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Abstract

The covariant Noether charge formalism (also known as the covariant phase method)
of Wald and collaborators, including its cohomological extension, is a manifestly covariant
Hamiltonian formalism that, in principle, allows one to define and compute the energy, angu-
lar momenta, and chemical potentials of generic solutions of gravitational theories. However,
it has been observed that for some supergravity solutions the variation of the Noether charge
is not (at least manifestably) integrable, and as a result it is unclear whether there are well-
defined thermodynamic charges for these solutions. In this work, we derive an expression for
the variation of the covariant Noether charges for any solution of Type IIB 10-dimensional su-
pergravity or 11-dimensional supergravity. Although this Noether quantity is not integrable
in general, we show that for asymptotically scale-invariant solutions, it is. In particular, the
asymptotic scale-invariance allows one to define an energy density and conjugate chemical
potentials which obey a first law of thermodynamics and a Smarr relation. These two ther-
modynamic relations can then be shown to imply that the variation of the Noether charge
is integrable, and accordingly the energy and other thermodynamic charges may be defined
unambiguously. We explicitly demonstrate and illustrate our claim by computing the ther-
modynamic charges of two non-trivial supergravity solutions that were recently constructed:
1) the Polchinski-Strassler black brane that is dual to the deconfined phase of N = 1∗ theory,
and 2) the CGLP black brane that asymptotes to the mass deformed Cvetič-Gibbons-Lü-Pope
(CGLP) solution.
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1 Introduction

The study of conservations laws in general relativity (and other gravitational theories), and the

search for a robust and universal definition of gravitational energy are perhaps as old as general

relativity itself. The first attempts to identify a local gravitational energy-momentum density

began with the gravitational pseudo-tensor approaches, the most well known being perhaps the

ones of Einstein and Landau-Lifshitz (see [1–3] for reviews). Yet these pseudo-tensors lead to

coordinate-dependent expressions, and as a result they are not covariant and their geometrical

interpretation is unclear1. This unsatisfactory property propelled subsequent studies where it

became progressively clear that one cannot define a local and covariant energy-momentum density.2

Rather, one must instead search for quasi-local or global definitions associated with extended

regions in the spacetime, at least when the spacetime has an asymptotic symmetry.

1It is important to note that the non-tensorial nature of an object does not necessarily imply that it is meaningless.
In particular, the Hamiltonian formalism endows the pseudo-tensors with physical meaning. Recall that in the
Hamiltonian formulation of a gravitational theory, the Hamiltonian is decomposed as a sum of a spacetime volume
contribution which vanishes on-shell (i.e, when the equations of motion are satisfied), and a boundary term whose
value (when a choice of boundary condition is made) determines the thermodynamic charges. Ref. [4] has shown
that the known energy-momentum pseudo-tensors correspond to well identified Hamiltonian boundary terms once
a specific boundary condition choice is made.

2Essentially, this lack of a local definition of energy density follows from the Equivalence principle. Indeed,
locally it is always possible to introduce a local inertial frame of reference associated to a free falling point-like
particle. Such an observer does not feel any gravitational field and, accordingly, no gravitational energy density can
be defined at spacetime points.
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1.1 Conserved Charges in General Relativity

Historically, many different approaches for defining such conserved charges have been proposed.

In order to provide context for the contributions of the present work, it will be useful to give

a brief review of these various approaches and how they relate to one another. However, a full

and comprehensive review of the history of conserved charges in gravitational theories is beyond

the scope of this article, and the interested reader is encouraged consult the following excellent

reviews: [5–12].

Not surprisingly, the first considerations of conserved charges focused on asymptotically flat

space-times (see [11] for a review). In the framework of the Hamiltonian formalism, the first major

step forward in the task of defining conserved charges was given by the celebrated Arnowitt-Deser-

Misner (ADM) definition of energy [13], which was then further complemented by the Regge-

Teitelboim [14] analysis3. The ADM mass and angular momentum are computed as integrals

over spheres at spatial infinity, a calculation which in principle could be carried out, at least

approximately, by a distant observer. Alternatively, one can use the Hamiltonian formalism with

boundary at the null infinity; in this case we get the Bondi-Sachs mass and angular momentum

[11,18–20]. And finally, using the Hamilton-Jacobi analysis of the gravitational action functional,

which can be seen as a short-cut to the full Hamiltonian analysis, quasi-local energy and angular

momentum expressions (i.e. defined with respect to a bounded region of spacetime) were obtained

by Brown and York [3,21]. Reassuringly, these expressions converge to the ADM (or Bondi-Sachs)

charges as spatial (or null infinity) is approached4. The original Hamiltonian analysis of [13, 14]

was also extended to backgrounds with more generic asymptotics by Hawking and Horowitz [28]5.

The first Hamiltonian analysis of energy for asymptotically anti-de Sitter (AdS) spacetimes

was provided by Abbott and Deser [30] and further developed by Henneaux and Teitelboim [33]

and Chruściel and Nagy [34,35]. This analysis yields the conserved charges for pure AdS-Einstein

gravity. However, it cannot be simply extended to AdS solutions which also have matter fields

present, such as scalar fields with certain fall-offs. Such cases are particularly important in the

context of the AdS/CFT correspondence. In this context, Skenderis and collaborators have devel-

oped the method of holographic renormalization [36–47], a formalism that computes the energy

and other thermodynamic observables of gravitational systems that have a dual holographic gauge

3The proof of the positivity of the ADM energy, under the dominant energy condition for the matter energy-
momentum tensor, is a keystone result of general relativity [15,16]. Also note that for some spacetimes with certain
isometries one can define a conserved Komar quantity that is the integral of the covariant derivative of a timelike
Killing vector field over a (d − 2)−surface [17]. Sometimes, especially in the case of stationary asymptotically flat
solutions, appropriate Komar integrals do match the corresponding ADM quantities [11].

4Other useful quasi-local definitions of mass are the Misner-Sharp energy [22], the Hawking mass [23], the Bartnik
mass [24], the Kijowski−Liu-Yau energy [25,26], the Wang-Yau mass [27] among others (see [7,10,11,27] for reviews
on quasi-local masses).

5The expressions of [28,29] reduce to the ADM expressions [13] and Abbott-Deser expression [30] when applied
to the respective asymptotic backgrounds. The analysis of [3, 21, 28] requires a background subtraction procedure
to get rid of divergences that arise due to the infinite spacetime volume. The same Hamiltonian and subtraction
procedure can be used to compute the charges of spacetimes that are asymptotically the direct product of Minkowski
spacetime and R

p (e.g. the black string or the black p-branes) [31, 32].
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theory description6. A Hamilton-Jacobi approach to the method of holographic renormalization,

whereby the radial coordinate plays the role of time was also developed [41–45, 48]7. It should

be emphasized that the holographic renormalization charges agree with previous definitions of

conserved charges [28, 30, 33, 48, 52, 53] when the latter are applicable, i.e. when the spacetime is

conformal to the AdS solution and one considers the energy relative to AdS [8, 48]. Holographic

renormalization also may be used for arbitrary asymptotically locally AdS spacetimes. Addition-

ally, it may be shown that the holographic renormalization charges may be interpreted as Noether

charges associated to asymptotic symmetries of the gravitational solution [48], and that these agree

with the conserved charges computed using the covariant Noether charge approach, also called the

covariant phase space approach [20, 48, 54–56].

Another important class of conserved charges are those provided by the covariant Noether

charge formalism of Wald and collaborators [20,48,54–56], and is a systematic improvement of the

covariant phase or covariant sympletic method initially discussed in [57,58]. It also generalizes and

incorporates many of the previous Hamiltonian approaches. Indeed, the covariant Noether charge

formalism could equally well be called the manifestly Lorentz-covariant Hamiltonian formalism

since it avoids the (D− 1)+1 decomposition between spatial coordinates and the time coordinate

that the ADM formalism requires.8

Lastly, two other major classes of methods which deserve mention are conformal methods

[59–62] and spinorial methods [11, 16, 49–51, 63]. A particularly relevant sub-class of conformal

methods are those which which exploit the asymptotic structure of spacetimes to compute the

energy. This approach is best reviewed in [5] and it has been applied to asymptotic flat backgrounds

[59–62] as well to asymptotically AdS spacetimes [52, 53]. Spinorial methods have been used to

prove the positivity of energy both in asymptotically flat [16] and asymptotically AdS [49, 63],

with our without black hole horizons (see review [11]). In [50] attempts have been made to extend

positivity of energy to general asymptotically locally AdS spacetimes.

6Within holographic renormalization, the gravitational conserved charges of an asymptotically (locally) AdS
solution is computed from the energy momentum tensor that one obtains when one varies the on-shell gravitational
action w.r.t. the boundary metric. In spirit, this approach is thus similar to the traditional Hamiltonian analysis
of, for example [3, 28]. However, this computation generically yields a divergent answer due to the infinite volume
of the background. To extract the physical finite answer, it is common to use a background subtraction method
(see e.g. [3, 28]); however an appropriate reference spacetime is not guaranteed to exist in general. Holographic
renormalization effectively implements this background subtraction procedure in AdS in a systematic way using
boundary counterterms. This is a procedure that follows naturally from the AdS/CFT duality since this is exactly
the approach used in the QFT process of renormalization to remove unphysical divergencies.

7Positivity energy theorems for asymptotically AdS and asymptotically locally AdS spacetimes has been proven
in [49, 50] using the Witten-Nester spinorial energy [16, 51].

8Of course, with the traditional ADM and Hamiltonian approaches we can always check à posteriori that the
conserved quantities obtained in the (D− 1)+1 form are actually Lorentz-covariant. The first manifestly covariant
Hamiltonian analysis has been developed by Abbott and Deser [30], which was also the first satisfactory approach
to study charges in asymptotically AdS spacetimes.
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1.2 Integrability and Covariant Noether Charges

In the present study, we are particularly interested in using the covariant Noether charge formalism

of Wald and collaborators [20, 48, 54–56] and its cohomological formalism extension [9, 64–69] to

compute the energy and thermodynamic potentials of gravitational theories.

An aspect of the covariant Noether charge formalism that is not completely satisfactory is the

fact that it still has ambiguities associated to the fact that we can always add a total divergence

to the action. Using Stokes’ theorem this amounts to have a freedom in adding a boundary term

to the action and Hamiltonian that can still change the definition of charges. Lagrangian methods

based on cohomological techniques attempt to eliminate this feature. That is, the cohomological

formalism is the most recent attempt to define conserved charges in gravitational theories in a

more mathematically rigorous way [64–69] (see [9] for a detailed review). Essentially, when the

symmetry associated to the charge (energy, angular momentum, ...) under consideration is exact,

this method incorporates and agrees with the covariant Noether charge (phase space) formalism

of [70–73]. However, in the cohomological formalism, surface charges are computed integrating

surface charge one-forms. The latter are constructed directly from Euler-Lagrange derivatives

of the gravitational Lagrangian, which do not depend on total divergence terms. Therefore, the

cohomological approach formally avoids the above ambiguities of the Noether charge formalism (in

practice, it is important to reinforce that the cohomological method yields the same charges as the

covariant Noether charges if in the latter formalism we just consider the boundary terms that arise

naturally when we use integration by parts to eliminate derivatives of the field that is being varied

to get the equations of motion). Additionally, but not less important, the cohomological method

extends the covariant phase space method in the sense that it can also be used to define conserved

charges that are associated to asymptotic (as oppose to exact) symmetries (in this manuscript we

shall not consider such cases). Henceforth, in a slight abuse of language, when we refer to the

Noether charge formalism we will often be implicitly referring to the cohomological extension of

the standard Noether approach.

