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Abstract

Fully non-linear equations of motion for dissipative general relativistic fluids can be obtained from

an action principle involving the explicit use of lower dimensional matter spaces. More traditional

strategies for incorporating dissipation—like the famous Müller-Israel-Stewart model—are based

on expansions away from equilibrium defined, in part, by the laws of thermodynamics. The goal

here is to build a formalism to facilitate comparison of the action-based results with those based

on the traditional approach. The first step of the process is to use the action-based approach

itself to build self-consistent notions of equilibrium. Next, first-order deviations are developed

directly on the matter spaces, which motivates the latter as the natural arena for the underlying

thermodynamics. Finally, we identify the dissipation terms of the action-based model with first-

order “thermodynamic” fluxes, on which the traditional models are built. A simple application of

a single viscous fluid is considered. The description is developed in a general setting so that the

formalism can be used to describe more complicated systems, for which causal and stable models

are not yet available. Finally, even though our expansions are halted at first order, we sketch out

how a causal response can be implemented with telegraph-type equations.
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I. INTRODUCTION

The covariant nature of general relativity highlights the central role played by the refer-

ence frame used to describe a physical system. At the same time, the evolution of dissipative

fluids must be consistent with thermodynamic principles and the arrow of time associated

with the second law. Matching these two pictures—general relativity and thermodynamics—

poses interesting foundational questions, and therefore, it is not surprising that the construc-

tion of general relativistic models for dissipative fluids constitutes a problem that has kept

physicists busy for a long time.

Early attempts, like the seminal work of Eckart [1] and Landau and Lifshitz [2], date

back to the first half of the last century. These models are essentially the same and—even

though the Landau-Lifschitz version is a little less pathological—have been proven to suffer

from causality and stability shortcomings which cannot be ignored in a relativistic approach.

Important steps forward were taken by Müeller [3] in the 1960s and Israel and Stewart in

the 1970s [4–7]. Their results have been shown (Hiscock and Lindblom [8]) to resolve the

stability and causality issues of the earlier attempts. However, a number of other issues

remain to be addressed.

First, the Müller-Israel-Stewart (MIS) model is based on an implicit expansion in devia-

tions away from thermal equilibrium, and has been demonstrated to fail when large devia-

tions are considered (see Hiscock and Lindblom [9]). Second, from a field-theory perspective,

the “second-order” expansion of the MIS model cannot be considered complete. Even though

the dissipative terms are based on kinetic theory, the model contains only squares of first-

order “thermodynamic fluxes” (as in the sense of Onsager [10]) in all possible combinations

(see Andersson and Comer [11], Haskell et al. [12] for Newtonian multi-fluid applications).

Last, but not least, the equations of motion are obtained from the conservation of the total

stress-energy-momentum tensor of the system, and it is not clear how to extend the model

to multi-fluid systems relevant in, say, astrophysics and cosmology.

Another important step, at least from the formal point of view, was taken by Carter [13].

His model is based on a variational principle in which thermodynamic fluxes are upgraded to

dynamical variables. However, in order to complete the identification of these new dynamical

fields with the usual thermodynamic fluxes, a specific expansion in deviation from thermal

equilibrium had to be introduced, and the resulting model was shown to belong to the same
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family as those of the MIS variety (see [14]).

More recently, a fairly general procedure for deriving the field equations for dissipative

fluids from an action principle has been put forward by Andersson and Comer [15]. It

extends the convective variational principle for perfect multi-fluids introduced by Carter

[16] to include dissipation—notably, maintaining the particle fluxes as the only dynamical

fields. Moreover, the action and the field equations it produces are fully non-linear. The

“variational” aspect of the approach is in the context of the action principle, and even though

it may sound counter-intuitive, there is nothing in the variational process that says the field

equations themselves have to be linear in the fields.

An important—more familiar—example illustrating this same feature is the variational

principle for the Einstein-Hilbert action for General Relativity. It yields the Einstein Equa-

tions, which are notoriously non-linear in the metric. Another useful example is the action

for Quantum Chromodynamics, which uses non-Abelian gauge-vector bosons. The key point

is that, unlike the MIS approach, the Andersson and Comer [15] action principle does not

reference any sort of chemical, dynamical, or thermal equilibrium, other than to start with

the assumption that the physics can be modelled as fluid phenomena.

The main goal of the present work is to compare the action-based formulation with pre-

vious approaches (such as MIS). They—and more recent works [17, 18]—use an expansion

to create an approximate set of field equations to describe dissipative phenomena. Since the

action-based model already provides a set of equations (at least in principle) valid in every

regime, we can make the comparison using standard perturbation techniques. The dissipa-

tion terms are assumed to generate first-order deviations away from equilibria obtained using

the non-dissipative limit of the field equations. Working this way we hope to also understand

better the role of length- and time-scales of fluid elements on the large scale behavior of the

system; in particular, how to link the micro-scale dynamics of the many particles in a fluid

element with the macro-scale dynamics between the fluid elements themselves, and the role

of the Equivalence Principle in setting these scales.

The paper is laid out as follows: In section II we briefly summarize the action-based

model. In section III we discuss the role of equilibrium from the fluid perspective and study

the dissipative action-based equations in this limit. In section IV we set the stage for the

perturbative expansion around equilibrium, building it directly on the matter space. We

also introduce a conceptual novelty, the “equilibrium observer” frame of reference, to be
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distinguished from the Landau or Eckart frames, and show how it arises naturally (as a dif-

feomorphism) in the formalism. In section V we impose the (thermodynamically motivated)

condition that energy (density) is minimized at equilibrium and show that the dissipative

pieces of the field equations vanish in this limit. This is a novel result because it is normally

assumed. In sections VI and VII we complete the expansion and identify the thermody-

namic fluxes in the variational context. In section VII B we provide an explicit example by

applying the formalism to a single viscous fluid, which also provides context for discussing

the key issue of causality. Finally, in section VIII, we sketch out how to implement a causal

response, even at first order in the expansion, by using equations of the telegraph type for

the fluxes.

Before moving on it is useful to clarify the index notation used throughout the discussion.

We use latin letters a, b, c, . . . for spacetime indices, and roman letters—such as x, y (or n, s

in specific models)—to label different chemical species and to distinguish dissipative (d)

from equilibrium (e) processes. Capital letters A,B,C, . . . are used for matter-space indices

(see below). Note that the Einstein summation convention does not apply to the chemical

indices.

II. ACTION-BASED APPROACH TO DISSIPATIVE FLUIDS: A BRIEF RECAP

A. Flux Definition

The crux of the fluid modelling scheme is to assume that knowledge of the total mass-

energy and momentum flux obtained by tracking the worldlines of individual particles can

be replaced with tracking the worldlines of fluid elements, which are defined in the following

way: Take a multi-particle system at some initial time having, say, total spatial size V ,

total number of particles N , total mass-energy E, and total entropy S. At the same time,

fill-up side-to-side, top-to-bottom, and front-to-back the entire system with I = 1...M local

conceptual boxes—the fluid elements. Each element has its own volume δVI , number of

particles δNI , mass-energy δEI , and entropy δSI . Roughly speaking, if there are charac-

teristic values δ VI ∼ δ V , δ NI ∼ δ N , etcetera, representative of the fluid elements, then

V ∼M δV , N ∼M δN , E ∼M δE, and S ∼M δS. Clearly, as the number M is increased

the ratios δV/V , δN/N , etcetera decrease, and the elements become ultra-local, implying
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that the change in the spacetime metric across them is small.

Now consider the Ith-fluid element. It moves through spacetime and, if the element is

small enough, the trajectory can be accurately represented by a single unit four-velocity uaI .

When taken together, and in the limit M →∞, all the uaI form a vector field on spacetime

and this field plays a role in the fluid system’s degrees of freedom. If a local typical scattering

length λI between the particles exists, and the size of fluid elements is commensurate with

that length (δVI ∼ λ3I), then the average four-velocity of the δNI particles will be uaI .

In principle, we now have everything we need to define the actual fluid degrees of free-

dom, which are the particle fluxes naI = (δNI/δVI)u
a
I . But, the fact that we have intro-

duced typical scattering lengths and average velocities as part of our fluid element definition

means we have assumed that fluid elements contain enough particles to warrant a statis-

tical/thermodynamical treatment; i.e., we have to know how the individual four-momenta

of the particles are distributed initially with respect to the fluid elements, and then redis-

tributed as the fluid evolves. It is this redistribution process that leads to dissipation and

is so difficult to model.

B. The Action Principle

Now we will outline the action-based approach to dissipation. First, recall that an action

is a functional of the fundamental fields of the system under study (here, the particle flux

currents and the spacetime metric). It is a measure, of sorts, on the set of all possible field

configurations. Roughly, the total set can be separated into two subsets: 1) those which

are completely arbitrary in the sense that they are not solutions of field equations; and, 2)

those which are not arbitrary and represent solutions of field equations. It is well-established

that the second subset of configurations are those which lead to extrema of the action; that

is, take arbitrary field configurations from subset 1) which are close to configurations from

subset 2), expand the action to first-order in their difference, and then determine if generic

restrictions on the field configurations exist which makes the first-order difference term in

the expansion vanish. If the action principle is well-formulated, then generic restrictions

will exist and will self-consistently be the field equations which define the field configuration

subset 2) above. There is nothing in this process that restricts the field equations to be
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linear in subset 2) configurations.1

Denoting the four-current particle fluxes of the various species2 as nax (with x a la-

bel identifying the species), the functional dependence of the Lagrangian density becomes√
|g|Λ(n2

x, n
2
xy) where

n2
x = −naxnbxgab ,

n2
xy = −naxnbygab .

(1)

A nice feature of the variational approach is that it naturally provides the conjugate four-

momenta of each species while accounting for the entrainment effect (see, for example, [19,

20]). Roughly speaking, entrainment causes a species’ four-momentum µx
a to be misaligned

with its respective particle flux nax. We see this explicitly in the momentum/flux relation

which is given by

µx
a = Bxnx

a +
∑
y 6=x

Axyny
a , (2)

where

Bx = −2
∂Λ

∂n2
x

, (3)

while the entrainment coefficients are defined as

Axy = − ∂Λ

∂n2
xy

. (4)

It is well established that, to obtain non-trivial fluid equations of motion from such a La-

grangian, the variation of the particle fluxes must be constrained [21, 22].

C. The Matter Space Formulation and Field Equations

A particularly elegant way of imposing the relevant constraint involves introducing the

matter space, defined by identifying each current worldline as a single point, see [23]. For

1 For example, a scalar field theory with V (φ) = λφ4 potential will yield field equations which are non-linear

in φ.
2 Hereafter we will not make any distinction between the words species and constituents. For instance, in a

neutron star context, the protons and the electrons constitute examples of chemical species/constituents.

When considered individually, it would be natural to think of the particle species, but when the two are

locked together (leading to a charge-neutral conglomerate) the word constituent may be more appropriate.

However, we do not need to make a distinction for the present discussion.
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each fluid, the matter space is a three-dimensional manifold, so that when we introduce

a set of coordinates XA
x on, say, the x-fluid’s matter space, we give a “name”, or label,

to each fluid element. Because the entire worldline of each fluid element is mapped to a

single matter space point, it is clear that the fluid element’s label XA
x , now considered as a

collection of three scalars on spacetime, takes the same value at each point on the worldline.

After assigning a label to each fluid element worldline, we can use the linear map

ΨA
x a

.
=
∂XA

x

∂xa
(5)

to push-forward (pull-back) vectors (co-vectors) between spacetime and the matter spaces.

This is important because we can associate with each of the particle fluxes nax a three-form

nx
abc by the standard Hodge-dual procedure3:

nax =
1

3!
εbcda nx

bcd , nx
abc = εeabc n

e
x . (6)

Now we can assume that the spacetime three-form nx
abc is obtained by pulling back a corre-

sponding matter space three-form, to be denoted nx
ABC ; namely,

nx
abc = ΨA

x [aΨ
B
x bΨ

C
x c]n

x
ABC , (7)

where, as usual, straight brackets indicate anti-symmetrization (and round ones symmetriza-

tion). Similarly, upon applying the Hodge-dual process to the four-momentum µx
a, we can

push-forward with the map and identify a matter space momentum “three-form” µABCx via

µabcx = εdabc µx
d ,

µABCx = ΨA
x [aΨ

B
x bΨ

C
x c] µ

abc
x .

(8)

The main idea of the convective variational principle is to obtain the particle flux variation

δnax by first varying the matter-space three-form and then working backwards.

Generally speaking, there are two ways of tracking changes in a fluid system—Eulerian

and Lagrangian. The first, to be denoted by a δ, measures changes in the fluid with respect

to frames defined by the spacetime coordinates. The second, to be denoted ∆x, measures

3 Here, we follow the Hodge-dual convention of [24] and have used εbcdaεebcd = −3!δae to establish a sign

convention for the dual εbcda of the spacetime measure form.
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changes with respect to fluid elements. Locally, the two can be related through the Lie

derivative along some displacement vector field. If ξax is the displacement field, then4

∆x = δ + Lξx , (9)

where Lξx is the Lie derivative with respect to ξax . Because the label XA
x of a fluid element

is fixed, we can assert

∆XA
x = 0 =⇒ δXA

x = −LξxXA
x = −ΨA

x aξ
a
x , (10)

and thereby lock any displacement vector ξax on spacetime to a displacement δXA
x on matter

space. Now, it is easy to show that the particle flux variation δnax is (see [15])

δnax = −1

2
naxg

bcδgbc −
1

3!
εbcda

(
Lξxnx

bcd −ΨB
x [bΨ

C
x cΨ

D
x d] ∆xn

x
BCD

)
, (11)

Formally, we can take nx
ABC to be a particle measure form on the matter space, which

“counts” the total number of species x particles in the system. If it is a tensor on matter

space then it must be a function only of the matter space coordinates XA
x . But recall that

in spacetime, the matter space labels are scalar fields XA
x (xa) with the special property

that they take the same value at each spacetime point on the fluid element worldline with

which they are associated; clearly, this means that nx
ABC also takes the same value with

respect to its particular fluid element worldline. The net impact is that nx
abc is automatically

closed—because nx
ABC is a three-form on a 3-dimensional matter space—and therefore the

particle flux is conserved5:

∇an
a
x =

1

3!
εbcda∇[an

x
bcd] =

1

4!
εbcda(dn)abcd = 0 . (12)

But there is a deeper point to be made here.

