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Amongst important and under-researched questions are how introductory lessons can 

be designed for teaching initial proofs to junior high school students, and how such 

lessons enrich students’ understanding of proofs. With a view to improving the 

learning situation in the classroom, in this paper we report on the various functions of 

introductory flow-chart proofs that use ‘open problems’ that have multiple possible 

solutions. Through an analysis of a teaching experiment in Grade 8, and by using a 

model of levels of understanding of proof structure, we identify the functions as 

enhancing the transition towards a relational understanding of the structure of formal 

proof, and encouraging forms of forward/backward thinking interactively that 

accompany such a relational understanding of the structure of proofs in mathematics. 

INTRODUCTION 

With proving and reasoning universally recognized as key competencies of 

mathematics education, it remains the case that students at the lower secondary school 

level can experience difficulties in understanding formal proofs (eg: Hanna & de 

Villiers, 2012; Mariotti, 2006). In order to enhance the capabilities of junior high 

school students with formal proving (from around the age of 14), it is important to have 

a clear framework to inform the design of introductory proof lessons. This is because 

such lessons aim to initiate inexperienced students into understanding the meaning of 

formal proofs fruitfully so that they can develop the competencies to construct proofs 

for themselves. We have previously reported that students who have experienced such 

introductory lessons can score around 10% better than expected on a question that 

involved choosing reasons to deduce a conclusion (see Miyazaki, Fujita and Jones, 

2012). In this paper we report a further qualitative analysis that focuses on why the 

students did well in such mathematical proofs. Our research questions are as follows: 

how can introductory lessons for formal proofs be designed, and how do such lessons 

enrich students’ understanding of proofs?  

In order to enrich the introductory lessons of formal proving, our research study 

focuses on the students learning to use flow-chart proofs in ‘open problem’ situations 

where they can construct multiple solutions for congruent triangle tasks by deciding 

the assumptions and intermediate propositions necessary to deduce a given conclusion 

in a flow-chart format. Such proofs involve using the conditions for triangle 
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congruency as these are often used to introduce formal proofs in geometry in Japanese 

lower secondary schools (Jones & Fujita, 2013), and our discussions and analyses are 

related to this topic. The aim of this paper is to evaluate the introductory lessons 

designed on the basis of our theoretical framework by identifying their pedagogical 

functions and implications. 

THEORETICAL FRAMEWORK: UNDERSTANDING PROOF STRUCTURE  

We take as our starting point that a formal proof generally consists of deductive 

reasoning between assumptions and conclusions. Within this reasoning process at least 

two types of deductive reasoning are employed: universal instantiation (which deduces 

a singular proposition from a universal proposition) and hypothetical syllogism (where 

the conclusion necessarily results from the premises).  

In order to understand the structure of proof, students need to pay attention to the 

elements of the proof and their inter-relationships. Research studies by Heinze and 

Reiss (2004) and by McCrone and Martin (2009) have identified that an appreciation 

of proof structure is an important component of learner competence with proof. In this 

paper we use the following levels of learner’s understanding of proof structure initially 

elaborated by Miyazaki and Fujita (2010): Pre-, Partial- and Holistic structural levels. 

These levels are described in Table 1 and the overall framework illustrated in Figure 1. 

Level Description 

Pre-structural The basic status in terms of an understanding of proof structure where learners 

regard proof as a kind of ‘cluster’ of possibly symbolic objects. 

Partial-structural Once learners have begun paying attention to each element, then we consider 

they are at the Partial-structural Elemental sub-level. To reach the next level, 

learners need to recognize some relationships between these elements (such as 

universal instantiations and syllogism). If learners have started paying attention 

to each relationship, then we consider them to be at the Partial-structural 

Relational sub-level, with this sub-level being further sub-divided into a) 

universal instantiation and b) syllogism (see Figure 1). 

Holistic-structural At this level, learners understand the relationships between singular and 

universal propositions, and see a proof as ‘whole’ in which premises and 

conclusions are logically connected through universal instantiations and 

hypothetical syllogism. 

Table 1: Levels of learner understanding of proof structure 

 
Figure 1: Framework of learner understanding of the structure of proof  

To date we have utilized this framework to demonstrate students’ explorative activity 

to overcome logical circularity in a proof problem (Fujita, Jones, & Miyazaki, 2011), 

and considered how a hypothetical learning trajectory for introductory lessons of 
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formal proving could be designed so that students can be helped to develop their 

understanding of the structure of proof (Miyazaki, Fujita, & Jones, 2012). In this paper 

we focus on the design of introductory lessons of formal proofs. 

