
Highlights
An STPA-based Formal Composition Framework for Trustworthy AutonomousMaritime Systems
Dana Dghaym,Thai Son Hoang,Stephen Turnock,Michael Butler,Jon Downes,Ben Pritchard

• Propose a generic approach for requirements elicitation using formal methods.
• Apply an STPA-based hazard identification method integrated with formal modelling to generate both safety and se-

curity requirements.
• Suggest a compositional approach for formal modelling to enhance the hazard analysis process and address challenges

in formal modelling.
• Apply our approach of requirements generation and the SE-STPA hazard analysis approach to an integrated mission

management system of autonomous vehicles.
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ABSTRACT
A key risk with autonomous systems (AS) is the trustworthiness of the decision-making and control
mechanisms that replace human control. To be trustworthy, systems need to remain safe while being
resilient to unpredictable changes, functional/operational failures and cybersecurity threats. Rigorous
validation and verification are essential to ensure trustworthiness of AS. Current engineering practice
relies heavily on Verification and Validation (V&V) test-and-fix of system characteristics which is
very time-consuming and expensive, limiting the possibilities for exploration of alternatives in sys-
tem design. Instead, we focus on building a correct-by-construction system. In this paper, we present
an approach to identifying and analysing mission requirements for squads of autonomous missions.
Clear definition of requirements is an important pre-requisite for mission planning and for V&V of
mission management. We use a structured approach to requirements identification and use formal
modelling to help remove ambiguities in the requirements and to specify formal properties that should
be satisfied by the missions. Our approach use a combination of analysis techniques based on Sys-
tems Theoretic Process Analysis (STPA) and formal modelling to generate critical requirements that
ensure the safety and security of the system. We also suggest a compositional approach for formal
modelling to enhance re-usability and address the complexity of formal modelling. Our approach
is being evaluated through consideration of a combined mission of an Unmanned Surface Vehicle
(USV) with deployment/recovery of small Unmanned Underwater Vehicles (UUV) within a shipping
channel whereby the USV has to safely maintain station for a long period and then proceed to recover
the UUV, while maintaining a communication link to an Unmanned Aerial Vehicle (UAV).

1. Introduction
Autonomous Systems (AS) offer the potential of reducing

the cost and ensuring the safety of humans. However, man-
aging a squad of heterogeneous AS can be costly requiring
a large number of people to complete a mission. This pa-
per will focus on the early phases of designing an integrated
mission management system for heterogeneous autonomous
assets, which we call the Integrated Mission Management
System (IMMS). The aim of this system is to reduce the cost
of missions requiring multiple platforms.

Mission management involves the following activities:
planning of a mission after identifying the mission goals,
mission execution, and mission monitoring and reviewing.
While we have trustworthy autonomous vehicles working as
separate entities, our aim is to build a trustworthy manage-
ment system to ensure the trustworthiness of the overall sys-
tem.

Studies have shown that the cost of fixing errors during
testing is 10 times more than during the construction phase

⋆This is funded by Thales IMMS 2019 project.
∗Corresponding author

d.dghaym@ecs.soton.ac.uk (D. Dghaym);
t.s.hoang@ecs.soton.ac.uk (T.S. Hoang); s.r.turnock@soton.ac.uk (S.
Turnock); mjb@ecs.soton.ac.uk (M. Butler); j.j.downes@soton.ac.uk (J.
Downes); ben.pritchard@uk.thalesgroup.com (B. Pritchard)

ORCID(s): 0000-0002-2196-2749 (D. Dghaym); 0000-0003-4095-0732
(T.S. Hoang); 0000-0001-6288-0400 (S. Turnock); 0000-0003-4642-5373 (M.
Butler); 0000-0003-2027-4474 (J. Downes)

and can increase to more than 25 times post release (Leff-
ingwell, 1997), and many problems discovered in software
systems are related to shortcomings in requirements elici-
tation and specification processes (MacDonell et al., 2014).
In this paper, we are interested in maritime missions with
autonomous vessels for each domain, aerial, surface and un-
derwater. We will show how we can apply formal modelling
to develop a requirements analysis framework for identifica-
tion of anticipated range of operational environments for au-
tonomous missions, including human operator interactions,
together with precise specification of safety and security en-
velopes for enactment of autonomous missions.

The IMMS involves several components that interact with
each other adding more complexity to the system. Several
studies such as Bensaci et al. (2018) and Zhou et al. (2019)
have shown the advantage of Systems Theoretic Process Anal-
ysis (STPA) over traditional hazard analysis techniqueswhen
considering the interaction between different components.
While STPA lacks the formal aspect, combining it with the
formal method, such as Event-B, adds more assurance by
proving the consistency of the requirements. Event-B is a
system analysis and modelling language that has a good ex-
tensible tool support which combines both theorem proving
and model checking. Therefore, our choice of combing both
Event-B and STPA can add more reassurance for a complex
system such as the IMMS.

Our contributions can be summarised as follows:
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• Define an approach for requirements elicitation based
on formalmodelling, that is generic and can be applied
to any integrated system. We propose this approach in
(Dghaym et al., 2019), and here we extend it to derive
additional safety and security requirements as below.

• Apply an approach based on Systems Theoretic Pro-
cess Analysis (STPA) to analyse the security require-
ments, and also to generate any additional safety re-
quirements.

• Propose an improvement to Systems Theoretic Pro-
cess Analysis (SE-STPA) formal modelling, that sim-
plifies formal modelling and supports re-usability and
change without breaking correctness.

This paper is organised as follows: Section 2 presents
some related work. In Section 3 we present the case study
that motivated our work. Section 4 gives an overview of our
approach for identifying and analysing the mission require-
ments. Section 5 introduces the Event-B formal method and
shows how we apply formal modelling using Event-B to de-
rive the requirements. Section 6 demonstrates the SE-STPA
hazard analysis and describes how we apply SE-STPA to do
the hazard analysis of the IMMS, while in Section 7 we fo-
cus on the adversary modelling. Finally, we conclude in
Section 8 discussing the advantages and limitations of our
approach.

