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In this paper, we report on a teaching experiment in which we focused on students 

tackling 3D geometry problems in which, in general, they initially tended to produce 

'primitive' conjectures by relying on visual images rather than geometrical 

reasoning. Following the work of Larsen and Zandieh (2008), we utilise the ideas of 

Lakatos (1976) on managing the refutation process and how the use of counter-

examples can be important in promoting the growth of students' capability with 

geometrical reasoning and proof. We found that students' primitive conjectures can 

cause an unexpected result and that this can trigger further reviewing ('Monster-

barring') and modifications of the conjecture ('Exception-barring') amongst 

students. Whole classroom discussion followed by small group discussion allowed 

students to exchange various ideas and opinions and this process was important for 

their construction of a proof of their new conjecture ('Proof-analysis'). 
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INTRODUCTION 

The teaching of geometry provides not only a key vehicle for developing learners‘ 

spatial thinking and visualisation skills in mathematics, but also a major opportunity 

to develop their capability with deductive reasoning and proving (Battista, 2007; 

Royal Society, 2001). Through classroom-based research (for example, Kunimune, 

Fujita & Jones, 2010; Fujita, Jones & Kunimune, 2010), we are working on several 

themes in the teaching of geometrical reasoning and proof at the lower secondary 

school level, encompassing the design of problem-solving situations in geometry for 

students, the integration of geometrical constructions, ways of providing students 

with explicit opportunities to examine the differences between experimental 

verifications and deductive proof, and approaches to the teaching of deductive 

geometry based around a set of 'already-learnt' properties which are shared and 

discussed within the classroom. 

In this paper we extend our previous research by focusing both on the design of 

problem-solving situations in geometry for students and on the teaching of deductive 

geometry based around a set of 'already-learnt' properties. While designing suitable 

classroom tasks is very important in mathematics education (e.g. Wittmann, 1995), 

using such tasks with students does not necessarily lead to 'good' results: something 
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which Schoenfeld (1988) has illustrated in detail. Hence, additional factors need to 

be considered if the teaching of geometry is going to be more effective. In this paper, 

and following the work of Larsen and Zandieh (2008), we utilise the ideas of Lakatos 

(1976) to show how managing the refutation process and the use of counter-

examples can be important in promoting the growth of students‘ capability with 

geometrical reasoning and proof. The tasks we use involve geometrical reasoning on 

simple 3D shapes - one of the topics considered by several papers from the CERME 

geometry working group (e.g. Mithalal, 2010; Pitallis et al, 2010). 

REFUTATIONS IN THE PROCESS OF PROVING IN MATHEMATICS 

Given that conjecturing processes are known to be important in the teaching and 

learning of mathematics in general, and geometry in particular, (Caðadas et al, 2007), 

our focus in this paper is on the relationship between conjecture, refutation, and 

proof. It is known that, on the one hand, treatment and understanding of refutation 

and counter-examples are not straightforward for learners (e.g. Balacheff, 1991; 

Stylianides and Al-Murani, 2010): indeed, Potari, Zachariades and Zaslavsky (2009) 

show that even trainee teachers find it difficult to identify correct counter-examples 

to refute false statements. Yet, on the other hand, counter-examples play an 

important role within the process of conjecture production and proof construction. 

Mathematical activity, it has to be said, is not straight-forward, but rather more like a 

zigzag path. Mathematicians typically make a conjecture, find counter-examples, 

refine the conjecture, find more counter-examples and so on, during their proving 

process. Lakatos (1976, p. 127), in his historical and epistemological study, 

considered that the proof and refutation process consists of the following: 

 Primitive conjecture 

 Proof (a rough thought-experiment or argument, decomposing the primitive 

conjecture into sub-conjectures) 

 'Global' counter-examples emerge (counter to the primitive conjecture) 

 Proof is re-examined as a new theorem or improved conjecture emerges 

While mathematicians, historians and philosophers remain engaged in on-going 

discussions into the validity of this process (see, for example, Hanna 2007, p. 10), 

there is some evidence in the mathematics education literature that Lakatos' 

framework can be a useful guide to promoting students‘ conjecture production and 

proof construction process. For example, Larsen and Zandieh (2008) utilised 

Lakatos' framework to analyse undergraduate students‘ proof construction processes 

in abstract algebra. They categorises the types of proof and refutation activities in 

terms of students‘ responses, described in their words as follows (p. 208): 

 Monster-barring; any response in which the counter-example is rejected on the 

grounds that it is not a true instance of the relevant concept 
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 Exception-barring; any response that results in a modification of the conjecture 

to exclude a counter-example without reference to the proof 

 Proof-analysis; the resulting modification to the conjecture is intended to make 

the proof work rather than simply exclude the counter-example from the domain 

of the conjecture 

Larsen and Zandieh showed that Lakatos' framework "can serve as heuristics for 

designing instruction" (p. 215). In a similar vein, Komatsu (2010) revealed how a 

focus on counter-examples can encourage primary school pupils to refine their 

conjectures and extend their reasoning to reach a correct answer in a number task. 