INTRODUCTORY LESSONS USING OPEN FLOW-CHART PROVING 

To design introductory proof lessons we used the following two pedagogical ideas: 

flow-chart proof format and ‘open problem’ tasks. A flow-chart proof shows a ‘story 

line’ of the proof. McMurray (1978) and others have provided accounts of the value of 

using flow-chart proofs prior to the use of formats such as the ‘two column proof’. 

Given the evidence that flow-chart proofs can help students to visualize the structure of 

proofs, in our research we are investigating how the power of flow-chart proofs might 

be enhanced at the introductory stage of proof learning by using ‘open problem’ 

situations where students can construct multiple solutions by deciding the assumptions 

and intermediate propositions necessary to deduce a given conclusion.  

For example, the problem in Figure 2 is intentionally designed so that students can 

freely choose which assumptions they use to show the conclusion that B=C. After 

drawing a line AO, for instance, students might decide ∆ABO and ∆ACO should be 

congruent to show B=C by using the theorems “If two figures are congruent, then 

corresponding angles are equal.” Based on AO=AO as a same line, ∆ABO∆ACO can 

be shown by assuming AB=AC and BAO=CAO using the SAS condition. 

However, other solutions are also possible. One approach might be to use the fact that 

∆ABO∆ACO can be shown by assuming AO=AO, AB=AC and BO=CO, using the 

SSS condition. As students can construct more than one suitable proof, we refer to this 

type of problem situation as ‘open’.  

 
Figure 2: An example of flow-chart proving in an ‘open-problem’ situation 

In accordance with our theoretical framework, in the introductory proof lessons it is 

particularly important to support transitions from the Partial-Structural to the 

Holistic-Structural level. The flow-chart format aims to help students to visualize that a 

formal proof consists of two kinds of propositional layers, one of which contains 

universal propositions (theorems) and the other contains the chain of singular 

propositions. Also, the flow-chart format can show clearly that a singular proposition 

is deduced by the universal instantiation of universal proposition, and that the chain of 

singular propositions between assumptions and conclusions would be established by 

hypothetical syllogism. Moreover, in order to show a given conclusion in the ‘open 
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problem’ situation, students would be encouraged to seek out the necessary 

assumptions and intermediate propositions diversely. Then, they have a chance to 

originate alternative proofs by replacing the used theorems into others, and so on. 

METHODOLOGY 

To investigate the functions of open flow-chart proving in the introductory lessons of 

formal proving in Grade 8 (aged 14), we developed nine lessons based on the learning 

progression with three phases as follows (Miyazaki, Fujita, & Jones, 2012). 

 Constructing flow-chart proofs in an ‘open problem’ situation (four lessons) 

 Constructing a formal proof by reference to a flow-chart proof in a ‘closed 

problem’ situation (two lessons) 

 Refining formal proofs by placing them into flow-chart proof format in a 

‘closed problem’ situation (three lessons). 

During the first phase of lessons, students constructed flow-chart proofs in ‘open 

problem’ situations. Through these tasks, the students were expected to learn how to 

think forward/backward between assumptions/conclusions and how to organize their 

thinking in order to connect assumptions and conclusions. Thus this phase aimed at 

supporting them to understand how to ‘assemble’ a proof as a structural entity. Note 

that they study proof in ‘closed-problem’ situations after the first phase.  

Our main data are taken from one of our lesson implementations in which a teacher 

with 18 years of teaching experience conducted the set of the nine Grade 8 lessons in a 

junior high school in Japan during October 2013. The lessons were video-recorded and 

then transcribed. In the next section we report selected scenes from the fourth lesson in 

which students undertook the problem in Figure 2. By this data analysis, we identify 

the functions of open flow-chart proving during the introductory lessons designed 

using our theoretical framework of the understanding of structure of proof. 

DATA ANALYSIS AND DISCUSSION  

In reporting our findings from the fourth lesson, first we show the students’ levels of 

thinking at this stage; in particular their incomplete understanding of universal 

instantiations. Then, we show how learning with ‘open problem’ proof tasks helped 

them to start to see proofs from a more structural point of view.  