2. Related Work
STPA (Leveson and Thomas, 2018) is a hazard identi-

fication method which represents the system by a control
structure. The hazardous conditions are generated by the
absence, presence or the improper timing of control actions.
The process is followed by identifying causal factors for un-
safe control actions. On the other hand, formal methods are
concerned with ensuring the system’s reliability by specify-
ing and verifying the correct behaviour of the system. Ap-
proaches that combines analysis techniques such as STPA
with formal methods provide stronger arguments to trust the
system’s correct and safe behaviour.

Thomas and Leveson (2013) have defined a formal syn-
tax for hazardous control actions, which are identified as a
result of applying STPA. This formalisation enables the au-
tomatic generation of model-based requirements as well as
detecting inconsistencies in requirements.

Abdulkhaleq et al. (2015) propose a safety engineering
approach that uses STPA to derive the safety requirements
and formal verification to ensure the software satisfies the
STPA safety requirements. These safety requirements can be
formalised and expressed using temporal language. For veri-
fication, a behaviour model corresponding to the controller’s
behaviour and constrained by the STPA requirements is con-
structed. From the behaviour model, an input model can
be manually constructed and fed to a model checker such
as NuSMV for verification against the formalised STPA re-
quirements. Then apply model-based testing to automati-
cally generate test cases.

Colley and Butler (2013) present an approach to hazard
analysis, where requirements are first captured and classi-
fied as: monitored, controlled, mode and commanded phe-
nomena. Then STPA is applied to the controlled phenomena
which results in additional safety constraints. The derived
safety constraints are then formally modelled using Event-B
as invariants and/or guards.

Hata et al. (2015) also combine STPA with formal mod-
elling. They apply STPA to derive the critical constraints
which are formally modelled as pre and post conditions in
VDM++.

While STPA is used for safety problems, some approaches
build on STPA to introduce security analysis, such as STPA-
Sec (Young and Leveson, 2014) which is an extension to
STPA. STPA-Sec applies similar steps to STPA for secu-
rity analysis, but differs in the addition of intentional actions
when identifying causal scenarios.

Friedberg et al. (2017) present an integrated analysis tech-
nique based on STPA called STPA-SafeSec. This framework
unifies the analysis of both safety and security and shows the
dependency between the two domains. STPA-SafeSec intro-
duces a component layer that identifies the physical impact
of security vulnerabilities on the system.

Omitola et al. (2019) apply STPA for the security analy-
sis and security requirements elicitation of a maritime com-
munication system. They apply the same STPA safety con-
cepts to security analysis, where they identify losses, secu-
rity constraints and insecure actions instead of the STPAhaz-
ards, safety constraints and unsafe control actions.

Our approach uses both an STPA based approach (SE-
STPA) and a formal method (Event-B) to generate the sys-
tem’s critical requirements which inlcudes both safety and
security constraints. Our approach differs by starting with
formal modelling of the high level system which also helps
to extract and improve the functional requirements. Our ap-
proach is iterative combining the analysis techniques with
formal modelling. However, formal modelling can get com-
plex with the continuous addition of newly generated critical
requirements. We show, using a complex case study, how
we apply different techniques based on decomposition and
composition to simplify the formal modelling process and
enhance the re-usability of the models even when changes
are required.

3. Case Study
The purpose of the IMMS is to reduce the large number

of people running separate platforms to a more integrated
system requiring less people. The use case scenario that mo-
tivated building the IMMS is represented in Figure 1.

The overall goal of the use case is to conduct a timely sur-
vey of the seabed in a defined area. The unmanned underwa-
ter vehicles (UUVs) conduct the seabed survey which is sent
to the host ship via the unmanned surface vehicle (USV). The
unmanned aerial vehicle (UAV) can possibly play a gateway
role between the USV and the host ship, but in our experi-
ments the UAV was mainly providing situational awareness.
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Figure 1: IMMS Use Case Scenario

The IMMS role is to provide the high level plans for all
the different platforms which are sent via the Ground Con-
trol Station (GCS) to the different assets, which in turn send
updates and data to the IMMS through their corresponding
GCS.

4. An Approach for Requirements Elicitation
Defining the requirements of the IMMS is an iterative

process, where in the initial version we focus on what we
know. We start by gathering information about the different
available autonomous platforms. In this case, we have three
different physical assets from each of the three domains: sur-
face, underwater and aerial. After defining the system goals,
assumptions and constraints, which include communication
and planning constraints in addition to identifying the fail-
ure and adverse conditions, we structure the requirements as
follows:

1. Operator Safety Requirements
2. Platform Functional Requirements

(a) Unmanned Surface Vehicle (USV)
(b) Unmanned Aerial Vehicle (UAV)
(c) Unmanned Underwater Vehicle (UUV)

3. Possible Exceptions and Recovery Actions
4. Security Requirements
In the initial version, our focus is on the available as-

sets and their interfaces to the IMMS. After analysing the
existing requirements, we identify what is missing, in this
case it is clearly the IMMS requirements or in other words
what we want to achieve from the IMMS. From what we
know and what we want, we identify the functional and non-
functional requirements of the IMMS, the IMMS interface
requirements and information communication. The func-
tional requirements include mission planning, mission ex-
ecution and mission monitoring and review. Later, we can
identify a common functionality among the different assets
and generalise the platform-specific requirements.

Capturing the requirements in a well-defined natural lan-
guage document is not enough. The document can be still
prone to different interpretations from the different teammem-
bers coming from different backgrounds. Therefore, it is im-
portant to have a precise specification to eliminate any am-
biguities and remove any defects. For this we use Event-
B, introduced in Section 5.1, to capture the system require-
ments precisely. In Section 5.2 we present an early attempt
at modelling the high level requirements of the system using
Event-B.

Figure 2, which we introduce in (Dghaym et al., 2019),
presents our proposed approach for eliciting requirements
for autonomous missions. This approach is based on our ex-
perience in using formal modelling for system verification,
it is a generic approach which is applicable for the integra-
tion of multi-platforms. Our approach is iterative where we
augment these requirements as a result of continuous analy-
sis. This approach requires continuous interaction between
twomain stakeholders the domain experts, which in our case
includes two parties: the different platform owners and the
client, and the formal methods experts. The platform own-
ers will identify what are the feasible requirements and the
client identifies what is the purpose of the system. The for-
mal methods experts will work on analysing the available
resources to identify what is missing and what is ambiguous
which will need clarification from the domain experts, who
should also approve or reject any identified requirements.

