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Abstract

In this paper | examine evidence from research to argue that geometry education at the
school level needs to attend to two closely-entwined aspects of geometry: the spatial
aspects and the aspects that relate to reasoning with geometrical theory. Both of these
aspects can be taught, but the challenge for research in mathematics education is to
find way in which both geometric and spatial reasoning can be taught in a way that
each supports the other.
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Introduction
In the foreword to a book entitled The Best Writing on Mathematics 2010, the great
mathematician Bill Thurston (1946 - 2012), in one of his last contributions to
mathematics education, wrote:
“We humans have a wide range of abilities that help us perceive and
analyze mathematical content. We perceive abstract notions not just
through seeing but also by hearing, by feeling, by our sense of body
motion and position. Our geometric and spatial skills are highly trainable,
just as in other high-performance activities. In mathematics we can use
the modules of our minds in flexible ways - even metaphorically. A
whole-mind approach to mathematical thinking is vastly more effective

than the common approach that manipulates only symbols” (Thurston,
2011, p. xiii)

This quote captures, in a most elegant way, the themes of this paper: that geometric and
spatial reasoning are essential to mathematics and that they can be taught in ways that
enhance overall mathematical thinking. The challenge for research in mathematics
education is how geometric and spatial reasoning can be taught in a way that supports
what Thurston calls the “whole-mind approach to mathematical thinking” (ibid). In this
paper | examine evidence from research to argue that geometry education at the school
level needs to attend to two closely-entwined aspects of geometry: the spatial aspects
and the aspects that relate to reasoning with geometrical theory. These twin aspects of

geometry, the spatial and the deductive, | argue, are not separate; rather, they are



interlocked. Just as the renowned mathematician Michael Atiyah refers to geometry as
one of the two “pillars of mathematics” (Atiyah 2001, p. 657), alongside algebra, I
argue in this paper that geometric and spatial reasoning are the yin-yang of geometry
education in that they are interconnected and inter-dependent in such a way that each

gives rise to the other.

In this paper, | first examine the nature of geometrical and spatial reasoning. Then, after
a review of research with primary-school pupils, I review issues that impact on learners’
progression in spatial and geometrical reasoning through the secondary school years. |
conclude by suggesting issues that continue to present a challenge for research and
where more evidence is needed. The overall thrust of what | say is adapted from the
chapter on spatial and geometrical reasoning that I led for the book entitled Key Ideas in
Teaching Mathematics due to be published in February 2013 (Watson, Jones & Pratt, in
press). Where | can | use evidence from research that | have conducted, often in

collaboration with colleagues internationally.

The nature of geometrical and spatial reasoning

A useful definition of geometry is one attributed to the mathematician, Christopher
Zeeman: ‘“geometry comprises those branches of mathematics that exploit visual
intuition (the most dominant of our senses) to remember theorems, understand proof,
inspire conjecture, perceive reality, and give global insight” (Royal Society, 2001, p.
12). This definition encapsulates what can be thought of as the dual nature of geometry
in that it is both one of the most practical and reality-related components of
mathematics, and it is an important area of mathematical theory. This means, on the one
hand, that geometry can be seen all around us (and is widely utilised in art, design,
architecture, engineering, and so on) while, on the other hand, it is simultaneously a
theoretical field that allows geometers and other mathematicians, together with
cosmologists and other scientists, to work with hypothetical objects in n-dimensional
space using, amongst other things, mathematical visualisation techniques with high-

powered computers.

The notion of ‘figural concept’ (Fischbein, 1993; Fischbein and Nachlieli, 1998)
captures the combined role of the figural and the conceptual in geometry. This means
that in ‘seeing’ a circle represented on paper, or on a computer screen, what we see is a

textual representation of something which is an element of geometrical theory. One way
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to work with this dual nature of geometry is to distinguish between a ‘drawing’ and a
‘figure’ (Parzysz, 1988) in that, as Laborde (1993, p. 49) explains, ‘drawing refers to
the material entity, while figure refers to a theoretical object’. Another way is to follow
Phillips et al. (2010, p.3-4) and take a geometric diagram as “an unusual thing in that it
Is not an abstraction of an experienced object. Rather, it is an attempt to take an abstract
concept and make it concrete”. In this sense, the term ‘geometric diagram’ is being used
by Phillips (and by Laborde, 2004) to capture the idea that any geometric object that we

see is both a material ‘drawing’ and a theoretical ‘figure’.

