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This paper reports on a learning progression based on flow-chart proving and aimed at providing a 

basis for introducing the structure of proof in lower secondary school geometry. The proposed 

learning progression has three phases: constructing flow-chart proofs in an open situation, 

constructing formal proofs by reference to flow-chart proofs in a closed situation, and refining 

formal proofs by placing them into flow-chart proof format in a closed problem situation. Through 

teaching this progression in three Grade 8 classrooms (students aged 14), and assessing the learning 

through a test administered several months later, our evidence indicates that students who studied 

proof and proving with this learning progression were better able to construct a proof than other 

students who did not follow this approach. 

proof, flow-chart proving, learning progression, geometry, lower secondary school 

INTRODUCTION 

Even though the teaching and learning of proof is universally recognized as a key element of 

mathematics curricula, it remains the case that students at the lower secondary school level 

can experience difficulties in understanding proof (eg: Hanna & de Villiers, 2012; Mariotti, 

2006). Improving instructional approaches is one strategy and in our research we focus on the 

introductory phases of the teaching of proofs and proving.  

Based on the idea of learning progressions as “successively more sophisticated ways of 

thinking about a topic that can follow one another as children learn about and investigate a 

topic” (National Research Council, 2007, p. 214), we designed a learning progression for the 

introductory phases of learning how to structure proofs in lower secondary school geometry. 

The purposes of this paper are twofold: a) to provide a theoretical outline of some of the 

design principles underpinning the learning progression on how to structure proofs in lower 
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secondary school geometry, and b) to evaluate the effects of implementing these lessons in 

terms of knowledge and understanding which students gained from the lessons.   

THEORETICAL UNDERPINNINGS  

The theoretical underpinnings that we utilise for designing an introductory stage of learning 

to construct proofs in geometry in lower secondary school relate to several themes; the nature 

of proving activities, the design of learning progressions, and the use of flow-chart proofs as a 

format for geometrical proofs.  

Proving as an explorative activity 

In considering proving as an explorative activity, we refer to several theoretical positions:  

views on the relative nature of mathematical truths (Fawcett, 1938), the heuristic and 

fallibilistic nature of mathematical processes (Lakatos, 1976), and the nature of the proof 

construction process (McCrone & Martin, 2009). Based on these ideas, we consider that 

proving activities are flexible, dynamic and productive in nature, and various aspects of 

proving activities are interrelated and resonant with each other.  

We can see that proving activities ‘breathe life’ into mathematics teaching and learning and 

are intellectually stimulating in numerous ways, for example: producing propositions 

inductively/deductively/analogically, planning and constructing proofs for these produced 

propositions, and reflecting on and looking back at producing propositions, including 

planning and constructing proofs to overcome local and global difficulties and 

counter-examples, and then refining propositions and proofs (Miyazaki & Fujita, in press).  

Developing learning progressions 

The idea of learning progressions, as Empson (2011, p. 574) explains, is “now virtually 

synonymous with learning trajectory” Given our goal of researching the introductory learning 

of how to structure proofs in lower secondary school geometry, we borrow from the notion of 

‘hypothetical learning trajectory’ (HLT) that it includes “the learning goal, the learning 

activities, and the thinking and learning in which the students might engage” (Simon, 1995, p. 

133). This set of components can underpin the design of a sequence of teaching; see, for 

example, Clements and Sarama (2004), Simon and Tzur (2004), Stylianides and Stylianides 

(2009). For our focus on learning to structure proofs in lower secondary school geometry, our 

learning progression comprises the following components: a) Learning goals: by the end of 

the teaching, students will be able to i) plan and construct a proof in geometry, and ii) 

understand the structure of proofs in geometry; this entails students beginning to grasp 

elements of the structure of proof, and then gradually being able to see the entire structure 

(Miyazaki & Fujita, 2010); b) The learning process and activities: proof construction based 

on the flow-chart proof format (McMurray, 1978), with both open and closed problem 

situations; c) The thinking and learning in which the students might engage: this encompasses 

thinking forward and backward, planning and constructing a proof, reflection of the structure 

of proofs, and so on. 
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Flow-chart proving in an open problem situation 

A key feature of our learning progression is the use of flow-chart proofs that shows a ‘story 

line’ of the proof; beginning with the kinds of assumptions from which the conclusion is 

deduced, and including the kinds of theorems being used, how the assumptions and 

conclusion are connected, and so on. As McMurray (1978) and others have suggested, 

flow-chart proofs can be introduced to students before they learn the more formal ‘two 

column proof’ format.  