Figure 2: An approach for eliciting requirements

While Figure 2 focuses on the early phases of require-
ments elicitation, we augment this approach with a well de-
fined process based on both formal methods and different
analysis techniques as illustrated in Figure 3. The process
starts with initial analysis of the system. The initial analysis
includes the three internal circles of the requirements elici-
tation approach (Figure 2). The initial analysis will result in
an initial system requirements which include both functional
and non-functional requirements. The next steps will cover
in more details the two external circles of Figure 2. We, then
use the initially defined requirements to formally model the
overall system which will generate additional requirements.
Later we apply SE-STPA, where the first steps of SE-STPA
will result in identifying the control actions, which are used
to enhance our formal modelling. Then, we apply hazard
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analysis of the control actions which results in the generation
of additional critical requirements, whichwe formallymodel
to ensure their consistency. Later, we apply the SE-STPA
adversarial modelling which generates additional security-
related critical requirements, which we also formally model.
We then, do further causal analysis and analyse the results of
our formal modelling to re-scope the system and repeat the
process until we have a well-formed system requirements.

Figure 3: A process for requirements elicitation using analysis
and formal methods

In the next sections, we will explain in more details the
different steps of our process presented in Figure 3. We will
also apply the process to generate the requirements of the
IMMS, starting with the initial analysis as shown in Figure 2.
4.1. Analysis of an IMMS Safety Requirement

In this section, we will focus on one of the safety require-
ments of the IMMS, which we use as a running example to
illustrate our approach rather than presenting the full set of
requirements. In the first stage we looked at identifying the
operator Safety Requirements (SF) of the available assets,
one of these requirements is:

SF1. Collision Avoidance (CA): The UxVs (unspec-
ified unmanned vehicles) do not have collision avoidance
mechanisms. Collision avoidance with other vehicles and
other possible obstacles is maintained by thorough planning.
The plans sent to the assets can be updated during the mis-
sion should conditions change, for example the appearance
of new obstacles. Additionally, maintaining visual line of
sight, receiving video feeds from platforms and definingmit-
igation scenarios assist with collision avoidance.

CA Requirement Analysis: The available vehicles do
not have collision avoidance mechanism. Therefore, in order
to avoid collisions:

A Initial planning should take into considerations the dif-
ferent assets positions and any known obstacles in the
environment.

B During themissionwhen situational awareness is avail-
able and the assets are communicating, the plans can
be updated and sent to the assets to avoid collisions.

C A timeout should be predetermined for the assets with
a predetermined plan to follow in case of communica-
tion loss.

Identifying IMMS functional requirements: By analysing
SF1, we can identify some of the IMMS Functional Require-
ments (FR) which should include:
FR1. The IMMS must have the ability to specify/assign the

required vehicles to perform a mission.
FR2. The IMMSmust assign tasks to the specified vehicles.
FR3. The IMMSmust provide the vehicles with initial plans

prior to starting a mission.
FR4. The IMMS must have the ability to modify plans of

assigned vehicles during the mission executions.
Both FR1 and FR2 can be inferred from A, since plan-

ning should know the positions of the mission assets, then it
should have the ability to assign these assets to a mission and
give them tasks to perform a mission. From both A and C,
FR3 is deduced which will result in providing the vehicles
with plans in the case of normal and failure behaviours. FR4
is clearly concluded from B where plans should be updated
should problems arise.

In this section, we have shown howwe can identify some
of the system requirements by analysing the requirements of
what we know. This is part of the initial analysis or step 1 of
our process (Figure 3), which results in the identification of
some functional and non-functional requirements.

5. Modelling in Event-B
In this section, we present Event-B (Abrial, 2010), which

is a formal method for system analysis and modelling. We
have chosen Event-B because it supports modelling at a sys-
tem level rather than only at a software level. Event-B also
has good extensible tool support and a user can apply both
theorem proving andmodel checking, supported by ProB (Leuschel
and Butler, 2008), to the same model. A survey of formal
verification tools have found that Event-B supported by the
toolset Rodin comes closest to supporting the goals of a correct-
by-construction designs (Punnoose et al., 2014). In this pa-
per, we use Event-B to address the ambiguity and inaccuracy
of requirements specifications. Event-B, likemany other for-
mal methods, uses concise mathematical language for speci-
fication. Moreover, safety properties expressed as invariants
are verified which helps to elimiate any inconsistency in the
model. Formal models written in Event-B can also be ani-
mated to validate against user requirements.
5.1. Event-B

Event-B (Abrial, 2010) is a formal method for system
development. One of the main features of Event-B is the
use of refinement to introduce system details gradually into
the formal model. An Event-B model consists of two parts:
contexts and machines. Contexts are the static parts of the
model. A context contains carrier sets, constants, and ax-
ioms that constrain the carrier sets and constants. Machines
are the dynamic parts of the model. A machine contains
variables v, invariants I(v) that constrain the variables, and
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events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables aremod-
ified when the event is executed. In general, an event e has
the following form, where t are the event parameters, G(t, v)
is the guard of the event, and v ∶= E(t, v) is the action of the
event.

event e== any twhereG(t,v) then v ∶= E(t,v) end

Event e can only be executed when its guard G(t,v) holds
for some parameter t and its effect on the state variable v is
specified by the action E(t,v).

A machine in Event-B corresponds to a transition sys-
tem where variables represent the states and events specify
the transitions. Contexts can be extended by adding new
carrier sets, constants, axioms, and theorems. Machine M
can be refined by machine N (we call M the abstract ma-
chine and N the concrete machine). The state of M and N
are related by a gluing invariant J(v,w) where v, w are vari-
ables of M and N, respectively. Intuitively, any “behaviour”
exhibited by N can be simulated by M, with respect to the
gluing invariant J. Refinement in Event-B is reasoned event-
wise. Consider an abstract event e and the corresponding
concrete event f. Somewhat simplifying, we say that e is
refined by f if f ’s guard is stronger than that of e and f ’s
action can be simulated by e’s action, taking into account
the gluing invariant J. More information about Event-B can
be found in (Hoang, 2013) Event-B is supported by Rodin
platform (Rodin) (Abrial et al., 2010), an extensible toolkit
which includes facilities for modelling, verifying the consis-
tency of models using theorem proving and model checking
techniques, and validatingmodels with simulation-based ap-
proaches.