It has been observed and highlighted that the covariant Noether charge and cohomological

formalisms can have a limitation or undesirable feature [9, 69, 73]. Namely, there are systems

where the lack of manifest integrability of the first order variation of the charges seems to impede

a definition of the charges [9, 69, 73]. Indeed, these two formalisms yield an expression for the

variation of a Noether charge along the moduli space of parameters that parametrize a given

family of solutions. In order to get the actual conserved charge of this family of solutions, one

must then integrate this charge variation along a path starting from a reference solution. For one-

parameter systems this is not a problem. However, in general − for systems described two or more

parameters − we are often not guaranteed that such a conserved charge is well-defined. In the

optimal scenario, certain integrability conditions are satisfied and the existence of the desired well-

defined conserved charge for the solution at hand is guaranteed [9,69,73]. Notably, this is the case

for the Kerr solution. However, supergravity solutions have already been found where integrability

conditions are not obeyed and thus it was declared that energy is simply not defined for such a

system [69]. In this manuscript, we will add a few more examples − the Polchinski-Strassler black
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brane [74] and the CGLP black brane [75].

The main aim of the present work is to observe that even when the Noether charge variations

are not manifestly integrable, asymptotic scale invariance allows two thermodynamic relations to

be derived which in turn imply that that the Noether variation is in fact integrable. The two

relations are: a first law of thermodynamics and a Smarr relation. Asymptotic scale-invariance is

a common property for gravitational solutions in the context of the gauge/gravity correspondence.

In particular it holds for solutions which are asymptotically a direct product spacetime AdSp×Xn

where Xn is a compact manifold. We illustrate our claim explicitly by considering three non-trivial

examples in IIB [74] and 11-dimensional supergravity [75, 76].

The layout of this article is as follows. In Sec. 2 we start by using the covariant Noether

charge formalism of [20, 54–56] to define the variation of the Noether conserved charge of any

type IIB supergravity solution. Remarkably, this expression has never appeared in the literature,

as far as we are aware. As an application of this expression to a manifestly integrable system,

in Sec. 2.2 we compute the energy of the IIB lumpy and localized black holes of [77, 78]. Not

surprisingly, we will find that this Noether energy agrees with the energy computed originally

using Kaluza-Klein holographic renormalization. Next, in Sec. 2.3 we discuss the energy of the

Polchinski-Strassler black brane recently constructed in [74]. This is an asymptotically AdS5 × S5

solution of IIB supergravity where all the bosonic fields are non-trivial and that corresponds to the

high-temperature phase of the gravitational-dual of the Polchinski-Strassler solution [79]. In this

case, the variation of the Noether charge does not lead to an obviously integrable expression. By

exploiting the asymptotic scale-invariance, we derive two additional relations, a thermodynamic

first law and a Smarr relation. When these relations are satisfied, the Noether variation becomes

explicitly integrable, and an energy and chemical potential may then be defined unambiguously.

We note that for this example, current holographic renormalization techniques cannot be used to

compute the desired charges.

In Sec. 3 we consider the low-energy classical limit of M-theory. Again, we will start by using

the covariant Noether charge formalism of [20, 54–56] to compute the variation of the Noether

conserved charge of a general solution to 11-dimensional supergravity, an expression that is missing

in the literature. Then, in Sec. 3.2 we will consider the thermodynamics of the CGLP black brane

recently constructed in [75]. This is an asymptotically AdS4 × V5,2 solution where V5,2 is the 7-

dimensional Stiefel manifold. It is the simplest finite-temperature solution that asymptotes to the

Cvetič, Gibbons, Lü, and Pope (CGLP) solution [80], which has a magnetic G(4)-flux background

whose asymptotic decay describes a mass deformation of the corresponding dual CFT3. As before,

we will find that the associated Noether variation charge does not satisfy the required integrability

conditions which could suggest that an energy might not be well defined for this system. However,

we will again find that asymptotic scale-invariance may be used to show that the Noether variation

is explicitly integrable, and we are thus able to derive the desired thermodynamic charges.
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2 10-Dimensional IIB Supergravity

The massless bosonic fields of type IIB supergravity are the metric tensor gab, the dilaton Φ, the

axion C, the NS-NS antisymmetric 2-tensor B(2), the R-R 2-form potential C(2), and the R-R

4-form field C(4) with self-dual 5-form field strength (their fermionic superpartners are a complex

Weyl gravitino and a complex Weyl dilatino). We can combine the dilaton and axion scalars into

a complex field B, and define a complex 2-form A(2) that is a combination of the NS-NS field B(2)

and the R-R potential C(2) [81, 82]:

B ≡ 1 + iτ

1− iτ
, τ ≡ C + i e−Φ ;

A(2) ≡
gs
κ10

(
B(2) + i C(2)

)
, (1)

where gs = eΦ∞ is the string coupling and κ10 is related to Newton’s constant by 2κ10 = 16πG10

(which can also be written in terms of gs and the string length ℓs as 2κ10 = (2π)7g2sℓ
8
s ).

Taking the real fields g, C(4) and the complex fields B,A(2) as fundamental fields, the bosonic

action of type IIB supergravity, in the Einstein frame, reads [81, 82]

SIIB =
1

2κ2
10

∫ (
⋆ R− 2P ∧ ⋆ P̄ − 1

2
G(3) ∧ ⋆ Ḡ(3) − 4F(5) ∧ ⋆ F(5) − i C4 ∧G(3) ∧ Ḡ(3)

)
, (2)

supplemented by the self-duality condition

⋆ F(5) = F(5) . (3)

In this action, R is the Ricci volume form, R = R ⋆ I = R vol10, the bar over a quantity denotes

complex conjugation, and we have defined

f =
1√

1− |B|2
, P = f 2 dB , Q = f 2 Im(B dB) ,

G(3) = f (F(3) −BF̄(3)) , F(3) = dA(2) ,

F(5) = dC(4) −
1

8
Im(A(2) ∧ F̄(3)) = dC(4) +

i

16
(A(2) ∧ F̄(3) − Ā(2) ∧ F(3)) , (4)

where Q is introduced here for later use.

2.1 Variation of the Noether Charge

The Noether charge formalism proceeds by considering the variation of the action. As usual, the

first order variation of the action (2) leads to the classical equations of motion. The variation will

include boundary terms which do not affect the equations of motion, however these are fundamental

for computing conserved charges. Consider first the variation with respect to the graviton, which

yields:

δSIIB

∣∣
g
=

1

2κ2
10

∫
d10x

√−g

[
Rab −

1

2
Rgab − T

(1)
ab − T

(3)
ab − T

(5)
ab

]
δgab + δS(GH)

g , (5)

7



with

T
(1)
ab = PaP̄b + PbP̄a − gabPcP̄

c ,

T
(3)
ab =

1

8

[
(G(3))

cd
a (Ḡ(3))bcd + (G(3))

cd
b (Ḡ(3))acd −

1

3
gab(G(3))

abc(Ḡ(3))abc

]
,

T
(5)
ab =

1

6
(F(5))

cdef
a (F(5))bcdef . (6)

δS
(GH)
g is a total divergence contribution, namely the well-known Gibbons-Hawking boundary term

δS(GH)
g =

1

2κ2
10

∫
d10x

√−g gab δRab =
1

2κ2
10

∫
d10x

√−g∇a
(
∇bδgab −∇aδg

)
. (7)

It will be convenient to encode the information of this Gibbons-Hawking boundary term into

a 9-form:

θ(g, δg) =
1

2κ2
10

⋆
[(
∇bδgab −∇aδg

)
dxa

]
. (8)

Next, take the variation with respect to the axion/dilaton complex scalar B:

δSIIB

∣∣
B,B̄

=
1

2κ2
10

∫
δ
∣∣
B,B̄

[
−2P ∧ ⋆ P̄ − 1

2
G(3) ∧ ⋆ Ḡ(3) − i C(4) ∧G(3) ∧ Ḡ(3)

]

=
1

2κ2
10

∫
2f 2

[(
d ⋆ P̄ + 2i Q̄ ∧ ⋆P̄ +

1

4
Ḡ(3) ∧ ⋆ Ḡ(3)

)
δB + c.c.

]
+ θ

(
B, B̄, δB, δB̄

)
,

(9)

where Q is defined in (4), c.c. stands for complex conjugate, and the boundary term is

θ
(
B, B̄, δB, δB̄

)
= − 1

κ2
10

f 2
(
⋆ P̄ ∧ δB + ⋆ P ∧ δB̄

)
. (10)

Consider now the variation of the action with respect to the complex scalar A(2). A long

computation yields:9

δSIIB

∣∣
A(2),Ā(2)

=
1

2κ2
10

∫
δ
∣∣
A(2),Ā(2)

[
−1

2
G(3) ∧ ⋆ Ḡ(3) − 4F(5) ∧ ⋆ F(5) − i C(4) ∧G(3) ∧ Ḡ(3)

]

=
1

2κ2
10

∫
1

2f

[ (
d ⋆ Ḡ(3) + i Q̄ ∧ ⋆ Ḡ(3) − P̄ ∧ ⋆G(3) − 4 i Ḡ(3) ∧ ⋆ F(5)

)
∧ δA(2) + c.c.

]

+θ
(
A(2), Ā(2), δA(2), δĀ(2)

)
, (11)

where the boundary term is

θ
(
A(2), Ā(2), δA(2), δĀ(2)

)
=

1

4κ2
10

[
i ⋆F(5)∧ Ā(2)−f

(
⋆ Ḡ(3) − B̄ ⋆ G(3)

)
−2i C(4)∧ F̄(3)

]
∧ δA(2)+c.c.

(12)

9Recall that F(5) is self-dual, ⋆F(5) = F(5).
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Finally, consider the variation of the action with respect to the real R-R field C(4) which gives:

δSIIB

∣∣
C(4)

=
1

2κ2
10

∫
δ
∣∣
C(4)

[
−4F(5) ∧ ⋆ F(5) − i C(4) ∧G(3) ∧ Ḡ(3)

]

=
4

κ2
10

∫ (
d ⋆ F(5) −

i

8
G(3) ∧ Ḡ(3)

)
∧ δC(4) + θ

(
C(4), δC(4)

)
(13)

with the boundary term given by

θ
(
C(4), δC(4)

)
= − 4

κ2
10

⋆ F(5) ∧ δC(4) . (14)

Requiring that the variations (5), (9), (11), (13) vanish leads to the equations of motion of type

IIB supergravity:

Rab = PaP̄b + PbP̄a +
1

6
(F(5))

cdef
a (F(5))bcdef

+
1

8

[
(G(3))

cd
a (Ḡ(3))bcd + (G(3))

cd
b (Ḡ(3))acd −

1

6
gab(G(3))

abc(Ḡ(3))abc

]
, (15a)

d ⋆ P − 2i Q ∧ ⋆ P +
1

4
G(3) ∧ ⋆G(3) = 0 , (15b)

d ⋆ G(3) − i Q ∧ ⋆G(3) − P ∧ ⋆ Ḡ(3) + 4i G(3) ∧ ⋆F(5) = 0 , (15c)

d ⋆ F(5) −
i

8
G(3) ∧ Ḡ(3) = 0 , (15d)

where we contracted (5)-(6) with the inverse metric to get the Ricci scalar R and then inserted

this quantity back into (5) to get the trace reversed equation of motion for the graviton (15a).