We consider that the power of flow-chart proofs can be particularly enriched in ‘open’ 

situations where students can construct multiple solutions by deciding the assumptions and 

intermediate propositions necessary to deduce a given conclusion.  

 

Figure 1: An example of flow-chart proving in an open situation 

For example, the problem in Figure 1 is intentionally designed so that students can freely 

choose which assumptions they use to draw a conclusion B=C. After drawing a line AO, 

for instance, students might think backwards from the conclusion to decide which triangles 

should be congruent to show B=C, and what condition of congruent figures should be 

used. Then, they might show that B=C by using the theorem “If two figures are congruent, 

then corresponding angles are equal.” However, other solutions are also possible. One might 

be to use the fact that they have already found AO=AO as a same line and hence that 

∆ABO∆ACO can be shown by assuming AB=AC and BO=CO using the SSS condition. As 

students can construct more than one suitable proof, we refer to this type of problem situation 

as ‘open’.  

One purpose of flow-chart proving in an open problem situation is to encourage students to 

think backward from the problem conclusions. Over time, students are expected to connect 

two directions of thinking; thinking forwards from the assumptions, and thinking backwards 

from the conclusions. During this process it can happen that students produce a proof with 

logical circularity. Our research findings suggest that confronting logical circularity provides 

a chance to explore the reason why this form of argument is unacceptable and leads to 

students becoming more aware of their own understanding of the structure of proof (Miyazaki 

and Fujita, 2010; Fujita, Jones and Miyazaki, 2011). 
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LEARNING PROGRESSION FOR PROOF STRUCTURE AND CONSTRUCTION 

Three phases of the teaching of proof construction 

Our learning progression for the introductory learning of proof structure and construction by 

using flow-chart proof in Grade 8 (aged 14), informed by the theoretical underpinnings laid 

out above, has the following three phases: constructing flow-chart proofs in an open situation, 

constructing a formal proof by reference to a flow-chart proof in a closed situation, refining 

formal proofs by placing them into a flow-chart proof format in a closed situation. We explain 

the reasons for these phases below. 

In the first phase, students construct flow-chart proofs in an open problem situation. Since 

students at this very early stage of learning about proofs might see a formal proof as a rather 

meaningless set of symbols about the properties of geometric shapes, students may not 

understand why they should engage in such mathematical arguments. In particular, they may 

have difficulty in connecting the problem assumptions to the problem conclusion in a 

deductive fashion. Through their activity in the first phase of our proposed learning 

progression, they are expected to learn how to think forwards/backwards between 

assumptions/conclusions as they construct their proof. They also are encouraged to organize 

their thinking in order to connect assumptions and conclusions. Thus this phase can support 

them to understand how to ‘assemble’ a proof as a structural entity. 

In the second phase, students first construct a flow-chart proof in a closed situation (similar to 

the typical form of proof problem that appear in textbooks). Next they construct a formal 

proof through transposing a flow-chart proof into a paragraph proof. Through their learning in 

the previous phase (where they constructed flow-chart proofs) they have a better 

understanding of the structure of proof and develop the capability to think 

forwards/backwards between assumptions/conclusions. In the second phase, students are 

expected to transform their flow-chart proof into a paragraph proof. Here, students need to 

learn how to use assumptions, and the ‘arrows’ of flow-chart proof are replaced by 

mathematical language.  

Finally, in the third phase students first construct paragraph proofs in closed problem 

situations, and then refine their proofs by placing them into flow-chart proof format. The 

reason for this third phase is that although students get familiar with constructing paragraph 

proofs gradually by the end of second phase, they usually make some mistakes in their 

paragraph proofs. By translating paragraph proofs into flow-chart proof format in this phase, 

the intention is that students spot their mistakes related to the structure of proof, and they 

learn to look back over proofs, correct any mistakes, and make proofs better by themselves.  