Enhancing the structural understanding of formal proof: universal instantiations 

While prior to the lesson the students had used a one-step flow-chart proof to prove that 

two given triangles are congruent, during this lesson they tackled the problem in Figure 

2. This has two steps; first deducing the congruence of triangles, and second, 

concluding the equivalence of angles. As one purpose of the lesson was to make 

students aware of the importance of universal instantiation (which deduces a singular 

proposition from a universal proposition), the teacher oriented the students to confirm 

the necessity of supplementary line AC to deduce B=C by using the congruency of 

∆ABO and ∆ACO, and wrote “∆ABO∆ACO” into the flow-chart on the board. 
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Thereafter, the students started to complete the flow-chart proof by themselves. After a 

suitable time the teacher asked student SA to say what he would put in the flow-chart 

box for the properties of congruent figures. SA answered “because of ∆ABO∆ACO” 

(see line 6 SA in the transcript below); the teacher wrote this answer on the blackboard. 

Next, the teacher directed two other students to show their answer. One of them said, 

“Due to congruent triangles, angles are congruent”, and another said, “In congruent 

triangles the corresponding angles are equivalent.” The teacher also wrote these 

answers on the blackboard. At this time the teacher compared these three answers, and 

asked SA to explain more; their dialogue is shown as follows. 

1 T: SA, can you tell us why you wrote this? 

2 SA:  Umm, I considered why the angles are equal; then I found an arrow is 

drawn.   

3 T: OK, because the arrow can be drawn (pointing the corresponding part of 

flow-chart on the blackboard). 

4 SA:  I put ‘it’.  

5 T: What is ‘it’? 

6 SA:  ∆ABO and ∆ACO are congruent.  

7 T: OK, if we can say these two are congruent, then we can use the arrow. So, 

SA, if two triangles are congruent, what can we show? 

8 SA:  Angles are also equal.  

9 T: Good, angles are also equal? Anything else?  

10 SA:  Sides are equal, too.   

11 T: Yes, sides are equal too. So, umm, in this case our conclusion is to say the 

angles are equal, so it is OK. But in general if two triangles are congruent, it 

can be angles but also sides as well, so we should add information generally 

about angles such as ‘because angles are congruent or equal’. 

Given that prior to this lesson the students could find the appropriate conditions of 

triangle congruency, and write them into the theorem box (universal proposition) given 

in the one-step flow-chart proof. It was expected that they would reach the 

partial-structural elemental sub-level (by paying attention to elements of proofs) 

during this lesson. Beyond this, some students might start reaching the relational 

sub-level (by understanding both universal instantiation and hypothetical syllogism) 

through examining the properties of congruent figures. 

Nevertheless, during the early parts of this lesson it was evident that only a small 

proportion of the students could reach the relational sub-level. In fact, about half the 

students could not correctly write two boxes of flow-chart, each of which requested the 

condition of congruent triangles and the properties of congruent figures. Others just 

wrote a singular proposition “because of ∆ABO∆ACO” into the theorem box (like 

student SA said). This singular proposition is not precise enough from a universal 

instantiation point of view. It is clear that such students remained at the elemental 

sub-level, and could not reach the relational one. In particular, the students who wrote 
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the singular proposition could not understand that a singular proposition should be 

deduced by the universal instantiation of a universal proposition. 

In order to resolve the student’ lack of understanding, the teacher compared SA’s 

answer with others answer in which universal propositions were correctly used (the 

relational sub-level), and pointed out that it was necessary to express the property of 

congruent figures generally because it was being used to deduce the equivalence of 

angles in this case (although it could be used to deduce the equivalence of both angles 

and sides). This resolution managed by the teacher might have supported the students 

to enhance their understanding of the universal instantiation that deduces a singular 

proposition with a universal proposition. This, in turn, could promote the transition 

from the elemental sub-level to the relational one. 

From the above we can identify as the functions of ‘open problem’ flow-chart proving 

that it can enhance the transition towards a relational understanding of the structure of 

formal proof by helping student to visualize the connection of singular proposition to 

hypothetical syllogism and the connection with universal instantiation between a 

singular proposition and the necessary universal proposition. This ‘open problem’ 

flow-chart format can help visualize not only the connection of singular propositions 

by hypothetical syllogism but also the connections of a singular proposition with a 

universal one by universal instantiation. With this visualized format, students could be 

supported effectively to focus on the characteristics of the two kinds of deductive 

reasoning, by checking the expression of theorems and confirming their meaning 

and/or roles. 