It follows from (15a) that the on-shell Ricci volume form is ⋆R = 2P ∧ ⋆P̄ + 1
4
G(3) ∧ ⋆Ḡ(3) .

Moreover, the self-duality condition (3) implies that on-shell F(5) ∧ ⋆F(5) = F(5) ∧ F(5) = 0. Using

these relations on (2) one finds that the on-shell 10-form Lagrangian reads

L
∣∣
on−shell

= − 1

2κ2
10

(
1

4
G(3) ∧ ⋆ Ḡ(3) + i C(4) ∧G(3) ∧ Ḡ(3)

)
. (16)

Given a diffeomorphism vector generator ξ, we can construct the associated sympletic Noether

current 9-form [20, 54, 55]:

J = Θ (g,Lξg) + Θ
(
P, P̄ ,LξP,LξP̄

)
+Θ

(
A(2), Ā(2),LξA(2),LξĀ(2)

)

+Θ(C(4),LξC(4))− ιξ L
∣∣
on−shell

, (17)

where Θ(φi,Lξφi) ≡ θ(φi,Lξφi) for φi = {g, P, P̄ , A(2), Ā(2), C(4)}, i.e. we make the replacements

δφi → Lξφi on the boundary terms (8), (10), (12) and (14). Here, Lξφi is the Lie derivative of the

field φi along the diffeomorphism generator ξ. Also, ιξ L
∣∣
on−shell

is the interior product of ξ with

the 10-form (16).

It can be shown that dJ = −Ei Lξφi, where Ei stands for the equations of motion (summation

convention holds here) [20, 54, 55]. Therefore, on-shell (Ei = 0) the current is closed, i.e. dJ = 0

9



for all ξ. It follows that there is a Noether charge 8-form Q̃ξ locally constructed from {ξ, φi}, such
that on-shell one has J = dQ̃, since in these conditions dJ = d2Q̃ξ = 0 [20, 54, 55].10

To evaluate (17) it is useful to recall the definition of Lie derivative of a scalar11 and of a

torsion-free metric tensor (with a Levi-Civita connection), as well as Cartan’s formula for the Lie

derivative of a p-form A(p):

LξB = ξa∇aB = ιξ dB ,

Lξgab = 2∇(aξb) ,

LξA(p) = d ιξ A(p) + ιξ dA(p) . (18)

Using these relations, the identity G(3) ∧ Ḡ(3) = F(3) ∧ F̄(3), the equations of motion (15), and

the p-form identities listed in the appendix in (82), one finds:12

Θ (g,Lξg) = ⋆
( 1

κ2
10

[
∇b∇(aξb) − gbc∇a∇(b∇c)

]
dxa

)

=
1

9!

[
1

κ2
10

εa1···a9a
(
∇b∇[bξa] +Ra

bξ
b
)]

dxa1 ∧ · · · ∧ dxa9 , (19)

Θ
(
B, B̄,LξB,LξB̄

)
= − 1

κ2
10

f 2
(
⋆P̄ ∧ ιξ dB + ⋆P ∧ ιξ dB̄

)

=
1

9!

[
1

κ2
10

εa1···a9a
(
−P̄ aPb − P aP̄b

)
ξb
]
dxa1 ∧ · · · ∧ dxa9 , (20)

Θ
(
C(4),LξC(4)

)
= − 4

κ2
10

⋆ F(5) ∧
[
ιξ dC(4) + d

(
ιξ C(4)

)]

=
1

9!

[
1

κ2
10

εa1···a9a

(
−1

6
(F(5))

ac1···c(4)(F(5))bc1···c4

)
ξb
]
dxa1 ∧ · · · ∧ dxa9

+
1

4κ2
10

(
− i ⋆ F(5) ∧ F̄(3) ∧ ιξ A(2) + i ⋆ F(5) ∧ A(2) ∧ ιξ F̄(3) + c.c.

)

+
4

κ2
10

d
(
⋆F(5) ∧ ιξ C(4)

)
− 4

κ2
10

d ⋆ F(5) ∧ ιξ C(4) , (21)

Θ
(
A(2), Ā(2),LξA(2),LξĀ(2)

)

=
1

4κ2
10

[
i ⋆ F(5) ∧ Ā(2) − f

(
⋆ Ḡ(3) − B̄ ⋆ G(3)

)
− 2i C(4) ∧ F̄(3)

]
∧
[
ιξ F(3) + d

(
ιξ A(2)

) ]
+ c.c.

=
1

9!

[
1

κ2
10

εa1···a9a

(
−1

8
(G(3))

acd(Ḡ(3))bcd −
1

8
(Ḡ(3))

acd(G(3))bcd

)
ξb
]
dxa1 ∧ · · · ∧ dxa9

+
1

4κ2
10

[
i ⋆ F(5) ∧ F̄(3) ∧ ιξ A(2) +

(
i ⋆ F(5) ∧ Ā(2) − 2i C(4) ∧ F̄(3)

)
∧ ιξ F(3) + c.c.

]

10Q̃ξ is defined uniquely up to the addition of a closed form dχ.
11This is Cartan’s formula for p = 0.
12To get Θ (g,Lξg) we further use the commutator relation [∇a,∇b] ξc = Rabcdξ

d
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+d

[
1

4κ2
10

[
f
(
⋆ Ḡ(3) − B̄ ⋆ G(3)

)
− i ⋆ F(5) ∧ Ā(2) + 2i C(4) ∧ F̄(3)

]
∧ ιξ A(2) + c.c.

]
, (22)

and

− ιξ L
∣∣
on−shell

=
1

9!

[
1

κ2
10

εa1···a9a

(
1

48
gab(G(3))cde(Ḡ(3))

cde

)
ξb
]
dxa1 ∧ · · · ∧ dxa9

+
i

2κ2
10

G(3) ∧ Ḡ(3) ∧ ιξ C(4) +
i

2κ2
10

(
C(4) ∧ F̄(3) ∧ ιξ F(3) + c.c.

)
. (23)

Notice that in (19)-(23) we have opted to display some of the contributions explicitly in terms of

the 9-form components. This is because most of these contributions add-on to build the equation

of motion for the graviton (15a) and thus will not contribute to the final current (as displayed,

it is easy to track these contributions). The only such contribution that survives after using the

graviton equation of motion is the first term in (19) that can be rewritten as:

1

9!

[
1

κ2
10

εa1···a9a∇b∇[bξa]
]
dxa1 ∧ · · · ∧ dxa9 =

1

2κ2
10

d ⋆ dξ . (24)

Adding all contributions (19)-(23), using the equations of motion (15a) and (15d), and (24)

one finally finds that the sympletic Noether current 9-form (17) is given by

J = dQ̃ξ , (25)

where we have defined the Noether 8-form charge

Q̃ξ ≡ 1

2κ2
10

⋆ dξ +
4

κ2
10

⋆ F(5) ∧ ιξ C(4)

+
1

4κ2
10

[ (
f
(
⋆ Ḡ(3) − B̄ ⋆ G(3)

)
− i ⋆ F(5) ∧ Ā(2) + 2i C(4) ∧ F̄(3)

)
∧ ιξ A(2) + c.c.

]
. (26)

Consistent with the discussion below (17), we find that on-shell the current J is indeed conserved,

dJ = d2Q̃ξ = 0.

So far, we have taken ξ to be just a diffeomorphism generator. Until otherwise stated, we

now take ξ to be a Killing vector field [20, 54–56] or an asymptotically Killing vector field [9,

68, 69, 83–86]. Moreover, consider a solution of IIB supergravity. It depends on one or more

parameters mk (say, with k = 1, · · · ) and we are interested in considering variations δ along this

moduli space of solutions. The variation ωξ (in the moduli space) of the charge associated to ξ is

then [9, 20, 54–56, 68, 84–86]

ωξ ≡
∑

i

[
δQ̃ξ(φi)− Q̃δξ(φi)− ιξ θ(φi, δφi)−EL (Lξφi, δφi)

]
. (27)

The last contribution vanishes when ξ is a Killing vector, i.e. when Lξφi = 0. We are interested

inly in such cases so we set EL (Lξφi, δφi) = 0 in the rest of our discussion. The third contribution

11



is the interior product of the sum of the boundary terms θ(φi, δφi) given in (8), (10), (12) and

(14). Finally, the first and second contributions in (27) are given by

δQ̃ξ = ∂mk
Q̃ξ dmk ,

Q̃δξ = Q̃∂mk
ξ dmk

. (28)

Thus, Q̃δξ vanishes when the Killing vector ξa is independent of the solution parameters mk. This

is certainly the case for the Killing vector fields ξ = ∂t and ξ = ∂ψj
or ξ = ∂wj

responsible for

time, rotational or translational symmetries, respectively. Therefore, Q̃δξ = 0 for the cases we are

interested.

To sum, for each Killing vector field ξ describing time, translational or rotational isometries,

one can associate a 8-form Noether charge whose variation, in the moduli space of solutions, is

given by

ωξ =
∑

k

(
∂mk

Q̃ξ dmk

)
(29)

− ιξ θ(g, δg)− ιξ θ
(
B, B̄, δB, δB̄

)
− ιξ θ

(
A(2), Ā(2), δA(2), δĀ(2)

)
− ιξ θ

(
C(4), δC(4)

)
,

with Q̃ξ given in (26) and the several boundary terms θ(φi, δφi) given by (8), (10), (12) and (14),

respectively. As a check of our computation, one can explicitly confirm, using the equations of

motion (15) and the fact that ξ is a Killing vector, that ωξ is indeed a closed 8−form, that is to

say dωξ = 0.

Equation (29) is an universal expression within IIB supergravity and one of our main con-

tributions. It gives the variation (in the moduli or parameter space) of the conserved Noether

charge associated to a Killing vector field ξ (when ξ is independent of the moduli). Note, however,

that we have not yet discussed the physical interpretation for the associated Noether charge. For

example, we might be tempted but we cannot say that ωξ with ξ = ∂t describes the variation of

the energy; in general it does not. To find this physical interpretation and the energy of a solution

we need some physical input from the system at hand. We illustrate the usefulness of (29) for two

distinct systems in the two next subsections. In the first case the system is manifestly integrable,

meaning that the integration of (29) (with ξ = ∂t) yields immediately the energy. In the second

case, an inspection of (29) will suggest that we cannot define an energy for the system. However,

using the asymptotic scale-invariance of the system we will be able to compute the energy and

thermodynamic potential of the system unambiguously.

2.2 Lumpy and Localized AdS5×S5 Black Holes

In this subsection we use (29) to find the energy of solutions of type IIB supergravity that are

asymptotically AdS5 × S5 and that were previously constructed in [77, 78]. They describe lumpy

and localized black holes, i.e. black holes that are deformed along the polar direction of the S5.