In Hoang et al. (2017), we introduce a mechanism for
machine inclusion in Event-B. Machine inclusion allows the
construction of an Event-B machine by composing one or
more machines and synchronising events. The included ma-
chine is reused in a correct-by-construction fashion that al-
lows to utilise its properties without the need of reproving.
This compositional approach makes it possible to combine
both top-down (supported by refinement) and bottom-up de-
velopment. A machineM including machineM', will inherit
the variables and invariants of M', and will be able to syn-
chronise with any of its events. If e in M synchronises with
e' inM', then ewill inherit the parameters, witnesses, guards
and actions of e'.
5.2. Formal Modelling of IMMS

A key strength of Event-B is refinement, which allows
us to abstract away from details and focus on different prob-
lems at different levels of refinements. The goal of this early
modelling is an attempt to understand the system under de-
velopment, remove ambiguities and identify important miss-
ing properties of the system to enhance the requirements.

Our Event-B model starts with an abstract level defining
a mission as a set of tasks. Then, we introduce two refined
levels as: vehicles and mission planning.

Abstract Level: At the abstract level we define a mission
as a set of tasks and introduce the following events executing
in the corresponding order:

<define_mission; start_mission; complete_mission>.
This level has three simple events, however right at the

start of modelling we have to take a modelling decision: Can
the IMMS manage multiple simultaneous missions?

For this project we will manage one mission at a time
and leave this question as a future research question. Other
questions that we have identified at this level are:

• What are the conditions for starting a mission, or we
can ask, do we need all the vehicles to be present to
start a mission?

• What are the conditions for completing a mission?
We can define a new requirement for the IMMS, related

to starting a mission:
FR5. The IMMS should define a minimum criterion for

starting a mission.
First Refinement: In the first refinement level, we intro-
duce vehicles and their capabilities and the possibility of as-
signing vehicles to mission tasks. The main functionality
at this level is to ensure that a mission can only start after
assigning vehicles with the minimum required capabilities
defined to start the mission tasks. This also addresses FR5.
In Event-B this can be modelled by the following invariant
which must be maintained by all the events.
1 missionStart=TRUE⇒ (
2 requiresMin[missionTasks]
3 ⊆
4 capabilities[assign−1[missionTasks]]
5 )

Here assign−1[missionTasks] denotes the set of vehicles as-
sociated with all mission tasks.

Proof obligations are generated to ensure that all events
will maintain the defined invariants. However, if we allow
assets to be deallocated from their tasks during the mission.
The invariant for FR5 cannot be maintained, hence in this
case it is better to only model it as a pre-condition of starting
a mission in the form of a guard in start_mission event.

In addition to that Event-B can help to prove the con-
sistency of the invariants, for example if we have additional
invariants that conflict with each other, it will be impossible
to prove the model and hence it will flag a problem to the
modeller and requirements can be changed accordingly.
Second Refinement: At the second refinement, we intro-
duce mission plans abstractly as a series of locations, and in
our model we ensure that a mission is not considered suc-
cessfully complete until all vehicle plans are covered. We
also introduce an event to set an initial plan before starting a
mission and another event that enable modifying plans dur-
ing execution, addressing requirements FR3 and FR4.

This level also poses new questions about the conditions
for modifying plans, is it always a response to some changes
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to the environment, do we immediately modify the plan or
does the vehicle has to go through a safe state?

To answer these questions, we suggest defining generic
states that apply to all the vehicles and define “what are the
activities that can occur during these states?”. These activ-
ities and the state transitions will be modelled as events in
Event-B. Later, we can refine the generic states by defining
the tasks specific to each vehicle.

In this section, we have shown an example of howwe can
use Event-B to improve the requirements and identify some
defects. More details about the initial system model can be
found in (Dghaym et al., 2019). This section is part of step
2 of Figure 3, where we have used the initial requirements
in the formal model of the high level system and generated
additional requirements as the result of formal modelling.

6. An STPA-Based Approach
In this section, we introduce SE-STPA (Howard et al.,

2019), which is an STPA-based approach for the safety and
security analysis of systems. We chose SE-STPA because it
integrates formal modelling to the analysis process to pro-
vide more assurance to the analysis process which involves
both safety and security.

We show how we apply the SE-STPA approach, to help
us identify the safety and security requirements, which also
covers the last circle of our proposed approach for require-
ments elicitation, Figure 2. We also propose a modifica-
tion to the formal modelling strategy, where the original SE-
STPA relies only on refinement. Our formal modelling is
based on decomposition, composition and separation of con-
cerns in order to tackle the complexity in formal modelling
and verification of the critical requirements and support re-
usability.
6.1. SE-STPA

Security-Enhanced Systems-Theoretic Process Analysis
(SE-STPA) is an STPA-basedmethodology developed byHoward
et al. (2019). This methodology integrates the STPA anal-
ysis with formal modelling using Event-B. SE-STPA does
not only consider safety analysis, but also adds the adversar-
ial modelling of the security risks.

SE-STPA is an iterative methodology which consists of
the following eight steps:

1. Establishing the system engineering basis: this in-
volves identifying the system entities and boundaries
from the system purpose. As well as, identifying the
system losses and hazards.

2. Building the functional control structure: this is a
representation of all the entities involved in the control
of the system and any underlying processes.

3. Identifying control actions: these can be identified
from the commands and feedback in the control loop
of the functional control structure.

4. Building the initial formal model: from the control
actions, an abstract Event-B model is built where con-
trol actions represent events in the Event-B machine.

5. Hazard analysis of the control and critical require-
ments identification: the control actions are analysed
to identify any hazards, this is done by checking if the
control action is issued, not issued, issued out of se-
quence or issued for the incorrect duration can lead
to any hazardous consequence. Critical requirements
can then be identified from the hazard analysis.

6. Adversarial modelling and further generation of
critical requirements: an adversary is an abstraction
of any unauthorised party that may undermine the pur-
pose of the system. By analysing the possible manip-
ulation points and actions that an adversary may un-
dertake, further requirements can then be generated
to secure the system. The purpose of adversary mod-
elling is to provide a security assurance case.

