

)
− 1

)
+ op(1)

=
1

2

√
n

(
1

n

n∑
i=1

Y 2
i − 1 + op(1/

√
n)

)
+ op(1)

=
1

2

n∑
i=1

(Y 2
i − 1)/

√
n+ op(1).

Substituting this into the expression in (12) gives

(
√
n/σ)

(
X̄ − λS/

√
n− (µ+ zγσ)

)
=

n∑
i=1

(
Yi + zγ(Y

2
i − 1)/2

)
/
√
n+ zα

√
1 + z2γ/2 + op(1) (13)

L→ N(0, v2) + zα
√

1 + z2γ/2 (14)

where v2 = V ar(Yi + zγ(Y
2
i − 1)/2) = 1 + zγE(Y 3

1 ) + z2γ(E(Y 4
1 )− 1)/4.

12



The asymptotic distribution in (14) describes how X̄−λS/
√
n behaves around µ+zγσ when

the sample size n is large. From (14) we have for a large n

P
{
X̄ − λS/

√
n > F−1(1− γ)

}
= P

{
(
√
n/σ)

(
X̄ − λS/

√
n− (µ+ zγσ)

)
> (
√
n/σ)

(
F−1(1− γ)− (µ+ zγσ)

)}
→ P

{
N(0, v2) > (

√
n/σ)

(
F−1(1− γ)− (µ+ zγσ)

)
− zα

√
1 + z2γ/2

}
(15)

It is clear that, when F (·) is normal, v2 = 1 + z2γ/2, F−1(1 − γ) = µ + zγσ and so the
probability in (15) is equal to 1 − α as expected. On the other hand, when F (·) is not
normal, F−1(1 − γ) is unlikely equal to µ + zγσ and hence the probability in (15) could be
very different from the nominal level 1−α. Especially when F (·) has a larger right tail such
that F−1(1− γ)− (µ+ zγσ) > 0 the probability in (15) can be really small when the sample
size n is large, which is also observed from the simulation results in Table 1 of Section 2.

3.2 NonpL

In this section we study the large sample behaviour of NonpL X[k]. For this, we first derive
a large sample expansion for k which satisfies

P
{

1− γ ≤ F (X[k])
}
→ 1− α as n→∞. (16)

Recall that F (X1), · · · , F (Xn) are independent random variables each having a uniform dis-
tribution on the interval (0, 1). Let M denote the number of random variables among
F (X1), · · · , F (Xn) that fall in the interval (0, 1 − γ) and so M ∼ Binomial(n, 1 − γ). It
is clear that

P
{

1− γ ≤ F (X[k])
}

= P {M < k}

= P

M − n(1− γ)√
n(1− γ)γ

<
k − n(1− γ)√
n(1− γ)γ


→ P

N(0, 1) <
k − n(1− γ)√
n(1− γ)γ

 .

In order that the last probability has the limit 1 − α as required in (16), it is clear that k
must be of the form

k = n(1− γ) + zα
√
n(1− γ)γ + o(

√
n).

From this expansion of k we have
√
n
(
X[k] − F−1(1− γ)

)
=
√
n
(
X[k] − F−1n (1− γ)

)
+
√
n
(
F−1n (1− γ)− F−1(1− γ)

)
=

zα
√

(1− γ)γ

f(F−1(1− γ))
− 1√

n

n∑
i=1

I{Xi≤F−1(1−γ)} − (1− γ)

f(F−1(1− γ))
+ op(1) (17)
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L→

√
γ(1− γ)

f(F−1(1− γ))
(zα +N(0, 1)) , (18)

where F−1n (·) denotes the empirical quantile function based the sample X1, · · · , Xn (van der
Vaart, 1998, p.305), IA denotes the index function of set A, and the equality in (17) follows
directly from the lemma of van der Vaart (1998, p.308) and the corollary of van der Vaart
(1998, p.307).