The equations of motion allow such a solution if the AdS5 and S5 radii, which we will denote by

L, are the same. In these solutions, the only fields that are present are the graviton g and the RR

self-dual 5-form F(5) = dC(4), i.e. B = 0 and A(2) = 0.

12



A general ansatz for such a solution which is static, preserves the SO(4) symmetry of AdS5

and the SO(5) subgroup of the S5 (while eventually breaking its SO(6) symmetry) and that has

horizon topology S8 is [77]

ds2 =
L2

(1− y2)2

[
− y2

(
2− y2

)
G(y)Q1 dt

2

+
4y2+

(2− y2)G(y)
Q2

[
dy + (1− y2)2Q3 dx

]2
+ y2+Q5 dΩ

2
3

]

+ L2

[
Q4

4dx2

2− x2
+Q6

(
1− x2

)2
dΩ2

4

]
, (30a)

C(4) =
L4y4+√

2

y2 (2− y2)

(1− y2)4
H(y)Q7 dt ∧ dS(3) −

L4

√
2
W dS(4) . (30b)

where {QI ,W} (I = 1, . . . , 7) are functions of the S5 polar coordinate x and of the radial coordinate

y and, in addition, of the (single) black hole parameter y+ that essentially gives the temperature

of the black hole. One has x ∈ [−1, 1], with x = ±1 corresponding to the north and south poles of

the S5, and y ∈ [0, 1] with y = 0 being the horizon location and y = 1 being the boundary of the

AdS5.

If we set Q1 = Q2 = Q4 = Q5 = Q6 = Q7 = W = 1 and Q3 = 0, we recover the familiar global

AdS5-Schwarzschild×S5 solution which preserves the SO(6) symmetry group of the S5. This is

best seen if we apply the coordinate transformations r = r+
1−y2

, x̃ = x
√
2− x2 (and y+ = r+/L)

which allow to rewrite the solution in its standard form, namely

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

3 + L2

(
dx̃2

1− x̃2
+ (1− x̃2)dΩ2

4

)
, (31a)

Fµνρστ = ǫµνρστ , Fabcde = ǫabcde , (31b)

where f = 1 +
r2

L2
− r2+

r2

(
r2+
L2

+ 1

)
,

and ǫµνρστ dy
µ ∧ · · · ∧ dyτ and ǫabcde dx

a ∧ · · · ∧ dxe are the volume forms of the AdS5 and S5 base

spaces, respectively.

Besides including the AdS5-Schwarzschild×S5 as a special solution, the ansatz (30) also de-

scribes black hole solutions that preserve the full SO(4) symmetry of the S3 but only an SO(5) sym-

metry of the S5, that is to say, that allow deformations along the polar direction x that break SO(6)

down to SO(5). For such ‘lumpy’ black hole solutions one has {QI ,W} = {QI(x, y; y+),W (x, y; y+)}
but it is still true that the AdS5 or S5 radius L drops out of the equations of motion, so that the

black hole is described by the single parameter y+. The temperature of the black hole is [77]

T =
1

L

2y2+ + 1

2πy+
. (32)

This background is a particularly good example to illustrate the practical use of (29) to obtain

straightforwardly the energy of a ‘simple’ system that depends on a single parameter (y+) and for
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which the variation of the Noether charge is manifestly integrable. For ξ = ∂t, (29) reduces in the

present case to

ωξ = ∂y+Q̃ξ dy+ − ιξ θ(g, δg)− ιξ θ
(
C(4), δC(4)

)

=
1

2κ2
10

{
∂y+

[
⋆ dξ + 8 ⋆ F(5) ∧ ιξ C(4)

]

− ιξ

[ (
∇b∂y+gab − gbc∇a∂y+gbc

)
dxa − 8 ⋆ F(5) ∧ ∂y+C(4)

]}
dy+ (33)

where we collected θ(g, δg) and θ
(
C(4), δC(4)

)
from (8) and (14), respectively.

To proceed, we need to borrow the asymptotic expansion of the fields {QI(x, y; y+),W (x, y; y+)}
from (A.7)-(A.10) of Appendix A of [77] and that we do not reproduce here13. This boundary ex-

pansion (up to the order where further contributions no longer contribute to the energy) depends on

three undetermined coefficients that we promote to be functions of y+: {β2(y+), δ0(y+), δ4(y+)}14.
Inserting this asymptotic expansion of the fields into (33), and integrating over a spacelike surface

S∞

t at constant time and at the asymptotic radial boundary, y = 1, one gets
∫

S∞

t

ω∂t =
π4L8y+
6144G10

[
− 4608

(
1 + 2y2+

)
+ 5y2+

(
4β2(y+) + 24β2(y+)

2 + y+[1 + 12β2(y+)]β
′

2(y+)
)

+192y2+ [y+δ
′

0(y+) + 4δ0(y+)] + 12y2+ [y+δ
′

4(y+) + 4δ4(y+))
]
dy+ . (34)

Finally, to get the energy we integrate this along y+:

E =

∫
dy+

∫

S∞

t

ω∂t =
π4L8

6144G10

[
2304 y2+(1+ y2+)− y4+

(
5 β2+30 β2

2 +12 (16 δ0 + δ4)

)]
+C0. (35)

where C0 is an integration constant to be fixed. In particular, if we set β2 = δ0 = δ4 = 0 we get the

energy of the global AdS5-Schwarzschild× S5 black hole, E = 3π4L8

8G10
y2+

(
y2+ + 1

)
+C0. The constant

C0 is the energy assigned to the global AdS5 × S5 background (y+ = 0). The temperature and

entropy of the lumpy black hole solutions can be read directly from (30). The horizon quantities

that appear in the entropy as well as the asymptotic parameters {β2, δ0, δ4} present in the energy

(35) can be extracted from the numerical solution of [77] via a fit of the Taylor expansion of the

fields to the numerical data. Doing so one finds that the first law dE = TdS is obeyed, as it

should.

Equation (35) further agrees with the expression for the energy one gets (see Appendix A

of [77]) using the formalism of Kaluza-Klein holography and holographic renormalisation [46] (see

also [87–93])15. Finally, we note that expression (35) gives also the correct energy for the localized

AdS5 × S5 black hole of [78]. These are black holes that localize in the pole of the S5, breaking

totally the SO(6) but not the SO(5) symmetry of the S5.

13Note that the 5-form used in [77] has a different normalization to the one used here, namely: F(5)

∣∣
[77] =

2
√
2F(5).

14As explained in detail in [77], this is true after imposing appropriate Dirichlet boundary conditions that corre-
spond to having no sources in the dual CFT4 and that eliminate other integration constants.

15Note that Kaluza-Klein holography has the added value that it also gives the expectation values of other
observables like the vevs of Kaluza-Klein scalars that condensate and that have a dual holographic interpretation
[46, 77]
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2.3 Polchinski-Strassler Black Brane

In this subsection we shall find the energy of the Polchinski-Strassler (PS) black hole constructed

in [74]. This is an asymptotically AdS5 × S5 solution of IIB supergravity where all the bosonic

fields (g, B, B̄, A(2), Ā(2), C(4)) are non-trivial. The solution depends on two parameters, namely

the dimensionless horizon radius y+ and a supersymmetric mass deformation parameter m. The

former parameter essentially fixes the temperature of the black hole as

T =
y+
πL

, (36)

with L being the AdS5 radius. The mass deformation parameter m controls the magnitude of the

asymptotic fall-off of the complex 3-form G(3). In short, deforming the theory with this source

(i.e. boundary condition) is of interest because it introduces confinement in the holographic dual

theory. The dual (3+1)-dimensional N = 4 SYM becomes confined if one deforms it by giving

masses to the fermions and scalars, which are directly related to the supergravity parameter m.

Typically these mass deformations break all the supersymmetries of the original SYM. However,

there are certain configurations that preserve supersymmetry, yielding a dual deformed SYM theory

which is known as the N = 1∗ theory. The PS black hole constructed in [74] corresponds to the

high-temperature phase of the confined Polchinski-Strassler vacuum [79] of the N = 1∗ theory.

This brief description of the PS black hole immediately suggests that it is a two-parameter

solution, which depends on the horizon radius y+ and the mass deformation parameter m (see the

discussion below for a revision of this statement). Having numerically constructed this solution in

the earlier paper [74], we would like to be able to evaluate the energy and the chemical potential

which is conjugate to the mass deformation m from the asymptotic of the supergravity fields.16

Unfortunately, in this case it is not obvious that (29) is integrable and it is certainly not clear

how we can use it to compute the energy and mass deformation potential from it. The additional

ingredient needed to make the variation integrable, as we will show next, comes from holography.

2.3.1 Thermodynamic Implications of Asymptotic Scale Invariance

The Noether charge formalism applies to any solution of the supergravity theory. In the present

case, the solution has the additional property of being holographic, so that it provides a dual

gravitational description of some field theory. The black brane solution is asymptotically scale-

invariant, which corresponds to the statement that the dual field theory is conformal in the UV.

The energy and other conserved charges in conformal field theories transform covariantly under the

dilatation operator, and as a consequence of holography, we can conclude that the conserved charges

in the dual gravitational description must transform in the same way. By directly imposing these

16In particular, note that the procedure of holographic renormalization to compute the thermodynamic quantities
and expectation values of gravitational solutions with dual gauge theories is highly non-trivial for this system and
is not available. Indeed, we might be tempted to use the formalism of Kaluza-Klein holography and holographic
renormalisation to find the thermodynamic observables [46,77,87–93]. However, so far Kaluza-Klein holography was
developed only up to second order in the perturbative expansion of the fields and determining the thermodynamics
of the PS black hole would require extending this analysis to fourth order. This is an absolutely non-trivial task.
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transformation properties, and manipulating relations that they imply, we will be able to show

that for the Polchinski-Strassler black brane the Noether variation does indeed become integrable.

To make this discussion concrete, consider planar AdS5 in Fefferman-Graham coordinates

{z, xµ}, with xµ = {t, wi}. Here t is the time coordinate, wi with j ∈ {1, 2, 3} are the trans-

lationally invariant planar directions of AdS5, and z is the holographic radial coordinate (with the

conformal boundary being at z = 0). In these coordinates, planar AdS5 is manifestly invariant

under dilatations of the Lorentz coordinates, xµ → λ xµ if we also scale the radial coordinate as

z → λ z. This scale-invariance implies that any thermodynamic quantity must be a homogeneous

function of the scale factor λ.17 For example, the temperature T is essentially the inverse of the

Euclidean time circle length and thus has mass dimension 1: under a dilatation one has T → T/λ.

This is also the mass dimension of the mass deformation m since asymptotically G(3) decays as

mz [74]. The entropy density s (i.e. the entropy divided by the volume of the three planar direc-

tions wi) has mass dimension 3. Lastly, by the first law, the energy density ρ must have the same

mass dimension as the product of the temperature by the entropy, namely 4. 18.