7. Integration of the generated critical requirements:
the generated critical requirements can be integrated
into the initial formal model through different refine-
ments.

8. Causal factors analysis: this is related to the haz-
ards identified from the control actions rather than the
adversary modelling. Hazards are analysed to iden-
tify what series of actions or context can lead to the
hazards. Possible additional requirements can also be
generated.

Next, we present our application of SE-STPA to IMMS,
which covers steps 3 and onwards of our process in Figure 3.
6.2. Engineering Basis & Control Structure

From the initial requirements analysis presented in Sec-
tions 4 and 5, we can summarise the purpose of the IMMS
as follows.

The IMMS is an overarching architecture framework that
allows the interoperability of diverse sets of AS. At its heart
the IMMS is a software which manages the interfaces and
exchanges between these different autonomous assets. The
IMMS will be able to perform a global Tier 1 planning and
provide amission definition acrossmultiple platforms. IMMS
will also be able to communicate with the different assets and
monitor the mission during its execution and update plans if
needed.

From the purpose statement, we can see that communi-
cation with the different assets plays an important role espe-
cially from a security perspective. The IMMS can commu-
nicate with the different assets via their GCS. Therefore, the
system has four entities:

• Operator: Set mission goals and set restrictions (no-
go zones) these could be imported or set manually by
the operator.
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• IMMS Mission Planner Software (IMMS): Gener-
ate plans based on mission goals, these plans should
abide by the restrictions, i.e., avoid the no-go zones.
The IMMS should be able to communicate with the
ground control stations to send themission plans across
the different domains.

• Ground Control Stations (GCS): Interface between
the IMMS and the assets, transmitting Tier 2 plans to
the registered assets.

• Unmanned Vehicles or Assets (UxV): A number of
unmanned vehicles from the different domains that ful-
fils the planned mission routes.

Next, identify the system losses and hazards and themap-
ping between them. Table 1 presents an example of a loss in
the system and its associated hazards.

Table 1
Losses and hazards mapping

Loss Hazard

L1. GCS and/or
IMMS are not
certain of the
location of the
UxV.

H1. UxV deviates from the plan.
H2. UxV do not report position and
telemetry data regularly during mis-
sion.

6.2.1. Control Structure
The four entities identified in the previous step represents

the components of the functional control structure in Fig-
ure 4. The control structure presents the communication be-
tween the different components, where commands and feed-
back can be exchanged between the different components.
In the control structure representation (Figure 4), we iden-
tify the responsibilities of each controller and its process
model which represents the aspects of the system relevant
to the controller and its responsibilities. As can be seen in
the control structure of the IMMS the plans and commands
are passed from the IMMS to the assets via the GCS. On
the other hand, location and state updates initiate from the
assets to the IMMS via the GCS. The operator can directly
view updates received by the IMMS and define/update mis-
sion goals to the IMMS.

The control actions can be identified from Figure 4. For
example the IMMS control actions are: generate plans, val-
idate plans while the operator authorise plans.

At this stage we have completed step 3 of Figure 3, where
the output of this step is a set of control actions of the differ-
ent entities of the system.
6.3. Formal Modelling of Control Actions

Following the SE-STPA approach, after identifying all
the control actions the initial formal modelling is introduced.
However, in our case we have started the initial formal mod-
elling right from the beginning and we used these formal

models to introduce new requirements and improve our sys-
tem understanding. At the beginning, our focus was at the
system level and deriving the functional requirements and
not the communications between the different entities. That
is why in our initial models, we do not have the GCS as an
explicit separate entity. For example, we do not distinguish
between the plans the IMMS generates, the plans the GCS
receives and the ones executed by the assets. To summarise,
in the initial model we trusted the system communications
and hencewe assumed all the entities have the same informa-
tion. However, this is not the case when analysing the safety
and security hazards, where communications can introduce
major threats that can lead to unsafe scenarios.

Unlike the SE-STPAdefined by Howard et al. (2019), we
have not used one abstract model, we have developed three
abstract models to represent the three levels of communica-
tions shown in Figure 4. These three abstract models can
then be composed into one model using inclusion (Hoang
et al., 2017). This decomposition approach does not only
simplify the modelling, but also emphasises the fact that the
communicated messages are not necessarily the same and in
the next sections we will focus on ensuring a secure and safe
communications. In this model the communicated messages
are mainly the plans sent from the IMMS to the assets via the
GCS and the locations sent in the opposite direction from the
assets to the IMMS via the GCS.

In Figure 5, we present the events (representing the con-
trol actions) of the three abstract models. These models are
then combined into one model using machine inclusion and
event synchronisation. The composed model is the formal
model of the control actions represented in step 4 of Fig-
ure 3.
6.4. Hazard Analysis

Control actions are analysed by checking the consequence
of issuing or not issuing them. As well as issuing the con-
trol action in the wrong sequence or for the wrong duration.
This is slightly different to the traditional STPA, it is mainly
a change in terminology to apply to both safety and security
as both aspects are treated as first class citizens in SE-STPA.
Table 2 presents the hazards from the IMMS control action
“generate plan”. Issued for the wrong duration is not appli-
cable for this control action because it is discrete.

After identifying the hazards in scope, critical require-
ments are generated. Table 3 shows an example of the criti-
cal requirements generated from the hazards in Table 2. This
is step 5 of Figure 3.

For example, the control action “generate plan” of the
IMMS if issued can have the potential hazard of generating
plans containing no-go zones or hazardous locations H2. To
mitigate for this hazard we generate the safety requirement
CR2 which requires validating the generated plans against
no-go zones before sending them to the assets.
6.5. Formal Modelling of Critical Requirements

Incorporating critical requirements in the formal model
is an important step for verifying the system. If we take crit-
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Operator
Process Model: 
-  Commands available to be 
issued, e.g. select asset (UxV), 
select asset tasks, define 
mission goals, update plan ..)