The fact that nx
ABC = nx

ABC(XA
x ) implies ∆xn

x
ABC = 0, and one can verify that the

flux variation above reduces to the well-known result for non-dissipative fluids. Therefore,

to get the non-dissipative equations of motion one simply has to impose that the number

of particles is conserved in the variation, or, equivalently, that the particle creation rates

4 We note that this relation between Lagrangian and Eulerian variation works to first order in the pertur-

bation fields ξax , see Friedman and Schutz [25] for further details.
5 Here with dn we mean the exterior derivative of the differential form n.
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Γx = ∇an
a
x vanish. It then follows [15] that a way to include dissipative processes (read:

Γx 6= 0) at the level of the action principle is to break the matter space tensorial nature of

the particle measure form nx
ABC and allow it to be a function of more than just the XA

x ; in

other words, we break the closure property of the nx
abc.

This general strategy has been applied by Andersson and Comer [15], who focused on

the cases where nx
ABC depends on other species matter space coordinates XA

y as well as the

projected metrics

gABx = ΨA
x aΨ

B
x b g

ab ,

gABy = ΨA
y aΨ

B
y b g

ab ,

gABxy = ΨA
x aΨ

B
y b g

ab .

(13)

This additional functional dependence in the particle measure forms nx
ABC turns out to pro-

duce additional terms in the equations of motion representing different dissipation channels.

Specifically, the equations of motion take the form

fx
a + Γxµ

x
a = −∇bDx

ba +Rx
a , (14)

where

fx
a = 2nbx∇[bµ

x
a] ,

Dx
ab = Sx

ab +
∑
y 6=x

syxab +
1

2

(
Sxy
ba + Syx

ab

)
,

Rx
a =

∑
y 6=x

(
Ryx
a − Rxy

a

)
+

(
ryxa − rxya

)
+

(
Ryx
a −Rxy

a

)
.

(15)

Projecting the field equation along uax = nax/nx, we see that

(−uaxµx
a) Γx = uax∇bDx

ba − uaxRx
a , (16)

while the stress-energy-momentum tensor is

Tab = Ψgab +
∑
x

(nx
aµ

x
b +Dx

ab) . (17)

It follows, as an identity, that
∑

xR
x
a = 0, and because of this we have automatically

∇aTab = 0. Finally, it is the case that ubxD
x
ab = 0 automatically.

The explicit expressions for the Ryx
a , Sx

ab, etcetera terms will be given later, at a point

where their application is more relevant. However, it is important to note here that the
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“resistive terms” rxya , Rxy
a as well as the viscous tensors sxyab , S

xy
ab arise because we assume

that nx
ABC depends on gABy and gABxy , respectively. Also, it is easy to see that in general

the x-species total viscous tensor Dx
ab is not necessarily symmetric because Sxy

ab is not. This

property is, however, not inherited by the total viscous tensor of the system meaning Dab =∑
xD

x
ab = Dba.

D. Matter Space Volume Forms

All dissipative terms that enter the action-based equations are obtained by assuming that

the fundamental current three-forms nx
abc depend on an additional set of quantities which

breaks their closure (∇[an
x
bcd] 6= 0). We now want to explain how this can happen, but begin

by introducing a bit of notation.

We need to distinguish between the Levi-Civita symbol ηABC and a volume measure form

εxABC on the matter space. The Levi-Civita symbol is defined as ηABC = [AB C] for every

chosen set of coordinates (and thus is not a tensor but a tensor density) while the volume

measure form εxABC can be defined6 by means of the push-forward of the metric:

gx =
1

3!
ηABCηDEF g

AD
x gBEx gCFx = det(gABx )

εxABC =
√
gxηABC =

√
gx[AB C]

(18)

where gx = (gx)
−1 is the determinant of the inverse matrix gxAB; i.e. gxACg

CB
x = δBA .

This volume measure form provides a way to measure the volume of “matter elements”,

infinitesimal volumes in the matter space manifold. We can relate these quantities to the

current and momentum three-forms

nx
ABC = Nx ε

x
ABC = N̄xη

x
ABC ,

µABCx =Mx ε
ABC
x = M̄x η

ABC
x .

(19)

The point we want to make here is that the barred quantities look more like scalar densities

on the x-matter space, while the non-barred ones look more like scalars. The relation

6 This is tricky for a couple of reasons: It is well known from work on general relativistic elastic bodies [26]

that this is not the only possible choice. Also, the projected metric gABx is not “fixed” in the sense that the

spacetime metric gab changes, in a general curved spacetime, as a fluid element moves from point-to-point

along its worldline.
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between the two normalizations is simply

Nx =
√
gx N̄x ,

Mx =
√
gx M̄x .

(20)

We can use this to expedite our use of the convective variational principle by focusing the

additional functional dependence of nx
ABC into

Nx = Nx(X
A
x , X

A
y , g

AB
x , gABy , gABxy ) . (21)

To make contact with proper quantities measured in spacetime—that is, with the rest

frame density and rest frame momentum for each fluid component—it is useful to introduce

an appropriate tetrad eâa for each species; an orthonormal basis whose timelike unit vector

e0̂ = ux, so that uâx = (e0̂)
â = δâ

0̂
= (1, 0, 0, 0)T . The components of the spacetime measure

form in this tetrad basis are7

εâb̂ĉd̂ = εabcdeâae
b̂
be
ĉ
ce
d̂
d = ηâb̂ĉd̂ (22)

where ηâb̂ĉd̂ = −[â b̂ ĉ d̂] and we have omitted the chemical index. Now, since push-forward

(and pull-back) is a linear map between vector spaces (the tangent space), it transforms as

a linear map under coordinate changes, and we can write

AA =
∂XA

x

∂xa
Aa = ΨA

x âA
â (23)

where we have introduced the short-hand notation8

ΨA
x â ≡ ΨA

x a e
a
â =

∂XA
x

∂xa
eaâ . (24)

Making use of the fact that 0 = uâxΨ
A
x â = ΨA

x 0̂
we then get9

gABx = ΨA
x âΨ

B
x b̂
ηâb̂ =⇒ gx = det

(
ΨA

x î

)2
, (25)

which leads to10

Mx =
1

3!
µABCx εxABC =

=
1

3!

√
gxηABC ΨA

x âΨ
B
x b̂

ΨC
x ĉ ε

0̂âb̂ĉµx
0̂

= µx ,
(26)

7 Recall that, since gab = eâae
b̂
bηâb̂, the determinant of the tetrad e =

√
|g|.

8 Following [24] we denote the inverse matrix of the tetrad as eaâ.
9 The index î runs over the 1, 2, 3 components of the tetrad basis, and â = 0̂, î.

10 Note that, because of the standard convention we use η0̂b̂ĉd̂ = −εb̂ĉd̂ with b̂, ĉ, d̂ = 1, 2, 3.
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where we have used µx = −µx
au

a
x = −µ0̂

x. This fact is important because it makes clear

that only the (rest-frame) energy content of the four-momentum co-vector µx
a is stored in

the normalization of the matter space momentum three-form µABCx . Similarly, one can show

that Nx = nx, in fact

nx = − 1

3!
uxa ε

bcda nx
bcd = − 1

3!
uxâ ε

b̂ĉd̂â ΨB
x [b̂

ΨC
x ĉΨ

D
x d] ε

x
BCDNx

= − 1

3!
ux
0̂
εb̂ĉd̂0̂εb̂ĉd̂Nx = −ux

0̂
Nx = Nx .

(27)

These relations are not surprising. It is quite intuitive that the non-barred quantities are

related to spacetime (rest-frame) densities given that the three-forms εxABC measure the

volume of the matter space elements.

We can also use the tetrad formalism to prove another result that will be needed later on;

the intimate connection between a non-zero particle creation rate and an extended functional

dependence of the current three-form. In fact, we have (see eq. (12))

Γx = ∇an
a
x =

1

3!
εbcda ΨB

x [bΨ
C
x cΨ

D
x d∇a]n

x
BCD , (28)

where we used ∇[aΨ
B
x bΨ

C
x cΨ

D
x d] = 0. Introducing (again) a tetrad comoving with the x-

species, and multiplying by µx we have

µxΓx =
1

3!
µABCx uax∇an

x
ABC ≡

1

3!
µABCx

dnx
ABC

dτx
. (29)

As explained earlier, the right-hand-side of this equation vanishes identically if nx
ABC =

nx
ABC(XA

x ), while it is in general non-zero if we assume the extended functional dependence

given in eq. (21).

We can now use the introduced normalizations to slim the notation (with respect to that

used in [15]) for the various pieces of Rx
a and Dx

ab which were introduced but not defined

above. For instance, the “purely reactive” term from [15] becomes

Rxy
a =

1

3!
µABCx

∂nx
ABC

∂XD
y

ΨD
y a =Mx

∂Nx

∂XD
y

ΨD
y a ≡ Rxy

D ΨD
y a . (30)

Similarly we can write

sxyab =
1

3
µABCx

∂nx
ABC

∂gDEy

ΨD
y a ΨE

y b = 2Mx
∂Nx

∂gDEy

ΨD
y a ΨE

y b

≡ sxyDE ΨD
y a ΨE

y b ,

(31a)

Sxy
ab =

1

3
µABCx

∂nx
ABC

∂gDExy

ΨD
x a ΨE

y b = 2Mx
∂Nx

∂gDExy

ΨD
x a ΨE

y b

≡ Sxy
DE ΨD

x a ΨE
y b ,

(31b)
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where we have used the fact that the partial derivatives are performed, say, with respect to

the metric gABy keeping fixed gABx and gABxy . We will consider the validity of this assumption

later. The remaining viscous stress tensor, Sx
ab, leads to a slightly more involved expression,

because of the presence of gx in eq. (20). We have

Sx
ab =

1

3
µABCx

∂nx
ABC

∂gDEx

ΨD
x a ΨE

x b = 2

(
Mx√
gx
∂
(
Nx

√
gx
)

∂gDEx

)
ΨD

x a ΨE
x b =

= 2

(
Mx

∂Nx

∂gDEx

− 1

2
NxMx g

x
DE

)
ΨD

x a ΨE
x b =

≡ Sx
DE ΨD

x a ΨE
x b .

(32)

It is also obvious, by looking at the respective definitions, that the reactive terms that stem

from the fact that Nx can depend also on gABy and gABxy can be now written

rxya =
1

2
sxyDE∇a

(
gbcΨD

y bΨ
E
y c

)
, (33a)

Rxy
a =

1

2
Sxy
DE g

bcΨD
x b∇a

(
ΨE

y c

)
. (33b)

Before moving on, it is advantageous to consider the simplest non-dissipative fluid model

which can be derived from the action above—the ordinary perfect fluid, where all particle

species and entropy flow together and the total particle numbers and entropy are conserved

individually. The calculation is straightforward [27]. All the fluxes have the same four-

velocity, say, ua, and so nax = nxu
a. If each particle number flux is conserved individually,

then

∇an
a
x = ∇a (nxu

a) = ua∇anx + nx∇au
a = 0 =⇒ ua∇a lnnx = −∇au

a . (34)

Obviously, the total particle flux na =
∑

x n
a
x is also conserved and so we can write as well

ua∇a lnn = −∇au
a , n =

∑
x

nx . (35)

Therefore, we have

ua∇a lnnx − ua∇a lnn = 0 =⇒ ua∇a
nx

n
= 0 . (36)

The upshot is that each species fraction nx/n must also be conserved along the flow, and

this includes the entropy as well. This implies that only one matter space is required. In

the action principle, this means that for each x we have ξax = ξa, and there is only one Euler

equation of the form ∑
x

fx
a = 0 , (37)
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where the fx
a are exactly as defined before.

III. THE NON-DISSIPATIVE LIMIT

We will now begin to develop the process for comparing standard relativistic models

for dissipative fluids with that provided by the action principle. Standard approaches [3–

7] start with a definition of equilibrium and then build in dissipation via deviations away

from this state. The action principle formally does not require any sort of equilibrium,

and provides a fully non-linear set of field equations. Obviously, our first task must be to

extract from the non-linear equations a notion of equilibrium. This is not straightforward

for various reasons, a key one being that an arbitrary spacetime in General Relativity does

not have global temporal, spatial, and rotational invariance. As a first step, we will recall

features of the typical laboratory set-ups within which the laws of Chemistry, Dynamics,

and Thermodynamics were first established.

A. Typical Laboratory Set-up

A typical laboratory set-up is essentially local in the spacetime sense, implying there

is—to a great deal of precision—temporal, spatial, and rotational invariance. Noether sym-

metries exist, which lead to energy, momentum, and angular momentum conservation. A

clean separation between internal and external influences can be made, and these influ-

ences themselves can be manipulated. The effect of long-range, non-screenable forces on the

system—for example, gravity—can be ignored. Well-defined (theoretical and experimen-

tal/observational) notions of total energy and entropy can be realized. Equilibrium can be

defined in the broadest sense by saying the system evolves to a state where its total energy

is minimized, or, equally, its total entropy is maximized.

Internal interactions are due to, say, chemical reactions, whereas external interactions

are those which distort the system’s volume or allow particles and heat to enter or leave

through the volume’s surface. If a system is in chemical equilibrium internally, we can

say that the reactions inside it are running forwards and backwards at such a rate that

constituent particle number ratios remain fixed in time. If the given system is in chemical

equilibrium with another system, then the chemical potentials of the two will be equal. A

14



system in dynamical equilibrium just sits there, with no temporal evolution. Any pressure

acting on the system’s surface will be balanced by an internal pressure of the same value.