From this simple analysis we can extract a few far-reaching conclusions. First, although the

solution ansatz depends on two parameters, T and m, any gauge invariant physical property of the

solution must be scale-invariant and therefore only depends on the ratio m̂ ≡ m/T . Equivalently,

if we parametrize the solution by y+ and m, we can use scale-invariance to fix y+ = 1, then a

change in m moves us along the parameter space. Second, from a physical perspective, the mass

deformation parameter m is fixed asymptotically, and the energy density is then computed at fixed

m (and y+). Hence, in the microcanonical ensemble, the energy density ρ should be a function only

of the entropy density s and m: ρ = ρ(s,m). The homogeneous properties of these thermodynamic

quantities imply that the scale invariant quantities are m/T, s/T 3 and ρ/T 4. It follows that under

a scale transformation the energy density must respect

ρ(λ3s, λm) = λ4ρ(s,m) . (37)

Another important conclusion follows from the fact that ρ, s, and m are the extensive variables

of the system. Thus, the variations of these extensive quantities should be related by a first law

of thermodynamics of the form

δρ = T δs+ ϑ δm , (38)

where, the temperature T is the conjugate intensive variable to s and we have defined ϑ to be

the conjugate intensive variable to m.19. Finally, the two relations (37) and (38) allow to deduce

a Smarr relation for our PS black holes as follows. We start by taking a derivative of (37) with

17Recall that a function f is homogeneous if f(λx) = λkf(x) for arbitrary real λ.
18Alternatively, ρ has the same mass dimension has the time-time component of the holographic stress tensor

which, in a 4-dimensional holographic boundary, is 4.
19Here, δ represents a variation along the moduli space of solutions. The moduli space is spanned by (y+,m),

and δ is taken to be a linear variation in an arbitrary direction, i.e. δ = δy+∂y+
+ δm∂m, with δy+, δm arbitrary.

Note that we have not yet used scale-invariance to set y+ = 1 at this stage, which would cut down the dimension
of the moduli space to 1.
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respect to λ, and then set λ = 1 to get

3s
∂ρ

∂s
+m

∂ρ

∂m
= 4 ρ(s,m) .

We now use the first law (38) to compute the partial derivatives in terms of T and ϑ, and this

yields the desired Smarr relation:

T s =
4

3
ρ− 1

3
ϑm . (39)

To summarize, the holographic interpretation and the scale invariant properties of our system

implies that the energy density ρ of our solutions must satisfy the first law (38) and the Smarr

relation (39). This is valuable new information which will allow to integrate the Noether charge

variation (29), and thus compute the energy density ρ and mass deformation potential ϑ of the PS

black hole of [74]. We do this in the next subsection.

2.3.2 Calculation of the Energy and Chemical Potential

In order to carry out the calculation of the energy and chemical potential, we will need to have

the Taylor expansion around the horizon and asymptotic boundary, of the fields of the PS black

hole (subject to the appropriate physical boundary conditions). To avoid unnecessary repetition

of information, we ask the reader to consult equations (4.34) of the companion paper [74]. There,

we give the bosonic fields (g, B, B̄, A(2), Ā(2), C(4)) for the Polchinski-Strassler black brane that

asymptotes to AdS5 × S5 and has horizon topology R
3 × S5. This is a cohomogeneity-2 solution

depending on a polar coordinate x along the S5 and on a compact radial coordinate y ∈ [0, 1].

The horizon is located at y = 0 and the conformal boundary is at y = 1. The solution is described

by a total of 20 independent functions, labelled as qj(x, y) (j = 1, 2, · · · , 20) in [74] and that obey

boundary conditions (vanishing sources for all the operators at the boundary and regularity at the

horizon) also detailed in [74], namely in its equation (4.36) and below. To be clear, the original

fields were redefined in terms of qj(x, y) as a way to impose more straightforwardly the boundary

conditions and to easy the numerical computation.

The field ansatz (4.34) of [74] is written in coordinates which explicitly manifest the Killing

symmetries of the system, namely time translation with Killing vector field ξ = ∂t, and spatial

translation with ξi = ∂wi
(i ∈ {1, 2, 3}) along the brane directions. Hence, we can construct

constant t and wi hypersurfaces which we identify as Σt and Σwi
, respectively, or collectively as

Σξ. These are 9-dimensional hypersurfaces over which we can integrate the exterior derivative of

the 8-form ωξ which, recall, is closed, dωξ = 0. For integration along hypersurfaces of constant t

we take the coordinates wi to be periodic with period ∆wi, and for the hypersurfaces of constant

wi we take t ∈ [0,∆t]. In each of these 9-dimensional hypersurfaces Σξ we define a constant y slice

that we call SyΣξ
. The boundary of Σξ is then given by the slice at y = 0 and the slice at y = 1.

Integrating dωξ, given by (33), over these hypersurfaces yields

0 =

∫

Σξ

dωξ =

∫

Sy=1
ξ

ωξ −
∫

Sy=0
ξ

ωξ ⇒
∫

Sy=1
ξ

ωξ =

∫

Sy=0
ξ

ωξ , (40)
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where we used Stoke’s theorem to get the last equality.

Borrowing the Taylor expansion of the fields at the horizon (y = 0) from [74], we evaluate the

integral on the right-hand side of (40) for ξ = ∂t and find that it is proportional to Tδs,

1

∆w1∆w2∆w3

∫

Sy=0
∂t

ω∂t = Tδs . (41)

From (40)-(41) and from the first law (38), it follows that the left-hand side of (40), which is

evaluated at the conformal boundary, must be proportional to

δI∞

1st law = Tδs , with δI∞

1st law ≡ 1

∆w1∆w2∆w3

∫

Sy=1
∂t

ω∂t ,

= δρ− ϑ δm . (42)

This asymptotic integral δI∞

1st law is a known function of the asymptotic decays (including non-

leading terms) of some of the fields (g, B, B̄, A(2), Ā(2), C(4)) − that we borrow from [74] − which

are themselves a function of the phase space parameters (y+, m). That is to say, δI∞

1st law =

δI∞

1st law(y+, m). Similarly, ρ = ρ(y+, m) and ϑ = ϑ(y+, m). Equation (42), with roots in the

first law, will prove to be one of the two fundamental relations that we will use below.

Proceeding and again borrowing the Taylor expansion of the fields around the horizon from [74],

we observe that the following difference of integrals evaluated at the horizon hypersurface holds

1

∆w1∆w2∆w3

∫

Sy=0
∂t

ω∂t −
1

∆t

∫

Sy=0
∂wi

ω∂wi
= δ(Ts) . (43)

It then follows from (40) that the same integral difference, when evaluated at the asymptotic

hypersurface (y = 1), must give the same result, i.e.

1

∆w1∆w2∆w3

∫

Sy=1
∂t

ω∂t −
1

∆t

∫

Sy=1
∂wi

ω∂wi
=

1

∆w1∆w2∆w3

∫

Sy=0
∂t

ω∂t −
1

∆t

∫

Sy=0
∂wi

ω∂wi

= δ(Ts) . (44)

This implies − via the variation of the Smarr relation (39), δ(Ts) = δ
(
4
3
ρ− 1

3
ϑm

)
− that

δI∞

Smarr = δ

(
4

3
ρ− 1

3
ϑm

)
, with δI∞

Smarr ≡
1

∆w1∆w2∆w3

∫

Sy=1
∂t

ω∂t −
1

∆t

∫

Sy=1
∂wi

ω∂wi
. (45)

This asymptotic integral δI∞

Smarr = δI∞

Smarr(y+, m) is also known function of the asymptotic decays

(including non-leading terms) of some of the fields (g, B, B̄, A(2), Ā(2), C(4)) − that we borrow

from [74] − which are themselves a function of the phase space parameters (y+, m). Equation (45),

that traces back its origin to the Smarr relation, the second fundamental relation we shall use

below.

Armed with these first law and Smarr relations (42) and (45) (which emerge from the asymptotic

scale invariance of our system), we may now calculate the energy ρ(y+, m) and mass deformation
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conjugate potential ϑ(y+, m) of the PS black brane from the knowledge of δI∞

1st law(y+, m) and

δI∞

Smarr(y+, m). Again, these two integrals can be explicitly computed from the asymptotic decay

of the fields (g, B, B̄, A(2), Ā(2), C(4)) (i.e. qj(y) with j ∈ {1, . . . , 20}) determined in [74].

To accomplish our task, we have to consider a general variation in the moduli space spanned

by (y+, m). To begin, equation (42) − δI∞

1st law = δρ−ϑ δm − when viewed as a function of (y+, m)

can be rewritten as

(
∂y+δI∞

1st law

)
dy+ +

(
∂mδI∞

1st law

)
dm =

(
∂y+ρ dy+ + ∂mρ dm

)
− ϑ dm. (46)

The dy+ and dm contributions to this variation must vanish independently which gives the follow-

ing relations for ∂y+ρ and ∂mρ:

{
∂y+ρ = ∂y+δI∞

1st law,
∂mρ = ∂mδI∞

1st law + ϑ .
(47)

Now take again (45), δI∞

Smarr = δ
(
4
3
ρ− 1

3
ϑm

)
. Considering its variation along the moduli

space parametrized by (y+, m) one gets

(
∂y+δI∞

Smarr

)
dy+ +

(
∂mδI∞

Smarr

)
dm =

4

3

(
∂y+ρ dy+ + ∂mρ dm

)
− 1

3

(
∂y+ϑ dy+ + ∂mϑ dm

)
. (48)

As before, the dy+ and dm contributions of this variation must vanish independently. Moreover,

we can insert (47) into (48). Altogether, we end up with a system of two coupled non-homogeneous

first order equations for ϑ(y+, m),

{
m∂y+ϑ = 4∂y+δI∞

1st law − 3∂y+δI∞

Smarr,
m∂m ϑ− 3ϑ = 4∂mδI∞

1st law − 3∂mδI∞

Smarr .
(49)

which are sourced by δI∞

1st law(y+, m) and δI∞

Smarr(y+, m) which are known functions given by the

asymptotic integrals (42) and (45), respectively. These expressions are not illuminating so we do

not display them. We note, however, that solutions ϑ(y+, m) of Eq. (49) only exist if δI∞

1st law and

δI∞

Smarr are such that ∂µ∂y+ϑ read from the first equation in (49) yields the same result as ∂y+∂µϑ

read from the second equation in (49). This integrability condition is in essence what fails in [69].

We can now solve (49) to find the mass deformation potential ϑ(y+, m) and then insert this

solution into the decoupled non-homogeneous first order equations (47) to find the energy den-

sity ρ(y+, m). The final result, after writing the gravitational constant in terms of field theory

quantities, κ2 ≡ 8πG10 = 4π5L8/N2, is [74]:

ϑ = −3N2

2π2

[
y2+ β1(m, y+) + C1m

3 +
14m2

9

]
, (50)

ρ = − N2

48π2

[
6 y4+α0(m, y+) + 18C1m

4 + 3m4 + 28m3 + 3m2y2+ + 18β1(m, y+)my2+ − 18 y4+ + ρ0

]
.

Here, ρ0 and C1 are the two integration constants of the problem and they will be determined below

using supersymmetry considerations. On the other hand, α0(y+, m) and β1(y+, m) are expansion

parameters of the fields around the asymptotic boundary which we now discuss.
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For that first recall that in the gauge used in [74], the PS black brane of is described by a total

of 20 independent functions qj(x, y) (j = 1, 2, · · · , 20) identified in the field ansatz (4.34) of [74].