Ever since the time of Euclid’s Elements (the third century BCE, or thereabouts),
geometrical reasoning has been synonymous with the deductive method. As such, for
the purposes of this paper, | take geometrical reasoning to align with deductive
reasoning. In terms of spatial reasoning, this is defined by Clements and Battista (1992,
p. 420) as “the set of cognitive processes by which mental representations for spatial
objects, relationships, and transformations are constructed and manipulated”. As such,
spatial reasoning is a form of mental activity which makes possible the creation of
spatial images and enables them to be manipulated in the course of solving practical and
theoretical problems in mathematics. This links to visualisation, something which is
generally taken as “the ability to represent, transform, generate, communicate,
document, and reflect on visual information” (Hershkowitz, 1989, p. 75). Both spatial
reasoning and visualisation play vital roles not only in geometry itself and in geometry
education, but also more widely in mathematics and in mathematics education
(Giaquinto, 2007; Jones, 2001).

In addition to Fischbein’s ‘figural concept’ noted above, influential researchers on the
nature of spatial and geometrical reasoning, and its development in learners, include (in
chronological order) Piaget, van Hiele, and Duval, amongst others. Here | have no
space even to give a brief outline of each; for such detail, see Battista (2007, pp. 846-
65). What such research suggests about the nature of spatial and geometrical reasoning
is that various types of geometric ideas, both spatial and theoretical, appear to develop
over time, becoming increasingly integrated and synthesised. Geometrical ideas
symmetry, invariance, transformation, similarity and congruence relate to the more
global mathematical ideas of proof and proving. Importantly, an ever-growing strand of

research is examining the influence of the use of various classroom artefacts on the



development of geometrical and spatial reasoning, especially the impact of computer-

based tools (for teacher-oriented reviews, see Jones, 2005; 2012).

Geometrical and spatial reasoning across the primary school years

Research on geometrical and spatial reasoning during the pre-school and primary school
years has examined classroom activities that engage learners in visualising, drawing,
making, and communicating about two- and three-dimensional shapes (Levenson, et al.,
2011; Roth; 2011). During these years, it seems that much geometry teaching focuses
on the development of language for shape (for example, the names of polygons) and for
location (for instance, left and right). Of course, knowledge of mathematical
terminology is essential for modelling, visualising and communicating in all areas of
mathematics. Even so, the problem can be that a heavy emphasis on descriptive
language and definitions, even if relatively informal, at the expense of geometrical
problem solving, might mean that children’s progression in geometry during their
primary school years is somewhat limited (Clements, 2003, pp.151-2; Jones and
Mooney, 2003).

Through primary school, while young children may learn the names of simple shapes
(though see below for some cautions regarding the influence of prototypical
representations), it can be more difficult for them to recognise the relation between
transformed shapes through rotation, reflection and enlargement. For example, primary
school children are likely to need a lot of experience with transforming shapes before
they are able to complete rotation or reflection patterns. This may be because children’s
earlier experiences of mathematical shapes focus primarily on enabling them to
recognise the same shape whatever its location or size (for example, that a shape is a
square no matter what size it is) rather than also helping them to be aware of relevant
transformations of the shape. Research also indicates that children experience particular
problems with measuring lengths and areas, even though they may understand the
underlying logic of measurement. Similarly, learning how to represent angle
mathematically is not straightforward for younger children, even though angles occur
everywhere in their everyday life. For a very useful summary of such research, see
Bryant (2009).