Finally, we can say that two systems are in thermal equilibrium when there is no heat flow

between them, the end result being equality of their respective temperatures. Now, let us

return to the problem at hand—equilibrium when General Relativity cannot be neglected.

B. General Relativistic Set-up

A general relativistic set-up is problematic from the get-go, because one is hard-pressed

to find properties of equilibrium like those just discussed which are workable at all time-

and length-scales. Broadly speaking, there seems to be no general relativistic rules on how

the local thermodynamics of local (intensive) parameters—chemical potential µ, pressure

p, and temperature T—connects with some notion of global thermodynamics for global

(extensive) parameters—such as the total energy E. An unambiguous extrapolation of the

standard definitions of chemical, dynamical, and thermal equilibrium given above to General

Relativity is not possible, for reasons to be explained below. There is also the well-known

difficulty of identifying the total energy of a region in an arbitrary spacetime, since the

Equivalence Principle precludes an ultra-local definition of gravitational energy density.11

The reason that the laboratory rules for chemical and thermal equilibrium are not viable

in General Relativity was established long ago by Tolman and Ehrenfest [28, 29]: In General

Relativity, all forms of energy react to gravity. Temperature and chemical potentials repre-

sent forms of energy and can undergo red-shift or blue-shift. There is no one temperature for

an isolated system, and so saying “system A is in thermal equilibrium with system B if their

temperatures are the same” becomes ambiguous; similarly for chemical equilibrium. As for

dynamical equilibrium, a standard undergraduate physics calculation shows that pressure

increases with depth in water which nevertheless remains at rest.12

Even the use of the word “equilibrium” becomes problematic because it tends to imply

that a system in thermal and chemical equilibrium is independent of time, because the total

11 Of course, for asymptotically flat spacetimes, one can define quantities like the Schwarzschild mass.

Gravitational wave energy can be defined but only after averaging over wavelengths.
12 In this context, we can think of it as resulting from the breaking via gravity of spacelike Killing vectors

which lead to space-translation invariance.
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entropy and total particle number do not evolve. In General Relativity, a system which is

independent of time occurs only for special spacetimes which have a global timelike Killing

vector field. Strictly speaking, this immediately puts the non-dissipative fluid models of

Cosmology—the Friedman-Lemaitre-Robertson-Walker solutions—out of the discussion, as

the universe is expanding, making it time-dependent; maybe worse, it is not even time-

symmetric!

This points to another problem of the notion of total energy in General Relativity and ar-

guments based on the standard understanding of energy conservation: In Special Relativity,

the curvature is zero and there is a timelike Killing vector field leading directly to a Noether

symmetry for the system and total energy conservation. (There are also Killing vector fields

representing rotational and spatial invariance, which lead to Noether symmetries resulting

in total angular and linear momentum conservation.) In an expanding universe this line of

reasoning for energy conservation obviously breaks down.

The main message is this: Important issues remain unsettled even after a century’s

worth of debate. We will not resolve these issues here; instead, what we will do is take the

action-based formalism and see how its internal machinery can be manipulated to produce a

self-consistent notion of the non-dissipative limit, without trying to resolve the deeper issues

about the nature of equilibrium.13 Our way forward is to take advantage of the fact that

the action-based field equations are fully non-linear and complete.

C. Multiple Equilibrium States

The main mechanism for manipulating the machinery of the action-based field equations

is to apply perturbation techniques similar to those used to determine, say, quasi-normal

modes of neutron stars. The general idea for neutron stars is to analyze linear perturbations

of configurations having particular symmetries generated by Killing vectors. Among the

most studied neutron star “ground-states” are those having Killing vectors which generate

staticity and spherical symmetry, and those with Killing vectors that generate axisymmetry

and stationarity; basically, non-rotating and rotating backgrounds, respectively.

In an analogous way, we can expect different options for generating the non-dissipative

limit of a multi-fluid system. For example, we can take the limit where the different dissipa-

13 We will still use the word “equilibrium” interchangeably with the non-dissipative limit.
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tion coefficients (such as shear and bulk viscosities) are effectively zero. Another possibility

is the limit where the dissipation coefficients are non-zero but the fluid motion itself is such

that the dissipation mechanisms are not acting. The formalism developed by Onsager [10] is

worthy of mention here, because the system of field equations it creates are more explicit in

how the two limits can be implemented (see, for example, [11]). It is interesting also to note

that the philosophy of the Onsager approach is not so much about how to expand away from

an equilibrium, but rather how a non-equilibrium system gets driven back to the equilibrium

state. Here, because the field equations are fully non-linear, they can, in principle, describe

systems which are being driven toward or away from equilibrium.

Next, we will explore some of the different options for equilibrium states. We will use a

global analysis which assumes that the Second Law of Thermodynamics applies and that a

knowledge of the fluxes throughout a region of spacetime is enough to determine whether or

not dissipation is acting. A local analysis of the formalism will also be pursued, involving

the field equations themselves.

D. Global Analysis of the Non-dissipative Limit

Recall that the fundamental dynamical variables are the particle fluxes nax and the entropy

sa = nas .
14 The formalism’s linchpin is the breaking of the closure of the particle-flux three-

forms, nx
abc and sabc, which leads to non-zero creation rates Γx and Γs. In turn, these non-zero

creation rates lead to the resistive contribution Ra
x and the dissipation tensor Dx

ab terms in

the equations of motion. The nice thing about fluxes, which we will exploit here, is that

they can be integrated.

When we use the Einstein equations and the field equations of a multi-fluid system, our

goal is to get solutions for the metric and fluxes on a “chunk” of spacetime, for a given set of

initial/boundary conditions. Suppose we pick an ad hoc regionM of spacetime, as illustrated

in fig. 1. The fact that it is a region implies there is a “conceptual boundary”, meaning

the whole spacetime is being divided up into smaller domains. Let uaB (collectively) denote

the unit normal to the total boundary of the region, defined so that it always points “out”.

14 Because we impose the Second Law of Thermodynamics below, we are specifically separating out the

entropy flux in this discussion.
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∂ℳL

Fig. 1. A depiction of the spacetime region M, with one spatial axis suppressed. It has a charac-

teristic spatial size ∆L and temporal size ∆T . Inside M is a smaller region δM of characteristic

spatial and temporal size δl and δt, respectively. The boundary ∂M consists of the initial and final

time-slices ∂M−, ∂M+ and the timelike hypersurface ∂ML.

The boundary itself consists of two spacelike hypersurfaces ∂M± (with unit normals uaB± ,

uaB±u
B±
a = −1), and a timelike hypersurface ∂ML (with unit normal uaBL

, uaBL
uBL
a = +1); in

essence, think of ∂M− as a 3D region of characteristic volume ∆L3 on an initial time-slice

of M and ∂M+ as the same volume on the final time-slice, and then ∂ML will be similar

to the union of the surface of the same volume on each leaf of some spacelike foliation ofM

between ∂M− and ∂M+. The induced metric on ∂M± is hab± = gab +uaB±u
b
B±

and for ∂ML

it is habL = gab − uaBL
ubBL

.

There are three contributions to the total particle number change ∆Nx and total entropy

change ∆S: (i) The total particle number Nx
− and entropy Sx

− which exist in ∂M−; (ii) The

total particle number Nx
+ and entropy Sx

+ which exist in ∂M+; and, (iii) The number of
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particles ∆Nx
L and amount of entropy ∆SL which enter/leave ∂ML. Each contribution is

obtainable from its associated flux: If nx
± (s±) are the particle number (entropy) densities as

measured with respect to the volumes ∂M±, and nx
L (sL) is the number of particles (amount

of entropy) per unit area per unit time entering/leaving ∂ML, then

Nx
+ =

∫
∂M+

d3x
√
h+ n

x
+ =

∫
∂M+

d3x
√
h+

(
−uB+

a nax
)
,

Nx
− =

∫
∂M−

d3x
√
h− n

x
− =

∫
∂M−

d3x
√
h−

(
uB−a nax

)
,

∆Nx
L =

∫
∂ML

d3x
√
−hL nx

L =

∫
∂ML

d3x
√
−hL

(
uBL
a nax

)
(38)

and

S+ =

∫
∂M+

d3x
√
h+ s+ =

∫
∂M+

d3x
√
h+

(
−uB+

a sa
)
,

S− =

∫
∂M−

d3x
√
h− s− =

∫
∂M−

d3x
√
h−

(
uB−a sa

)
,

∆SL =

∫
∂ML

d3x
√
−hL sL =

∫
∂ML

d3x
√
−hL

(
uBL
a sa

)
.

(39)

where we have taken into account the fact that uaB− points to the past. The changes in the

total x-particles ∆Nx and entropy ∆S over the region M are therefore

∆Nx = Nx
+ −Nx

− + ∆Nx
L ,

∆S = S+ − S− + ∆SL .
(40)

If the length- and time-scales of spacetime region M are those typical of terrestrial labs

(read: its curvature is zero throughout), then we have great confidence in asserting the

Second Law of Thermodynamics; namely, the net change of the total entropy must satisfy

∆S ≥ 0. We could even be confident that we could determine the total energy E and volume

V of the system, and have a working First Law of Thermodynamics which connects ∆E,

∆Nx, ∆V , and ∆S:

∆E = T∆S − p∆V +
∑
x

µx∆N
x . (41)

The temperature T , pressure p, and chemical potentials µx would be well-defined and cal-

culable. We could even use the standard notions of chemical, dynamical, and thermal

equilibrium and say that system A of spacetime region MA is in chemical, dynamical, and

thermal equilibrium with system B of spacetime region MB if, respectively, their chemical

potentials are equal, their pressures are equal, and their temperatures are equal.
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Now, let us suppose we have a region large enough that spacetime curvature can no

longer be ignored. Probably, it would be a safe bet to say that the Second Law still applies;

i.e., ∆S ≥ 0. But, we are hard-pressed to employ the laboratory definitions of chemical,

dynamical, and thermal equilibrium. Consequently, it is difficult to imagine a global First

Law of Thermodynamics for general relativistic multifluid systems similar to that in eq. (41);

again, the reason being that intensive parameters are spacetime dependent, and an extensive

parameter like total energy may not even be definable. Still, our task is to explore any

possible link between parameters which require scales where spacetime curvature is necessary

(∆Nx and ∆S) to the local fluid variables (nax and sa) which enter the fluid field equations.

Fortunately, the divergence theorem provides such a link.

Applying it to the divergence of both the particle and entropy fluxes gives15∫
M

d4x
√
−g ∇an

a
x = −

∫
∂M+

d3x
√
h+

(
uB+
a nax

)
−
∫
∂M−

d3x
√
h−

(
uB−a nax

)
+

∫
∂ML

d3x
√
−hL

(
uBL
a nax

) (42)

and ∫
M

d4x
√
−g ∇as

a = −
∫
∂M+

d3x
√
h+

(
uB+
a sa

)
−
∫
∂M−

d3x
√
h−

(
uB−a sa

)
+

∫
∂ML

d3x
√
−hL

(
uBL
a sa

)
.

(43)

But, the surface integrals are precisely those we wrote down before in eq. (38) and eq. (39)

and so we find

∆Nx =

∫
M

d4x
√
−g ∇an

a
x =

∫
M

d4x
√
−g Γx ,

∆S =

∫
M

d4x
√
−g ∇as

a =

∫
M

d4x
√
−g Γs .

(44)

These are not new results, but they serve the purpose here of establishing a direct link

between global and local variables, which we will use to formulate some aspects of the

non-dissipative limit of our formalism.

Consider an idealized situation of a spacetime regionM sub-divided into a regionMA for

which ∆Nx
A < 0 and ∆SA < 0, and another region MB for which ∆Nx

B > 0 and ∆SB > 0.

15 The different sign in the integrals over ∂M± and ∂ML is due to the fact that uB± are timelike while uBL

is spacelike.
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The trick is that they are such that the total changes on M vanish:

∆Nx = ∆Nx
A + ∆Nx

B = 0 , ∆S = ∆SA + ∆SB = 0 . (45)

The point is that, even though Γx and Γs are not zero, this is an example of a global, fully

general relativistic, non-dissipative system since there is no net total particle number or total

entropy change. But is this realistic? Is this the kind of definition of the non-dissipative

limit we are looking for? Probably not. What is more likely is that the non-dissipative

limit is better understood by breaking up M into many small spacetime regions δM, with

characteristic temporal and volume scales δt and (δl)3, respectively, as illustrated in fig. 1.

Once again, let us imagine that δM is subdivided into two regions δMA and δMB. It is

conceivable that on these scales statistical fluctuations could lead to positive creation rates

in one region and negative in the other. If the regions are small enough, we can assume that

Γx and Γs vary slowly across them so that we can approximate the integrals for δNx
δM and

δSδM as

δNx
δM ≈ Γxδt (δl)3 , δSδM ≈ Γsδt (δl)3 . (46)

However, the random nature of statistical fluctuations for a system purported to be in

equilibrium implies that any non-zero creation rates inside δMA and δMB must balance on

average so that

δNx
δM = δNx

δMA
+ δNx

δMB
≈
(
ΓAx + ΓBx

)
δt (δl)3 = 0 =⇒ Γx = ΓAx + ΓBx = 0 ,

δSδM = δSδMA
+ δSδMB

≈
(
ΓAs + ΓBs

)
δt (δl)3 = 0 =⇒ Γs = ΓAs + ΓBs = 0 .

(47)

One conclusion from this exercise is that the characteristic time and volume scales of δM

must be large enough that statistical fluctuations will, on average, balance out for a system

in equilibrium. The second conclusion is that having δNx
δM = 0 (δSδM = 0) on the one hand

means Γx = 0 (Γs = 0) on the other, and vice versa. Putting both together we will assume

that the equilibrium state for multi-fluid systems must be such that regions like δM set the

scales for fluid elements and Γx = 0 and Γs = 0 everywhere in M.