For our purposes, we are interested in solving the equations of motion in an asymptotic expansion

around the conformal boundary located at y = 1. To do so we check that all our 20 fields have an

asymptotic expansion in powers of (1− y) (up to the order we need to read the thermodynamics

of the system):

qj(x, y) =
2∑

J=0

a
(J)
i (x)(1− y)J + o[(1− y)2] , (i = 1, 2, · · · , 20). (51)

Note that there are no logarithmic terms in this expansion up to order (1− y)2 in agreement with

the expectations discussed in [94] for this system. The energy (and mass deformation potential)

only depends on contributions of (51) up to order (1−y)2. This can be anticipated using dimension

counting. Indeed, the stress energy tensor has conformal dimension 4, and asymptotically one has

1 − y ∝ z2 (where z is the Fefferman-Graham coordinate). Therefore, the terms that contribute

to the energy are those that appear to order (1− y)2 ∝ z4.

To describe the origin of the parameters α0 and β1 that appear in (50), we just need to look into

the asymptotic expansion of three of these functions, namely q1, q11 and q20. Consulting the field

ansatz (4.34) of [74], we see that q1 is related to the time-time component gtt of the metric, q11 is

one of the 8 (independent) components of A(2) and q20 is one of the two (independent) components

of C(4). Up to the relevant order, the asymptotic Taylor expansion of these three fields is

q1(x, y) = 1 +
m2

y2+
(1− y) +

[
α0(m, y+)−

4m4

y4+

(
1− x2

1 + x2

)2
]
(1− y)2 + o[(1− y)2] , (52a)

q11(x, y) = m+

[
β1(m, y+) +

m2 (7− 24m+ 7x2)

3 y2+ (1 + x2)

]
(1− y) + o[(1− y)] , (52b)

q20(x, y) = 1− 2m2

y2+
(1− y) + α2(m, y+)(1− y)2 + o[(1− y)2] , (52c)

which explicitly contains the parameters α0(m, y+), β1(m, y+) and α2(m, y+) that are constants

(dependent on m and y+). These constants can be extracted from the numerical functions via a

fit of (52) to the numerical data. This concludes the interpretation of the parameters α0 and β1

in (50).

Next, consider the integration constants ρ0 and C1. These constants are both fixed by super-

symmetry. The N = 1∗ theory at hand has one supersymmetric solution that is explicitly known,

namely the 10-dimensional uplift [95,96], [74] of the 5-dimensional N = 8 gauge supergravity solu-

tion of Giradello, Petrini, Porrati and Zaffaroni (GPPZ) [97] (the fact that this solution is singular

is irrelevant for our purposes). Naturally, we require that such a supersymmetric solution has zero

energy density (this agrees with the holographic renormalization computation of the GPPZ energy

density done in [98, 99], [74]). This condition requires that we choose ρ0 = 0 and C1 = −4/3 in

(50).
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This concludes the calculation of the entropy and chemical potential of the PS black brane.

As there are many steps involved, we will summarize the steps that lead to the unambiguous

definition of energy density and mass deformation conjugate potential (50). Using the canonical

energy formalism of Wald an expression for the variation for the conserved Noether charge (29)

was derived. This expression was not integrable in general, and à priori it was unclear if it could

be used to define an unambiguous energy density for the PS black brane solution. We then showed

that asymptotic scale-invariance allows two additional relations to be derived, a first law (38) and

a Smarr relation (39). These two thermodynamic relations, when combined with the Noether

charge variation (29), lead to the fundamental relations (42) and (45). These relations then lead

to a system of first order PDEs (47) and (49) for ϑ(y+, m) and ρ(y+, m). Finally, these PDEs may

be integrated to yield (50), with ρ0 = 0 and C1 = −4/3, which give the energy density ρ and mass

deformation conjugate potential ϑ as a function of the known asymptotic decay of the fields that

describe the PS black brane.

3 11-Dimensional Supergravity

In this section, we will repeat the analysis of the previous section but this time for 11-dimensional

supergravity.

The bosonic fields of 11-dimensional supergravity are the metric field g and a 3-form gauge

potential A(3) with associated field strength G(4) = dA(3). The associated action is

S11 =
1

2κ2
11

∫ (
⋆R− 1

2
G(4) ∧ ⋆G(4) +

1

6
G(4) ∧G(4) ∧ A(3)

)
, (53)

where R is the Ricci volume form, R = R ⋆ I = R vol11.

3.1 Variation of the Noether Charge

As in the IIB case, we are interested in taking the variation of action (53) to get the equations of

motion as well as the associated boundary terms that will be fundamental to compute the charges

of solutions of the theory. The variation of (53) with respect to the graviton yields:

δS11

∣∣
g

=
1

2κ2
11

∫
d11x

√−g

[
Rab −

1

2
Rgab −

1

12

(
G(4)acde

G(4)b
cde − 1

8
gabG(4)cdef

G(4)
cdef

)]
δgab

+δSGH)
g (54)

with the Gibbons-Hawking boundary term being

δSGH)
g =

1

2κ2
11

∫
d11x

√−g gab δRab =
1

2κ2
11

∫
d11x

√−g∇a
(
∇bδgab −∇aδg

)
. (55)

From this, the associated Gibbons-Hawking 10-form may be straightforwardly found to be

θ(g, δg) =
1

2κ2
11

⋆
[(
∇bδgab −∇aδg

)
dxa

]
. (56)
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Note that the last term in (53) is a Chern-Simmons term. Hence, it does not depend on
√−g and

does not contribute to the equation of motion for the metric g. Lastly, the variation with respect

to the gauge field A(3) gives:

δS11

∣∣
A(3)

=
1

2κ2
11

∫
δ
∣∣
A(3)

[
−1

2
G(4) ∧ ⋆G(4) +

1

6
G(4) ∧G(4) ∧ A(3)

]

=
1

2κ2
11

∫ (
d ⋆ G(4) −

1

2
G(4) ∧G(4)

)
∧ δA(3) + θ

(
A(3), δA(3)

)
, (57)

with the boundary term given by

θ
(
A(3), δA(3)

)
=

1

2κ2
11

(
⋆G(4) −

1

3
G(4) ∧A(3)

)
∧ δA(3) . (58)

Requiring that the variations (54) and (57) vanish yields the equations of motion of 11-

dimensional supergravity:

Rab =
1

12

[
G(4)acde

G(4)b
cde − 1

12
gabG(4)cdef

G(4)
cdef

]
, (59a)

d ⋆ G(4) =
1

2
G(4) ∧G(4), (59b)

where we contracted the equation of motion that follows from (54) with the inverse metric to get

the Ricci scalar R and then inserted this quantity back into (54) to get the trace reversed equation

of motion for the graviton (59a).

It follows from (59a) that the on-shell Ricci volume form is ⋆R = 1
3!
G(4)∧⋆G(4) which we insert

into (53) to get the on-shell 11-form Lagrangian,

L
∣∣
on−shell

=
1

2κ2
11

(
−1

3
G(4) ∧ ⋆G(4) +

1

6
G(4) ∧G(4) ∧ A(3)

)
. (60)

The sympletic Noether current 10-form associated to a diffeomorphism vector generator ξ is

then [20, 54, 55]

J = Θ (g,Lξg) + Θ
(
A(3), LξA(3)

)
− ιξ L

∣∣
on−shell

, (61)

where, as before, Θ(φi,Lξφi) ≡ θ(φi,Lξφi) but this time for φi = {g, A(3)}. Recall that Lξφi is the
Lie derivative of the field φ along ξ, and ιξ L

∣∣
on−shell

is the interior product of ξ with the 11-form

(60).

Further recall that, given the equations of motion Ei written in (59), it can be shown that

dJ = −Ei Lξφi (summation convention is assumed) [20, 54, 55]. Therefore the on-shell (Ei = 0)

current is closed, dJ = 0, for all ξ. It follows that there is a Noether charge 9-form Q̃ξ, locally

constructed from {ξ, φi}, such that on-shell one has J = dQ̃ξ [20, 54, 55].

To evaluate each term in (61) we use the identities listed in (18) and in (82) as well as the

equations of motion (59). One finds:

Θ (g,Lξg) = ⋆
( 1

κ2
11

[
∇b∇(aξb) − gbc∇a∇(b∇c)

]
dxa

)
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=
1

10!

[
1

κ2
11

εa1···a10a
(
∇b∇[bξa] +Ra

bξ
b
)]

dxa1 ∧ · · · ∧ dxa10 , (62)

Θ
(
A(3),LξA(3)

)
=

1

2κ2
11

(
⋆G(4) −

1

3
G(4) ∧ A(3)

)
∧
[
ιξ dA(3) + d

(
ιξ A(3)

)]

=
1

10!

[
1

κ2
11

εa1···a10a

(
− 1

12
(G(4))

ac1c2c3(G(4))bc1c2c3

)
ξb
]
dxa1 ∧ · · · ∧ dxa10

− 1

6κ2
11

[
G(4) ∧G(4) ∧ ιξ A(3) +G(4) ∧ A(3) ∧ ιξ G(4)

]

− 1

κ2
11

d

[(
⋆G(4) −

1

3
G(4) ∧ A(3)

)
∧ ιξ A(3)

]
+

1

2κ2
11

d ⋆ G(4) ∧ ιξ A(3) , (63)

and

− ιξ L
∣∣
on−shell

=
1

10!

[
1

κ2
11

εa1···a10a

(
1

2

1

3

1

4!
gab(G(4))c1c2c3c4(G(4))

c1c2c3c4

)
ξb
]
dxa1 ∧ · · · ∧ dxa10

+
1

2κ2
11

[
1

3
G(4) ∧A(3) ∧ ιξG(4) −

1

6
G(4) ∧G(4) ∧ ιξ A(3)

]
. (64)

In (62)-(64) we display some of the contributions explicitly in terms of the 10-form components

because most of these contributions add-on to build the equation of motion for the graviton (59a)

and thus will not contribute to the final current. The only exception is the first term in (62) which

can be rewritten as:

1

10!

[
1

κ2
11

εa1···a10a∇b∇[bξa]
]
dxa1 ∧ · · · ∧ dxa10 =

1

2κ2
11

d ⋆ dξ . (65)

Adding the three contributions (62)-(64) and using the equations of motion (59) one finally

finds that the (on-shell conserved) sympletic Noether current 10-form (61) is given by

J = dQ̃ξ , (66)

where we have defined the Noether 9-form charge

Q̃ξ ≡
1

2κ2
11

[
⋆ dξ −

(
⋆G(4) −

1

3
G(4) ∧ A(3)

)
∧ ιξ A(3)

]
. (67)

We now let the diffeomorphism generator ξ be a Killing vector field [20, 54–56] or an asymp-

totically Killing vector field [9, 68, 69, 83–86]. A generic solution of 11-dimensional supergravity

depends on one or more parameters mk (say, k = 1, · · · ) and we want to consider variations δ along

this moduli space of solutions. The associated variation ωξ (in the moduli space) of the charge

associated to ξ is given by (27), with δQ̃ξ and Q̃δξ defined in (28) [9,20,54–56,68,84–86]. As in the

IIB case, onwards we restrict our attention to cases where: 1) ξ is a Killing vector (which implies

Lξφi = 0) and 2) this Killing vector ξ is independent of the solution parameters mk (which implies

that Q̃δξ = 0).
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It follows that, for each Killing vector field ξ, one can associate a 9-form Noether charge whose

variation in the moduli space of solutions is given by

ωξ =
∑

k

(
∂mk

Q̃ξ dmk

)
− ιξ θ(g, δg)− ιξ θ

(
A(3), δA(3)

)
, (68)

with Q̃ξ given in (67) and the boundary terms θ(φi, δφi) given by (56) and (58). Using the

equations of motion (59) and the fact that ξ is a Killing vector, we can check that ωξ is indeed a

closed 9−form, dωξ = 0.