The asymptotic distribution in (18) describes how NonpL X[k] behaves around F−1(1 − γ)
when n is large. In particular, from (18) it is clear that

P
{
F−1(1− γ) ≤ X[k]

}
= P

{√
n
(
X[k] − F−1(1− γ)

)
≥ 0

}
→ P


√
γ(1− γ)

f(F−1(1− γ))
(zα +N(0, 1)) ≥ 0

 = 1− α

irrespective of the form of the distribution F (·) as expected.

3.3 Comparison of NormL and NonpL

Combine the expressions in (13) and (17) to give

D̃ := −
√
n
(
X̄ − λS/

√
n−X[k]

)
= −

√
n
(
X̄ − λS/

√
n− (µ+ zγσ)

)
+
√
n
(
X[k] − F−1(1− γ)

)
−
√
n
(
(µ+ zγσ)− F−1(1− γ)

)
= − 1√

n

n∑
i=1

(
(Xi − µ) + zγ

(
(Xi − µ)2 − σ2

)
/2
)
− σzα

√
1 + z2γ/2

− 1√
n

n∑
i=1

I{Xi≤F−1(1−γ)} − (1− γ)

f(F−1(1− γ))
+

zα
√

(1− γ)γ

f(F−1(1− γ))
+ op(1)

−
√
n
(
(µ+ zγσ)− F−1(1− γ)

)
for any distribution function F (·). We are particularly interested in the situation that F (·)
has a normal distribution N(µ, σ2) in order to understand how NonpL X[k] can be less efficient
than NormL X̄ − λS/

√
n.

When F (·) has a normal distribution N(µ, σ2), we have D̃ = σD̃0 where

D̃0 = − 1√
n

n∑
i=1

(
Yi + zγ

(
Y 2
i − 1

)
/2
)
− zα

√
1 + z2γ/2

− 1√
n

n∑
i=1

I{Yi≤zγ} − (1− γ)

φ(zγ)
+
zα
√

(1− γ)γ

φ(zγ)
+ op(1)

14



=
1√
n

n∑
i=1

Wi − zα
√

1 + z2γ/2 + zα
√

(1− γ)γ/φ(zγ) + op(1)

L→
√
V ar(W1)N(0, 1)− zα

√
1 + z2γ/2 + zα

√
(1− γ)γ/φ(zγ) (19)

where Yi = (Xi − µ)/σ ∼ N(0, 1), Wi = −Yi − zγ (Y 2
i − 1) /2 −

(
I{Yi≤zγ} − (1− γ)

)
/φ(zγ),

and straightforward calculation gives

V ar(W1) = 1+z2γ/2+γ(1−γ)/φ2(zγ)+
(

2
∫ zγ

−∞
zφ(z)dz + zγ

(∫ zγ

−∞
z2φ(z)dz − (1− γ)

))
/φ(zγ).

(20)

It is interesting to observe that the term

−
√

1 + z2γ/2 +
√

(1− γ)γ/φ(zγ)

in (19) is always positive for γ ∈ (0, 1/2), which is easy to check by plotting it against
γ ∈ (0, 1/2). Hence P{D̃0 > 0} > 1/2 asymptotically at least, that is, NonpL X[k] is
larger than NormL X̄ − λS/

√
n with a greater than half chance for at least a large n.

This agrees with the simulation results in Table 2 by noting that D0 = D̃0/
√
n and so

P{D0 > 0} = P{D̃0 > 0}.

From D0 = D̃0/
√
n and the asymptotic distribution of D̃0 in (19), we have

P{D0 > 0} = P{D̃0 > 0}

≈ P
{√

V ar(W1)N(0, 1)− zα
√

1 + z2γ/2 + zα
√

(1− γ)γ/φ(zγ) > 0
}

= Φ
{
zα

(
−
√

1 + z2γ/2 +
√

(1− γ)γ/φ(zγ)
)
/
√
V ar(W1)

}
. (21)