We designed the teaching experiment below with a view to giving lower secondary 

school students valuable opportunities based on the 'proof and refutation' framework. 

RESEARCH SETTING 

The teaching experiment was undertaken in a Japanese lower secondary school 

where geometry has a major role in developing pupils' ideas about proof and 

proving. In Japan, the curriculum states that, in geometry, students must be taught to 

―understand the significance and methodology of proof‖ (JSME, 2000, p. 24. In 

terms of the 'paradigm of geometry' proposed by Houdement and Kuzniak (2003), 

Japanese geometry teaching may be characterized as within the Geometry II 

paradigm (in that axioms are not necessarily explicit and are as close as possible to 

natural intuition of space as experienced by students in their normal lives).  

In our teaching experiment, by following the principles of the geometry curriculum, 

the following lessons were designed for Grades 7 and 8 students (aged 12-14); 

 21 lesson for Grade 7 (students aged 13 yrs old at the time): Introduction of 

3D shapes and nets (2 lessons), Points, lines and planes (1 lesson), Positions 

and angles in 3D shapes (3 lessons, our focus in this paper), Distances of two 

points (2 lessons), Rotated shapes, circles and sectors (1 lessons), Surface 

areas volumes of 3D prisms and pyramids (2 lessons), line and rotational 

symmetry (1 lesson), Construction of parallel lines and tangents of circles (2 

lessons), vertically opposite angles, alternate and corresponding angles in 

parallel lines (3 lessons), and Angles in polygons (4 lessons).  

 28 lessons for Grade 8 (students aged 13 yrs old at the time): Congruent 

triangles (3 lessons), Theorems and definitions in geometry (3 lessons), 

Constructions and properties of isosceles triangles (5 lessons), Constructions 

and properties of parallelogram (4 lessons), Construction of a cube (2 lessons, 

our focus in this paper), Congruent right-angled triangles (2 lessons), 

Relationship between triangles and quadrilaterals (2 lessons), Properties of 

circles (3 lessons), Parallel lines and areas (2 lessons) and Summary (2 

lessons).  
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These lessons were implemented in one class of 40 students in a university-attached 

school where the teachers and researchers work together to undertake classroom-

based research. The students‘ standard in mathematics is generally high. The regular 

teacher of the class, in line with Sekiguchi's (2002) account, generally considers a 

good lesson to be one in which the students are encouraged to share their ideas and 

solutions with each other.  

In this paper, we focus on the lessons from Positions and angles in 3D shapes 

(taught in Grade 7) and Construction of a cube (taught in Grade 8). Our reason for 

focusing on these lessons is that, in trialling the lessons, students in general tended to 

produce their 'primitive' conjectures by relying on visual images rather than through 

geometrical reasoning. Thus, our concern is how to break this situation.  

Recent studies (e.g. Christou et al, 2006; Mithalal, 2010) have shown how the use of 

technology and dynamic 3D geometry environments might help counter the 

difficulties that students have in studying the properties of 3D shapes. In this paper, 

we consider the method of 'proof and refutation' with practical activities and group 

discussions might also be effective and accessible way of teaching. In the analysis 

that follows, we consider this issue by using 'proof and refutation' framework of 

Monster-barring, Exception-barring, and Proof-analysis.  

ANALYSIS OF EPISODES FROM OUR CLASSROOM EXPERIMENT 

Episode 1 – what size is angle PQR in a cube? 

In Grade 7 in Japanese schools, the main purpose of geometry teaching is to 

introduce students to geometrical reasoning through the study of 3D shapes and the 

angle properties of 2D shapes. In this episode (during the third of three lessons on 

Positions and angles in 3D shapes), and after learning some basic concepts of cubes 

and cuboids during the previous five lessons, the students were asked to investigate 

the size of the angle PQR in a cube ABCDEFG (see figure 1). 

Of the forty students in the class, 25 of them considered that ‗the angle is 90 

degrees‘, 11 thought that ‗angles will be changed‘ and 4 said ‗I don‘t know‘. As 

such, the dominant 'primitive' conjecture can be taken to be ‗the angle is 90 degrees‘. 