Nine lessons as an introductory stage of the teaching of the structure of proof 

By using our proposed learning progression of flow-chart proving, we designed nine lessons 

taking into account open/closed situations, varying steps of deductive reasoning, and different 

problems and contexts. Our design, developed in cooperation with expert mathematics 

teachers, included detailed teaching guidelines, together with worksheets for students’ 

activity. The nine lessons are summarised in Table 1.  
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Table 1: Learning progression across nine lessons 

Phase No. 
Open/closed 

situation 

Steps in 

reasoning 
Problems and contexts 

Constructing 

flow-chart 

proofs 

1 Open 1 

Constructing flow-chart proofs by using 

congruency of two triangles connected by a 

vertex 

2 Open 1 
Constructing flow-chart proofs by using 

congruency of two triangles connected by a side 

3 Open 1 

Constructing flow-chart proofs using 

congruency of two triangles connected by a 

vertex, while clarifying figural properties as 

assumptions 

4 Open 2 

Constructing flow-chart proofs using 

congruency of two triangles connected by a 

side, while clarifying figural properties as 

assumptions 

Constructing a 

formal proof 

by reference to 

a flow-chart 

proof 

5 Closed 1 
Constructing a formal proof with a flow-chart 

proof using the problem from Lesson 3 

6 Closed 2 
Constructing a formal proof with a flow-chart 

proof using the problem from Lesson 4 

Refining 

formal proofs 

by placing 

them into 

flow-chart 

proof format 

7 Closed 2 

Constructing a formal proof and refining it in 

the flow-chart format using the problem of 

Lesson No.6 

8 Closed 2 

Constructing a formal proofs by using 

congruency of two triangles overlapping each 

other and refining it with the flow-chart format 

9 Closed 2 

Constructing a formal proofs by using 

properties of parallel lines and congruency of 

two triangles connected by a vertex and refining 

it with the flow-chart format 

EVALUATING THE LEARNING PROGRESSION 

Methods 

In a widely-used Japanese 8th Grade textbook (for 14 years old), authorized by the Ministry 

of Education, there are three main sections of geometry: 1) properties of parallel lines and 

angles, properties of congruent figures, and conditions of congruent triangles through 

informal proofs; 2) what is a formal proof and how to construct it; 3) properties of triangles 

and quadrangles by using formal proofs. The suggested plan is that the 1
st
, 2

nd
 and 3

rd
 sections 
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need 11, 4, and 15 lessons, respectively. Our learning progression described above is 

designed to replace the second section. As a result, the second section needed five additional 

lessons. The first section and the third section remained the same. 

From October 2010 to January 2011, when most 8th Graders in Japan learn geometry, three 

mathematics teachers in a state-funded lower secondary school implemented our sequence of 

nine geometry lessons in accordance with our learning progression. Each teacher taught one 

class. In total, 94 students were taught. Afterwards they implemented the usual lessons on the 

properties of triangles and quadrangles using the textbook that is widely used in Japan. 

Our assessment was conducted in May 2011 (when the students were learning algebra), some 

four months after the teaching of the nine lessons. We used test items from the Japanese 

National Survey that was conducted for all students in Japan in April 2009. The National 

Survey consisted of two sets of problems: Math A and Math B. The first set of problems, 

Math A, checked basic knowledge and skills. The second section, Math B, checked advanced 

mathematical thinking in the real world and the mathematical world (for an example of a 

Math B problem, see Figure 2). In order to compare our result with the National Survey, we 

used both sets of questions and allocated the same time for our students to answer. 

Furthermore, to ensure the quality of the assessment, the marking of our survey was 

conducted by the same organization that marked the National Survey.  

Results and discussion 

As shown in Table 2, in terms of the basic geometry problems in Math A (questions 

especially related to the content for 8th Graders) there was no difference between our sample 

and National survey. This indicates that the nine lessons based on our learning progression 

did not impact on the development of the students’ basic knowledge and skills. 

Table 2: Test results for basic geometrical problems in Math A 

Question number and topic 
Proportion of correct answers (%) 

Our sample National Survey 

6(3) Choose a congruent triangle with a given triangle 66.0 64.7 

6(4) Answer the degree of a circular angle 56.4 59.6 

6(5) 1 Choose appropriate assumptions to complete a 

proof that shows the sum of inner angles of 

triangle is 180 degrees. 

