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The purpose of the research reported in this paper is to analyse the teaching 
of proof problem solving from the perspective of the dynamic approach of 
the teacher. The paper utilises the case of a Chinese expert teacher teaching 
proof problem solving in geometry at Grade 8 in Shanghai, China. Data 
come from the learning responses of a sample of students, together with an 
account of each lesson taught be the teacher. The analysis of this data 
reveals the efficacy of this teacher’s instructional approach, focusing in 
particular on the development of two main forms of mathematical thinking, 
namely deductive and inductive reasoning. 

Introduction 
Mathematical proof is taken the world over as a line of reasoning that shows 

convincingly that some chosen mathematical statement is necessarily true. For some 

researchers, mathematical proof is seen as distinct from argumentation (the latter 

being “a reasoned discourse that is not necessarily deductive but uses arguments of 

plausibility”, see Hanna & de Villiers, 2008, p. 331). For other researchers, proof is 

regarded as part of a continuum with argumentation, rather than as something distinct. 

Each of these views can profoundly influence didactical practice in the classroom 

(ibid). 

In China, proof receives considerable emphasis in school mathematics. For instance, 

Zhang, Li & Tang (2004, p. 198) state that Euclidean geometry “is useful in teaching 

rigorous deductive reasoning and formal proof” and that to prove Pythagoras 

Theorem “one needs to use rigorous algebraic or geometric methods; just using a cut-

and-paste method is not acceptable”. 

To date, little research has been published on how school teachers in China approach 

the relationship between argumentation and mathematical proof in their classroom 

teaching. To develop insight into this issue, this paper re-analyses the case-study of a 

Chinese expert teacher’s instructional practice in geometrical proof problem solving 

that was reported to ICMI Study 19 (Ding and Jones, 2009). The approach in this 
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paper is to focus on the dynamic approach of the teacher, in line with what Zheng 

(2006, p. 387) refers to as the “heuristic nature of teaching”.   

 

The dynamic approach of the teacher in the Chinese classroom 
 
The central role of the teacher in Chinese pedagogy has been investigated by a range 

of studies (examples include Dai, 1998; Ma, 1999; Paine, 1990; Tu, 2006; Zhang, 

2005). Zheng (2006) argues that, influenced by the Chinese philosophical thought and 

in particular the Yin-Yang theory of Taoism, a fundamental feature of Chinese 

mathematics education is likely to be the seeking of a balance between a range of 

what can sometimes appear to be opposing ideas - such as the relationship between 

the central role of the teacher and the active role of students (for more details see ibid, 

p.385). Zheng goes on to explain that teaching in China is not regarded as “a process 

of conveying well-developed knowledge” (ibid, p.387), rather teachers in China do 

their best to make the content of their lessons fully understandable to their students by, 

amongst other things, “paying more attention to the process of creation or discovery”. 

In this dynamic approach, the teacher does not merely provide the students with direct 

instruction or explanation of, for example, a proof; rather the teacher leads the 

students to experience the process of solving the proof problem, from exploring the 

problem to making a conjecture and then proving it.  

 

As pointed out by Zheng, to improve mathematics education, it is essential to develop 

a deeper understanding of the strengths and the weaknesses of all the features of 

Chinese pedagogy in mathematics. In this paper, the aim is to illuminate the dynamic 

approach utilised by an expert teacher and, in doing so, deepen the analysis to reveal 

the potentials and limitations of the selected example of classroom practice.     

   

Relating the dynamic approach to teaching to other theories 
 
In this section of the paper, the dynamic approach to teaching is related to relevant 

research studies conducted in other countries. In particular, attention is drawn to 

studies of students’ dynamic exploration of open problem-solving situations reported 

by Boero, Garuti and Mariotti (1996), and the theoretical hypothesis of 

“transformational reasoning” proposed by Simon (1996). 
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Boero, Garuti & Mariotti (1996) summarise the findings of various teaching 

experiments dealing with Italian students’ construction and proof of conjectures in the 

dynamic learning environment of sun shadows. These researchers hypothesized that 

the dynamic exploration of the problem situation plays a crucial role, both at the stage 

of conjecture production and during the proof. The researchers noted that when 

students made conjectures of the problem they were trying to solve, they performed 

the dynamic exploration of the problem situation in different ways: “indicating with 

their hands the imagined movement of the sun, or moving themselves, or moving the 

oblique stick, or moving the platform supporting the sticks, etc.” (ibid, p. 124). 