E. Local Analysis of the Non-dissipative Limit

This subsection begins where the previous one left off; that is, a necessary condition for

a multi-fluid system to be in equilibrium is that the flux creation rates Γx (now including
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the entropy) vanish everywhere. We will use the field equations themselves to investigate

three different ways for the action-based system to have zero particle creation rates: 1) The

limit where the dissipation terms Rx
a and Dx

ab are zero, 2) the limit where the dissipation

terms are non-zero but the fluid motion is such that the dissipative channels are dynamically

suppressed, and 3) a combination of dynamical suppression with constraints between the

dissipation terms that lead to Killing vector fields.

But before we investigate the zero-dissipation limit further, we will impose another con-

dition which defines the equilibrium, and that is all distinct fluids are comoving—e.g. we

are not considering systems with superfluid/superconducting phases, or a perfect heat-

conducting limit [16]. This means that there is a common four-velocity for all species,

uax = uae . However, it is important to point out a subtlety about this comoving limit: For a

multi-fluid system each species has its own evolution equation. Even in the comoving limit

there are still x fluid equations. Now consider the field equations for a multi-species, single

fluid system—as we see in eq. (37), it has only one fluid evolution equation. Therefore, the

comoving limit of the multi-fluid system (x equations) is not equal to the single-fluid system

(one equation). This is not an error, rather, it is a consequence of the fact that the number

of independent field equations of the system is fixed by the number of independent fluids

chosen before the action principle is applied.

We will now look in greater detail at multi-fluid systems where all particle fluxes are

conserved and the species are comoving.

1. Comoving System with Vanishing Dissipation Terms

Here the non-dissipative limit is achieved by setting Ra
x = 0 and Dx

ab = 0. Since the fluids

are comoving we have for the fluxes nax = nxu
a
e , and so the four-momenta become

µx
a =

(
Bxnx +

∑
y 6=x

Axyny

)
uea = µxu

e
a . (48)

The equation of motion for the x-species is

fx
a = 2nbx∇[bµ

x
a] = nxµ

xu̇ea + nx

(
ubeu

e
a + δba

)
∇bµ

x = nxµ
xu̇ea + nxDaµ

x = 0 , (49)

where we have introduced the spatial covariant derivative—acting in directions perpendicular

to uae—as Da and the time derivative “ ˙ ” = uae∇a. For a scalar A we have

DaA =⊥ba ∇bA =
(
δba + ueau

b
e

)
∇bA = ∇aA+ Ȧuea , (50)
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and for a vector

DaAb =⊥ca⊥db ∇cAd , (51)

where ⊥ba= δba + ueau
b
e.

The first term in fx
a then looks like the mass/energy per volume times the acceleration

while we can show that the second one is a “pressure-like” term in the sense of being the

gradient of a thermodynamic scalar. In fact, we have

∂Λ

∂nx

= −

(
Bxnx −

∑
y 6=x

Axyn
a
yu

x
a

)
= −µx (52)

and the sum of these terms provides the derivative of the total pressure Ψ:∑
x

nxDaµ
x = Da

(∑
x

nxµ
x + Λ

)
= DaΨ . (53)

It is important to note that each individual term cannot (in general) be considered as the

derivative of the x-species contribution to the total pressure. Partial pressures exist only

when the various species do not interact.

Even though the comoving limit of the multi-fluid system is not the same as the single

fluid, multi-species system, there is some overlap: Taking the sum over the chemical species

of eq. (49) we find16

(p+ ε)u̇ea = −Dap . (54)

This is the standard Euler form. One can show also that eq. (37) can be written in this

form. This is an important self-consistency check. But because the multi-fluid comoving

limit is not the same as the single fluid limit, we need to go back to the individual fluid

equations of the multi-fluid system.

We can rewrite the individual equations of motion as

u̇eb = −Db(log µx) ; (55)

thus, for each combination of x 6= y,

Da(log µx) = Da(log µy) =⇒ Da

(
log

µx

µy

)
= 0 . (56)

16 We have used the standard Euler relation
∑

x nxµ
x = p+ ε, where p, ε are the equilibrium pressure and

energy density, respectively.
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This self-consistency therefore requires the various chemical potentials µx and µy (as func-

tions on spacetime) to be proportional to each other by some factor Cx
y , which is constant

in the spatial directions; namely,

µx = Cx
yµy , DaC

x
y = 0 . (57)

This is to be contrasted with the single-fluid case, where there is no such restriction—in the

sense of being forced by the evolution equation—between the chemical potentials. Usually,

one must pose additional information. For example, for neutron stars one typically imposes

that beta decay and inverse beta decay are in equilibrium.

2. Dynamical Suppression of Dissipation

Now consider the structure of a multi-fluid system in the comoving limit with Rx
a 6= 0 and

Dx
ab 6= 0. This can be achieved if the fluid flow is such that the dissipation mechanisms are

not triggered. We still have in place the condition that every species (including the entropy)

is to be conserved (Γx = 0). This implies via eq. (16) that

µxΓx = −Rx
a u

a
e −Dx

ab∇aube = 0 =⇒ Rx
a u

a
e = −Dx

ab∇aube , (58)

where we have used the identity ubxD
x
ab = 0. The total dissipation tensor Dab =

∑
xD

x
ab is

symmetric and such that ubeDab = 0 automatically. If we now add eq. (58) over all species

we find ∑
x

µxΓx = −

(∑
x

Rx
a

)
uae −Dab∇aube = −DabD

(aub)e = 0 , (59)

where we have used the identity
∑

xR
x
a = 0 and the fact that Dab is purely spatial with

respect to uae .

Using the standard decomposition

∇aub = −abua +$ab + σab +
1

3
θ ⊥ab ,

$ab =⊥c[a⊥db] ∇cud ,

σab =⊥c(a⊥db) ∇cud −
1

3
θ ⊥ab ,

θ = ∇au
a = Dau

a ,

(60)

it is easy to see that eq. (59) implies

D(au
e
b) =⊥c(a⊥db) ∇cu

e
d = ∇(au

e
b) + ue(au̇

e
b) = σe

ab +
1

3
θe ⊥ab= 0 , (61)
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where the attached “e” means a term is evaluated with respect to uae . In particular, this

tells us that the (dynamically-suppressed) equilibrium flow has zero expansion θe = 0, and

zero shear σe
ab = 0. What is left of the motion is captured by

∇au
e
b = $e

ab − u̇ebuea , (62)

which is consistent with rigid rotation.

From the definition of the creation rates, we can now write

Γx = ∇an
a
x = ṅx + nxθe = ṅx = 0 . (63)

Assuming a thermodynamic relation in the standard way, namely that at equilibrium the

energy functional of the system is ε = ε(nx), we see that the chemical potential of each

species is µx = µx(nx) and likewise for the pressure p. Therefore, we have µ̇x = 0 and ṗ = 0,

as well.

The final condition required for dynamical suppression to work comes from the equation

of motion for each species; namely,

u̇ea = −∇b [log (µx) gba +Dx
ba] +Rx

a , (64)

which implies for all combinations of x and y that

Rx
a −Ry

a = ∇b [log (µx/µy) gba +Dx
ba −D

y
ba] , x 6= y . (65)

3. Dynamical Suppression and Killing Vectors

In a local region of spacetime, freely falling frames exist and the Killing equation will be

satisfied approximately. In these local regions having an equilibrium will be consistent with

the existence of Killing fields. However, local regions which are far removed from each other

will not be (on the relevant dynamical timescale) in equilibrium with each other. This kind

of “quasi-local” regression towards equilibrium has been discussed in the work of Fukuma

and Sakatani [30], where the authors introduce explicitly two different spacetime scales to

describe the evolution of general relativistic dissipative systems. The hypothesis of Local

Thermodynamic Equilibrium applies on the smaller scale—which is of the size of the fluid

element—while the regression (in the sense of Onsager [10]) towards equilibrium takes place

on the bigger one, which can still be smaller than the body size.
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A relation between the perfect fluid four-velocity and Killing vectors, for stationary axially

symmetric rotating stars,17 has been discussed by Gourgoulhon [31]. A similar discussion

about thermodynamic equilibrium in general relativity and the existence of Killing vectors

was carried out by Becattini [32]. Specifically, he shows that there must be global Killing

vector fields if the total entropy of the system is to be independent of the spacelike hyper-

surface over which the integration is performed. As for the work presented here, we will now

show how the combination ξax = µ−1x uae can be turned into Killing vector fields.

Using eq. (64) it can be seen that

∇aξ
x
b +∇bξ

x
a =

2

µx

∇(au
e
b) −

2

µx

ue(a

[
∇b)log (µx)

]
=

2

µx

[
∇(au

e
b) + u̇e(au

e
b)

]
+

2

µx

ue(a

[
∇cDx

|c|b) −Rx
b)

]
=

2

µx

ue(a

[
∇cDx

|c|b) −Rx
b)

]
.

(66)

We have already seen in eq. (58) that dynamical suppression leads to Rx
a u

a
e = −Dx

ab∇aube.

Clearly, if in addition we now have

ue(a

[
∇cDx

|c|b) −Rx
b)

]
= 0 , (67)

then the ξax will be a global timelike Killing vector field, along which the local thermody-

namical parameters nx, µ
x, ε, and p become constants of motion.

F. A Final Comment on Equilibrium

Before leaving this section we will come full circle and consider again the change in

total entropy given by eq. (40). It only references spacelike hypersurfaces as part of the ad

hoc choice of the boundary of the spacetime region for which the entropy change is being

determined. There are no restrictions placed on the spacetime geometry in this construct;

in particular, no requirement of global Killing vectors.

As a matter of practice, the change in entropy of a system is clearly dependent on its

spatial size and the amount of time it has had to evolve. Couple that with the fact that a

17 Note that Gourgoulhon [31] works with the enthalpy per particle instead of chemical potentials. However,

this makes no difference for barotropic perfect fluids.
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separation of space from time in spacetime is always a choice—an arbitrary spacetime has

no preferred directions, no natural ”moments-of-time”—and we see that the ad hoc nature

of the boundary in eq. (40) is not a drawback. It is precisely the freedom needed in order for

it to incorporate a system’s spatial extent and evolution time, and the fact that a separation

of space from time in spacetime is always a choice.

The main reason why this is intriguing, is the Second Law of Thermodynamics only

refers to the change in total entropy, not the exact value of entropy itself at moments of

time (i.e. spacelike hypersurfaces). It may be that questions of equilibrium are not to be

settled by the “moment-to-moment” behaviour of three-dimensional integrals, but rather by

global statements of the type eq. (40) represents. This is something that we are currently

investigating and hope to give more detail on in a future work.

IV. PERTURBATIONS WITH RESPECT TO EQUILIBRIUM

With the equations of motion obtained from an action principle, we can consider pertur-

bations away from equilibrium configurations (of the types described above) in a way that

is closely related—at least from the formal perspective—to standard hydrodynamic pertur-

bation theory. The general picture valid for Lagrangian perturbation theory is perhaps best

described by Friedman and Schutz [33]. Roughly speaking, the evolution equations for the

perturbed fields can be obtained by perturbing the equations obtained from the action. It

is also clear—at least in principle—how to construct a Lagrangian whose variation gives

the perturbed equations (see §2 of [33]). However, since we are not focussing on a stability

analysis of fluid oscillations we will not consider this additional aspect here.

To set the stage for the perturbative expansion, we consider the family of worldlines (not

necessarily geodesics) that each constituent of a multifluid system traces out in spacetime.

Our definition of equilibrium includes the assumption that all species are comoving. There-

fore, our fiducial set of worldlines representing equilibrium are those the system would have

followed if it were comoving throughout its history. This then allows us to view each of the

“real” worldlines xaf (τ̄) as a curve in spacetime which is close to the equilibrium one xae(τ),

with τ̄ and τ being the proper times of their respective curves. (See fig. 2 for an illustration

of the idea.) The unit four-velocities associated with the two worldlines are

uaf =
dxaf
dτ̄

, uae =
dxae
dτ

. (68)
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d
dτ

d
dλ xae (τe)

xaf (τ̄f)

Fig. 2. An illustration of worldlines due to the fluid elements (solid vertical red lines, parameterized

by τ, τ̄) and Lagrangian displacements which connect fluid elements (dashed horizontal blue lines,

parameterized by λ).

Obviously, uae represents the comoving frame introduced earlier.

We assume that another family of curves xaef(λ), where λ is an affine parameter (say, the

proper length), connects the equilibrium worldline to the actual one. This means that for

any point xae(τe) on the equilibrium worldline, there is a unique point xaf (τ̄f ) on the perturbed

worldline, and a unique curve xaef(λ) between them having two points xaef (λe) and xaef (λf)

such that

xaf (τ̄f) = xaef (λf) , xae (τe) = xaef (λe) . (69)

Taylor expanding the perturbed worldline about the equilibrium up to the second order, we

get

xaf (τ̄f) = xae(τe) +
dxaef
dλ

∣∣∣
λe

(λf − λe) +
1

2

d2xaef
d2λ

∣∣∣
λe

(λf − λe)2

= xae(τe) + ζa∆λ+
1

2

(
ζb∂bζ

a
)

∆λ2 ,

(70)

where we introduced the tangent vector

d

dλ
=
dxaef
dλ

∣∣∣
λe

∂

∂xa
= ζa∂a . (71)
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The first things we want to perturb are the fluid element “names”. That is, we attach a

label XA, where the index A = 1, 2, 3, to each of the worldlines used to cover the region of

spacetime occupied by the fluid. By definition of the Lagrangian variation [25, 33] we have

∆XA =
(
φ∗X

A(xf)
)

(xe)− X̄A(xe) = XA(xf)− X̄A(xe) = 0 , (72)

where φ is the diffeomorphism that connects the perturbed and unperturbed worldlines, via

the flow lines xaef , and the last equality follows from the fact that the label does not change

as we follow it. As a result we have, to first order

δXA = −LξxXA = −ξaxΨA
e a = −ξAx , (73)

where we introduced the Lagrangian displacement vector ξax = xaf − xae .