79.8 78.6 

6(5) 2 86.2 82.8 

7 
Write a condition of parallelogram with using 

symbols according to a figure. 
60.6 57.3 

8 Understand a diagram used in a proof 56.4 57.6 

In contrast, the impact of our learning progression using flow-chart proofs is shown by the 

results the students obtained on the advanced problems in Math B (the part of the test that 

aimed at checking if students could construct a formal proof based on a suggested plan of 

proving); see Figure 2 for the test questions, and Table 3 for the results. 
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Figure 2. Advanced geometry problems for Grade 8 students 

Table 3: Results of the advanced geometry problems for Grade 8 students 

 

Question 1 Question 2 

Correct  

(%) 

Correct (%) No 

answer 

(%) 

Complete 

proof 

Incomplete 

proof 
Total 

Our sample 73.3 44.7 4.3 48.9 21.3 

National survey 63.3 34.2 9.1 43.3 28.6 

In the Math B test items (see Figure 2), Question 1 checks if students can reason backwards 

from the conclusion AD=BC or not. As the data in Table 3 show, 73.3% of the students in our 

sample answered correctly. This is 10% higher than the national average of 63.3%. This result 

shows that more students in our sample can identify what would be necessary to deduce the 
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conclusion as seen in section 1 of ‘Takuya’s memo’. We consider that this positive result is 

due to our students’ experience with flow-chart proofs in open situations in the first phase of 

our learning progression. In this phase, students learn to complete a flow-chart proof and 

experience thinking forwards/backwards between assumptions/conclusions. In this way, the 

students in our teaching experiment have more experience in planning a proof by finding 

which properties can be used as assumptions in open problems.   

Question 2 asks students to construct a formal proof by reference to the plan of ‘Takuya’s 

memo’. This plan shows that ∆AOD∆BOC is adequate to deduce the conclusion AD=BC 

(#1), that each of two pairs of sides (as the given conditions) are equal (#2), and that it might 

be possible to deduce ∆AOD∆BOC from the given conditions (#3). As the data in Table 3 

shows, 48.9% of the students in our sample answered correctly; this is 5.6% higher than the 

national average, 43.3%. Furthermore, 21.3% of our sample gave no answer, which is 7.3% 

lower than the national average of 28.6%.  

When we examined the quality of answer to Question 2 more closely, the correct answers are 

divided into two categories. Category 1 includes complete answers that provided correct 

reasons (e.g. OA=OB because this is an assumption) and the appropriate theorems to be used 

(e.g. congruent conditions of triangles). Category 2 includes the correct answers without these 

details. The data in Table 3 shows that the proportion of students who answered Question 2 

completely was greater in our sample (at 44.7%) than in the National survey (at 34.2%).  

These results suggests that our learning progression has an effect on increasing the quality of 

students’ proof construction as they can express more precisely what reasons and theorems 

would be necessary to complete a proof. We consider this improvement is due to the use of 

flow-chart formats through our learning progression. The flow-chart format influenced 

students to pay more attention to the structural elements of proofs, and their relationships, 

both when they construct flow-chart proofs and when they construct formal proofs by 

reference to flow-chart proofs.  

CONCLUDING REMARKS  

Based on the evidence presented in this paper, and as a tentative conclusion that needs further 

replication, we consider that the teaching of proof and proving with flow-chart proof based on 

our learning progression shows encouraging results as an introductory form of instruction. In 

particular, our survey results indicate that students who learnt proofs and proving in geometry 

by following our learning progression are more likely to plan a proof better and construct a 

proof in accordance with their plan. This is due to a) their experience with open problems that 

encourage them to think backwards/forwards to seek assumptions and conclusions in proofs, 

and b) they could grasp structure of proofs better through using flow-chart proofs.  

In taking our research forwards, we are focusing on two things. One focus is on why our 

learning progression works well in helping to develop students’ proof planning skills. To 

address this issue we have qualitative data (in addition to the quantitative survey data) on how 

our students learn flow-chart and formal proofs within our learning progression - this learning 

being akin to Simon’s (1995) use of the term ‘Actual Learning Trajectory’ (see also Simon & 

Tzur, 2004).  
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A second focus is providing students with more opportunities to construct flow-chart proofs 

in open situations (as used in the first phase of our learning progression). To do this are 

developing a web-based learning platform, www.schoolmath.jp/flowchart_en/home.htm 

(available in both Japanese and English) that provides flow-chart proof tasks for use in 

teaching our learning progression (see Miyazaki, Fujita, Murakami, Baba & Jones, 2011). 

Figure 3 provides an example of an open problem situation from our web-based learning 

platform. Initial trialling is suggesting that using the web-based learning platform, and the 

feedback it provides, can promote students’ productive and flexible thinking as they learn to 

prove. 

 

Figure 3. Example task from a web-based learning platform for flow-chart proving 
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