Equation (68) is a universal expression within 11-dimensional supergravity and is one of our

main contributions. It gives the variation (in the moduli space) of the conserved Noether charge

associated to a Killing vector field ξ. In the following, we will illustrate how this expression can be

used to calculate conserved charges for specific solutions. We will first consider the CGLP black

brane recently constructed in the companion paper [75].

3.2 CGLP Black Brane

The CGLP black brane recently constructed in the companion paper [75] is a solution of (53) which

is asymptotically AdS4 × V5,2, where V5,2 is the 7-dimensional Stiefel manifold. It is the simplest

finite temperature solution that asymptotes to the Cvetič, Gibbons, Lü, and Pope (CGLP) solution,

which has a magnetic G(4)-flux background whose asymptotic decay describes a mass deformation

of the corresponding dual CFT3
20. At a linear level, this solution can be constructed starting

with the asymptotically AdS4 × V5,2 Schwarzschild black brane (which has a purely electric G(4),

i.e. with components only along the AdS4 directions) and adding a linearized mass deformation

(i.e., a magnetic contribution to A(3) which has components along the V5,2) [75]
21.

As suggested in the above description, the CGLP black brane of [75] depends on two parameters:

the dimensionless horizon radius y+, which fixes the temperature of the solution as

T =
3y+
4πL

, (69)

with L being the AdS4 radius, and a mass deformation parameter µ which can be read from the

leading order decay of the magnetic part of the G(4)-flux [75]. This a cohomogeneity-1 solution: it

only depends on a radial coordinate that in [75] is taken to be a compact coordinate y ∈ [0, 1], with

y = 0 being the location of the conformal boundary and y = 1 being the location of the Killing

horizon.22 An ansatz for the metric g and gauge A(3) fields of this CGLP black brane is given in

20The CGLP [80] solution is a smooth, supersymmetric (and thus zero-temperature) solution to 11-dimensional
supergravity describing “fractional” M2-branes dissolved in flux, which generalizes the Klebanov-Strassler solution
[100] to higher dimensions. The CGLP is to be seen as the confined phase of the (poorly understood) dual CFT3

theory while the CGLP brane of [75] is to be interpreted as the deconfined dual phase.
21The Schwarzschild black brane describes the near-horizon geometry of finite-temperature M2-branes at the

singular tip of the Stiefel cone.
22Note that the location of the horizon and conformal boundary of the Polchinsky-Strassler solutions of section

2.3.2 [74] were instead at y = 0 and y = 1, respectively. That is, the physical roles of y = 0 and y = 1 were traded
w.r.t. to the CGLP solutions of this section 3.2 [75].
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equations (5.3) of [75]. It depends on 9 functions qj(y), with j ∈ {1, . . . , 9} which are determined

in [75] solving the equations of motion (59) in the so-called DeTurck gauge and subject to the

physically relevant boundary conditions also detailed in [75].

Our aim in this section is to derive an expression for the energy of the CGLP black brane

from the supergravity fields qj(y) found in [75]. However, the main obstacle encountered in the

Polchinski-Strassler black brane analysis of section 2.3 is also encountered here: the variation of

the Noether charge (68) is not integrable as it is. Not surprisingly, the same technique that worked

earlier will also resolve this problem. Indeed, the CGLP black brane is asymptotically AdS4×V5,2

and thus conformal to M1,3. Consequently, the dual field theory preserves conformal invariance

in the UV and, in particular, it is thus invariant under scale (dilatation) transformations. The

asymptotic scale-invariance of the gravitational solution, combined with the implication of holog-

raphy that physical quantities may be read off from the boundary, will lead to additional relations

(first law and Smarr) which, when imposed, render the Noether charge variation integrable.

To fully exploit scale-invariance consider first the mass dimensions of the thermodynamics

quantities which must be homogeneous functions of the scaling factor. Under a dilatation with

scaling factor λ, the temperature T (i.e. the inverse of the Euclidean time circle length) has mass

dimension 1, i.e. T → T/λ. The entropy density s (i.e. the entropy divided by the volume of the

two planar directions wi of AdS4) has mass dimension 2, s → s/λ2. Asymptotically, the magnetic

contribution of the potential A(3) decays as A(3) ∼ µ z2/3, where z is the Fefferman-Graham radial

coordinate and µ is the mass deformation. Therefore the mass deformation has mass dimension

2/3 under a dilatation. By the first law, the energy density ρ must have mass dimension 3, i.e. the

same dimension as the product of the temperature by the entropy (of course, this is also the mass

dimension of the time-time component of the holographic stress tensor which, in a 3-dimensional

holographic boundary, is 3).

The asymptotic scale-invariance of our solution has four far-reaching consequences. First we

can use it to fix y+ = 1 and then move in parameter space by changing µ, since only the ratio

µ̂ ≡ µ/T 2/3 is scale invariant. Second, from a physical viewpoint, the mass deformation µ is a

parameter that we fix asymptotically, and the energy density is then computed at fixed µ (and

y+). That is to say, in the microcanonical ensemble, the energy density ρ should be a function only

of the entropy density s and µ: ρ = ρ(s, µ). The homogeneous properties of these thermodynamic

quantities then implies that under a scale transformation one has

ρ(λ2s, λ2/3µ) = λ3ρ(s, µ) . (70)

A third consequence of scale-invariance is that much like the entropy density s is the thermo-

dynamic conjugate variable to the temperature T , the mass deformation µ must also have a

thermodynamic conjugate variable − a density that we shall call the mass deformation potential

ϑ. So, the energy density is a homogeneous function of only s and µ and these have conjugate

variables T and ϑ, respectively. Hence, we should have a first law of the form

δρ = T δs+ ϑ δµ , (71)
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where δ denotes a variation along the moduli space of solutions, in our case, δ = δy+∂y+ + δµ∂µ.
23

The fourth and final consequence is that the scaling relation (70) and the first law (71) imply a

Smarr relation. Indeed, taking a derivative of (70) with respect to λ, and then setting λ = 1 yields

the Smarr relation:

2 s
∂ρ

∂s
+

2

3
µ
∂ρ

∂µ
= 3ρ(s, µ) ⇒ Ts =

3

2
ρ− 1

3
ϑµ , (72)

where the last implication follows from the first law (71).

Using the first law (71) and the Smarr relation (72), the variation of the Noether charge (68)

may be shown to be integrable. First, note that the field ansatz for the CGLP black brane − see

equations (5.3) of [75] − is written in coordinates that explicitly indicate that ξ = ∂t and ξ = ∂wi

(i = 1, 2) are Killing vector fields (these 3 directions, parametrize the world-volume directions of

the CGLP brane). We denote hypersurfaces of constant t by Σt and those of constant wi by Σwi
.

These are 10−dimensional hypersurfaces. Therefore we can integrate dω∂t and dω∂wi
over Σt and

Σwi
, respectively. For the integration over Σwi

we take t ∈ [0,∆t], while for the integration over

Σt we take the coordinates wi to be periodic with period ∆wi. In either case, we can define SyΣξ

to be a constant y slice of Σξ and use of Stoke’s theorem yields,

0 =

∫

Σξ

dωξ =

∫

Sy=0
ξ

ωξ −
∫

Sy=1
ξ

ωξ ⇒
∫

Sy=0
ξ

ωξ =

∫

Sy=1
ξ

ωξ . (73)

The right hand side of (73), i.e. at the horizon hypersurface Sy=1
∂t

, for ξ = ∂t can be evaluated

inserting the Taylor expansion around the horizon of the fields {g(y), A(3)(y)} found in [75] into

(68). We find that it is proportional to Tδs,

1

∆w1∆w2

∫

Sy=1
∂t

ω∂t = Tδs . (74)

It then follows from (73)-(74) and from the first law (71) that the left hand side of (73), which is

evaluated at the asymptotic hypersurface Sy=0
∂t

, must be given by

I∞

1st law = Tδs , with I∞

1st law ≡ 1

∆w1∆w2

∫

Sy=0
∂t

ω∂t ,

= δρ− ϑ δµ , (75)

where the asymptotic integral δI∞

1st law = δI∞

1st law(y+, µ) is a known function of the asymptotic

decays (including non-leading terms) of some of the fields {g(y), A(3)(y)} − that we borrow from [75]

− which are themselves a function of the phase space parameters (y+, µ). Similarly, ρ = ρ(y+, µ)

and ϑ = ϑ(y+, µ). This relation (75) is one of two key relations that we use below.

23Technically, in order to use the consequences of scale-invariance and the conserved Noether charge to find the
energy, it is important that at this stage we do not use scale-invariance to fix y+ = 1, as will become clear in the
discussions after (75) and (78).
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Next, inserting their Taylor expansion of the fields {g(y), A(3)(y)} found in [75] around the

horizon into (68), we find that the following relation holds at the horizon hypersurface (y = 1):

1

∆w1∆w2

∫

Sy=1
∂t

ω∂t −
1

∆t

∫

Sy=1
∂wi

ω∂wi
= δ(Ts) . (76)

But (73) requires that the same integral difference also holds when evaluated at the asymptotic

hypersurface Sy=0
ξ :

1

∆w1∆w2

∫

Sy=0
∂t

ω∂t −
1

∆t

∫

Sy=0
∂wi

ω∂wi
=

1

∆w1∆w2

∫

Sy=1
∂t

ω∂t −
1

∆t

∫

Sy=1
∂wi

ω∂wi

= δ(Ts) , (77)

which implies, via the Smarr relation (72), that

δI∞

Smarr = δ

(
3

2
ρ− 1

3
ϑµ

)
, with δI∞

Smarr ≡
1

∆w1∆w2

∫

Sy=0
∂t

ω∂t −
1

∆t

∫

Sy=0
∂wi

ω∂wi
. (78)

Again, δI∞

Smarr(y+, µ) is a known function of the asymptotic decays (including non-leading terms)

of some of the fields {g(y), A(3)(y)} [75] which are themselves a function of (y+, µ). Equation (45)

is a second fundamental relation we use below.

