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This paper reports on a learning progression based on flow-chart proving and aimed at providing a
basis for introducing the structure of proof in lower secondary school geometry. The proposed
learning progression has three phases: constructing flow-chart proofs in an open situation,
constructing formal proofs by reference to flow-chart proofs in a closed situation, and refining
formal proofs by placing them into flow-chart proof format in a closed problem situation. Through
teaching this progression in three Grade 8 classrooms (students aged 14), and assessing the learning
through a test administered several months later, our evidence indicates that students who studied
proof and proving with this learning progression were better able to construct a proof than other
students who did not follow this approach.

proof, flow-chart proving, learning progression, geometry, lower secondary school
INTRODUCTION

Even though the teaching and learning of proof is universally recognized as a key element of
mathematics curricula, it remains the case that students at the lower secondary school level
can experience difficulties in understanding proof (eg: Hanna & de Villiers, 2012; Mariotti,
2006). Improving instructional approaches is one strategy and in our research we focus on the
introductory phases of the teaching of proofs and proving.

Based on the idea of learning progressions as “successively more sophisticated ways of
thinking about a topic that can follow one another as children learn about and investigate a
topic” (National Research Council, 2007, p. 214), we designed a learning progression for the
introductory phases of learning how to structure proofs in lower secondary school geometry.
The purposes of this paper are twofold: a) to provide a theoretical outline of some of the
design principles underpinning the learning progression on how to structure proofs in lower
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secondary school geometry, and b) to evaluate the effects of implementing these lessons in
terms of knowledge and understanding which students gained from the lessons.

THEORETICAL UNDERPINNINGS

The theoretical underpinnings that we utilise for designing an introductory stage of learning
to construct proofs in geometry in lower secondary school relate to several themes; the nature
of proving activities, the design of learning progressions, and the use of flow-chart proofs as a
format for geometrical proofs.

Proving as an explorative activity

In considering proving as an explorative activity, we refer to several theoretical positions:
views on the relative nature of mathematical truths (Fawcett, 1938), the heuristic and
fallibilistic nature of mathematical processes (Lakatos, 1976), and the nature of the proof
construction process (McCrone & Martin, 2009). Based on these ideas, we consider that
proving activities are flexible, dynamic and productive in nature, and various aspects of
proving activities are interrelated and resonant with each other.

We can see that proving activities ‘breathe life’ into mathematics teaching and learning and
are intellectually stimulating in numerous ways, for example: producing propositions
inductively/deductively/analogically, planning and constructing proofs for these produced
propositions, and reflecting on and looking back at producing propositions, including
planning and constructing proofs to overcome local and global difficulties and
counter-examples, and then refining propositions and proofs (Miyazaki & Fujita, in press).

Developing learning progressions

The idea of learning progressions, as Empson (2011, p. 574) explains, is “now virtually
synonymous with learning trajectory” Given our goal of researching the introductory learning
of how to structure proofs in lower secondary school geometry, we borrow from the notion of
‘hypothetical learning trajectory’ (HLT) that it includes “the learning goal, the learning
activities, and the thinking and learning in which the students might engage” (Simon, 1995, p.
133). This set of components can underpin the design of a sequence of teaching; see, for
example, Clements and Sarama (2004), Simon and Tzur (2004), Stylianides and Stylianides
(2009). For our focus on learning to structure proofs in lower secondary school geometry, our
learning progression comprises the following components: a) Learning goals: by the end of
the teaching, students will be able to i) plan and construct a proof in geometry, and ii)
understand the structure of proofs in geometry; this entails students beginning to grasp
elements of the structure of proof, and then gradually being able to see the entire structure
(Miyazaki & Fujita, 2010); b) The learning process and activities: proof construction based
on the flow-chart proof format (McMurray, 1978), with both open and closed problem
situations; ¢) The thinking and learning in which the students might engage: this encompasses
thinking forward and backward, planning and constructing a proof, reflection of the structure
of proofs, and so on.
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Flow-chart proving in an open problem situation

A key feature of our learning progression is the use of flow-chart proofs that shows a ‘story
line’ of the proof; beginning with the kinds of assumptions from which the conclusion is
deduced, and including the kinds of theorems being used, how the assumptions and
conclusion are connected, and so on. As McMurray (1978) and others have suggested,
flow-chart proofs can be introduced to students before they learn the more formal ‘two
column proof” format.

We consider that the power of flow-chart proofs can be particularly enriched in ‘open’
situations where students can construct multiple solutions by deciding the assumptions and
intermediate propositions necessary to deduce a given conclusion.

In the figure below, we would like to prove ZB=/C by using congruent
triangles. What do we need to show this, and what conditions of congruent
triangles can be used? Complete the flow-chart!