The expression in (21) can easily be computed numerically by using numerical quadrature to
compute V ar(W1) from the expression in (20); its values for some cases are given in the last
column of Table 2 corresponding to n =∞. For example, when α = 0.05 and γ = 0.01, the
expression in (21) is computed to be 0.824. Hence the entries (based on simulation) in the
first row of Table 2 are expected to converge to 0.824 as n becomes large. The entries in the
first row of Table 2 indicate that the asymptotic approximation in (21) becomes reasonably
accurate when n ≥ 10, 000. For α = 0.05 and γ = 0.01, we have compared the kernel density
estimate of the pdf of

√
n
(
X[k] − F−1(1− γ)

)
based on R = 1, 000, 000 simulations with the

pdf of the asymptotic normal distribution in (18) for various values of n. Our investigation
shows that the kernel density estimate is not close to the asymptotic normal distribution
unless n ≥ 10, 000. Similar investigation shows that the kernel density estimate of the pdf
of (
√
n/σ)

(
X̄ − λS/

√
n− (µ+ zγσ)

)
is quite close to the asymptotic normal distribution

in (14) when n ≥ 300. Hence the asymptotic normal distribution in (14) requires a much
smaller sample size n than the asymptotic normal distribution in (18) to be a reasonably
accurate approximation. It is clear from the kernel density estimate in Figure 3 that, for
n = 1, 500, the distribution of D0 (or D̃0) is skewed to the right and so not close to normal
yet.
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It follows directly from the relationship D0 = D̃0/
√
n and the asymptotic distribution of

D̃0 in (19) that both E(D0) and sd(D0) approach 0 as n → ∞, which are indicated by the
corresponding entries in the last column of Table 2.

4 Discussion

We have shown by both simulation and large sample theory that the exact decision limit
based on the normal distribution of the GH-2000 score for growth hormone misuse can
seriously violate the nominal confidence level 1−α when the distribution F (·) of the GH-2000
score departs only slightly from the normal distribution. Note also that the non-rejection of
normality by a goodness-of-fit test does not mean that the distribution F (·) is exactly normal.
Hence one should be aware of the potential risk when using NormL. The nonparametric
decision limit NonpL is an attractive alternative since it always guarantees the nominal
confidence level 1 − α irrespective of the specific form of F (·). One price to pay for using
NonpL is that a much larger sample size is required than NormL in order to be able to
construct NonpL, especially when γ or α are very small. The other price for using NonpL
is that, when F (·) is a normal distribution, NonpL tends to be larger, and so has a smaller
chance of detecting doping, than NormL. The large sample theory developed in this paper
helps us to understand the behaviours of NonpL and NormL when the sample size is large.
The R codes are provided for computing all the results given in this paper.

When the score X is a discrete random variable, F (X) no longer has a uniform distribution
on the interval (0, 1) and so the construction of a nonparametric decision limit is expected
to be very different from the NonpL considered in this paper. This warrants further research
nevertheless.

The direct implication of the results in this paper on the GH-2000 score for growth hormone
misuse detection is that the current use of NormL is clearly based on the assumption of
normality. NonpL is a simple, easy-to-calculate and distribution-free alternative. However,
the sample size currently available is too small to use NonpL for γ = 0.0001 and α = 0.05
required by WADA. On the other hand, using γ = 0.001 and α = 0.05, for example, would
lead to a sample size requirement of at least n = 2995 which is realistic, given the currently
available sample size is n = 5053. However, false positive rate γ = 0.001 does not meet
the current WADA legal standard of proof. Since it is likely to take many years to accrue
n = 29956 observations, the onus is on WADA to decide whether NonpL with a less stringent
γ or the distribution sensitive NormL should be used, while this paper shows the advantages
and disadvantages of both NormL and NonpL.

The results of this paper have a wider implication to the many distribution-specific tolerance
intervals/regions published in the statistical literature (cf. Krishnamoorthy and Mathew,
2009, and Meeker et al., 2017). These distribution-specific procedures are likely to have
similar problems as NormL identified in this paper and so should be used with a clear under-
standing of potential pitfalls. It is our view that one should use the nonparametric procedures
if available.
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