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This paper reports on ideas developed during an analysis of data from a project 
involving young children (aged 5-7 years) in a whole-class situation using dynamic 
geometry software. The focus is a classroom episode in which the children try to 
decide whether two lines that they know continue (but cannot see all of the 
continuation) will intersect, or not. The analysis illustrates how the children can 
move from an empirical, visual description of spatial relations to a more theoretical, 
abstract one. 
BACKGROUND 
Research shows that a majority of students in North America have an inadequate 
understanding of geometric concepts and poorly developed skills in geometric 
reasoning, problem solving and proof (e.g., Battista, 2009; Clements and Battista 
1992). Clements and Sarama (2008) have done pioneering work in describing some 
learning trajectories for various strands of geometry, focusing especially on those 
vectored towards curricular aims of middle school (such as identifying and 
composing shapes, transformations, etc.). What remains a central question for 
research in this area is how best to develop children’s explanations in a way that 
appropriately supports their growing understanding of the nature of proof and 
proving in mathematics (Stylianou, Knuth and Blanton, 2009). 
This paper reports on portions of a project involving young children (aged 5-7 years 
old) in a whole-class situation using dynamic geometry software (specifically 
Sketchpad). The focus for this paper is a classroom episode in which the children try 
to decide whether two lines that they know continue (but cannot see all of the 
continuation) will intersect, or not. The episode relates to two important, and 
growing, areas of research in primary school education: first, the nature of proof and 
proving in the elementary grades, and second the development of understanding of 
spatial relations in the early years of school. 
Research on young children and proof 
Research has pointed to the abrupt transition that children can encounter as they 
move from primary school, where proof can be absent, to secondary school 
mathematics, where it becomes more of a central concern (Balacheff, 1988; Ball et 
al., 2002; Jones and Rodd, 2001; Sowder and Harel, 1998). In order to mitigate the 
effects of this abrupt transition, researchers have argued that proof should begin in 
the early grades (Bartolini-Bussi, 2009; Stylianides, 2007; Stylianou et al, 2009). 
Further, there is growing evidence that young children can be capable of engaging in 
deductive reasoning and proving (Galotti et al., 1997; Maher and Martino, 1996). 
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What it means to engage in ‘proving’ requires some explanation, as Jahnke (2007) 
notes, since a proof must depend on the concept of a theory. While some might argue 
that empirical activity cannot lead to proving, Bartolini-Bussi (2009: 53) argues that 
in the primary school, theories are “germ theories” that are “based on empirical 
evidence, with expansive potential to capture more and more principles.” In other 
words, an experimental approach does not necessarily work against the production of 
general methods and the construction of mathematical proofs. Bartolini-Bussi argues 
that proving in the early years depends on the teacher being able to lead children 
from an experimental activity, through discussion, towards general methods and 
justification, in order to nurture a theoretical attitude. 
In a somewhat different approach, Stylianides draws parallels between a Grade 3 
child’s argument and Balacheff’s (1988) notion of a “thought experiment” which is 
the highest level of his hierarchy of arguments (and which transcends the empirical 
arguments used in lower levels). Here it is worth noting that Balacheff’s “thought 
experiment” describes not only proof, but broader forms of mathematical argument: 

The thought experiment invokes action by internalizing it and detaching itself from a 
particular representation. It is still coloured by an anecdotal temporal development, but 
the operations and foundational relations of the proof are indicated in some other way 
than by the result of their use. (p. 219) 

