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The extent to which students are competent in identifying circular arguments in
mathematical proofs remains an open question, as does how it might be possible to
enhance their competency. In this paper we report on a study of learners encountering
logical circularity while tackling geometry proof problems using a web-based proof
learning support environment. The selected episodes presented in the paper illustrate
how learners who have just started learning to construct mathematical proofs make
various mistakes, including using circular arguments. Using the feedback supplied by
the web-based proof learning support environment, and with suitable guidance from
the teacher on the structural aspects of a proof, learners can start bridging the gap in
their logic and thereby begin to overcome circular arguments in mathematical proofs.

INTRODUCTION

Bardelle (2010) provides an example of some undergraduate mathematics students in
Italy being presented with the diagram in Figure 1 as a ‘visual proof’ of Pythagoras’
theorem. The students were asked to use the figure to help them develop a more formal
written proof of the theorem.

Figure 1: a “visual proof’ of

Pythagoras’ theorem Figure 2: a rectangle from Figure 1

Bardelle relates how one student focused on the rectangles that surround the central
square. By defining a as the short side and b the longer one (as in Figure 2), the student
used Pythagoras’ theorem to get ¢=va'+»* and thence, by squaring both sides, the
student obtained Pythagoras theorem ¢*=a’+b* . This is an example of a student using a
circular argument or circulus probandi (arguing in a circle). It entails assuming just
what it is that one is trying to prove (Weston, 2000, p75). In logic, circular reasoning is
considered a fallacy as the proposition to be proved is assumed (either implicitly or
explicitly) in one of the premises.

In a comprehensive consideration of the key questions for mathematics education
research on the teaching and learning of proof and proving, Hanna and de Villiers
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(2008, p333) raise the issue of the extent to which students are competent in identifying
circular arguments in proofs. They also ask how it might be possible to enhance such
competency in students. In this paper we report on a study of learners working with
logical circularity while tackling proof problems. Our research questions encompass
how it is that they create a proof which has a logical circularity, and how they modify
their thinking through to constructing a correct proof. To answer these questions we
analysed selected episodes collected as students work on geometry proof problems
using a web-based proof learning support environment (for more details of this
web-based system, see Miyazaki et al, 2011).

CIRCULAR ARGUMENTS IN DEDUTIVE REASONING

Rips (2002) has argued that the psychological study of reasoning should have a natural
interest in patterns of thought like circular reasoning, since such reasoning may
indicate fundamental difficulties that people may have in constructing and in
interpreting even everyday discourse. However, Rips claims that up until his study in
2002 there appeared to be no prior empirical research on circular reasoning. While
Rips reports on a study of young adults, Baum, Danovitch and Keil (2008) report
findings with younger students - indicating that by 5 or 6 years of age, children show a
preference for non-circular explanations and that this appears to have become robust
by the time youngsters are about 10 years of age.

While learners’ preference for non-circular explanations may be robust by the time
they are ten years old, within mathematics education Kunimune, Fujita and Jones
(2010) report on data on Grade 8 and 9 pupils showing that as many as a half of Grade
9 students and two-thirds of Grade 8 pupils are not able to determine why a particular
geometric proof presented to them was invalid; that is they could not see the logical
circularity in the proof. Likewise in Germany, Heinze and Reiss (2004) report that
from Grade 8 to 13 an unchanging two-thirds of pupils fail to recognise circular
arguments in mathematical proofs. Such evidence illustrates that pupils are in need of
considerable support in order to identify and overcome circular arguments in
mathematical proofs. As Freudenthal (1971, p427) observed “you have to educate your
mathematical sensitivity to feel, on any level, what is a circular argument”.

THEORETICAL FRAMEWORK

We take as our starting point that a mathematical proof generally consists of deductive
reasoning starting from assumptions and leading to conclusions. Within this reasoning
process, at least two types of deductive reasoning are employed: universal instantiation
(which deduces a singular proposition from a universal proposition) and syllogism
(where the conclusion necessarily results from the premises).

In order to understand the structure of proof, students need to pay attention to elements
of proof such as its premises and conclusions and their inter-relationships. Both Heinze
and Reiss (2004) and McCrone and Martin (2009) identify appreciation of proof
structure as an important component of learner competence with proof. In this paper
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we use the following levels of learner understanding of proof structure elaborated by
Miyazaki and Fujita (2010):

e Pre-structural: this is the most basic status in terms of understanding of the
proof structure, where learners regard proof as a kind of ‘cluster’ of possibly
meaningless symbolic objects and they cannot see that, within the structure of
proof, singular propositions are those which are universally instantiated from
universal propositions, that syllogism is necessary to connect singular
propositions, and so on.

e Partial-structural: given that a proof consists of elements of proof such as
singular and universal propositions, deductive reasoning, and their relational
network, if learners have started paying attention to each element, then we
consider they are at the Partial-structural elemental sub-level. To reach the next
level, learners need to recognise some relationships between these elements
(such as universal instantiations and syllogism). If learners have started paying
attention to each relationship, then we consider them to be at the
Partial-structural relational sub-level.

e Holistic-structural: at this level, learners understand the relationships between
singular and universal propositions, and see a proof as ‘whole’ in which
assumptions and conclusions are logically connected through universal
instantiations and syllogism (much like the ‘warp’ and the ‘weft” when weaving
textiles). Once learners have ‘Holistic-structural’ understanding, they should be
able to start refining proofs, become aware of the hierarchical relationships
between theorems, be able to construct their own proofs, and so on.