Moreover, most students continued the dynamic exploration of the problem situation 

during the construction of proof. However, there was a functional difference in the 

thinking process of the dynamic exploration implemented during the construction of 

conjectures and the proof, moving “from a support to the selection and the 

specification of the conjecture” to “a support for the implementation of a logical 

connection” (ibid, p. 126).  

 

Simon (1996) argues that the quest of mathematics learners to understand 

mathematics and to determine mathematical validity leads not only to inductive and 

deductive reasoning, but also to a third type of reasoning— transformational 

reasoning (TR). He defined TR as follows: 

“Transformational reasoning is the mental or physical enactment of an 
operation or set of operations on an object or set of objects that allows one to 
envision the transformations that these objects undergo and the set of results 
of these operations. Central to transformational reasoning is the ability to 
consider, not a static state, but a dynamic process by which a new state or a 
continuum of states are generated.” (ibid, p. 201) 

 

This statement shows that transformational reasoning can be a powerful way of 

understanding mathematics, for it involves not only the ability to carry out a particular 

mental or physical enactment, but also the realization of the appropriateness of that 

process to a particular mathematical situation. Moreover, TR may not only produce a 

different way of thinking about mathematical situations, it may also involve a 

different set of questions. Noticeably, it is not yet clear how transformational 

reasoning approach is generated by students, for such reasoning “requires both the 

inquisitiveness with respect to the workings of a mathematical system and the 
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developed ability to translate the system into a mental or physical representation that 

can be ‘run’” (ibid, p. 203).  

 

To date, many of the existing studies in the research field dealing with the relationship 

of argumentation and proof concentrate largely on examining the nature of tasks from 

a learner’s cognitive perspective rather than from a didactical perspective (for a recent 

review, see Mariotti, 2007). A key issue that remains unclear concerns the necessary 

interventions of the teacher in helping students to understand the necessity of 

mathematical proof rather than relying on argumentation, no matter how ordinarily 

plausible the argument. For educational purpose, it becomes essential to examine the 

relationship between teachers’ instructional practices and the development of 

students’ reasoning. This is an important motivation to re-analysis the case reported in 

ICMI Study 19 (Ding & Jones, 2009).  

 

A case analysis of the dynamic approach of the teacher 
 
This section of the paper presents an analysis of an expert Chinese teacher’s 

instructional practice in geometrical proof problem solving at Grade 8 in Shanghai, 

China. The analysis reveals an emphasis on both the development of transformational 

reasoning and the development of deductive reasoning. The key significance of the 

analysis is the way this development is managed through the dynamic approach of the 

teacher, utilising aspects of the “heuristic nature of teaching” (Zheng, 2006, p. 387). 

In what follows, the analysis focuses first on the development of transformational 

reasoning. After this, the analysis focuses on the development of deductive reasoning. 

The name of the teacher is a pseudonym; line numbers against extracts of dialogue 

come from transcripts of the lessons, with some lines omitted to aid clarity (extended 

transcripts are available in Ding, 2008). 

 

An emphasis on the development of transformational reasoning 

Proof problem: Given - Triangle ABC and AED are equilateral triangles; CD=BF. 

Prove: 1) triangles ADC and CFB are congruent; 2) Quadrilateral CDEF is a 

parallelogram (see figure 1.1) 

Teacher Lily, in the second of a sequence of lessons on developing her students’ 

understanding of this multi-step proof problem, first guided her students to explore a 
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sub-problem that they had encountered before. Lily began her instruction by 

redrawing part of the whole figure, equilateral triangle ABC, on the blackboard (in 

other words, figure 1.1 was redrawn as figure 1.2). Then she drew students’ attention 

to the first proof problem, namely to prove the congruent triangles ADC and CFB as 

follows: 

418 Lily: We learned equilateral triangle at grade 7. In the problem, there are two 

problems. If the first problem is taken, it will be very difficult to directly 

think about the second question. But if you start to think from the first 

problem, it will be much easier. So the first problem is actually a ‘stepping 

stone’ towards solving the second problem. 