Research on young children and parallel lines 
As Bryant (2009: 9), confirms, children’s spatial understanding begins early; 
certainly before the start of formal schooling. By five, according to Bryant, children 
can take in and remember the orientation of horizontal and vertical lines very well. In 
contrast, at this age, children have considerable difficulty in remembering either the 
direction or slope of obliquely-oriented lines. Yet, the research summarised by 
Bryant indicates that if there are other obliquely oriented lines (in the background) 
that are parallel to an oblique line, the children’s memory of the slope and direction 
for the oblique line improves dramatically. Apparently, children can use the parallel 
relation between the line that they have to remember and stable features in the 
background framework to store and recognise information about the oblique line. 
Bryant concludes that younger children probably perceive and make use of parallel 
relations without necessarily being aware of doing so. A goal of the teaching 
experiment reported in this paper was to make children’s implicit knowledge more 
explicit by inviting them to reason about the relationships between lines. Further, in 
keeping with the emphasis on proof and argument in the early years of school, the 
project followed Bartolini-Bussi in designing classroom tasks that would start 
experimentally but then provide an opportunity for nurturing a theoretical attitude. 
THEORETICAL PERSPECTIVES  
In previous research, we have found Sfard’s (2008) ‘commognition’ approach 
suitable for analysing the geometric learning of students interacting with dynamic 
geometry software (see Sinclair & Yurita, 2008). That research showed that the use 
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of DGS can lead users to think about geometric objects and relations in very different 
ways than they do using static, pencil-and-paper materials, thereby changing the 
fixed, linear development proposed by the van Hiele’s. For Sfard, learning 
corresponds to a change in discourse: learning geometry thus corresponds to 
changing the way one communicates about geometric objects and relationships.  
Sfard characterizes mathematical discourse in terms of four categories: word use 
(how are words used that are specific to mathematics: a word such as ‘regular’ is 
used in a particular way in geometry), visual mediators (pictures, symbols, graphs, 
etc.), routines (repetitive patterns characteristic of a given discourse: for example, 
how you tell whether two expressions are the same) and narratives (any sequence of 
utterances framed as a description of objects, or relations between objects that is 
subject to being endorsed (true) or rejected (false)). By analysing these different 
components of discourse, and identifying changes that are relevant to mathematical 
thinking, we can evaluate what students have learned through their interactions with 
the teacher, other students, and the software.  
RESEARCH CONTEXT AND METHODS 
We worked with grade 1 and kindergarten children from a University Lab pre-K-6 
school in an urban middle SES district. There were 22 children per class from diverse 
ethnic backgrounds and with a wide range of academic abilities, with 25% being 
special needs learners. We worked with the students for three days on a variety of 
geometric concepts including identifying shapes, working with definitions, describing 
and creating rotational and reflectional symmetries, and identifying parallel and 
intersecting lines—a topic not covered in North American primary school curricula.  
Each lesson lasted approximately 30 minutes and was conducted in a small group 
(half class at a time) with the children seated on a carpet in front of a large screen. 
Two researchers, and the classroom teacher, were present for each lesson. The first 
author conducted the lessons. Each lesson was videotaped and transcribed. The 
lesson presented in this paper focused on conceptualizing intersecting and parallel 
lines. The students had already had two previous lessons involving Sketchpad. The 
students had never received formal instruction related to extended lines, intersections, 
or the notion of parallel lines. 
We first describe the lesson and then analyse the lesson in terms of the evolution of 
the geometric discourse using Sfard’s four characteristic features.   
EXPLORING INTERSECTING LINES 
The lesson began with the children being shown several examples of pairs of points 
tracing out thickly-coloured linear paths, with some pairs intersecting and others not. 
In talking about these pairs of lines, the children described the former as “touching.” 
After students successfully identified pairs of lines that “touch” or not, the instructor 
offered the more technical word “intersection” to describe the former, which the 
children immediately connected to road crossings—and, interestingly, cars crashes. 
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The instructor opened a new sketch and used the line tool to construct two lines, 
colouring one red and the other blue. The lines were positioned so as to be non-
parallel, but so that the intersection was not visible (see Figure 1). When asked “Do 
you think these two lines meet?” the students all said “No” in chorus. Then one girl 
said “But they can if you tilt it all the way down.” The instructor began dragging the 
top line toward the bottom one and as the intersection became visible, one student 
said, “now they have an intersection” and another added “a very small one.” The 
instructor dragged the top line up again and asked “And here do they make an 
intersection?” The students chorused “no.” After a few seconds, one boy said “Oh 
yes they do, they do.” Several students began talking at once, and one said, “Because 
they go out of the screen.” So the instructor adjusted the screen (dragging the right 
corner of the window to enlarge it) so that the intersection was made visible, and the 
children talked excitedly when seeing the intersection. 