One student (referred to as student 1) stated his reasoning as follows: 

Student 1: I think wherever P, Q, and R are, the size is 90 degree. Because angle PQR 

looks like 90 degrees if you look at it from the face BFGC. 
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Figure 1: angle PQR in a cube 
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Students exchanged their ideas and opinions in groups and subsequently in whole 

classroom discussions which led them to modify their conjecture. The following 

presentations were made by students during the whole classroom discussion:  

Student 2: I investigated by cutting a model of a cube. If we cut AC and AF, then we 

have an angle, and I think it won‘t be 90 degrees as the angles are formed 

by AC and AF. 

Student 3: I also used a model, and I used protractor as well. I have got about 60 

degrees, and not 90 degrees. 

We consider these as Exception-barring responses, as their focus is not rejection of 

the 'primitive' conjecture, but the production of a new conjecture that ‗angles will be 

changed‘. After these presentations, the following idea was proposed by a student: 

Student 4: I consider why Students 2's and 3‘s angles are 60 degrees. If we connect C 

and F, then there will be a triangle. It is a bit difficult to see the figure on 

the blackboard [as this is a 2D representation of a cube], but these lines 

should be the same and since all the angles are the same, this triangle should 

be an equilateral triangle. Therefore, angle CAF is 60 degrees. 

We consider this as a Proof-analysis response wherein the new conjecture ‗angles 

will be changed‘ is now justified by a simple proof. 

Episode 2 – What shape is face DPFQ in a cube? 

In Grade 8 in Japan, students continue to study geometry and are gradually 

introduced to more formal ways of geometrical reasoning. In the two lessons on 

Construction of a cube (16th and 17th lessons of their geometry work), the students 

undertook the following problem: ‗Consider the net of a cube [see Figure 2]. 

Construct a net including the face DPFQ [where P and Q are the mid-points of AE 

and CG respectively].‘ 
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Figure 2: a half-cube for Grade 8 students to construct 

In this task, the students were not only expected to identify the face DPFQ, but also 

to construct an actual net and make the model. This additional practical requirement 

is particularly important in the teaching experiment as we consider this is more likely 

to create ‗unexpected situations' (such as the square DPFQ does not fit) for many 

students more easily than a question that solely asks students to determine the shape 

of the face DPFQ. In the latter case, students might say that the face DPFQ is a 

square, but it might be more difficult for them to recognise that it is not.  
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First, the teacher introduced the problem by referring to the students‘ experiences in 

Grade 7: 

Teacher: Do you remember we made the solid ABCDEGH [illustrated as Figure 3] 
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Figure 3: a solid ABCDEGH 

Students: Yes, I remember. I think we managed to make it. 

Teacher: Yes, and today, we try the task ‗Let us consider a net of this 3D shape 

(where P and Q are the mid-points of AE and CG respectively). Construct a 

net including the face DPFQ‘.   

In this problem, a challenging point, on the one hand, is that the quadrilateral DPFQ 

is not a square, but a rhombus. On the other hand, this can lead the students to 

making a conjecture, refuting their conjecture, modifying the conjecture and so on, 

until their final decisions. After investigating this task individually, the students 

found that their 'primitive' conjecture ‗the DPFQ is a square‘ might not be true as a 

square did not fit their models. The students then started exchanging their ideas 

within each group. For example, students in Group A (with students referred to as 

A1, A2, etc) had the following discussion (relating to models represented by Figures 

4 and 5): 

Student A1: I think DPFQ is a square. First the original shape was a cube, and all faces 

are squares, and therefore APD EPF GQF CQD and all the sides are 

the same [note that this student's model was incomplete as the quadrilateral 

DPFQ did not fit perfectly]. 

Student A2: I thought, like you, that DPFQ is a square, but it did not fit… I drew a 

square first, and cut and pasted in my model. 
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Figure 4: the model by student A2 

Student A3: But [see Figure 5] if we follow A2‘s method, then I wonder if we would 

have a rhombus? I think, if the first shape we make is a square, then all 
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sides should be the same, DQ=DR, and we cut DRP, and this is a right-

angled triangle. Therefore, DP is longer than DR, and DP DQ, and this is 

not a rhombus?  
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Figure 5: student A3‘s reasoning about shape DPFQ 

We consider the above responses as Monster-barring and (incorrect) Proof-Analysis. 