With the first law and Smarr relations (75) and (78) (originated from the asymptotic scale

invariance of our system), we can now compute the energy density ρ(y+, µ) and mass deformation

conjugate potential ϑ(y+, µ) of the CGLP black brane from the asymptotic decay of the fields

{g(y), A(3)(y)} (i.e. qj(y) with j ∈ {1, . . . , 9}) determined in [75]. For this, we follow mutatis

mutandis the procedure detailed in (46)-(50) but this time using the first law and Smarr relations

(71)-(78) of the CGLP system (see footnote 22). Summarizing this procedure, we consider a general

variation in the moduli space spanned by (y+, µ). Equation (75) has two contributions, one for

each of the variations dy+ and dµ, that must vanish independently. From these two conditions one

gets {
∂y+ρ = ∂y+δI∞

1st law,
∂µρ = ∂µδI∞

1st law + ϑ .
(79)

that we replace into (78). Again this yields two contributions (for dy+ and dµ) that must vanish

independently. These give two coupled non-homogeneous first order PDEs for ϑ(y+, µ):

{
µ ∂y+ϑ = 9

2
∂y+δI∞

1st law − 3∂y+δI∞

Smarr,
µ ∂µ ϑ− 7

2
ϑ = 9

2
∂µδI∞

1st law − 3∂µδI∞

Smarr .
(80)

which are sourced by δI∞

1st law(y+, µ) and δI∞

Smarr(y+, µ) that are the known asymptotic integrals

(75) and (78), respectively. We can now solve (80) to find the mass deformation potential ϑ(y+, µ)

(see comments below Eq. (49)) and then insert this solution into the decoupled non-homogeneous

first order equations (79) to find the energy density ρ(y+, µ). Because their equations are sourced

by δI∞

1st law(y+, µ) and δISmarr(y+, µ), ϑ(y+, µ) and ρ(y+, µ) are a function of the asymptotic decay
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of the fields q1(y) and q7(y) determined in [75] (q1 is proportional to the gtt component of the

metric and q7 is proportional to one of the components of the 3-form A(3)), namely:

ϑ =
N3/2

4374π6

[
12πC1µ

7/2 − 5y
5/3
+ q̂′′7(0)

]
, (81a)

ρ =
N3/2

419904π6

[
ρ0 + 256πC1µ

9/2 − 192µy
5/3
+ q′′7(0)− 729y3+ (3q′′1(0)− 4)

]
. (81b)

The arbitrary integration constants ρ0, C1 can be fixed by applying these relations to the CGLP

solution, and requiring that its energy density vanishes (because CGLP is a supersymmetric solu-

tion). This fixes ρ0 = 0 and C1 = 0 24.

It is worthwhile to summarize the path that led to the unambiguous definition of energy density

and mass deformation conjugate potential (81). Using the canonical energy formalism of Wald and

collaborators, we first derived the variation for the conserved Noether charge (68). This expression

was not integrable and it looked like that we could not define an energy density for our CGLP

black brane. However, a key observation is that this particular solution is dual to a conformal field

theory with a conformal UV fixed-point. As a result, the gravitational and field theory conserved

charges agree, and both transform covariantly under the dilatation operator. Specifically, the

energy and chemical potential obey a simple scaling law, which we used to derive a first law (71)

and a Smarr relation for the system (72). These two thermodynamic relations then imply (via

(75) and (78)) that the Noether charge variation is integrable, which allowed us to finally write the

energy density ρ and mass deformation conjugate potential ϑ in terms of the known asymptotic

decay of the fields that describe the solution.

4 Conclusions

Developing the notion, or the most appropriate and general notion, of mass and conserved charges

in general relativity (including all its possible cosmological backgrounds) and associated formalisms

to compute them has not been a straightforward path (as briefly reviewed in our introduction).

Thus, it comes with no surprise that this task is even less trivial once we consider extensions of

general relativity to include supergravity fields. Indeed, more often than not, finding the conserved

thermodynamic quantities of supergravity solutions is a non-trivial task. In particular, when these

are type IIB or eleven dimensional supergravities. Yet, these are the gauge invariant quantities

of preference (not to say unique) to describe the solutions of the theory and to discuss preferred

thermal phases of the phase diagram of solutions in a given thermodynamic ensemble. Sometimes,

the particular solution at hand has a known dimensional reduction to a solution of a lower dimen-

sional supergravity theory where one can use holographic renormalization, including Kaluza-Klein

24For an alternative route to determine the integration constants, consider for a moment that the CGLP solution
was not available. Even in these conditions, we could still argue that C1 should vanish since it is natural to expect
that the energy should be an analytic function of µ. This argument is supported by the fact that we can set a
perturbation theory around the Schwarzschild brane with µ = 0, whereby the magnetic G(4)-flux fields only contain
odd powers of µ, and the remaining functions only have even powers of µ: we ask the reader to see section 4 of [75]
for details of this perturbative expansion.
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holographic renormalization, to compute the desired thermodynamic quantities [36–45,45–48]. But

this is definitely not always the case. Even if it is the case, Kaluza-Klein holographic renormal-

ization is not (at least yet) fully developed to compute the thermodynamics of solutions where all

type II supergravity or 11-dimensional SUGRA fields are turned on.

Fortunately, when one does not have the appropriate dimensional reduction and holographic

renormalization tools, and we need to compute the thermodynamic quantities of a solution of the

full blasted type II supergravity or 11-dimensional supergravity, one can resort to the covariant

Noether charge formalism of Wald and collaborators [20,48,54–56] and its cohomological formalism

extension [9, 64–69]. In this context, two of our main results are given by (29), for IIB SUGRA,

and (68), for 11D SUGRA. These equations give the universal expression for the variation (in

the moduli or parameter space) of the conserved Noether charge associated to a Killing vector

field ξ (when ξ is independent of the moduli) in general IIB or 11D supergravity backgrounds,

respectively.

But even these covariant Noether charge and cohomological formalisms have a known limitation.

Indeed, the covariant Noether charge formalism and its cohomological extension can certainly

determine the variation of a Noether charge along the moduli space of parameters that parametrize

the phase space of a given family of solutions. When the solution at hand is a 1-parameter solution,

we can certainly integrate this Noether variation to get the associated conserved Noether charge.

This is e.g. illustrated in our IIB supergravity example of section 2.2 where one computes the

energy of the asymptotically AdS5 × S5 lumpy [77] and localized [78] black holes of type IIB

supergravity and finds that it matches the energy originally computed in [77, 78] using Kaluza-

Klein holographic renormalization.

But when the solutions at hand are parametrized by 2 or more parameters, integrability of the

Noether charge variation cannot be taken as granted. There are many examples, where a system

in these conditions is still integrable (most notably in the Kerr solution of general relativity). But

there is also at least one know example [69] where it was declared that the Noether charge variation

is not integrable and thus considered that the energy of this system is simply not defined.

In the present article, we observe that even when a multi-parameter solution is not manifestly

integrable we can use asymptotic scale invariance to help us define certain asymptotic charges.

Indeed, we have shown that when the system has asymptotic scale invariance we can still integrate

the Noether charge variation to get the energy (density) of the system and other thermodynamic

variables. This is because scale invariance implies that we can define a first law of thermodynamics

and a Smarr relation. Altogether, these two extra conditions guarantee that we can integrate the

Noether charge variation. We have explicitly demonstrated this is the case with two non-trivial

examples of type IIB and 11-dimensional supergravity, namely: the Polchinski-Strassler black

brane of [74] and the Cvetič-Gibbons-Lü-Pope (CGLP) black brane of [75].

The main results of our article are encapsulated in two rather compact expressions for the

Noether charges of type IIB and 11-dimensional supergravities, which we can associate with solu-

tions possessing exact Killing vectors ξ. These Killing vectors typically represent time, translational

or rotational isometries of the solution in question. For type IIB we found
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ωIIB
ξ =

∑

k

(
∂mk

Q̃ξ dmk

)

− ιξ θ(g, δg)− ιξ θ
(
B, B̄, δB, δB̄

)
− ιξ θ

(
A(2), Ā(2), δA(2), δĀ(2)

)
− ιξ θ

(
C(4), δC(4)

)
,

with Q̃ξ given in (26) and the several boundary terms θ(φi, δφi) given by Eqs. (8)-(14), while for

11-dimensional supergravity we obtained

ω11D
ξ =

∑

k

(
∂mk

Q̃ξ dmk

)
− ιξ θ(g, δg)− ιξ θ

(
A(3), δA(3)

)
,

with Q̃ξ given in (67) and the boundary terms θ(φi, δφi) given by (56) and (58). Knowledge of the

8-form ωIIB
ξ or 9-form ω11D

ξ , together with asymptotic scale invariance, allowed us to determine the

corresponding asymptotic charges in type IIB and 11-dimensional supergravity, respectively.

It is important to highlight that these three examples have in common the fact that they are

solutions of IIB or 11D supergravity with all the possible supergravity fields switched on. Also

important, they all have a holographic description, and asymptotic scale-invariance is a common

property for gravitational solutions in the context of the gauge/gravity correspondence. Indeed, all

three spacetimes are asymptotically a direct product spacetime AdSp×Xn where Xn is a compact

manifold. And this immediately invites the use of holographic renormalization techniques to com-

pute the thermodynamic quantities. But in some of the cases, the holographic understanding that

we have of the system is not yet sufficiently developed to be able to compute the energy and other

thermodynamic quantities of the system. In particular, the powerful Kaluza-Klein holographic

renormalization formalism is not yet developed to consider any system that has all supergravity

fields non-vanishing. When this is the case, the use of the covariant Noether charge formalism

combined with the first law and Smarr relations − that follow from the underlying asymptotic

scale-invariance of the system − is then a fundamental tool to compute the energy density and

thermodynamic potentials. Of course, it would be interesting to use our systems as a testbed to

develop the Kaluza-Klein holographic renormalization formalism further up to the point where it

can also compute the thermodynamics of the solutions of [75,76]. The direct holographic renormal-

ization computation would have the added value of also identifying the expectation values of the

several operators of the system (not only the conserved charges and thermodynamic potentials).
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A Useful Differential Form Relations

For reference, here we include some useful definitions and identities for differential forms in a

spacetime of dimension d (and a single timelike direction). We will denote the Levi-Civita tensor

as εa1···ad, with orientation ε123···d ≡ 1. In the following, P(p), A(p), B(p) are p-forms, and Q(q) is a

q-form.

⋆P(p) =
1

(d− p)!

(
⋆P(p)

)
a1···ad−p

dxa1 ∧ · · · ∧ dxad−p , (82a)

with
(
⋆P(p)

)
a1···ad−p

=
1

p!
ε

b1···bp
a1···ad−p

Pb1···bp ,

P(p) ∧Q(q) =
1

(p+ q)!

(
P(p) ∧Q(q)

)
a1···ap+q

dxa1 ∧ · · · ∧ dxap+q , (82b)

with
(
P(p) ∧Q(q)

)
a1···ap+q

=
(p+ q)!

p!q!
P[a1···apQap+1···ap+q ] ,

P(p) ∧Q(q) = (−1)pqQ(q) ∧ P(p) , (82c)

A(p) ∧ ⋆B(p) = (−1)p ⋆ A(p) ∧ B(p) , (82d)

d
(
P(p) ∧Q(q)

)
= dP(p) ∧Q(q) + (−1)pP(p) ∧ dQ(q) (Graded Leibnitz rule) , (82e)

ιξ P(p) =
1

(p− 1)!
(ιξ P(p))a1···ap−1dx

a1 ∧ · · · ∧ dxap−1 , (82f)

with (ιξ P(p))a1···ap−1 = ξcPca1···ap−1 ,

ιξ(P(p) ∧Q(q)) = (ιξ P(p)) ∧Q(q) + (−1)pP(p) ∧ ιξQ(q) ,

⋆
(
A c1···cp−1
a Bbc1···cp−1ξ

adxb
)
= (−1)p−1(p− 1)! ⋆ B(p) ∧ ιξ A(p) , (82g)

⋆
(
Aa1···apB

a1···apξbdx
b
)
= (−1)pp! ιξ

(
⋆A(p) ∧ B(p)

)
. (82h)
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