It is important to note that these displacement vectors are different from the ones in-

troduced when obtaining the equations of motion from an action principle (see eq. (11)),

even though the mathematics appears the same. In the present case the displacement vector

connects two configurations that are “close” in the space of physical solutions (i.e. the sec-

ond set mentioned at the beginning of section II B)—in field-theory parlance they are both

“on-shell”. We also note that, to compute the second order variation we cannot rely on the

simple relation that exists between Lagrangian and Eulerian variation (at first order). We

need to perform the calculation explicitly.

At this point, it is worth pausing to consider what is behind the perturbation scheme we

are building. Since we assume the existence of a well defined equilibrium timelike congruence

xae with four velocity uae , we may imagine riding along with the equilibrium fluid element

observing the evolution of the system (towards equilibrium) from this perspective. This

means that the x-species four-velocity uax can be decomposed (in the usual way) as

uax = γx

(
uae + wax

)
, where waxu

e
a = 0 , γx =

(
1− waxwx

a

)−1/2
. (74)

Moreover, since we are working up to first order we have

γx = 1 +
1

2
w2

x ≈ 1 +O(2) =⇒ uax = uae + wax . (75)

We note that this linear expansion in the relative velocities, although in a different spirit,

has also been discussed in the context of extensions to magneto-hydrodynamics [34–36].

Also, it is interesting in itself (and necessary for perturbing the full set of fluid equations)

to understand the relation between the spatial velocity wax as measured by the equilibrium
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observer and the Lagrangian displacement ξax . We consider the displacement to live in the

local present of the equilibrium observer, i.e., to be such that ξaxu
e
a = ζaxu

e
a = 0.18 This

implies that the vectors ξax and ζax are spacelike non-null vector fields over the spacetime. As

a result, if we consider the proper time of the perturbed worldline, we have

− dτ̄ 2 = gab dx
a
f dx

b
f = gab dx

a
e dx

b
e + gab

(
dxae ζ

b∆λ+ dxbe ζ
a∆λ

)
= −dτ 2 , (76)

where we used the fact that

xae = xae(τ) =⇒ dxae = uaedτ . (77)

As a consequence, the proper time of the perturbed and equilibrium worldline is the same,

so we have

uax =
dxaf
dτ̄
≈ dxae

dτ
+

d

dτ
ξax = uae + ξ̇ax (78)

where (again) the dot represents the covariant directional derivative in the direction of the

equilibrium four-velocity.19 We observe that from the construction we have wax = ξ̇ax and it

is clear that when pushing the expansion to second order the relation between the two will

become more involved—both because the difference between the proper times (τ̄ versus τ)

appears at second order and because the Taylor expansion gets more complicated.

We now aim to understand how to construct the expansion directly in matter space.

We start by noting that, since we are considering each displacement ξax to be orthogonal

to uae there is no loss of information in projecting the Lagrangian displacements onto the

equilibrium matter space and dealing with ξAx . The general picture is thus as follows: in

the general non-linear theory each matter space can be considered as an independent but

interacting manifold, but this changes when we consider a perturbative expansion. In fact,

the fundamental assumption of perturbation theory is that the two configurations (perturbed

and unperturbed) are related by some diffeomorphism. This implies that the perturbed and

unperturbed matter spaces20 are diffeomorphic, that is they are the same abstract manifold.

18 This is essentially a gauge choice, see [37] for discussion.
19 To be more precise, one should distinguish between d

dτ = ube∂b and D
Dτ = ube∇b. Since we are introducing

a decomposition of a vector as a sum of two, ξ̇ax must be a vector as well so that the dot represents a

covariant directional derivative.
20 Let us recall that the matter space is obtained by taking the quotient of the spacetime over the corre-

sponding worldline, i.e. identifying the worldline as a single point.
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Therefore we can use the same chart on the two manifolds XA (label the worldlines in the

same way) and the difference will be only in that XA
x (xa) 6= XA

e (xa). The difference between

the two will be exactly what we found above, namely −ξAx . We also note that, by our

definition of the unperturbed state, all the perturbed matter spaces are diffeomorphic to the

same unperturbed one, and thus to each other.

Given this, we can work out how a general matter space tensor transforms under diffeo-

morphisms [24]. For instance, if we consider the projected metric gABx we have21

δgABx = −L−ξxgABx = LξxgABx = ξCx ∂Cg
AB
e − gCBe ∂Cξ

A
x − gACe ∂Cξ

B
x (79)

where the partial derivatives are taken with respect to the equilibrium matter space coordi-

nates. We now observe that, considering ξAx as a scalar field in spacetime we can write

− gCBe ∂Cξ
A = −gabΨC

e aΨ
A
e b∂Cξ

A
x = −ΨA

e a∇aξAx . (80)

We also note that, since22 ∂CΨA
e a = ∂aδ

A
C = 0, we have

∂Cg
AB
e = 2 gab

(
∂

∂XC
e

ΨA
e a

)
ΨB

e b = 0 . (81)

As a result, the projected metrics transform as

δgABx = −ΨB
e a∇aξAx −ΨA

e a∇aξBx . (82)

This also tells us that building the variation of the metric tensor in this way, we are only

comparing the difference in the position of the particles, keeping fixed the spacetime metric.

We can now use the definition in eq. (50) to decompose the displacement gradients as

∇aξ
A
x = −wAx uea +Daξ

A
x (83)

and rewrite

δgABx = ΨB
e a(w

A
x u

a
e −DaξAx ) + ΨA

e a(w
B
x u

a
e −DaξBx )

= −DBξAx −DAξBx ,
(84)

21 For the Lie derivative we use the formula with partial derivatives in order to avoid the possible confusion

arising from the choice of the connection used on the matter space.
22 If this is not immediately convincing one can prove it by taking the explicit definition of a derivative on

the coordinate functions XA(X̄) = δACX̄
C = X̄A and using the linearity of the derivative.
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where we introduced the short-hand notation DA = ΨA
e b g

abDa. It is worth noting that this is

not a strain-rate tensor of the type usually introduced in fluid dynamics, because it involves

gradients in the displacements instead of velocities. The usual strain rate tensor is in fact23

ġABx = −2 ΨA
x (aΨ

B
x b)

[
− ubxu̇ax +$ab

x + σabx +
1

3
θx ⊥abx

]
=

= −2 ΨA
e (aΨ

B
e b)

(
σabe +

1

3
θe ⊥ab

)
+O(2) = −2

(
σABe +

1

3
θeg

AB
e

)
,

(85)

We will comment on the implications of this difference later.

Even if it is not entirely obvious what kind of object the mixed projected metric gABxy is

in the general non-linear case, in the context of a perturbative expansion there is no real

difference between the various matter spaces (they are all diffeomorphic to the equilibrium

one). This means that we can use the same fundamental formula also for gxy to get

δgABxy = gABxy − gABe = gab
(
δΨA

x aΨ
B
e b + δΨB

y bΨ
A
e a

)
=

= −ΨB
e a∇aξAx −ΨA

e a∇aξBy .
(86)

It is interesting to note that since δgab = 0 we have

[δ,∇a] = [δ, ∂a] = 0 . (87)

That is, the variation commutes with both partial and covariant derivatives. This will

become relevant when we need to work out the variation of the reactive terms that stem

from a dependence of the Nx on gABxy and gABy .

There has been a number of recent efforts on building first-order dissipative hydrody-

namic models starting from a field-theory perspective. It makes sense to point out the

differences between the present expansion and the field-theory-based ones. From a field

theory perspective hydrodynamics is the low-energy limit of a more fundamental theory.

Starting from this point of view, different authors have proposed (see, for example, [17, 18])

to introduce dissipation in the models through a gradient expansion. Practically, this boils

down to postulating the most general constitutive equations—that is the relations between

thermodynamic forces and fluxes—in terms of the standard hydrodynamic variables (like

T, µ . . . ) and their derivatives. In this context, the models are said to be of first order if the

constitutive equations involve all permissible terms with just one derivative. When the sys-

tem is close to equilibrium one can expect the gradients in temperature, chemical potential

23 To see this one has to use Lux
ΨA

x a = 0.
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etc. . . to be small, so that terms with two or more derivatives are dominated by first-order

ones. The final aim is (again) to obtain a set of equations valid close to equilibrium.

In the present work, the variables that define the physical state of the system take values

close to the equilibrium ones, and by “first order” we mean the deviations are expanded

up to O(ξx). It is therefore clear that the present approach differs from the field-theory-

based (gradient) expansions. The ultimate reason is that the action-based model provides

the exact equations, which we then approximate, while in the field-theory approach one is

trying to build up the full equations by successive expansions.

V. ENERGY DENSITY MINIMIZATION AND EQUILIBRIUM

In order to describe out-of-equilibrium systems in the Extended Irreversible Thermo-

dynamic (EIT) paradigm [38], one postulates the existence of a generalized entropy—a

function of a larger set of Degrees of Freedom than the corresponding equilibrium ones—

which is maximized at equilibrium. The starting point of the formalism used here is that

of a generalized energy where the only degrees of freedom are the fluxes. The action-based

model provides the total stress-energy-momentum tensor Tab of the system, so that we can

easily extract the total energy density ε for some observer having four-velocity ua via the

projection ε = uaubTab. We will show that requiring the local energy density to be at a

minimum in equilibrium means the viscous stress tensors have to be zero.

When specific modeling is done, such as numerical evolutions, we would need to provide an

equation of state (EoS) and specify values for the microphysical input parameters. From the

phenomenological point of view, this corresponds to assuming the existence of a function—in

our case, energy density—defined on some “thermodynamical manifold” whose coordinates

are the relevant degrees of freedom. Practically speaking, the formalism developed here

identifies the thermodynamical manifold as being the matter space used in the variational

model. As the general discussion gets quite complex, we focus on the specific example of

a two component system, with the components representing matter and entropy (see also

[39, 40]).

Let us first consider the non-dissipative limit. Thermodynamics of a single fluid is de-
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scribed by some equilibrium energy εe(n, s) such that

dεe = Tds+ µdn =
∑
x=n,s

µxdnx . (88)

On the other hand, the conservative variational model is built using a master function

Λ(n2
n, n

2
s , n

2
ns). Because of our assumption that all species are comoving while in equilibrium

there is no heat flux relative to the matter and therefore n2
ns = −gabnannbs = +nnns, and the

master function only depends on two variables, Λ = Λ(nn, ns). It is indeed easy to see that

the equilibrium energy density, as measured by the equilibrium observer, is

ε̂e = Tab u
a
eu

b
e =

[
Ψgab + (Ψ− Λ)ueau

e
b

]
uaeu

b
e = −Λ (89)

Since we have already identified the matter space normalizations of the three-forms with

the rest frame densities Nx = nx, we can think of the thermodynamic energy as a function

defined on the matter space, and write

ε̂e = ε̂e(Nn,Ns) = −Λe(Nn,Ns) (90)

The equilibrium case suggests that we could try to extend this identification to the non-

equilibrium setting, and “build” the thermodynamics on the matter space. This raises the

(difficult) question of what the global matter space is in the full non-linear case. We will

not address that here. Instead, we focus on the near-equilibrium case, where we only have

to deal with the equilibrium matter space.

Because of the way we have built the expansion, it is natural to project tensor quantities—

flux, stress-energy-momentum tensor, etcetera—into the frame of the equilibrium observer,

as defined by the equilibrium worldlines congruence uae . Quantities measured in this frame

will be indicated by a “hat”. Those without a hat are measured in fluid rest frames, which

are defined by the uax. The equilibrium value of a quantity in the equilibrium frame will be

indicated with a “bar”. For instance, the particle density measured in the equilibrium frame

is n̂x = −ueanax; in the x-fluid rest frame it is nx = −uxanax; and the equilibrium value in the

equilibrium frame is n̄x = n̂x

∣∣
e
.

The “out-of-equilibrium” energy density ε̂o.e. of the system as determined in the equilib-

rium rest frame is given by

ε̂o.e. =
(
T abn.d. +

∑
x

Dab
x

)
ueau

e
b = εn.d.o.e. +Dabueau

e
b , (91)
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where we have separated the contribution from the viscous stress tensor Dab from those

having the “non-dissipative” form; namely,

T abn.d. =
(

Λ−
∑
x

ncxµ
x
c

)
gab +

∑
x

naxµ
b
x = Ψ gab +

∑
x

naxµ
b
x . (92)

The expression for ε̂o.e. can be made more explicit by means of eq. (52), which leads to

Ψ = Λ +
∑

x nxµx and

ε̂n.d.o.e. = ueau
e
bT

ab
n.d. = −Λ−

∑
x=n,s

(
nxµx − n̂xµ̂x

)
. (93)

Because flux is a vector, the two densities n̂x and nx are easily shown to be related by

n̂x = −naxua = −nxu
a
xua = (1− waxwx

a)
−1/2nx =

(
1 +

1

2
w2

x

)
nx +O(3) . (94)

Meanwhile, the corresponding momentum relation is a bit more involved because of the

entrainment:

µx = −µx
bu

b
x = −γx(ub + wbx)

(
Bxnxu

x
b +

∑
y 6=x

Axynyu
b
y

)
= γx

(
µ̂x − Bxnxγxw

2
x −

∑
y 6=x

Axynyγyw
a
xw

y
a

)
.