Responsibilities: 
-  Define mission (mission goals)  
-  Approve imms generated plans 
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imms (update mission plan)

Asset / UxV (0..*)
Process Model: 
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Figure 4: Functional control structure of the IMMS

operator_imms

oper_defineMission imms_generatePlan

oper_approvePlan imms_updatePlan

oper_abortMission imms_validatePlan

imms_gcs

imms_receiveAssetLoc gcs_registerAsset

imms_sendPlan gcs_unregisterAsset

gcs_sendAssetLoc

gcs_receivePlan

gcs_asset

gcs_sendPlan asset_followPlan

gcs_recallAsset asset_deviatePlan

asset_reportLoc

asset_receivePlan

combined model using 
machine inclusion

events are synchronised 
using event 
synchronisation

Figure 5: Abstract models events

Control
Action

Is issued Is not issued Is issued out
of sequence

Generate
plan

Generated
plans contain
way points in
no-go zones
or hazardous
locations.

Mission
cannot be
conducted if
plans are not
generated.

Start gener-
ating plans
while mission
goals are still
being defined
can leave
the system
in an inde-
terminate
state.

Table 2
Hazard analysis of a control action

ical requirement CR2 in Table 3, this requirement is con-
cernedwith validating the generated plans to ensure the safety
properties. One criteria for validating the plans is avoiding
no-go zones.

Therefore, we develop a runtime policing function to val-
idate the output of the mission planning system against the
safety properties, in this case avoiding no-go zones. The

Table 3
Critical requirements generation from hazards

Hazard Critical Requirement

H2. generated plans contain
way points in no-go zones or
hazardous locations.

CR2. Plans containing no-
go zones or hazardous loca-
tions shall not be validated
and sent to assets.

H3. Mission cannot be con-
ducted if plans are not gen-
erated.

CR3. A mission can only
start if plans are generated
and validated.

H4. Generating plans while
mission goals are still being
defined can leave the system
in an indeterminate state.

CR4. Plan generation can
only start after all mission
goals are confirmed.

policing function is independent of the of the system’s plan-
ning function. The decoupling of validation and planning
allows us to update and replace the intelligent planning func-
tion, using the same validation approach.This approach for
ensuring the safety of the IMMS is based on (Bogdiukiewicz
et al., 2017).

Our development is based on Event-B refinement to link
the abstract specificationwith the implementation. Our Event-
B development can be summarised as follows:

1. Policing a collection of plans against all no-go zones.
2. Policing an individual plan against all no-go zones.
3. Policing an individual plan against a no-go zone.
In order to model the policing function for a collection of

plans against all no-go zones, the Event-B context is defined
as follows:
1 context c0_0
2 sets
3 AREA
4 PLAN
5 VVPROBLEM
6
7 constants
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8 areas
9 individual_plans

10 nogo_problems
11 axioms
12 @typeof−nogo_zones: areas⊆AREA
13 @typeof−plans: individual_plans⊆PLAN
14 @typeof−conflict: nogo_problems∈PLAN ×AREA↔

VVPROBLEM
15 end

The NOGO problems are abstractly specified as a binary
relation between a tuple (plan, area) and some V&V prob-
lems. We will specify exactly what are the V&V problems
later. To implement the gathering of NOGO problems, we
iterate through the collection of individual plans and col-
lect the problems gradually. This is represented in Machine
m0_1 below.
1 machinem0_1
2 refinesm0_0
3 sees c0_0
4
5 variables
6 verified_plans
7 avoid_nogo_result
8 invariants
9 @typeof−plans_to_verify: verified_plans⊆ individual_plans

10 @verify_result: avoid_nogo_result= nogo_problems[
verified_plans × areas]

11
12 events
13 event INITIALISATION
14 then
15 @init−avoid_nogo_result: avoid_nogo_result ∶=∅
16 @init−verified_plans: verified_plans ∶=∅
17 end
18
19 event verify_avoid_nogo_individual
20 any individual_plan individual_resultwhere
21 @grd1: individual_plan∈ individual_plans
22 @grd2: individual_plan∉ verified_plans
23 @grd3: individual_result= nogo_problems[{individual_plan} ×

areas]
24 then
25 @act1: verified_plans ∶= verified_plans ∪ {individual_plan}
26 @act2: avoid_nogo_result ∶= avoid_nogo_result ∪

individual_result
27 end
28
29 event verify_avoid_nogo
30 refines verify_avoid_nogo
31 where
32 @grd1: verified_plans= individual_plans
33 with
34 @result: result= avoid_nogo_result
35 end
36 end

Variable verified_plans stores the set of verified_plans
so far and helps us model the iteration. As a result, this
is always a subset of the input individual plans (invariant
@typeof−plans_to_verify). The result is collected gradu-
ally in variable avoid_nogo_result. Invariant@verify_result
specifies the consistency of the collected result: it must al-
ways be the NOGO problems restricted to the set of plans
that have been verified so far.

Event verify_avoid_nogo_individual specifies the step

for verifying an individual plan. The individually verified
result is stored in the event parameter individual_result and
specified using guard @grd3. The set of verified plans is en-
larged accordingly (@act1) and the individually verified re-
sult is merged with the collected result (@act2).

In later refinementswe specifywhat are the nogo_problems
which we specify as the intersection of the plans with the
nogo areas. Plans are modelled more specifically as a se-
ries of waypoints. We do not show the rest of the Event-B
development due to space limitation.

Here, we have shown how we validated the plans against
the no-go problems, but we can also extend the model to
include other safety problems.

Critical requirementsCR3 andCR4 can be ensured in the
overall system model introduced in Section 5.2. These re-
quirements are concerned with the order of the events which
can be ensured by event guards in Event-B. For example, we
need to add a guard to start_mission from Section 5.2 to
ensure all generated plans are valid, this is to satisfy CR3.
However, proving the validity of plans is done in a separate
model as described by the policing function. This separation
simplifies the modelling and verification process.

In this section, we have shown how we can integrate
the generated critical requirements to the formal model. We
have used the safety requirement CR2 as an example and ap-
plied a policing function to ensure the plans are valid. This
approach can be easily extended with other safety require-
ments, for now we have used “avoiding no-go zones”. We
have also shown how we can incorporate this requirement
abstractly as part of the high level system model with min-
imal need to changes to the formal model. Our approach
is different from the original SE-STPA approach (Howard
et al., 2019), where each critical requirement can be added
in a new refinement, which can be complex and require lots
of changes and verification efforts.