The students tried to reject the counter-example and keep their original conjecture by 

using (incorrect) reasoning. It is interesting that their Monster-barring led to a proof 

which they tried to use to justify their original conjecture.  

In another group (group B), however, two students (B1 and B2) first made their 

models without drawing DPFQ, and then student B3 showed his answers as follows 

(see Figure 6): 

Student B1:  My method is probably cheating, but I drew a net without DPFQ, and then 

made a model without a lid. Then, I put my half-completed model on a 

piece of paper, traced DPFQ and then made the lid (DPFQ).  

Student B2:  My method is similar to B1, but I did it a bit differently. I also made a model 

without a lid, and then I measured the angle PDQ, and it was 79 degrees. I 

made a quadrilateral with the angle PDQ 79 degrees, and then put the lid.  

Student B3:  I tried the method which is similar to B1 and B2, started from a net without 

DPFQ, and made a model. But I noticed that the length of PQ, the diagonal 

of DPFQ is the same as EG, the diagonal of HEFG. If we use this fact, we 

can construct DQP by using ruler and compass. If we can construct DQP, 

then we can also construct PQF, then we can complete the net [see Figure 

6]   
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Figure 6: the net made by student B3 

The above process can be considered as Exception-barring. This is because the 

students' original conjecture was abandoned and new ideas were searched for to 

make the situation consistent. Neither arguments by student B1 nor B2 were proofs. 
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In addition, it is difficult to consider B3‘s argument as a proof as his method still 

does not explain what DPFQ is.  

After the group discussion, all the group arguments were shared with the whole 

class. After listening to the presentation of student B3, a student G1 (from group G) 

added his reasoning as follows: 

Student G1: I did like B3‘s way, but if you looked at the shape without the lid from 

above, we can see PQ is equal to EG, and as the four sides of DPFQ are the 

same, so I think it is a rhombus. I then measured PQ and then used compass 

to complete the face DPFQ.  

Student G1‘s response is again Exception-barring, and now a new conjecture ‗the 

face DPFQ is a rhombus‘ is shared in the classroom. Finally, student H1 (from group 

H) presented his idea and the new conjecture was proved as follows (see Figure 7): 

Student H1:  My idea is that I dissected the solid first. If we cut it vertically from PQ to 

EG, then it will be a rectangle. Therefore, PQ=EG. Also, if we cut it by 

connecting DH and F, then it will be a right-angled triangle, and DF is its 

hypotenuse and the other line is HF [and therefore, DF is longer than PQ]. 
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Figure 7: illustration of student H1‘s proof of why the face DPFQ is a rhombus 

This reasoning, triggered by group discussions and whole classroom discussion, is 

considered as Proof-analysis. It is also interesting to see that the properties of 

quadrilaterals and triangles are used effectively by the student to justify the 

reasoning. Before this lesson, in addition to the 21 lessons in Grade 7, students have 

already completed 15 geometry lessons in which they practiced their geometrical 

reasoning in using a set of already-learnt properties which are shared and discussed 

within the classroom. The properties of quadrilaterals and right-angled triangles were 

already studied, and this student (H1) used them effectively to advance his 

reasoning.  

DISCUSSION AND CONCLUDING COMMENTS 

These episodes show that the first conjecture ‗DPFQ is a square‘ caused an 

unexpected situation, and then this triggered further reviews (Monster-barring) and 

modifications of the conjecture (Exception-barring) amongst students. Whole 

classroom discussion followed by small group discussion allowed students to 

exchange various ideas and opinions and this process was important for their 

construction of a proof of their new conjecture (Proof-analysis). 
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In focusing, in this paper, on students‘ conjecture production and proof construction 

within the proof and refutation framework, we can conclude that the framework is 

useful not only for describing students‘ proving processes but also in indicating 

some helpful instructional approaches in geometry lessons. Through our analysis of 

data from our classroom-based research, we illustrate how managing students‘ 

discussions of counter-examples, both in group and whole classroom work, can act 

as a vehicle for promoting the development of their geometrical reasoning. We found 

that Monster-barring can sometimes lead to an incorrect proof from students (for 

example, students A1, A2 and A3 in the second episode). As such, Exception-

barring and classroom discussions are important to construct legitimate proofs 

(Proof-analysis) (see student 4 in the first episode, and student H1 in the second). In 

future research, in addition to continuing to design suitable tasks for students, we 

aim to investigate other factors which could facilitate students‘ conjecture production 

and proof construction in geometry. 

NOTE 

The lessons in this teaching experiment were based on the Japanese 'Course of Study' first published in 2000 (JSME, 

2000).  
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