(95)

We can rearrange this as

µ̂x = µx −
1

2
µ̄xw

2
x + B̄xn̄xw

2
x +

∑
y 6=x

Āxyn̄yw
a
xw

y
a (96)

and, wrapping up, we get

ε̂n.d.o.e. = −Λ + B̄nn̄2
nw

2
n + B̄sn̄2

sw
2
s + 2Ānsn̄sn̄nw

a
nw

s
a

= −Λ + µ̄nn̄nw
2
n + µ̄sn̄sw

2
s −Ansn̄nn̄s(w

a
n − was )2 .

(97)

It is now clear that, in order to proceed, we need an expansion for the master function, Λ.

Note that the dissipative action model assumes Λ depends on (XA
n , X

A
s , g

AB
n , gABs , gABns )

through the scalar product of the fluxes n2
n, n

2
s , n

2
ns. Therefore, in order to build the expansion

we can expand Λ up to second order in the standard way (see [37]). We thus have

Λ = Λe −
1

2

∑
x=n,s

Bxδn2
x −Ansδn

2
ns −

1

4

∑
x=n,s

∂Bx
∂n2

x

(δn2
x)

2 − 1

2

∂Ans

∂n2
ns

(δn2
ns)

2

− 1

2

∂Bn
∂n2

s

(δn2
n)(δn2

s )−
∂Ans

∂n2
n

(δn2
n)(δn2

ns)−
∂Ans

∂n2
s

(δn2
s )(δnns)

2 .

(98)
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To make contact with the previous expansion on the matter space we need explicit expres-

sions for δn2
x and all other similar terms that appear in the expression above.

For the four-current we have

δnax = nax − n̄ax = (n̄x + δnx)
[(

1 +
1

2
w2

x

)
ua + wax

]
− n̄xu

a

=
1

2
n̄xw

2
xu

a + n̄xw
a
x + δnxu

a + δnxw
a
x ,

(99)

and we see that it—quite intuitively—changes both as the density and the four-velocity

change. By means of eq. (99) we get

δn2
x = −

(
2n̄axδn

x
a + δnaxδn

x
a

)
= 2n̄xδnx + (δnx)

2 . (100)

Similarly, we have

δn2
xy = −

(
n̄axδn

y
a + n̄ayδn

x
a + δnaxδn

y
a

)
= n̄xδny + n̄yδnx + δnxδny +

1

2
n̄xn̄y

(
wax − way

)2
.

(101)

In order to complete the second order expansion of Λ we also need the products (for every

possible combination) of eq. (100) and eq. (101). These are found to be

(
δn2

x

)2
= 4n̄2

x(δnx)
2 , (102a)

(δn2
xy)2 = n̄2

x(δny)2 + n̄2
y(δnx)

2 + 2n̄xn̄yδnxδny , (102b)

(δn2
x)(δn

2
y) = 4n̄xn̄yδnxδny , (102c)

(δn2
xy)(δn2

x) = 2n̄x(δnx)
(
n̄yδnx + n̄xδny

)
. (102d)

Plugging these expressions into eq. (98) we find (up to second order)

ε̂n.d.o.e. = εe(n̄n, n̄s) + µ̄nδnn + µ̄sδns +
1

2

(
B̄nc̄2n − Ānn

uu

)
(δnn)2

+
1

2

(
B̄sc̄2s − Āss

uu

)
(δns)

2 −
(
χ̄sn
uu + Āns

uu

)
(δnn)(δns) + µ̄nn̄nw

2
n

+ µ̄sn̄sw
2
s −

1

2
Ānsn̄nn̄sw

2
ns ,

(103)

36



where we have made use of eq. (97) and defined

c̄2x = 1 + 2
n̄2
x

B̄x
∂B̄x
∂n2

x

(104a)

w2
xy = gab

(
wax − way

)(
wbx − wby

)
(104b)

Āxx
ab = −

(
n̄2
y

∂Āxy

∂n2
xy

+ 4n̄xn̄y
∂Āxy

∂n2
x

)
ueau

e
b
.
= Āxx

uuu
e
au

e
b (104c)

Āns
ab = Āns ⊥ab −

(
Āns + 2n̄2

n

∂Āns

∂n2
n

+ 2n̄2
s

∂Āns

∂n2
s

+ n̄nn̄s
∂Āns

∂n2
ns

)
ueau

e
b

.
= Āns ⊥ab +Āns

uuu
e
au

e
b

(104d)

χ̄ns
uu = −2n̄nn̄s

∂B̄n

∂n2
s

= −2n̄nn̄s
∂B̄s

∂n2
n

(104e)

(See Andersson and Comer [37] for more discussion of these terms and Samuelsson et al.

[41] for their roles in two-stream instability.)

Noting that the quantity δnx is the variation of the rest frame density, we can relate it

to a variation of Nx and “close the loop”. Since the Nx are functions on matter space of the

variables (Xn, Xs, g
AB
n , gABs , gABns ) the expression for the energy is actually a second order

expansion in terms of those variables. We note also that, because of the two-layer structure,

the δnx above contain second-order terms.

A priori, the expression in eq. (103) does not provide the total out-of-equilibrium energy

because we need to account for the contributions due to dissipative terms. However, we will

now show that these actually do not contribute. To do this, we assume an expansion for all

the viscous stress tensors of the form

SAB = Se
AB + S1

AB + S2
AB +O(3) (105)

without specifying (for now) the explicit expressions. Recalling the fact that ΨA
e au

a
e = 0, we

can write, therefore,

Sabu
a
eu

b
e = SAB(XA

e + δXA),a(X
B
e + δXB),bu

a
eu

b
e = Se

AB δX
A
,a δX

B
,bu

a
eu

b
e , (106)

where the expansion is up to second order. It is clear that this argument is valid for each

viscous stress tensor, and for Dabu
a
eu

b
e as well, so that the dissipative contributions to the

off-equilibrium energy are, at least, of second order. Assuming that the energy is minimized,

that is

ε̂n.d.o.e. − εe(n̄n, n̄s) = 0 +O(2) , (107)
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we then have

µ̄nδnn + µ̄sδns = O(2) , (108)

which has a clear thermodynamical interpretation and is consistent with the EIT picture,

see [38], since, up to first order, the generalized energy is a function of the nx only.

We want to translate the above result into conditions for the matter space functions Nx.

We start by observing that in the conservative case, the three-form nx
ABC is a function of the

XA
x coordinates only. Therefore, N̄x is just a function of XA

x , while, because Nx = N̄x

√
gx,

the latter depends also on the projected metric

∂Nx

∂gABx

=
1

2

√
gxN̄xg

x
AB =

1

2
Nxg

x
AB . (109)

When considering the expansion of nx (and hence Nx) we assume that we can write

Nx = N e
x +N d

x , (110)

where N e
x is the same as in the non-dissipative limit while the dissipative contribution N d

x is

a function also of the additional variables that encode the dissipation. The separation of Nx

into two pieces can naturally assume that N d
x vanishes at equilibrium but not its derivatives.

Since the equilibrium evolves in a conservative fashion, we can write

δnx ≡ Nx −N e
x = N d

x = N d
x −N d

x

∣∣∣
e

=
∂N d

x

∂XA
x

δXA
x +

∂N d
x

∂XA
y

δXA
y +

∂N d
x

∂gABx

δgABx +
∂N d

x

∂gABy

δgABy +
∂N d

x

∂gABxy

δgABxy +O(2) ,
(111)

where here, and in similar expansions below, every quantity is to be evaluated at equilibrium.

With this assumption it is easy to read off from eq. (108) the first order relation

MndN d
n +MsdN d

s = 0 . (112)

This leads to

Mn
∂N d

n

∂XA
n

+Ms
∂N d

s

∂XA
n

= 0 . (113)

The analogous results for variations with respect to XA
s , gABn , gABs and gABns follow immedi-

ately. In particular, this shows that the total viscous stress tensor, acting on each component

Dx
ab, vanishes when the energy is minimized.

To see this explicitly we note that (see eqs. (31) and (32))

Sxy, e
AB ≡ 2Mx

∂Nx

∂gABxy

= −2My
∂Ny

∂gABxy

= −Syx, e
BA (114)
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where we made use of the symmetry property of the mixed metric, namely gABxy = gBAyx .

Similarly,

Sx, e
AB ≡ 2Mx

( ∂Nx

∂gABx

− 1

2
Nxg

x
AB

)
= 2Mx

[ ∂N d
x

∂gABx

− 1

2

(
Nx −N e

x

)
gxAB

]
= 2Mx

∂N d
x

∂gABx

= −2My

∂N d
y

∂gABx

= −syx, eAB

(115)

It is now clear that, by means of eq. (114) and eq. (115), the x-species viscous stress tensor

Dx, e
AB = Sx, e

AB + syx, eAB +
1

2
(Sxy, e

AB + Syx, e
BA ) = 0 . (116)

We have considered the fully general case with all the additional dependences in Nx and

all the viscous tensors Sx
ab, S

xy
ab and sxyab . The same result—that is, each Dx, e

ab vanishes—holds

even in a less rich situation when the model is built up with fewer viscous tensors. In that

case we have to go back to eq. (112) and modify it accordingly. It is important to stress

that we have shown that the full stress-energy-momentum tensor at equilibrium is made out

of just the non-dissipative part, and that the dissipative parts of the total stress-energy-

momentum tensor do not contribute to the total energy density at second order.

However, we note that the energy minimum conditions in eq. (112) do not set the purely

reactive terms to zero (eq. (30)). In fact, it only leads to

Mn
∂N d

n

∂XA
n

= −Rsn, e
A ,

Ms
∂N d

s

∂XA
s

= −Rns, e
A .

(117)

The reason for this is pretty clear as these terms do not enter the energy density formula.

We nonetheless might want to consider the case where the equilibrium equations are exactly

as the conservative ones. The motivation for this can be found in the derivation itself of

the purely reactive terms. If the different species are comoving at the action level, there is

no distinction between the different XA
x and no resistive reactive term of this form would

appear. We can enforce consistency with this observation in two ways: either we assume

that we use the complete dependence on XA
x in the conservative part, in which case

∂N d
x

∂XA
x

∣∣∣
e

= 0 =⇒ Rxy, e
A = 0 (118)
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or, we just set the terms R̄
x
a to zero, so that

M̄n
∂N d

n

∂XA
n

∣∣∣
e

= M̄s
∂N d

s

∂XA
s

∣∣∣
e
. (119)

The latter, less restrictive assumption reminds us of the dynamical nature of chemical equi-

librium in nature. Reactions happen also at equilibrium, although they do so in such a way

that there is no net particle production. Such equilibrium reactions are key to explaining

neutron star cooling.

Finally, it is quite easy to see that if we choose a different observer, such as the ones

associated with the Eckart or Landau frame, the differences in the energy density will be of

second order. Crucially, the equilibrium conditions in eq. (112) do not depend on the choice

of frame.

VI. THE LAST PIECE OF THE PUZZLE

In order to work out the perturbative expressions we need to expand the various dis-

sipative terms. It should now be clear that for the viscous stress tensors we can write24

δsxyAB = 2
∂N d

x

∂gABy

δMx + 2M̄xδ

(
∂N d

x

∂gABy

)
, (120a)

δSxy
AB = 2

∂N d
x

∂gABxy

δMx + 2M̄xδ

(
∂N d

x

∂gABxy

)
, (120b)

δSx
AB = 2

∂N d
x

∂gABx

δMx + 2M̄xδ

(
∂N d

x

∂gABx

)
− M̄x(δN d

x )geAB , (120c)

where

sxyAB = 2Mx
∂N d

x

∂gABy

, (121a)

Sxy
AB = 2Mx

∂N d
x

∂gABxy

, (121b)

Sx
AB = 2

(
Mx

∂N d
x

∂gABx

− 1

2
MxN d

x g
x
AB

)
. (121c)

24 All the derivatives are intended to be evaluated at equilibrium.
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Similarly, for the “purely resistive” terms we have

δRxy
A =

∂N d
x

∂XA
y

δMx + M̄xδ

(
∂N d

x

∂XA
y

)
. (122)

Since N d
x is a function of (Xx, Xy, g

AB
x , gABy , gABxy ), its derivatives are as well, so that we

have

δ

(
∂N d

x

∂XA
y

)
=

∂2N d
x

∂XB
x ∂X

A
y

δXB
x +

∂2N d
x

∂XB
y ∂X

A
y

δXB
y +

∂2N d
x

∂gBCx ∂XA
y

δgBCx

+
∂2N d

x

∂gBCy ∂XA
y

δgBCy +
∂2N d

x

∂gBCxy ∂X
A
y

δgBCxy .

(123)

Similar results hold for the other variations that were not explicitly written in eq. (120) and

eq. (122).

Concerning the purely reactive term we note that uaxR
yx
a = 0 automatically. Becuase we

are doing an expansion with undetermined coefficients, we need to impose this by hand at

every order; specifically, at the linear level. This then leads to

δ
(
uaxR

yx
a

)
= Ryx, e

A

(
wAx − ξ̇Ax

)
= 0 , (124)

so that not only do we have wax = ξ̇ax but also wAx = ξ̇Ax . This then means that we must have

uaeξ
b
xX

D
e ;ba = 0, which in turn implies that the orthogonality conditions for the viscous stress

tensors

Sx
abu

a
x = Sxy

ab u
a
x = sxyabu

a
y = 0 , (125)

are automatically satisfied at linear order.

From eq. (120) we can find the expansion for the spacetime viscous tensors through

δSx
ab = δSx

DEΨD
e aΨ

E
e b − Sx

DE

(
ξDx ,aΨ

E
e b + ΨD

e aξ
E
x ,b

)
, (126a)

δsxyab = δsxyDEΨD
e aΨ

E
e b − s

xy
DE

(
ξDy ,aΨ

E
e b + ΨD

e aξ
E
y ,b

)
, (126b)

δSxy
ab = δSxy

DEΨD
e aΨ

E
e b − S

xy
DE

(
ξDx,aΨ

E
e b + ΨD

e aξ
E
y ,b

)
, (126c)

while for the reactive terms associated with sxyab and Sxy
ab we have

δrxya =
1

2
δsxyDE∇ag

DE
e − 1

2
sxyDE∂a

[
gbc(ξDy ,bΨ

E
e c + ΨD

e bξ
E
y ,c)
]
, (127a)

δRxy
a =

1

4
δSxy

DE∇ag
DE
e − 1

2
Sxy
DEg

bc
(
ξDx ,b∇aΨ

E
e c + ΨD

e b∇aξ
E
y ,c

)
, (127b)
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where we made use of the fact that [δ,∇a] = 0 because of δgab = 0 (see the discussed at the

end of section IV).