When young children are learning about 2D and 3D shapes, research has documented
the ways in which they are likely to do some or all of the following: under-generalise by
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including irrelevant characteristics that inhibit generalisation, over-generalise by
omitting key properties with a result that their generalisation is too wide, and incur
language-related misconceptions (for example, that ‘diagonal’ means ‘slanting’). In a
summary of such research, Hershkowitz (1990, p.82) shows how, for learners, each
geometric object has “one or more prototypical examples that are attained first” that are
“usually the subset of examples that had the ‘longest’ list of attributes of all the critical
attributes of the concept and those specific (non-critical) attributes that had strong visual
characteristics”. For example, learners are much better at recognising isosceles triangles

that are ‘standing on their base’ compared to those presented in a different orientation.

Other issues that learners encounter related to naming shapes (and lines) are linked to
matters of definition, and to learners’ embryonic understanding of necessary and
sufficient conditions, and of inclusivity in defining (see below for more on issues of
definition and defining). Examples of such issues include use of terms such as ‘oblong’
(for a rectangle that is not a square) and ‘diamond’ (for a specific orientation of a
rhombus that is almost certainly a square), and the confusion between ‘regular’ and

‘symmetrical’.

One further thing that research suggests is not always fully taken into account in
primary mathematics education is that children come to school with a good deal of
knowledge about spatial relations, primarily because we inhabit a spatial world
surrounded by spatial objects. This means, as Bryant (2009, p.3) puts it, that “one of the
most important challenges in mathematical education is how best to harness this
implicit knowledge in lessons”. For some examples of how this can be achieved at the

primary school level, see Lehrer, et al. (1999). More such research is needed.

Progression in geometrical and spatial reasoning during secondary school

As is clear from what has already been said in this chapter, during their later school
years it seems that students continuously move back and forth between what Laborde
(1998) calls ‘spatio-graphic geometry’ (ie spatial reasoning) and ‘theoretical geometry’
(ie deductive reasoning). This means that when attempting a geometric proof, for
example, a secondary school student might move from making conjectures using
measures taken from a geometrical drawing, to using definitions and theorems, then go

back to the drawing, and so on. This moving between ‘spatio-graphic geometry’ and
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‘theoretical geometry’ relates to the issue of the sometimes uneasy relationship between

measuring and proving in geometry.

This uneasy relationship exists even though in area measurement, for example, precise
solutions can be obtained by considering the theoretical relationships between
geometric shapes. For example, the ‘base X height’ rule for the area of rectangles
applies in the same way to parallelograms and this can be proved by transforming a
rectangle into a parallelogram with the same height and base (knowing that the
transformation does not change the area). Similarly, the rule for finding the area of a
triangle [Area = %2 (base > height)] can be justified by the fact that every triangle can be
transformed into a parallelogram with the same base and height by doubling that
triangle. Thus, rules for precise area measurement via formulae are built from the
theoretical relations between geometric shapes. Here it is worth noting, as Bryant (2009,
p. 22) confirms, that more research is needed on learners’ understanding of this

centrally-important aspect of geometry and measurement.

At secondary school level, and even beyond to undergraduate level, learners can
experience difficulties in using definitions appropriately and may not fully appreciate
the role of definitions in geometry (Edwards and Ward, 2004; Vinner, 1991). Yet, as
Freudenthal (1971, pp. 424) pointed out “Though the teacher can impose definitions...,
this means degrading mathematics to something like spelling, ruled by arbitrary
prescriptions”. As such, one way to overcome such issues is for students to be actively
engaged in the defining of geometric objects, as exemplified by de Villiers (1998) in the
case of quadrilaterals.

In terms of the idea of geometric similarity, Friedlander and Lappan (1987, p.36) list a
range of mathematics that is related, including enlargement, scale factor, projection,
area growth, and indirect measurement. These, say Friedlander and Lappan, are
“frequently encountered by children in their immediate environment and in their studies
of natural and social sciences” (ibid.). What is more, similar geometric shapes provide
helpful mental images of ratios and equivalent fractions, and provide a model for some
rational number concepts. Ideas of similarity extend to trigonometry and to the notion of

self-similarity that is characteristic of fractal geometry.