A

T LB=/C
O Condition of congruent tnangles

Figure 1: An example of flow-chart proving in an open situation

For example, the problem in Figure 1 is intentionally designed so that students can freely
choose which assumptions they use to draw a conclusion ZB=/C. After drawing a line AQO,
for instance, students might think backwards from the conclusion to decide which triangles
should be congruent to show #B=~2C, and what condition of congruent figures should be
used. Then, they might show that #B=~/C by using the theorem “If two figures are congruent,
then corresponding angles are equal.” However, other solutions are also possible. One might
be to use the fact that they have already found AO=AO as a same line and hence that
AABO=AACO can be shown by assuming AB=AC and BO=CO using the SSS condition. As
students can construct more than one suitable proof, we refer to this type of problem situation
as ‘open’.

One purpose of flow-chart proving in an open problem situation is to encourage students to
think backward from the problem conclusions. Over time, students are expected to connect
two directions of thinking; thinking forwards from the assumptions, and thinking backwards
from the conclusions. During this process it can happen that students produce a proof with
logical circularity. Our research findings suggest that confronting logical circularity provides
a chance to explore the reason why this form of argument is unacceptable and leads to
students becoming more aware of their own understanding of the structure of proof (Miyazaki
and Fujita, 2010; Fujita, Jones and Miyazaki, 2011).

3025



Miyazaki, Fujita, and Jones

LEARNING PROGRESSION FOR PROOF STRUCTURE AND CONSTRUCTION
Three phases of the teaching of proof construction

Our learning progression for the introductory learning of proof structure and construction by
using flow-chart proof in Grade 8 (aged 14), informed by the theoretical underpinnings laid
out above, has the following three phases: constructing flow-chart proofs in an open situation,
constructing a formal proof by reference to a flow-chart proof in a closed situation, refining
formal proofs by placing them into a flow-chart proof format in a closed situation. We explain
the reasons for these phases below.

In the first phase, students construct flow-chart proofs in an open problem situation. Since
students at this very early stage of learning about proofs might see a formal proof as a rather
meaningless set of symbols about the properties of geometric shapes, students may not
understand why they should engage in such mathematical arguments. In particular, they may
have difficulty in connecting the problem assumptions to the problem conclusion in a
deductive fashion. Through their activity in the first phase of our proposed learning
progression, they are expected to learn how to think forwards/backwards between
assumptions/conclusions as they construct their proof. They also are encouraged to organize
their thinking in order to connect assumptions and conclusions. Thus this phase can support
them to understand how to ‘assemble’ a proof as a structural entity.

In the second phase, students first construct a flow-chart proof in a closed situation (similar to
the typical form of proof problem that appear in textbooks). Next they construct a formal
proof through transposing a flow-chart proof into a paragraph proof. Through their learning in
the previous phase (where they constructed flow-chart proofs) they have a better
understanding of the structure of proof and develop the capability to think
forwards/backwards between assumptions/conclusions. In the second phase, students are
expected to transform their flow-chart proof into a paragraph proof. Here, students need to
learn how to use assumptions, and the ‘arrows’ of flow-chart proof are replaced by
mathematical language.

Finally, in the third phase students first construct paragraph proofs in closed problem
situations, and then refine their proofs by placing them into flow-chart proof format. The
reason for this third phase is that although students get familiar with constructing paragraph
proofs gradually by the end of second phase, they usually make some mistakes in their
paragraph proofs. By translating paragraph proofs into flow-chart proof format in this phase,
the intention is that students spot their mistakes related to the structure of proof, and they
learn to look back over proofs, correct any mistakes, and make proofs better by themselves.

Nine lessons as an introductory stage of the teaching of the structure of proof

By using our proposed learning progression of flow-chart proving, we designed nine lessons
taking into account open/closed situations, varying steps of deductive reasoning, and different
problems and contexts. Our design, developed in cooperation with expert mathematics
teachers, included detailed teaching guidelines, together with worksheets for students’
activity. The nine lessons are summarised in Table 1.
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Table 1: Learning progression across nine lessons