 

 

 

 

 

 

Figure 1.1 and 1.2  

 

Lily then turned to explaining the importance of the given (CD=BF) of the problem. 

She explained this as follows: 

425. Lily: CD=BF. What does this mean?  
426. Students do not respond 
427 Lily: It means that D and F are dynamic points, aren’t they? (The teacher 

repeated the question a couple of times, dialogue lines 427-429 omitted).  
430 Lily: OK. CD=BF. This means that D and F are dynamic points. D could be 

here, could be here, could be here, right? (The teacher recreated the figure 
by using compasses to draw D and F, making CD=BF, and then used a 
ruler to link C and F, A and D. see the result of her drawing in figure 1.2.)  

434 Lily: D and F are dynamic points. Now they move such that CD=BF. So if D 
goes this way. F goes that way. … The different dynamic points go in 
different directions at the same speed, right? … So the length they (D and 
F) moved should be the same, shouldn’t they? (The teacher put red arrows 
in the figure on the blackboard, see figure 1.2)  

435 Lily: If you are told like this statement, you might understand that this means 
CD=BF. We could describe a problem in different way, yet the meaning 
could be same. In this problem, it means that CD=BF.  

436 Lily: Well. Now, are you familiar with this figure? [see figure 1.2]  
The teacher encouraged students in the whole class to observe and compare 
between figures 1.1 and 1.2 on the blackboard (lines 437-439 omitted). 
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440 Lily: You could think about this figure during the lesson break [see figure 
1.2]. You learnt about the equilateral triangle at Grade 7. In the process of 
the movement of D and F, D and F move regularly. Could you find what is 
never changed in the movement? 

 

In this instructional process, teacher Lily dynamically presented the static figure (see 

figure 1.2) on the blackboard. Here, transformational reasoning (Simon, 1996) is 

nurtured and developed, for the teacher chiefly emphasizes the result of ‘running’ the 

system, not as a way of accumulating outputs as in an inductive approach, but rather 

to develop a feel for the system. Noticeably, the mental enactment of the dynamic 

movement of the figure was addressed (‘mental enactment’ refers to operations 

carried out in mental images; see Simon, 1996, p. 201). The teacher’s instructional 

intention is to develop students’ understanding of the relationship between the given 

(CD=BF) of the problem with other parts of the equilateral triangle ABC. Through 

asking students the question “Could you find what is never changed in the 

movement?” (see line 440), students are led to be more conscious of regularities in the 

dynamic movement of the figure.  

 

Having illustrated the emphasis on the development of transformational reasoning, the 

next section considers the development of deductive reasoning. 

  

An emphasis on the development of deductive reasoning 

Students continued to have difficulty in perceiving the hidden geometrical objects and 

properties of the figure (AD=CF and angle AOF=600, see figure 1.2). To surmount 

this difficulty, at the beginning of the following lesson, Lily instigated a whole-class 

discussion of the problem: 

37. Lily: In this figure, could you find what is not changed, when D and F are 
moving? [see figure 1.2] (Students discussed this, line 38 omitted) 

40. Some students: DC=BF. 
41. Lily: DC=BF? This is already given. Except this, what else is not changed? 
42. Some students: Oh, AF=BD. Because AB=BC. 
43. Lily: AB=BC? This is given, as it is an equilateral triangle (ABC).  

More students discussed CF=AD in the class. Lily encouraged a boy student to 
stand up and to present his finding to the class (lines 44-49, omitted). 

50. Wang WY (boy): Two triangles are congruent (probably ADC and CFB). AD 
and CF are always equal.   

After CF=AD was made explicit in the class, Lily moved to draw students’ 
attention to another hidden property of the figure – the location 
relationship of AD and CF. 
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58. Lily: Obviously, they (AD, CF) are not parallel. They are intersected, aren’t 
they? How is the angle they formed? Will it change? You could use a 
protractor to measure the figure on your book. You could measure the 
angle before and after the movement [see figure 1.2] 