7. Adversarial Modelling
As part of steps 7 and 8 of Figure 3, we need to do ad-

versary modelling which should further generate security re-
lated critical requirements. Theses generated requirements
will in turn need to be formally modelled. Adversary mod-
elling starts by annotating the functional structure diagram
with manipulation points. These manipulation points are the
links between the different controllers or the controller and
its processes, where an adversary can possibly have access
to the system. Figure 6 illustrates the possible manipulation
points of the IMMS framework.

There are different types of adversarywith different sever-
ity levels. Adversaries can range from nation-state actors,
hacktivist groups and organisations to curious individuals
and unintentional adversaries. In this paper we will focus
on manipulation point MP2, representing the communica-
tion between the IMMS and GCS.

Actions of an adversary are treated similar to hazards,
because we do not have control over these actions. Critical
requirements can then be generated similar to Section 6.4.
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Operator

MP7

IMMS

MP8

GCS

MP9

UxV

MP10

MP1

MP2

MP3

MP4

MP5

MP6

Figure 6: Manipulation points in the control structure

In Table 4, we demonstrate some of the adversary ac-
tions that can be carried over MP2 by different types of ad-
versaries.

These security vulnerabilities, can have an impact on the
system’s safety. For example, H7 in Table 4 can prevent
some important plan updates to be received by theGCSwhich
can result in some accidents or an unsafe behaviour of the as-
sets. The critical requirements generated from the adversary
actions are presented in Table 5.

Table 4
Possible adversary actions over manipulation point MP2

Adversary Action Explanation

H5. Identity spoofing
by a malicious IMMS.

GCS receive malicious plans from
a malicious IMMS. This action
can be done by a nation-state ad-
versary.

H6. Traffic analysis to
observe communication
patterns.

A hacktivist or curious individuals
adversaries can analyse the com-
munication traffic between the
IMMS and the GCS to gain a bet-
ter understanding of how the sys-
tem works.

H7. Denial of service
or jamming attack due
to traffic on similar net-
work.

This is an example of an uninten-
tional adversary, where the adver-
sary use similar networks and/or
protocols over the same medium,
resulting in receiving irrelevant
messages or denial-of-service.

7.1. Further Integration of Critical Requirements
In Event-B the critical requirements can be modelled in

different forms, such as introducing new invariants, new guards
to events as well as introducing new variables and events.
Table 6 summarises how the critical requirements identified
from the SE-STPA analysis can be formally modelled using
Event-B.

From the adversary analysis, two main criteria need to
be ensured are confidentiality and integrity. In the subse-
quent, we present our formal model focusing on these two

Table 5
Critical requirements generation from adversary actions

Hazard Critical Requirement

H5. Identity spoof-
ing.

CR5. Instructions and control ac-
tions must be continuously authen-
ticated, e.g. using unique tokens.

H6. Traffic analysis. CR6. Communications should be
secured against snooping.

H7. Denial of ser-
vice.

CR7. Only process messages that
are in the correct format and are ex-
pected.

properties for the communication between the IMMS and
GCS (MP2). The model is available at http://tinyurl.com/
JSS2020.

We start with an abstract machineM0 that models send-
ing and receiving of plans from the IMMS to GCS. At this
stage we do not model the network, but focus on ensuring
two properties:

• Integrity: The current plan for each GCS must be in-
tended for that GCS.

• Confidentiality: AGCS only knows the plans intended
for that GCS.

These properties secures the communications between
the IMMS and the GCS and ensure that the generated critical
requirementsCR5 andCR6 in Table 5 are satisfied. In Event-
B, these properties are ensured by the following invariants,
where the variables are explained in Figure 7. In Event-B,
all events must maintain the invariants.

@inv_integ: current −1 ⊆ dest
@inv_conf: knows −1 ⊆ dest
Here, the notation r−1 denotes the inverse of relation r.
We model the network communication in an indepen-

dent model, M_SymEnc, where we define an encryption
function and model sending and receiving of data with and
without encryption. Next we refineM0, the previous proved
properties will continue to hold by proving refinement.

To illustrate the needs for encryption to ensure integrity
and confidentiality, we perform two separate refinements:
one refinement is insecure and allows an intruder to know the
sent data M1_Plain. M1_Plain includes M_SymEnc but
synchronises with the sending and receiving events that do
not use encryption/decryption of data (send_plain, receive_plain).
Another secure refinementM1_SymEnc uses encryption to
prevent an intruder from knowing the data. MachineM1_SymEnc
also includesM_SymEnc, but sending and receiving events
synchronise with the events that apply encryption and de-
cryption (encrypt_and_send, receive_and_decrypt). The
intruder event will synchronisewith the same receiving events.

On the one hand, in the insecure case, our formal model
results in an unprovable proof obligation. This is because the
intruder will be able to know the plan sending to the GCS,
hence break confidentiality. On the other hand, in the secure
case, the intruder will not know the data without the key, it
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can still intercept the data, but cannot decrypt without the
key. Figure 7 represents the different Event-B machines and
their relationships.

M0

Variables Events

plans: set of created plans IMMS_create_plans

dest: destination of each plan GCS_receive_plan

current: current plan for each GCS

knows: set of known plans for each GCS

M_SymEnc

Variables Events

messages: set of sent messages send_plain

msg_data: data of each sent message receive_plain

agent_knows: known data for each agent encrypt_and_send

receive_and_decrypt

M1_SymEnc

Events synchronises 

IMMS_create_plans        - 

IMMS_send_plan encrypt_and_send

GCS_receive_plan receive_and_decrypt

Intruder receive_and_decrypt

M1_Plain

Events synchronises 

IMMS_create_plans       - 

IMMS_send_plan send_plain

GCS_receive_plan receive_plain

Intruder receive_plain

refines

encryption events synchronised

refines

plain events synchronised

Figure 7: Adversary modelling: Event-B machines relationship

The advantage of using inclusion mechanism is that, we
can simply change the encryption function without break-
ing the refinement dependency. In M1_SymEnc, we have
used symmetric key encryptionM_SymEnc, but we can re-
place this with other encryption mechanism, e.g., using pub-
lic keys. Further more, this model of communication can
also be reused by other models, for example to model the
communication network betweenGCS and the assets (MP3).
7.2. Causal Factors Analysis

Causal factors include checking the hazards and how they
might happen in the control loop. However, causal factors
analysis is less concerned with adversarial modelling be-
cause the adversary actions are intentional. Therefore, this
step can possibly bemoved before the adversarial modelling,
but it is useful to be done after the integration of the critical
requirements in the formal model. In our approach we ad-
vocate modelling via decomposition, so may be it is worth
splitting the requirements integration into the formal model
into two steps, one before the adversarial modelling and one
after that.