The Pre-, Partial-, and Holistic-structural levels of understanding of proof structure is
summarised in Figure 3.

Partial-structural

Relational i
Pre-structural Holistic:

Elemental a) Universal instantiation structural

b) Syllogism

Figure 3: Pre-, Partial-, and Holistic-structural levels of understanding of proof

According to this framework of Pre-, Partial-, and Holistic-structural levels of
understanding of proof, most learners who are just starting to learn proofs would be at
either the Pre or Partial-structural level. In particular, if learners do not fully
understand the role of syllogism, then they would be likely to accept or construct a
proof which includes logical circularity.
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METHODOLOGY

To investigate students’ understanding of logical circularity in mathematic proofs, a
web-based learning platform (hereinafter the system) was utilised (for details of this,
see Miyazaki et al, 2011). The current version is online at:

http:// www.schoolmath.jp/flowchart_en/home.html

For this learning platform, flow-chart proofs (see Ness, 1962) are adopted and both
open and closed problems in geometry are available to learners, including ones that
involve the properties of parallel lines and congruent triangles. Learners tackle proof
problems by dragging sides, angles and triangles to cells of the flow-chart proof and
the system automatically transfers figural to symbolic elements so that learners can
concentrate on logical and structural aspects of proofs. The geometry problems that
student tackle when using the learning platform include both ordinary proof problems
such as ‘prove the base angles of an isosceles triangles are equal’ (we call these
‘closed’ problems) and problems by which students construct different proofs by
changing premises under certain given limitations (we call these ‘open’ problems).
Each time the learners selects a next step in their flow-chart proof, the web-based
system checks for any error via a database of possible next steps. If there is an error, the
learners receive orderly feedback in accordance with the type of error (such as error in
the deductive chain, error in selecting the appropriate theorem, error in the antecedent
and the consequent of a singular proposition, and so on).

For data collection, a range of individual or grouped learners (up to 4) tackled one or
more mathematical activities with the web-based system and their conversations were
recorded by video camera and then transcribed. In the next section we report selected
cases involving five learners: two high-attaining secondary school students aged 14
years old (WS1 and WS2) and three undergraduate primary trainee teachers (an
individual, R, and a pair, J1 and J2). None of these learners had prior experience of
mathematical proof in geometry.

DATA ANALYSIS AND DISCUSSION

In the problem in Figure 4 (lesson 2-b00), the learners are asked to prove ‘AB=CD’,
with reasoning in both universal instantiation and syllogism being required to deduce a
proper conclusion. This is an example of an open problem in that while learners have to
use ‘AO=CQO’ for their proof, they can decide for themselves which other properties to
use. In this problem, they could either consider AO=CO, BO=DO and ZAOB=2COD
(the SAS condition) or use AO=CO, ZAOB=/COD and ZOAB=20CD (the ASA
condition).

Case 1: after practicing with an introductory problem, and understanding that there are
three conditions that can be used to say that two triangles are congruent, two
14-year-old students, WS1 and WS2, undertook the problem in Figure 4.
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Let's try flow chart thinking!

Lessonz2-boo

In the right-hand side diagram, it is already shown that . A B
Starting from that, you will show by showing two

triangles in the diagram are congruent. What else do you need to

know in order to draw the conclusion? What type of condition of 0

congruence do you use in there? Let's complete the flow chart!

Opt D C

Choose an appropriate choke.

Chogse an app rop riate choloe:

[]- (] }= - e -

Check your answers | Try once more

Figure 4: System interface and Lesson 2-b00

Without any hesitation, their first attempt involved using the SSS condition as follows
(I: Interviewer)

50

51
52
53
54
55

WS2  That one and that one (BO and DO)? That one looks bigger than that one. Is

it that one (£LAOB=2COD)? [student chooses SSS condition, and checks
answer] No.

Let's try flow chart thinking!

e paim o pices o s MBS 0 0501 1 W, Tion Fiags NGRS S COrgRen.

WS1 I don’tthink that angle is ... [indicating]
I What does it say?

WS2  [Reading the hint] You cannot use the conclusion to prove your conclusion.
I What do you want to prove?

WS1  We want to prove that the three pairs of sides ..... | don’t know, | am really
confused.

