The University of Southampton
University of Southampton Institutional Repository

Dataset for Deep learning enabled design of complex transmission matrices for universal optical components

Dataset for Deep learning enabled design of complex transmission matrices for universal optical components
Dataset for Deep learning enabled design of complex transmission matrices for universal optical components
Data comprising Numerical simulation results and deep learning results to supprot article N. J. Dinsdale, P. R. Wiecha, M. Delaney, J. Reynolds, M. Ebert, I. Zeimpekis, D. J. Thomson, G. T. Reed, P. Lalanne, K. Vynck, O. L. Muskens "Deep learning enabled design of complex transmission matrices for universal optical components". ACS Photonics (2020). Each figure has a Readme file attached.
University of Southampton
Dinsdale, Nicholas Joseph
4ec4aa55-6cce-43f7-9c35-cf8c16e8cf86
Wiecha, Peter
fb335482-9577-41af-a0ef-3988b7654c9b
Delaney, Matthew
46e88672-435e-4f50-8df2-2aed6f3edbcd
Reynolds, Jamie Dean
505b2309-b2fa-434a-9a20-b61e866b3d57
Ebert, Martin
1a8f1756-d724-4b44-8504-c01f8dc7aa50
Zeimpekis-Karakonstantinos, Ioannis
a2c354ec-3891-497c-adac-89b3a5d96af0
Thomson, David
17c1626c-2422-42c6-98e0-586ae220bcda
Reed, Graham
ca08dd60-c072-4d7d-b254-75714d570139
Lalanne, Philippe
2eaa3c11-ba6e-4de9-85d1-a3788f611964
Vynck, Kevin
fa5b6236-c2d0-47a3-90a9-5c849b9cb22f
Muskens, Otto
2284101a-f9ef-4d79-8951-a6cda5bfc7f9
Dinsdale, Nicholas Joseph
4ec4aa55-6cce-43f7-9c35-cf8c16e8cf86
Wiecha, Peter
fb335482-9577-41af-a0ef-3988b7654c9b
Delaney, Matthew
46e88672-435e-4f50-8df2-2aed6f3edbcd
Reynolds, Jamie Dean
505b2309-b2fa-434a-9a20-b61e866b3d57
Ebert, Martin
1a8f1756-d724-4b44-8504-c01f8dc7aa50
Zeimpekis-Karakonstantinos, Ioannis
a2c354ec-3891-497c-adac-89b3a5d96af0
Thomson, David
17c1626c-2422-42c6-98e0-586ae220bcda
Reed, Graham
ca08dd60-c072-4d7d-b254-75714d570139
Lalanne, Philippe
2eaa3c11-ba6e-4de9-85d1-a3788f611964
Vynck, Kevin
fa5b6236-c2d0-47a3-90a9-5c849b9cb22f
Muskens, Otto
2284101a-f9ef-4d79-8951-a6cda5bfc7f9

Dinsdale, Nicholas Joseph, Wiecha, Peter, Delaney, Matthew, Reynolds, Jamie Dean, Ebert, Martin, Zeimpekis-Karakonstantinos, Ioannis, Thomson, David, Reed, Graham, Lalanne, Philippe, Vynck, Kevin and Muskens, Otto (2021) Dataset for Deep learning enabled design of complex transmission matrices for universal optical components. University of Southampton doi:10.5258/SOTON/D1681 [Dataset]

Record type: Dataset

Abstract

Data comprising Numerical simulation results and deep learning results to supprot article N. J. Dinsdale, P. R. Wiecha, M. Delaney, J. Reynolds, M. Ebert, I. Zeimpekis, D. J. Thomson, G. T. Reed, P. Lalanne, K. Vynck, O. L. Muskens "Deep learning enabled design of complex transmission matrices for universal optical components". ACS Photonics (2020). Each figure has a Readme file attached.

Archive
dataset.zip - Dataset
Available under License Creative Commons Attribution.
Download (127MB)
Text
readme_D1681.txt - Text
Available under License Creative Commons Attribution.
Download (1kB)

More information

Published date: 1 January 2021

Identifiers

Local EPrints ID: 445934
URI: http://eprints.soton.ac.uk/id/eprint/445934
PURE UUID: eb0c64b0-b011-4e30-94d3-89c056454a96
ORCID for Nicholas Joseph Dinsdale: ORCID iD orcid.org/0000-0001-9870-5700
ORCID for Ioannis Zeimpekis-Karakonstantinos: ORCID iD orcid.org/0000-0002-7455-1599
ORCID for Otto Muskens: ORCID iD orcid.org/0000-0003-0693-5504

Catalogue record

Date deposited: 14 Jan 2021 19:16
Last modified: 06 Jun 2024 01:49

Export record

Altmetrics

Contributors

Creator: Nicholas Joseph Dinsdale ORCID iD
Creator: Peter Wiecha
Creator: Matthew Delaney
Creator: Jamie Dean Reynolds
Creator: Martin Ebert
Creator: David Thomson
Creator: Graham Reed
Creator: Philippe Lalanne
Creator: Kevin Vynck
Creator: Otto Muskens ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×