 
Figure 1: A non-visible intersection 

The instructor then dragged the lines even further apart, so that their intersection was 
not visible, and asked the students to “use their imagination” to decide whether they 
intersect. This time most children said “yes.” Then a few said that they wouldn’t, 
then many others joined in. Other children hedged, “I think it might.”  

Instructor:  Can we make some theories about why it might intersect? 
Natasha:  Because it’s tilting (referring to the red (top) line). 
Robert: The lines, um, can’t meet at the edge of the screen because they are too far 

apart and they can’t just like suddenly just have a straight line going down 
and meet.”  

But Jamie seemed to change his mind: 
Jamie:  Cause they are going like this (tracing with index finger two lines coming 

together).    
Instructor:  But do you think they would ever meet? 
Robert:  Yes, because they are both slanting and the red one is slanting toward the 

blue one.  
Natasha:  It’s going to always connect somewhere because the red one is slanting so 

its going to connect somewhere over here (pointing toward the outside 
right of the screen). 
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Instructor:  Even if we can’t see it, it’s going to connect, it’s going to intersect 
somewhere over here? 

Jamie:  I think it’s never going to intersect 
Instructor:  Why? 
Jamie:  Because I just do. 
Instructor:  What do you think about the theory though that this (pointing to the red 

line) is slanting more and more toward the blue? 
Jamie:  (Standing up) But the blue is also going like this (using hands and arms to 

show that both lines are slanting). 
Instructor:  Oh I see. Interesting, so the blue is slanting as well. 
Jamie:  As long as both, the red’s going down the blue’s going down beside it so 

the line can’t just go like that (bringing his hands together, curving the 
top one down to touch the bottom one) and then intersect. 

Instruction: That’s interesting. Let’s look at a situation where we can definitely see an 
intersection (dragging the two lines so that their intersection is visible on 
the screen). So now they’re both slanting just like Robert said. 

Natasha:  But it’s always going to slant because right there (pointing to the left on 
the screen) that’s how thick it was so it’s always going to slant.  

Intructor: It’s always going to slant. 
Saskia: It’s going to intersect. 
Robert:  It’s going to intersect at one point but it might, it might intersect 

somewhere far, far away. 
Instructor: We need to figure out how we’re going to know when the lines are going 

to intersect even when we can’t see it. So Jamie, no Natasha said they’re 
going to intersect between the red one is slanting toward the blue one. 

Natasha: No because that right there (hand positioned so that index and thumb at a 
certain distance away) isn’t the same thickness and it’s going to intersect 
because it always gets smaller.  

When asked what gets smaller, Natasha came to the screen and put her index finger 
on the red line and her thumb on the blue and moved toward the intersection while 
decreasing the gap between her index and thumb.  
The instructor then announced they would look at another situation in which the 
intersection is not visible, at which point Jamie asked “can we see if it is going to 
intersect or not?” No one expressed any surprise when the window was enlarged in 
order to make the intersection visible. Jamie then got up and traced his fingers along 
the intersection. The instructor invited him to explain what he’d done.   

Jamie:  Because the red one is slanting enough (gets up to trace to lines off the 
screen and create their intersection with his fingers). 

 