Open/closed | Steps in
Phase No. p. . P . Problems and contexts
situation reasoning
Constructing flow-chart proofs by using
1 Open 1 congruency of two triangles connected by a
vertex
5 Ooen 1 Constructing flow-chart proofs by using
P congruency of two triangles connected by a side
Constructing Constructing flow-chart proofs using
flow-chart ; Onen . congruency of two triangles connected by a
proofs P vertex, while clarifying figural properties as
assumptions
Constructing flow-chart proofs using
congruency of two triangles connected by a
4 Open 2 . . e o .
side, while clarifying figural properties as
assumptions
Constructing a Constructing a formal proof with a flow-chart
5 Closed 1 .
formal proof proof using the problem from Lesson 3
b);lreferehnce 0 Constructing a formal proof with a flow-chart
atlow-chart 6 Closed 2 proof using the problem from Lesson 4
proof
Constructing a formal proof and refining it in
7 Closed 2 the flow-chart format using the problem of
Refining Lesson No.6
formal proofs Constructing a formal proofs by using
by placing 8 Closed 2 congruency of two triangles overlapping each
them into other and refining it with the flow-chart format
flow;cfhart ) Constructing a formal proofs by using
proof forma . ,
9 Closed ) properties of parallel lines and congruency of

two triangles connected by a vertex and refining
it with the flow-chart format

EVALUATING THE LEARNING PROGRESSION

Methods

In a widely-used Japanese 8th Grade textbook (for 14 years old), authorized by the Ministry
of Education, there are three main sections of geometry: 1) properties of parallel lines and
angles, properties of congruent figures, and conditions of congruent triangles through
informal proofs; 2) what is a formal proof and how to construct it; 3) properties of triangles
and quadrangles by using formal proofs. The suggested plan is that the 1%, 2" and 3" sections
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need 11, 4, and 15 lessons, respectively. Our learning progression described above is
designed to replace the second section. As a result, the second section needed five additional
lessons. The first section and the third section remained the same.

From October 2010 to January 2011, when most 8th Graders in Japan learn geometry, three
mathematics teachers in a state-funded lower secondary school implemented our sequence of
nine geometry lessons in accordance with our learning progression. Each teacher taught one
class. In total, 94 students were taught. Afterwards they implemented the usual lessons on the
properties of triangles and quadrangles using the textbook that is widely used in Japan.

Our assessment was conducted in May 2011 (when the students were learning algebra), some
four months after the teaching of the nine lessons. We used test items from the Japanese
National Survey that was conducted for all students in Japan in April 2009. The National
Survey consisted of two sets of problems: Math A and Math B. The first set of problems,
Math A, checked basic knowledge and skills. The second section, Math B, checked advanced
mathematical thinking in the real world and the mathematical world (for an example of a
Math B problem, see Figure 2). In order to compare our result with the National Survey, we
used both sets of questions and allocated the same time for our students to answer.
Furthermore, to ensure the quality of the assessment, the marking of our survey was
conducted by the same organization that marked the National Survey.

Results and discussion

As shown in Table 2, in terms of the basic geometry problems in Math A (questions
especially related to the content for 8th Graders) there was no difference between our sample
and National survey. This indicates that the nine lessons based on our learning progression
did not impact on the development of the students’ basic knowledge and skills.

Table 2: Test results for basic geometrical problems in Math A

Proportion of correct answers (%)
Question number and topic
Our sample National Survey
6(3) | Choose a congruent triangle with a given triangle 66.0 64.7
6(4) | Answer the degree of a circular angle 56.4 59.6
6(5) 1 | Choose appropriate assumptions to complete a 79.8 78.6
proof that shows the sum of inner angles of
6(5) 2 triangle is 180 degrees. 86.2 82.8
7 Write a condltlo_n of para_llelogram with using 60.6 573
symbols according to a figure.
8 Understand a diagram used in a proof 56.4 57.6

In contrast, the impact of our learning progression using flow-chart proofs is shown by the
results the students obtained on the advanced problems in Math B (the part of the test that
aimed at checking if students could construct a formal proof based on a suggested plan of
proving); see Figure 2 for the test questions, and Table 3 for the results.
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Takuya is trying to solve the following problem.
Problem

In fig. 1, let us take points A, B, C and D on OX
and OY of AXOY so that OA = 0B and OC =
OD. When A and D, and B and C are connected,

prove AD = BC.

Takuya described his plan to prove it as follows.
Takuya's memo
#1 To prove AD = BC, it is enough to show AAOD =ABOC.

#2 When I see AAOD and ABOC of Fig.1 more clearly, I can divide it into two
parts and show what are assumed as follows.

#3 Based on #2. I think I can prove AAOD =ABOC.
(1) Which property should be used to say ‘in order to prove AD=BC, it is enough to
show AAOD =ABOC’ as seen in #1 of Takuya's memo? Choose from a)-d).
a) In congruent figures, corresponding sides are equal.
b) In congruent figures, corresponding angles are equal.
¢) In congruent figures, perimeters are equal.
d) In congruent figures, areas are equal.
(2) Prove AD=BC of Problem.