If we take for example H1 in Table 1, where an asset can
deviate from a plan. One of the possible reasons could be
a sudden dynamic obstacle that cannot be avoided quickly
enough by an update. In this case the asset can deviate from
the plan, so we can have the following requirements:

• An asset shall deviate from the plan to avoid a haz-
ardous situation.

• The IMMS shall be informed of any plan deviations.
Another possible cause for deviation from a plan is loss

of communication. For example, an update is sent by the

Table 6
Formal modelling of critical requirements

Critical Requirement Formal Model

CR2. Plans containing
no-go zones or haz-
ardous locations shall
not be validated and
sent to assets.

Only valid plans are approved
and sent. This is modelled
via invariant and guard in the
event oper_approvePlan in
oper_imms machine and as a
guard in the imms_sendPlan of
the combined model.

CR3. A mission can
only start if plans are
generated and vali-
dated.

A mission can only start af-
ter a minimum criteria is met,
this is discussed in early require-
ments we strengthen the guards of
start_mission event by including
valid plans to assigned assets.

CR4. Plan generation
can only start after all
mission goals are con-
firmed.

In Event-B we define all mission
goals in one event which is dis-
abled by a guard once set. the
generate_plan event has a pre-
condition modelled by an event
guard to execute only after mis-
sion goals are set.

CR5. Instructions and
control actions must
be accompanied by
unique tokens.

Use symmetric key encryption to
secure messages using machine in-
clusion and event synchronisation.

CR6. Communi-
cations should be
secured against
snooping.

Introduce encryption and decryp-
tion via synchronised events.

CR7. Only process
messages that are in
the correct format and
are expected.

This cannot be modelled in Event-
B, but can be ensured during im-
plementation.

IMMS but never received by the GCS or the asset cannot re-
ceive the update sent by the GCS. This could be the result of
a communication failure or a denial of service due to an ad-
versary attack. To mitigate for this loss of communication,
the asset should follow a predetermined recovery plan. For
example the UAV can land in a safe predetermined recovery
point, the USV can hold station in its position until commu-
nication is re-established, the UUV can abort its mission and
resurface.

These requirements and mitigations can be integrated in
the system design and can be assessed in the next iteration
of the process presented in Figure 3.

8. Conclusions
In this paper, we have proposed an approach for eliciting

requirements for autonomous missions and formalising the
critical requirements as Event-B models. This is part of the
functional process for an Integrated Mission Management
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for heterogeneous autonomous systems. Figure 3 illustrates
our overall process shows howwe augment the requirements
through continuous analysis. The proposed approach is iter-
ative where we continuously need to do reviews which can
influence the formal modelling on one hand and the formal
modelling can influence the system requirements by identi-
fying new requirements, removing ambiguities and defects
and ensuring the consistency of the requirements. We also
apply an STPA-based approach mainly to generate the criti-
cal requirements, but also as a means to analyse the control
actions requirements.

The main limitation in our approach is the need to have
expertise in Event-B or formal methods in general. However
this is inevitable when trying to build a strong safety argu-
ment. Another limitation is that STPA analysis is qualitative
and lacks the quantitative analysis which requires combin-
ing it with other analysis techniques. While our approach
relies heavily on formal modelling and STPA, it still has its
advantages:

• The combination of formal modelling and STPA helps
to discover inconsistencies and gaps in requirements.
Using STPA with formal modelling enables the do-
main experts to assess the system where STPA pro-
vides a robust traceability of the critical requirements
and their associated formal representationwhich is cru-
cial for V&V. On the other hand formal modelling
gives the critical requirements a precise syntax where
the consistency of the constraints can be formally ver-
ified.

• The Original SE-STPA approach focused on adding
new generated critical requirements as a new Event-
B refinement, this is not always possible and can be
cumbersome especially when requirements need to be
updated as a result of reiteration. In this paper we have
focussed on separation of concerns and decomposition
and composition of formal models to address issues of
re-usability and complexity of formal modelling. For
this we have shown how we applied machine inclu-
sion and policing functions and different models that
focus on different problems, whilewe have a high level
model of the overall system.

• The separation of concerns also allows us to change
the algorithms used without invalidating the formal
model. For example, the planning algorithm can be
changed, but the same policing function can be ap-
plied. We can change the encryption method, but our
integrity and confidentiality requirement is still cov-
ered and the overall system model still holds and does
not need to be reverified. This is in particular very
important for safety certification, if this approach was
used to build a safety case this does not invalidate our
safety case if we update the algorithms.

Traceability between the Event-B formal models and the
critical requirements generation using SE-STPA is doneman-
ually. Having a tool that supports traceability between the

analysis technique and the formal modelling can be useful
to have a fully integrated methodology.

The IMMS software has been written in Python based
on our formal models and tested in a trial involving an asset
from the three different domains. However, the transforma-
tion from Event-B to Python has been done manually1. In
the future, we would like to extend our process of require-
ments elicitation to include automatic code generation from
Event-B as well as test case generation.

In this paper we have also characterised the safety prop-
erty of the IMMS, which we defined as avoiding no-go zones
as a policing function to ensure the safety of the system. In
the future we would like to characterise additional safety and
security envelopes, in particular looking at more dynamic
maritime factors.

A. List of Abbreviations

AS Autonomous Systems
CPS Cyber-Physical Systems
GCS Ground Control Station
IMMS Integrated Mission Management System
MAS Maritime Autonomous Systems
Rodin Rodin platform
SE-STPA Security-Enhanced Systems-Theoretic Pro-

cess Analysis
STPA Systems Theoretic Process Analysis
UAV Unmanned Aerial Vehicle
USV Unmanned Surface Vehicle
UUV Unmanned Underwater Vehicles
UxV Unmanned Vehicle
V&V Verification and Validation
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