59.1. Some students: It will be the same. (One students responded 60º. (#57)) 
59.2. Liuliu (boy): [Noticing his classmate’s response] 60º, 60º. Only need to 

prove two parallel lines [probably CF//ED in figure 1.1] 
60. Lily: How do you explain that they are equal? No change? How much is the 

angle then? 
More students like Liuliu suggested 60º of angles AOF and COD (#61-62). 
64. Lily: If this angle (AOF) is 60º. How to prove? (The teacher used number 1 to 

represent angle AOF, see figure 1.1). 
Some students like Beibei (girl) wondered why angle AOF is 60º, while Lily 

encouraged an explanation of the finding (lines 65-67). 
68. Beibei: (asked Liuliu) Why is it 60º? Parallel? 
69. Liuliu: If both of them are 60º, then they are always parallel. (Probably if 

angle AOF=angle ADE=60º, then FC//ED.) 
70. Linlin (boy): Oh, in the middle, there is a pair of vertically opposite angles! 

(Probably angle AOF=angle COD) 
The teacher invited a boy student to present his ideas to the whole class (line 71). 
72 Zheng YQ (boy): Because angle 1= angle DAC + angle ACF. (The teacher 

then used number 2 to represent angle DAC.) 
75.1 Some students, Linlin and Liuliu: Ah? It is angle ACF? [surprised tone) 
76. Zheng YQ: Because of the congruent triangles (ADC and FBC), angle 2=angle 

FCB. 
76.1 Some students: Oh, the bottom angle! [Probably angle ACD[ [Surprised tone] 

 

In this instructional process, the teacher continued the dynamical presentation of the 

static figure (line 37) to enhance students’ ability to carry out a particular mental 

enactment of the operation, while the physical enactment of the operation such as an 

experiment of measurement of angles to verify their guesses was just suggested as an 

after lesson activity (see line 58). Noticeably, many students in the class did not 

appear to have trouble perceiving the images when they heard the teacher’s dynamical 

description of it. Note that the teacher’s intention is to lead students to think how it 

works and why it works (see lines 60, 64, 68). These questions are both for 

understanding and validation. As illustrated by Simon (1996, p. 204), “insight into the 

workings of the system leads to knowledge of what results to expect and why. 

Validity is inherent in such understanding, not because it is deductively established, 

but because the learner has ‘seen’ the relationship between the initial state and the 

result”. 
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Moreover, two variations were applied by the teacher to lead students to deductive 

reasoning. First, the teacher varied the mathematical problems from a “problem to 

find” at the start of the exploration in the previous lesson (as illustrated by the 

teaching episode in the previous section) to a “problem to prove” at the development 

of the exploration (see the teaching episode cited in this section). Secondly, the 

teacher varied her questioning from involving students to make their own guess (see 

lines 37, 58) to leading them to make a deductive reasoning for their conjectures (see 

line 60). For more discussion of the two variations see Ding and Jones (2009); for 

more on the theory of variation, see Gu (1994) and Gu, Huang, & Marton (2004). 

  

Discussion 

The dynamical approach applied in the case encompassed: 

• dynamical presentation of the static proof figure; 

• the variation from a “problem to find” to a “problem to prove”; 

• the variation of questioning, from involving students in making their own 

guess to them making deductive reasoning for their conjectures. 

 

The significant role of the teacher in helping students to prove, and to understand 

proofs, was in terms of the following: 

• the teacher’s emphasis on the nature of the reasoning produced by student, 

with transformational reasoning as a way of understanding this proof problem; 

• the teacher’s emphasis on the ability to carry out a particular mental 

enactment of the operation to the nature of deductive arguments taken into 

account by students as reliable arguments for validation; 

• the teacher’s questions on how it works and why it works for understanding 

and validation. 

 

Findings of our study substantiate the statement by Zhang (2005, p. 3) that “the 

leading role of a teacher is mainly to ensure the direction of learning, to be hands-on 

in teaching as an example for students to follow, and to help students to make a 

progress”. Similarly, Stigler & Hiebert (1999, p. 48) say that the effective teacher 

“allows the students to participate more directly in the development of the 
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procedures ….the teacher is still in control, carefully constraining the task to ensure 

certain outcomes”. 