Having “understood” how we may perturb the terms Rx
a and Dx

ab, let us focus on the

remaining pieces of the equation of motion. A quick look back at eq. (14) reveals that the

only terms we still have to discuss are δΓx and δµx
a. For the particle creation rate we have

(see eq. (99))

δΓx = ∇aδn
a
x = ˙δnx +∇a(n̄xw

a
x) (128)

while for the x-species momentum, we get

δµx
a = δ(Bxnx)u

e
b + B̄xn̄xw

x
b +

∑
y 6=x

δ(Axyny)ueb + Āxyn̄yw
y
b . (129)

Using the fact that we identified Mx with µx we have

δMx = δ
(
− µaxuxa

)
= −

(
µ̄axw

a
x + δµaxu

e
a

)
= δ
(
Bxnx +

∑
y 6=x

Axyny

)
,

(130)

and since Bx and Axy are ultimately functions of n2
x and n2

xy, we may use

δBx =

(
2nx

∂Bx
∂n2

x

+ ny
∂Bx
∂n2

xy

)
δnx +

(
2ny

∂Bx
∂n2

y

+ nx
∂Bx
∂n2

xy

)
δny , (131a)

δAxy =

(
2nx

∂Axy

∂n2
x

+ ny
∂Axy

∂n2
xy

)
δnx +

(
2ny

∂Axy

∂n2
y

+ nx
∂Axy

∂n2
xy

)
δny , (131b)

in eq. (130). This way, making use of definitions in eq. (104), we arrive at

δMx =
(
B̄xc2x − Āxx

uu

)
δnx −

(
Āns
uu + χ̄ns

uu

)
δny , (132)

and we see that the parameters that enter the dissipative fluid equations are the entrainment

coefficients (and first derivatives; that is, second order derivatives of Λ(n2
x, n

2
xy)) and the (up

to second order) derivatives of the function Nx(Xx, Xy, g
AB
x , gABy , gABxy ).

Having outlined the perturbative framework, it is natural to ask how many dissipative

channels does the (general) model contain. Or, to be more specific; how many “dissipation

coefficients” would have to be determined from microphysics. According to the expansion

scheme we have developed so far, the perturbative expressions for the dissipative terms will

ultimately involve all the second and first order derivatives of the N d
x when considered as
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functions of Xx, Xy, g
AB
x , gABy , gABxy . Also, to make use of the model we need to specify the

entrainment coefficients and their derivatives in the combinations from eq. (104).

The coefficients should be, in general, known once a specific model is chosen; that is, the

explicit functional forms of Λ and the N d
x have been determined. For example, if nuclear

physics calculations are used to determine these explicit forms, they must be done in such a

way that the constraints which arise from requiring a meaningful equilibrium configuration

are taken into account, and they must ensure that the Second Law of Thermodynamics is

obeyed. If Onsager-type reasoning [10] is invoked to ensure Γs is positive (up to second

order), then explicit use of

TΓs = −Ds
ba∇buas − uasRs

a , (133)

where T = −uasµs
a is the temperature, would have to be made.

VII. MODEL COMPARISON

As an intuitive application of the formulation it is useful to make contact with existing

models for general relativistic dissipative fluids, in particular, the classic work of Landau-

Lifschitz and Eckart and the second-order Müller-Israel-Stewart model. Specifically, we want

to understand how standard quantities (like shear and bulk viscosity) enter the present for-

malism. Therefore, we need to see if the dissipative terms of the existing models, (qa, χ, χab),

can be matched with terms in the action-based description. This procedure is fairly straight-

forward.

The action-based model provides the total fluid stress-energy-momentum tensor, so we

only have to decompose it in the usual way:

T ab = (p̄+ χ) ⊥ab +εuaub + 2q(aub) + χab . (134)

In this expression, the fluxes are defined with respect to some observer with four-velocity

ua. In order to be consistent with the perturbative expansion outlined above, we take this

observer to be associated with the thermodynamical equilibrium, i.e. ua = uae .
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A. Equating the Flux Currents

Let us first consider the heat. We can read off the heat flux from the total stress-energy-

momentum tensor as

qa = −εuae − T abueb = − ⊥ab T bcuec . (135)

First, let us note there is no contribution coming from the dissipative part of the stress-

energy-momentum tensor Dab. In fact, making use of eqs. (114), (115) and (126), it is easy

to show that Dabuea = (δDab)uea = O(2). Let us therefore consider the non-dissipative part

of T ab. For the generalized pressure we have to first order

Ψ = Λ +
∑
x

nxµx = −ε̄e + µ̄n̄+ T̄ s̄+
∑
x=n,s

n̄xδµx = p̄+
∑
x=n,s

n̄xδµx (136)

where we have used the minimum energy condition (eq. (108)) and the equilibrium Euler

relation. Using∑
x

naxµ̂x =
∑
x

naxµx +O(2) =
∑
x

[
n̄xµ̄xu

a
e + n̄xδµxu

a
e + µ̄x

(
δnxu

a
e + n̄xw

a
x

)]
(137)

we then identify the heat flux as

qa =
∑
x

µ̄xδn
a
x = µ̄n̄ wan + T̄ s̄ was . (138)

Here again we have repeatedly used the Euler relation and the minimum energy condition.

We note that this quantity is consistent with the definition used in the classic models, see

[37].

Let us now move on to the other fluxes and, as before, first focus on the non-dissipative

contribution. It is easy to check that

T abn.d. =

(
p̄+

∑
x

n̄xδµx

)
gab + (p̄+ ε̄e)u

a
eu

b
e

+
∑
x

[
µ̄xn̄xu

b
ew

a
x + n̄xu

a
e

(
δµxu

b
e + Bxn̄xw

b
x +

∑
y 6=x

Axyn̄yw
b
y

)]
,

(139)

so that, using the standard decomposition above one arrives at

(p̄+ χ) ⊥ab +χab =⊥ac⊥bd T cd = T ab + T aduedu
b
e + T cbuecu

a
e + εuaeu

b
e . (140)

If we now use the non-dissipative contribution T abn.d. in this equation, we get

(p̄+ χ) ⊥ab +χab = (p̄+
∑
x

n̄x δµx) ⊥ab= (p̄+ δΨ) ⊥ab . (141)
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That is, there may be a first-order correction in the pressure coming from T abn.d.. Let us

consider the contribution due to the non-dissipative part. From eq. (126) we readily see

that

⊥ac⊥bd Dcd = Dab = δDab . (142)

Putting everything together, we have identified

χ̂ = δΨ +
1

3
gabδD

ab , (143a)

χ̂ab = δD〈ab〉 , (143b)

q̂a = µ̄n̄wan + T̄ s̄was , (143c)

where, as usual, the angle brackets mean that we are taking the trace-free symmetric part

of the tensor. Also, we reintroduced the “hat” to stress that these fluxes are measured by

the equilibrium observer.

B. Example: A single viscous fluid

We now consider the example of a two-species, single viscous fluid. The two species

are matter, with non-equilibrium flux na = nuaf , and entropy, with non-equilibrium flux

sa = suaf . In this simple case, we assume that the non-equilibrium fluxes remain parallel,

meaning wan = was = wa and therefore

nan = nuaf = n(uae + wa) ,

nas = suaf = s(uae + wa) ,
(144)

where again uae is the equilibrium flow. In this case we do not have reactive terms because

the two fluids are locked together from the beginning. Dissipation enters by assuming both

currents depend on the (single) projected metric

Nn = Nn(XA, gAB) ,

Ns = Ns(X
A, gAB) .

(145)

In the equation of motion we will have additional terms due to Ss
ab and Sn

ab.

Because there is only one matter species, the creation rate Γn has to vanish; this implies

Γn = − 1

µn

Sn
ab∇aubf = 0 =⇒ Sn

ab = 0 . (146)
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As a result, the final form of the non-linear equation of motion is

2nan∇[aµ
n
b] + 2nas∇[aµ

s
b] + Γsµ

s
b = −∇aSs

ab . (147)

Note that, when we linearize, the term involving Γs will not appear in the equations, because

Γs has no linear term—entropy is expanded around a maximum—leaving only the second-

order term, which is positive-definite so that the Second Law of Thermodynamics can be

satisfied.

Our next step is to use the expansion formalism developed in the previous sections to

determine the explicit form of the viscous stress tensor Ss
ab. Let us start by considering the

equilibrium (minimum energy) conditions. Clearly, we should have

Ss, e
AB = 2Ms

∂N d
s

∂gAB
= 0 =⇒ ∂N d

s

∂gAB
= 0 . (148)

It also makes sense to assume ∂N d
s /∂X

A
∣∣
e

= 0. To see why, let us forget for the moment

that the two species are locked together and consider the purely reactive term:

R̄s
A =Mn

∂N d
n

∂XA
s

−Ms
∂N d

s

∂XA
n

= −Ms
∂N d

s

∂XA
s

−Ms
∂N d

s

∂XA
n

= −2Ms
∂N d

s

∂XA
s

= −2Ms
∂N d

s

∂XA
= 0 ,

(149)

where we initially distinguished between the two constituents’ matter-space coordinates, and

used the equilibrium condition. The condition ∂N d
x /∂X

A = 0 is motivated by the fact that

the reactive term vanishes (because the two currents are effectively locked).

As a result of these constraints we have δN d
x = O(2), δΨ = O(2) and the viscous stress

tensor becomes (see eqs. (120) and (126))

δSs
ab =

[
2M̄sδ

(
∂N d

s

∂gAB

)]
ΨA

e aΨ
B
e b

= −2T̄

[
∂N d

s

∂XC∂gAB
wC + 2

∂N d
s

∂gDE∂gAB
D(DwE)

]
ΨA

e aΨ
B
e b ,

(150)

where we have used the linearization procedure outlined in appendix A which shows

δXA ∼ −wA , δgAB ∼ −2D(AwB) . (151)

Given this, we can write the entropy production rate as (see eq. (133))

Γs = +
[
ACAB w

C + ΣDEABD
(DwE)

] (
σAB +

1

3
θgAB

)
≥ 0 , (152)
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where we have introduced the two tensors:

ACAB = 2
∂N d

s

∂XC∂gAB
,

ΣDEAB = 4
∂N d

s

∂gDE∂gAB
.

(153)

Noting that D(DwE) = σDE + 1
3
θgDE, we can clearly satisfy the second law by assuming25

ACAB = 0 ,

ΣDEAB =
ζ

T̄
geABg

e
DE + 2

η

T̄

[
geD(Ag

e
E)B −

2

3
geABg

e
DE

] (154)

with ζ, η ≥ 0 so that

Γs =
ζ

T̄
θ2e +

η

T̄
σabe σ

e
ab ≥ 0 . (155)

It also follows that, the only viscosity tensor of the model is

Ss
ab = χab + χ ⊥ab=

1

3
ζ θe ⊥ab +η σe

ab . (156)

With these relations we have recovered the usual relativistic Navier-Stokes equations (the

Landau-Lifschitz-Eckart model for a viscous fluid).

Let us point out that, to write down the full set of equations one should also expand

the “Euler part” of the equation of motion, i.e. the left-hand-side of eq. (147). We have

provided all the ingredients necessary for the explicit calculation, but leave it out as it is

not new and not particularly relevant for the present discussion (see also [37] for further

details).

VIII. CAUSALITY AND TELEGRAPH-TYPE EQUATIONS

As a practical example of the first-order expansion we produced the model for a single

(bulk and shear) viscous fluid, and showed how this leads to the expected form of the rela-

tivistic Navier-Stokes equations. The derivation shows the action-based formalism contains

within it the previous models. It also clear that the formalism developed allows us to consider

much more complicated settings, should we need to do so. However, the discussion of the

25 Note that within this model it is easy to account for a non-isotropic response in the velocity-gradients to

viscosity relation.
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first-order results is clearly not complete, because the final set of equations is widely known

to suffer from causality/stability issues. In fact, the work of Hiscock and Lindblom [42] has

shown these first-order models to be generically unstable. In practice, this means that if

we set the system to deviate slightly from an equilibrium state, the deviations will grow

exponentially and eventually diverge. Conversely, the second-order Müeller-Israel-Stewart

theories have been shown to satisfy the conditions for stability and causality [see 8]. This

has led to the common belief that all possible first-order theories are unstable and acausal,

and that for these issues to be solved one has to go to second order.

The issue has recently drawn further attention because of the relevance of (general rel-

ativistic) dissipative fluid models in the new gravitational-wave era and for the modelling

of heavy-ion collisions. In particular, in recently proposed field-theory-based models (see

[17, 18]) one postulates that the thermodynamic fluxes can be expanded in terms of the

usual hydrodynamic variables and their derivatives. Halting the derivative expansion at

first-order and performing a stability analysis, the authors showed that there exist a consis-

tent set of constraints on the expansion parameters such that these models pass some of the

stability and causality conditions.

A recent analysis by Gavassino et al. [43] shed new light on this matter, showing that

Landau-Lifschitz-Eckart model instabilities are due to the enforcement of the Second Law

on an entropy function that is not maximized at equilibrium, while the field-theory-based

models can be made stable by allowing for small violation of the Second Law. Neither of

these are, of course, “true” representations of the anticipated physics.