They made a mistake (line 50) as they put ZAOB=/COD are congruent, rather than
AOAB and AOCD. More importantly, they failed to notice that they should not use
‘AB=CD’ in their proof. This is evidence that they did not have good understanding of
universal instantiation (line 55) or of logical circularity (line 50). The system
highlighted the use of logical circularity by showing a box saying “you cannot use the
conclusion to prove your conclusion”. After receiving this hint from the system, and
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with additional support from the interviewer, the students started considering that
‘AB=CD’ should not be used in their proof. With this they began to understand, as
shown below in the dialogue immediately below, why AB=CD should not be used.

86 WS1 It is the same as that. [reviewing WS2’s answer] You have done AB=CD
again!

87 WS2 Why can’t we do that?
88 WS1 Because it is the same conclusion.

After realising that AB=CD should not be used, they finally constructed a correct
proof. Nevertheless, the above example illustrates that understanding the meanings and
roles of premises and conclusions are difficult for learners who have just started
learning mathematical proof. Moreover, from the structure of proof point of view, our
evidence shows that learners who cannot see the whole structural relationships
between premises and conclusion (namely that they are not at the Holistic structural
level) cannot identify the logical circularity. In order to identify logical circularity as a
serious error, learners need to understand at least the role of syllogism which connects
premises with conclusions. It means learners need to understand the aspect of
syllogism included in the relational Partial-structural relational sub-level (see Fig 3).

Case 2: in the episode below, student R, a first year student on a primary teacher
training course, first considered that it would be possible to use SSS condition as a way
to tackle the open problem to prove ‘AB=CD’. This indicates that R is lacking
understanding of logical circularity. After making several mistakes, including logical
circularity, student R finally reasoned why it was not possible to use SSS (see lines 34
- 40 below). This shows that student R was in the upper level of the Partial-structural
relational level involving the understanding the aspect of syllogism at least.

34 R I don’t think anymore answers.

35 I Are you confident to say so?

36 R  Yes.

37 I If you choose ZAOB&~/COD, and ZABO&~/CDO, then...

38 R We need to use BO and DO but ...

39 I No, we can’t use them as AO=CO is already assumed. Also we can’t use

AB=CD, because this is...
40 R What you are trying to find! [laughs]

Case 3: J1 and J2, two first year students on a primary teacher training course, are
towards the end of their work on the proof problem. In the extract below, they are not
only considering why they cannot use the SSS condition for the problem (lines
149-151 below), but also eliminating other possibilities for answers (lines 152-157).
This illustrates their capacity to identify logical circularity in proofs, and that their
understanding of structure of proof is almost at the Holistic structural level as there is
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evidence that they have started grasping the relationship between premises and
conclusion.

147 J1 Um, try again?

148 J2 You could do all the ...

149 J1 All the sides?

150 J2 Yes... actually no, because..

151 J1&J2 You are trying to prove [AB=CD] ...

152 J1 And if you can’t use this line [AB] then we can’t use the other angle...
because it is not included...

153 J2 You mean those [Z/ABO&~/CDQ]?

154 J1 Yes, it is not included [as AB cannot be used]... and we’ve already got
others...

155 J1 How about AO-Z0OAB-AB?
156 J2 You cannot use these, because...
157 J1 Because these ones [AB&CD] which we are trying to prove...

This example shows that students J1 and J2 could overcome the logical circularity
gradually by considering possible combinations of premises and conclusion and
checking whether their proof fell into logical circularity or not. This might mean that
the kinds of activity available with the web-based flow-chart proof system are useful to
understand the whole structural relationship between premises and conclusions more
deeply, to encourage learners to shift the level of the understanding of proof structure,
and that this may lead to them, in the end, overcoming the error of logical circularity.

CONCLUSIONS

The selected episodes presented in this paper illustrate how learners who have just
started learning to construct mathematical proofs make various mistakes, including
using a conclusion to prove the same conclusion. Our conjecture is that the cause of
this is their incomplete understanding of whole structure of proof, especially their lack
of understanding of the role of syllogism. The web-based learning environment with its
open problem situations using flow-chart-type proof, as we show in this paper, can
reveal learners' naive status of understanding, in particular their lack of understanding
of syllogism (for example, cases WS1 and WS2, and R).

While it is appears difficult for learners to consider why logical circularity cannot be
used in a proof (see the example of WS1 and WS2), to overcome such difficulties it is
important for teachers to encourage learners to attend to the structural relationships
between premises and conclusion and how they could be bridged (via syllogism). As
support, the feedback supplied by the web-based proof system provides guidance on
what help might be given learners to help develop their understanding. By focusing on
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the structural aspects of a proof, the learners start bridging the gap in their logic in
syllogism (see example R, lines 34 - 40). For some learners (for example, J1 and J2),
by using the open problem situation, logical circularity is eliminated by considering
possible combinations of premises and conclusion (see case J1 and J2, lines 141-157).
This suggests that both considering possible combinations of premises and conclusion,
and checking whether the proof falls into logical circularity or not, are useful for
overcoming errors of logical circularity.
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