PME 34 - 2010 4- 189 



Sinclair, Moss and Jones 

Finally, the instructor dragged the red line so that the two lines were parallel to each 
other and asked the students whether they would intersect. All students said “nooo.” 
One student used Natasha’s gesture of measuring the thickness. Jamie used both arms 
and said, “because they are going away from each other.” And Charlotte said 
“Because they are both going the same way. One of them, they’re not slanted, so, 
they’re kind of slanted but they’re not going to meet since one of them is not really 
slanted because they’re just going like (gesturing with one straight arm the direction 
of a line) they’re both going (now bringing the other arm to move parallel with the 
first) like that so they’re never going to meet (using her right hand to curve down 
towards the left one). The instructor then offered the word “parallel” to describe two 
lines that are never going to intersect. 
In terms of their word use, the children’s initial discourse is about shapes 
immediately visible to their visual field. So, for example, “line” is a linear segment 
drawn on the screen. This evolves into an unbounded process that leaves a linear 
trace, as can be seen in the way the children begin to talk about “they are going like 
this” and “the red one going down.” This change may seem marginal at first, but it 
signifies a huge leap from the geometric discourse of being captive of one’s visual 
field and speaking about static visible objects, to the discourse of talking about 
possibilities (hypothetical things: “it’s going to connect somewhere other here”) and 
abstract objects (an invisible point of intersection).  
The role of the instructor is crucial in bringing about the change in discourse, not 
only in terms of the manipulation of the lines—which go from having visible to 
invisible intersections, and which move as entire objects all at once—but in terms of 
modeling the new discourse. The questioning begins with “do the two lines meet” 
and then turns into a more hypothetical formulation about “why it might intersect”—
the former concerning the static, visible lines and the latter going beyond the here and 
now, implying that the “line” is not just what is contained in the children’s visual 
field. This discursive shift is evident in Natasha’s statement “It’s going to always 
connect […] so it’s going to connect somewhere over there,” which involves a 
hypothetical, dynamic way of talking. The instructor reinforces this way of talking 
when she asks “Even if we can’t see it, it’s going to connect, intersect somewhere 
over there?” and when she re-voices the dynamic description “the red is slanting 
more and more toward the blue.” While the word intersection was initially reserved 
for a visible place where two lines meet, toward the end of the episode, the children 
use it to describe any place where two lines meet, be they visible or not. Indeed, 
besides Jamie, who insists on actually seeing the intersection, even though he has 
argued that the two lines must intersect, the other students express no such empirical 
need, and their lack of response to the empirical evidence suggests they are neither 
surprised nor relieved.  
In terms of routines (repetitive patterns found in the discourse of the students as a 
class), we see a shift from the routine that depends on the visual identification of the 
intersection, to one that involves working with the properties of the lines. In one 
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routine, the children assess whether one line is slanting toward another and in the 
other, they determine whether the “thickness” of the lines varies. Both routines are 
more sophisticated in terms of their geometric discourse in that they rely on 
assertions about the relationships between the lines—in which the lines are conceived 
as objects that can be transformed. The ensuing narratives are expressed in the 
statements about intersecting lines, namely, that two lines intersect if one slants more 
than the other or if the thickness between the two gets smaller.  
Two new visual mediators are also introduced, that of prolonging lines using one’s 
arms, and that of using one’s fingers to measure the “thickness” between the lines, 
also indicated through gesture. These gestures, which are introduced by Jamie and 
Natasha, are also used by the other children in the class as they determine whether 
two given lines intersect. 
REFLECTIONS AND CONCLUSION 
In this classroom episode, the children were being asked to come up with a method 
whereby they could predict whether two lines might intersect. Although not explicitly 
about parallel lines (though the word was eventually introduced to describe lines that 
the children argued would not intersect), their task involved analysing the relation 
between lines, and characterising the difference between lines that intersect and lines 
that do not—a characterisation that forms the basis for the definition of parallelism. 
Natasha and Jamie both offered arguments that qualify as thought experiments, in 
Balacheff’s sense.  
In addition to setting up a context in which lines could be easily and precisely moved, 
and extended as much as desired (unlike lines on a blackboard), Sketchpad offered an 
opportunity for the teacher and the students to develop of discourse of dynamism and 
potentiality. This way of talking enabled the thought experiment that required the 
children to attend to the relationships between the lines and to devise routines for 
using these properties to make inferences. We note the pivotal use of gestures by the 
children in developing their routines; these gestures are certainly a component of 
their commognition, and may deserve greater articulation—beyond being classified 
as visual mediators—in Sfard’s characterisation of discourse. Our analysis of the 
student episode demonstrates a substantive increase in mathematical discourse along 
each of Sfard’s four characteristic features. We thus provide further evidence of 
Bartolini-Bussi’s claim that young children can be capable of transcending empirical 
arguments and engaging in aspects of deductive argumentation.  
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