Figure 2. Advanced geometry problems for Grade 8 students
Table 3: Results of the advanced geometry problems for Grade 8 students

Question 1 Question 2
Correct (%) No
Correct
Complete | Incomplete answer
(%) Total 0

proof proof (%)
Our sample 73.3 447 4.3 48.9 21.3
National survey 63.3 34.2 9.1 43.3 28.6

In the Math B test items (see Figure 2), Question 1 checks if students can reason backwards
from the conclusion AD=BC or not. As the data in Table 3 show, 73.3% of the students in our
sample answered correctly. This is 10% higher than the national average of 63.3%. This result
shows that more students in our sample can identify what would be necessary to deduce the
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conclusion as seen in section 1 of ‘Takuya’s memo’. We consider that this positive result is
due to our students’ experience with flow-chart proofs in open situations in the first phase of
our learning progression. In this phase, students learn to complete a flow-chart proof and
experience thinking forwards/backwards between assumptions/conclusions. In this way, the
students in our teaching experiment have more experience in planning a proof by finding
which properties can be used as assumptions in open problems.

Question 2 asks students to construct a formal proof by reference to the plan of ‘Takuya’s
memo’. This plan shows that AAOD=ABOC is adequate to deduce the conclusion AD=BC
(#1), that each of two pairs of sides (as the given conditions) are equal (#2), and that it might
be possible to deduce AAOD=ABOC from the given conditions (#3). As the data in Table 3
shows, 48.9% of the students in our sample answered correctly; this is 5.6% higher than the
national average, 43.3%. Furthermore, 21.3% of our sample gave no answer, which is 7.3%
lower than the national average of 28.6%.

When we examined the quality of answer to Question 2 more closely, the correct answers are
divided into two categories. Category 1 includes complete answers that provided correct
reasons (e.g. OA=0B because this is an assumption) and the appropriate theorems to be used
(e.g. congruent conditions of triangles). Category 2 includes the correct answers without these
details. The data in Table 3 shows that the proportion of students who answered Question 2
completely was greater in our sample (at 44.7%) than in the National survey (at 34.2%).

These results suggests that our learning progression has an effect on increasing the quality of
students’ proof construction as they can express more precisely what reasons and theorems
would be necessary to complete a proof. We consider this improvement is due to the use of
flow-chart formats through our learning progression. The flow-chart format influenced
students to pay more attention to the structural elements of proofs, and their relationships,
both when they construct flow-chart proofs and when they construct formal proofs by
reference to flow-chart proofs.

CONCLUDING REMARKS

Based on the evidence presented in this paper, and as a tentative conclusion that needs further
replication, we consider that the teaching of proof and proving with flow-chart proof based on
our learning progression shows encouraging results as an introductory form of instruction. In
particular, our survey results indicate that students who learnt proofs and proving in geometry
by following our learning progression are more likely to plan a proof better and construct a
proof in accordance with their plan. This is due to a) their experience with open problems that
encourage them to think backwards/forwards to seek assumptions and conclusions in proofs,
and b) they could grasp structure of proofs better through using flow-chart proofs.

In taking our research forwards, we are focusing on two things. One focus is on why our
learning progression works well in helping to develop students’ proof planning skills. To
address this issue we have qualitative data (in addition to the quantitative survey data) on how
our students learn flow-chart and formal proofs within our learning progression - this learning
being akin to Simon’s (1995) use of the term ‘Actual Learning Trajectory’ (see also Simon &
Tzur, 2004).
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A second focus is providing students with more opportunities to construct flow-chart proofs
in open situations (as used in the first phase of our learning progression). To do this are
developing a web-based learning platform, www.schoolmath.jp/flowchart_en/home.htm
(available in both Japanese and English) that provides flow-chart proof tasks for use in
teaching our learning progression (see Miyazaki, Fujita, Murakami, Baba & Jones, 2011).
Figure 3 provides an example of an open problem situation from our web-based learning
platform. Initial trialling is suggesting that using the web-based learning platform, and the
feedback it provides, can promote students’ productive and flexible thinking as they learn to
prove.

Let's try flow chart thinking!

Lesson llI—4

In the right-hand side diagram, you will prove by showing that
these triangles are congruent. What else do you need to add to prove this?
What type of condition of congruence and what property of congruent figures
do you use in there?

Let's complete the flow chart!

25pt
| Choose a right statement. M|
| ap | = AE | —
lLM: flgures are congruent, then a pair of corresponding angles is equal in measurement. v
| «BAD] = | zcAE] — [ & |=[oAcE —Z» =
[zace| = [«aBD] —

Check your answers ||| Try once more

Figure 3. Example task from a web-based learning platform for flow-chart proving
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