  

Nevertheless, while the teacher in the case in this paper dynamically sought a way of 

creating an effective instructional situation to involve the whole class in learning, the 

students were led by the teacher to make certain explorations and discoveries. In this 

way, students’ freedom to explore and think through the problem remained under the 

control of the teacher’s instruction.  This is a case of what Professor Zheng Yuxin 

calls the ‘indoor flying’ approach – it is like flying, but it is like flying indoors as it is 

constrained in certain ways. This ‘indoor flying’ approach can be effective in the 

development of certain types of mathematical thinking, such as deductive reasoning, 

as demonstrated in this paper, yet perhaps it should not be considered as a truly 

heuristic approach because some aspects of the teacher’s considerable instructional 

practice in this case remain somewhat unanswered. For instance, why did the teacher 

consider investigating the problem in a dynamic way? Why, in particular, did the 

teacher ask particular questions such as what remained invariant and what varied 

during the motion. Why should angle AOF receive particular attention by the teacher? 

Was the aim that specific pieces of knowledge come naturally together? That is, 

which came first during the problem solving, inductive facts or deductive knowledge? 

 

Concluding comments 

It is fitting to give the teacher in this case the last word. In an interview conducted as 

part of the larger study (see Ding, 2008), the teacher’s thoughts in dealing with the 

relationship between argumentation and mathematical proof in the classroom teaching 

is evident as follows: 

“Deductive geometry is a difficult subject. It is different from other school 
subjects; for in teaching other subjects, the teacher’s questioning may not 
necessarily demand student thinking at a high level. Or perhaps it is more 
easily to involve students in plausible reasoning in other subjects as students 
more easily gain access to information or data in such a subject. But in respect 
of deductive geometry, I think that it is most important to develop students’ 
independent thinking. Thus, when a geometrical proof problem is posed, 
students should give time to think about it on their own. After that, students 
may be led to explore the analytic path of the problem and then in turn to use 
the synthetic method to make the proof. For instance, what is the given in the 
problem? What may the given be turned into? In this teaching process, some 
students will be able to answer such forms of questions, while others may not 
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be able to do so. Thus, it is better for the teacher to encourage some able 
students to lead the rest of thee students in the class into the problem solving 
activity. Surely when I ask a question to the whole class, I purposefully select 
individual students to answer it. For me, it is essential to find the right student 
in the class to answer a certain question. When teaching a new theorem, it 
may be reasonable to provide students time freely to explore the problem 
situation and to encourage plausible reasoning. But now, in these lessons, in 
starting to teach students how to apply theorems to solving proof problems, I 
need to emphasize the logical nature of such a problem-solving process. 
Without any guidance, what can we expect of students’ free arguments in such 
a process? If I distribute questions to different students, I can improve the 
efficiency of the whole class teaching as well. So the challenge facing 
teachers in teaching proof problem solving is about how to distribute 
effectively the sequence of questions to different individual students in the 
class.” (Lily, interviewed on 27th December, 2006, translated by DING Liping) 

 

This statement shows that the teacher knows very well their central role in teaching 

deductive reasoning to students. It also shows how the teacher sees the relationship 

between argumentation and mathematical proof - that it is important to provide 

students with time freely to explore a problem situation and, with this, to encourage 

plausible reasoning. After that, students may be led to explore the analytic path of the 

problem and then, in turn, to use the synthetic method to make the proof. This 

provides a beginning to an examining of how mathematics teachers in China approach 

the relationship between argumentation and mathematical proof in their classroom 

teaching.  

 

To gain fuller insight into the potentials and limitations of Chinese classroom practice, 

an important focus for further analysis is the variation of the teachers’ questioning – 

perhaps utilising the Vygotskian perspective of the zone of proximal development 

(Vygotsky, 1934/1986), taken as the difference between what a learner can do without 

help and what they can do with the support and assistance of the teacher (in the widest 

sense). For instance, analysis could usefully focus on the extent to which teacher 

practice may be considered as a good instruction which marches ahead of student 

development and leads it. Another focus might be how different children in the class 

may have differently-sized zones of proximal development, meaning that the teacher 

may be in the situation of determining the lowest threshold and the upper threshold in 

the instruction. Such analyses are motivated towards developing profound 

understanding of Chinese pedagogy in school mathematics.     
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