Encouraging thinking forward/backward interactively by using open proof 

situations 

After most of the students made their own flow-chart proofs, the teacher picked up 

three answers, each of which used different conditions of congruent triangles (this was 

possible because of the ‘open problem’ situation). The teacher checked with the class if 

three pairs of angle/sides were necessary to deduce ∆ABO∆ACO with each 

congruent condition, and then also checked the reason why they chose these pairs on 

the basis of the words written in the box below each of the three pairs. 

For example, student KA used the ASA condition and the teacher asked him why he 

chose the followings; ‘AO=AO’, ‘BAO=CAO’, ‘AOB=AOC’.  

The student’s explanation was as follows: 

1 KA: Because we can see AO=AO from the given figure. 

2 T:  Can see it from the given figure? 

3 KA: And it is an assumption. I assumed by myself BAO＝CAO, and also 

AOB＝AOC as well. And then we can show ∆AOB∆AOC, and the 

condition is ‘Two pairs of corresponding angles are equal and the included 

sides equal’. Due to congruent triangles, corresponding angles are equal 

and therefore B＝C. 
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Figure 3: One of the flow-chart proofs by KA on the blackboard 

As can be seen from the dialogue and the flow-chart proofs by KA shown in Figure 3, 

for the reason why “AO=AO”, KA wrote “Assumption” in the box and explained that 

this equivalence was apparent by means of the given figure (see line 3 KA). In contrast, 

for the reasons why “BAO=CAO” and “AOB=AOC” KA wrote “By myself” 

and explained that they were decided by himself (see line 3 KA). In this thinking 

process, there were the two ways of approach. One way is thinking forward, i.e. in 

order to find the conditions for ∆ABO∆ACO, KA focused on the corresponding 

angles/sides of these triangles and judged that “AO=AO” could be one of the 

conditions. A second way is thinking backward, i.e. KA chose ASA as a condition and 

then looked for the other conditions (in this case “BAO=CAO” and 

“AOB=AOC”) which were necessary to satisfy this condition. It is the ‘open 

problem’ situation that made it possible for KA to use these two ways of thinking 

interactively. Furthermore, KA actually wrote in his worksheet two types of flow-chart 

proof. Each of these used different conditions: SSS and SAS. To complete these proofs 

he similarly determined the assumptions that were necessary to deduce the congruent 

triangles. Likewise, most other students in the class constructed three different proofs 

using similar thinking processes.  

From the above we can identify as the functions of ‘open problem’ flow-chart proving 

that it can encourage thinking forward/backward interactively, accompanied by 

relational understanding of the structure of proof. The amplification of thinking 

backward, in particular, can be triggered by the ‘open problem’ situation. Moreover, 

the flow-chart proof format can support students to associate two modes of 

forward/backward thinking visually. This systematic learning with thinking 

forward/backward interactively is useful for the planning of formal proof that usually 

precedes its construction (Tsujiyama, 2012). Thus the learning of ‘open problem’ 

flow-chart proving in the first phase of introductory lessons of formal proving can be 

preparatory to the planning of formal proof in a ‘closed problem’ situation. 

CONCLUSIONS 

Within our focus on students understanding of the structure of proof, we can identify 

two functions of ‘open problem’ flow-chart proving. One is that it can enhance the 

transition towards the relational understanding of the structure of formal proof by 

visualizing both the connection of singular proposition by hypothetical syllogism and 

the connection with universal instantiation between a singular proposition and the 
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necessary universal proposition. A second function is that ‘open problem’ flow-chart 

proving can encourage thinking forward/backward interactively, accompanied by 

relational understanding of the structure of proof. In particular, this study illustrates 

that ‘open problem’ flow-chart proving can give students a chance to find necessary 

conditions and combine them in order to connect assumptions with conclusions. This 

systematic learning with thinking forward/backward interactively is required to make 

the planning of formal proofs. We suggest that it is these functions that contribute to 

developing students’ understanding of proofs, and that is why the students who 

experienced our introductory lessons scored 10% better than the national average of 

proof problems in general (Miyazaki, Fujita & Jones, 2012).  

Due to page limitation we cannot show that some students, after finishing solving the 

assigned task, attempted to ‘expand’ and/or ‘break’ the given flow-chart proof format 

so that they could show their own way of proving. This further illustrates that the 

innovative use of ‘open problem’ flow-chart proving, as in our project, can cultivate 

students’ productive thinking about formal proofs even in introductory proof lessons. 
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