Another important aspect of the problem is provided by [39, 40], where it is demonstrated

that, for a fluid model with heat-flux, one can resolve the stability/causality issues at first

order by properly accounting for the entrainment between matter and entropy currents—

retaining the compatibility with the Second Law. Because of this, it is reasonable to believe

one can do the same at the first-order level also in different contexts. We will now discuss

these issues using the single viscous fluid as a case study.

Essentially, the problem must be addressed in a different way, as the key ingredient used

to solve the heat-flux case (see [39, 40]) accounting for the entropy inertia, will not work

for the present case as it does not involve relative flows. To make progress, we need to

make a slight modification to the formalism. Specifically, we will sketch out how one can

obtain—taking the action-based formalism as the starting point—a set of equations that is
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consistent with linearizing the equations of Müeller-Israel-Stewart. The argument is similar

to that of Rational Thermodynamics, which stresses the importance of the “principle of

memory or heredity” (see [38]).

The argument can be motivated with a Newtonian example, which highlights what needs

to be changed in the formalism in order to enforce a causal behaviour. It makes intuitive

sense that, if we want to implement causality in the model we need to account for some

delay in the system’s response. Following what is usually done in microphysical many-body

theories, we can assume the response of the system to be non-local in time. If we consider

a bulk-viscous fluid, this can be done by assuming that the trace part of the viscous stress

tensor is related to the expansion rate in such a way that

S =

∫ t

0

q(t− t′)θ(t′) dt′ , (157)

where the kernel q is yet to be determined. Using a simple result that is valid for functions

defined through integrals (functionals), namely

Φ(x) =

∫ β(x)

α(x)

f(x, t) dt , (158)

∂Φ

∂x
(x) = f(x, β(x))

∂β

∂x
− f(x, α(x))

∂α

∂x
+

∫ β(x)

α(x)

∂f

∂x
(x, t) dt , (159)

we have

Ṡ = ∂tS = q(0)θ(t) +

∫ t

0

∂t

[
q(t− t′)

]
θ(t′)dt′ . (160)

We can get a Telegraph-type equation for the flux by assuming

q(t− t′) = −ζ
τ
e−(t−t

′)/τ . (161)

In fact, this would lead to

S + τ Ṡ = −ζθ , (162)

where we assumed that the response function kernel satisfies q(0) = −ζ/τ . In effect, the

instantaneous response is the “Navier-Stokes” behaviour, while τ represents the typical

timescale over which the system retains a memory of the past.

This simple example tells us two things. First, we can get an equation for the fluxes by

assuming the kernel q to be as above. Second, a delay in the system response can be imple-

mented by assuming the flux to be a functional (not just a function) of the corresponding

generalized force, in this case the expansion rate.
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Suppose we try to implement this lesson in the action-based formalism. This will be quite

straightforward, subject to the following caveat: The (functional) integration should extend

(at most) to the whole spacetime region causally connected with each point. In the present

example, we will assume that the analysis is done locally in space but not necessarily in

time, such as the world-tube formed by the spatial part of the region δM in fig. 1. Even

though there are no general proofs to this effect, we are assuming that instilling causality

and stability in the world-tubes that can be used to fill out a system is probably a necessary

condition for causality and stability to apply globally.

The next step is to assume that the normalization N d
s is a functional of gAB instead of a

function. This means that we can write

N d
x [gAB](x) = N d

x [gABe ](x) +

∫
δN d

x

δgAB
(x, x′)δgAB(x′)d4x′

+

∫
δ2N d

x

δgABδgCD
(x, x′)δgAB(x′)δgCD(x′)d4x′

(163)

where the first two terms vanish because (i)N d
x vanishes at equilibrium, and (ii) the minimum

energy condition. Again, we assume that (the generalized version of) AABC of eq. (152) is

zero.

The key step is to replace the ordinary partial derivatives with functional derivatives

in the various expressions we have discussed, so that the viscous stress tensor will be (see

eq. (150))

SAB = 2T̄ δ

(
δN d

x

δgAB

)
= 2T̄

∫
δ2N d

x

δgABδgCD
δgCD(x′)d4x′ . (164)

Formally we can introduce a set of spatial coordinates x̄ comoving with the equilibrium

observer attached to the world-tube, and take the time coordinate to be the equilibrium

worldline’s proper time τ . Also, to enforce locality in space, and a retarded response in

time, we may use

δ2N d
x

δgABδgCD
=

1

4
ΣABCD(x̄, τ − τ ′) δ3(x̄− x̄′)Θ(τ − τ ′) . (165)

We can also assume the fluid viscous response to be isotropic (as before) and set

ΣABCD = Σb
ABCD + Σs

ABCD , (166)
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where

Σb
ABCD =

ζ(x)

T̄
geABg

e
CD qb(τ − τ ′)δ3(x̄− x̄′) ,

Σs
ABCD = 2

η(x)

T̄

(
geA(Cg

e
B)D −

2

3
geABg

e
CD

)
qs(τ − τ ′)δ3(x̄− x̄′) .

(167)

We retain the structure and symmetries from before, but introduce two different convo-

lutions qb and qs to account for different response to bulk and shear strain rates. Clearly,

we recover the Navier-Stokes limit if we assume there is no delay in the response functions,

i.e. let qb, s(τ − τ ′) = δ(τ − τ ′). We can make also the fluxes satisfy an equation of the

Telegraph-type by choosing the response function as

τ ′qb(τ − τ ′) ∝ e−(τ−τ
′)/tb , (168)

and similar for qs, where we introduce two different timescales tb and ts.

Let us focus on the bulk viscosity contribution. Intuitively, one would like to recover the

Navier-Stokes response in the limit of very short timescales tb → 0. It is clear from the

previous expression that to do so, we need to let the bulk viscosity coefficient diverge in the

short timescale limit. That is, we need

ζ(x)e−(τ−τ
′)/tb =⇒

tb→0
ζNS , (169)

where ζNS is the Navier-Stokes bulk viscosity coefficient. This is in accord with the parabolic

limit of [44]. A similar result holds for the shear viscosity.

In essence, we have shown how we can implement a causal response in the action-based

model by assuming that SAB (and therefore Dab as well) is an integral function of gAB.

The question then is, does this mean that the final fluid equations are integro-differential

equations? Fortunately the answer is no. In fact, we have shown that, by a suitable choice

of the response function q(τ − τ ′), the fluxes satisfy an equation of the Telegraph-type.

Therefore, instead of solving an integro-differential equation, one should treat Ss
ab = χ ⊥ab

+χab as an unknown in eq. (147), and add to the system the following two equations

χ+ tb χ̇ = −ζ θ , (170a)

χab + ts χ̇ab = −η σab . (170b)

This means that, at the end of the day, to actually solve a set of differential dissipative

equations at first order, we have to treat the fluxes as additional unknowns, for which one
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has to provide equations that are not given by the stress-energy-momentum conservation

law ∇aT
ab = 0. This is reminiscent of the EIT paradigm, where one postulates from the

beginning an entropy function that depends on an additional set of quantities—the thermo-

dynamic fluxes. The difference is in the fact that the microphysical origin of the equation

for the fluxes is now clear. It is worth noting that equations of the Telegraph-type for the

fluxes cannot be obtained in the field-theory-based models, as the constitutive equations are

given in terms of the usual equilibrium variables (like µ, T ) and their derivatives—so that

terms with derivatives of the fluxes (like χ̇) do not appear.

Equation (170) is (formally) the same as in the linearized version of Müeller-Israel-Stewart

model, which has been shown to be stable and causal. In theory, nothing prevents us from

choosing a different form for the retarded response q which could lead to non-causal be-

haviour. However, the form of q suggested above has a clear interpretation and is micro-

physically motivated. If one wants to come up with an alternative, this would need to be

motivated by microphysical arguments, as well.

Finally, let us consider the constraints that follows from the Second Law. It makes sense

to start by checking if and how the formula for the particle production rate is changed by

the modifications introduced to enforce causality. We now have (see eq. (29))

µxΓx =
1

3!
µABCx

dnx
ABC

dτx
= M̄x

d

dτx

(
N̄ c

x + N̄ d
x

)
=Mx

(
dN d

x

dτx
+

1

2
N d

x g
x
AB

dgABx

dτx

)
.

(171)

In the case of a single viscous fluid, since N d
x = O(2) and ġABx = O(1), the result simplifies

to

Γx =
dN d

x

dτ
+O(3) . (172)

If we focus on the entropy and use the fact that N d
s = N d

s [gAB] as above (see eq. (163)) then

we have

Γs = +

∫
∂

∂τ

(
δ2N d

s

δgABδgCD
(x̄, τ, x̄′, τ ′)

)
δgAB(x̄′, τ ′)δgCD(x̄′, τ ′)d4x′

= +

∫
∂

∂τ

(
ΣABCD(x̄, τ, x̄′, τ ′)

)
(τ ′)2D(AwB)D(CwD) d4x′ .

(173)
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As a result, the entropy production rate due to bulk- and shear viscosity becomes

Γbulk
s =

∫
dτ ′

ττ ′

τb

ζ

T̄
e−(τ−τ

′)/tb θ2e , (174a)

Γshear
s =

∫
dτ ′

ττ ′

τs

η

T̄
e−(τ−τ

′)/ts σabe σ
e
ab . (174b)

Assuming the bulk and shear channels to be independent, we can satisfy the Second Law

by assuming the viscosity coefficients ζ, η (as well as the relaxation timescales τb, τs) to be

positive. This is clearly consistent with the Navier-Stokes limit and, at the end of the day,

the model should be complete at first order.

IX. CONCLUSIONS AND FINAL REMARKS

We have considered the close-to-equilibrium regime of the action-based model of Ander-

sson and Comer [15] for dissipative multi-fluid systems. In particular, we have shown that,

starting from a set of fully non-linear dynamical equations with only the fluxes as the de-

grees of freedom, an expansion with respect to (a self-consistently defined) equilibrium can

be introduced in a clear fashion, with the line of reasoning being similar to that of usual

hydrodynamical perturbation theory.

After discussing the aspects of equilibrium which can be inferred from the action-based

model itself, we established how to construct the expansion in deviations away from equi-

librium in a general setting, so that the framework is of wider relevance. In the process we

demonstrated the importance of the frame-of-reference of the equilibrium observer. We also

noted that the construction promotes the role of the matter space: Instead of it being a

mathematical “trick” to facilitate a constrained variation, it might well be the arena where

the microphysical details are encoded in the general relativistic regime. This is a novel

perspective that needs further discussion and consideration.

We then focused on a particular first-order viscous fluid model, with shear- and bulk-

viscosity, paying particular attention to the key causality issues. We showed that causal

behaviour can be linked to a retarded response function that keeps track of a system’s

history. The specific form of the response function can be modelled in a phenomenological

way—as we did—but should ideally be provided by specific microphysical calculations, for

instance by means of the fluctuation-dissipation theorem (see [45] for a general discussion
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and [38] for comments on its role from the EIT perspective).26 In a sense, the action-based

model provides the “context”, determining the geometric structure and form of the equations

of motion, while the detailed microphysics is encoded in the specific response function.

Building the first-order expansion we made this connection clear, and showed how and

where the microphysics enters the discussion. We note that, in contrast with recent field-

theory-based models, we paid attention to the compatibility with the Second Law of Ther-

modynamics. An interesting outcome of this analysis is that we showed—contrary to the

Müeller-Israel-Stewart line of reasoning—that to implement a causal response in the model

there is no need to go to second order in deviations from equilibrium. This has already been

shown for the heat-flux problem (see [39, 40]), where the Cattaneo-type equation for the heat

flux is ultimately related to the multi-fluid nature of the problem. The entrainment effect

(through which the entropy current gains an effective mass [48]) results in an inertial heat

response. The case of a single viscous fluid is different since its retarded response cannot be

associated with the multifluid nature of the problem.

As the general model begins with a fully non-linear set of field equations the route to

further extensions is—at least at the formal level—quite clear. A natural next step would

be the modelling of a viscous fluid allowing for the heat to flow differently from the matter.

This application should be fairly straightforward since the two main issues of the prob-

lem have now been studied separately. A more challenging step will be the inclusion of

superfluids. The presence of currents that persist for very long times changes drastically

the non-dissipative limit. The model would require the use of more than one equilibrium

worldline congruence [15, 49], one for each “superfluid condensate” and one for all the re-

maining constituents. We plan to investigate these issues—and the connection to neutron

star astrophysics—at a later date.
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Appendix A: On the linearization procedure

Here we consider in more detail the linearization introduced above in eq. (151), motivating

it using the method of characteristics. This method is used to solve hyperbolic partial

differential equations and is valid in particular for first order linear equations of the type we

are dealing with.

We want to find a formal solution to

ξ̇Dx = ua∂aξ
D
x =

∂

∂τ
ξD(x̄, τ) = wDx (x̄, τ) (A1)

The idea is to solve the equation along its characteristic curves
(
x̄(s), τ(s)

)
, in order to deal

with an ordinary differential equation instead;

d

ds
ξDx
(
x̄(s), τ(s)

)
= wDx

(
x̄(s), τ(s)

)
. (A2)

If we now use the chain rule

d

ds
ξDx =

∂ξDx
∂x̄

dx̄

ds
+
∂ξDx
∂τ

dτ

ds
, (A3)

and set
dx̄

ds
= 0 ,

dτ

ds
= 1 , (A4)

then we see that eq. (A2) is the same as eq. (A1). Solving the characteristic curves equation

as τ(s) = s and x(s) = x0, the formal solution to eq. (A1) is

ξDx (x̄, τ) =

∫ τ

τ0

wDx (x̄, τ ′)dτ ′ . (A5)

The linearization approximation consists in writing wDx (x̄, τ ′) ≈ wDx (x̄, τ) + . . . in the last

integral, which means that we get

δXA
x (x̄, τ) = −ξAx = −(τ − τ0)wAx (x̄, τ) ,

δgABx (x̄, τ) = −2D(AξB)
x = −2(τ − τ0)D(AwB)

x (x̄, τ) .
(A6)
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