Bearing in mind the geometrical ideas of symmetry, invariance, transformation,
similarity and congruence, there are many reasons, as Freudenthal (1971, p.434)

explains, why a focus on symmetries is a good idea. This is not to say that symmetry is
8



simple or uncomplicated to teach. Research tracing the development of students'
knowledge of symmetry in school geometry, such as that by Leikin et al. (2000), has
revealed a range of difficulties that learners encounter with ideas of symmetry. These
range from straightforward errors such as identifying an incorrect symmetry axis, or
failing to recognise a correct symmetry axis, to difficulties with reflecting in oblique
lines. There are matching difficulties when secondary school students work with
symmetry in three-dimensions (Cooper, 1992). Research with suitable digital
technologies is providing examples of how students might gain a more multi-faceted
appreciation of symmetry (e.g., Hoyles and Healy, 1997; Clements et al., 2001).

Invariance, like symmetry, while a central idea of mathematics in general, is especially
relevant and important in geometry. Most theorems in geometry can be seen as resulting
from the study of what change is permitted that leaves some relationships or property
invariant. There is research indicating that the use of transformations can be a means by
which ideas of invariance can be studied most easily and by which the formal
definitions of congruence and similarity can be related to learners’ previous intuitive
ideas. Here is a place where research indicates that digital technologies such as DGS
can play a valuable role (see Hollebrands et al., 2008; Laborde et al., 2006).

While an important aim of geometry teaching is for students to develop their geometric
and spatial reasoning in order that they can tackle relatively complex problems
productively, research with which | have been involved indicates that even though
many Grade 9 students in Japan can write down a proof, around 70% do not understand
why proofs are needed (Kunimune, Fujita & Jones, 2009; 2010). Such research raises a
number of challenges for research. These include: what geometrical definitions might
be used when formulating geometrical problems for classroom use and how might
students be involved in constructing definitions, and with what consequences? How do
different (or even differently-orientated) representation of geometric objects, including
representations constructed using software, impact on students reasoning in geometry?

What is the impact of teacher’s instructions on students’ reasoning in geometry?

Concluding comments
This paper argues that school geometry is not solely about naming shape or proving

circle theorems; rather, as Malkevitch (2009, p.14) illustrates, geometry is more akin to
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“the branch of mathematics that studies visual phenomena” in all their glories and
richness. This is why geometry is such an important part of the school mathematics
curriculum, and why the teaching of geometry across the school years needs to ensure a
sustained focus on the twinned aspects of geometry: the spatial aspects, and the aspects
that relate to reasoning with geometrical theory. In forming the yin-yang of geometry

education, each gives rise to the other and each only exists in relation to the other.

Del Grande (1990, p.19) argued some time ago that “geometry has been difficult for
pupils due to an emphasis on the deductive aspects of the subject and a neglect of the
underlying spatial abilities acquired by hands-on activities that are necessary
prerequisites for understanding and mastery of geometrical concepts”. Bill Thurston put
it this way:

“We have an inexorable instinct that prompts us to convey through
speech content that is not easily spoken. Because of this tendency,
mathematics takes a highly symbolic, algebraic, and technical form. Few
people listening to a technical discourse are hearing a story. Most readers
of mathematics (if they happen not to be totally baffled) register only
technical details - which are essentially different from the original
thoughts we put into mathematical discourse. The meaning, the poetry,
the music, and the beauty of mathematics are generally lost....

Another source of the cloud of illusions that often obscures meaning in
mathematics arises from the contrast between our amazingly rich abilities
to absorb geometric information and the weakness of our innate abilities
to convey spatial ideas - except for things we can point to or act out....
Since our minds all have much in common, we can indeed describe
mental images in words, than surmise and reconstruct them through
suggestive powers. This is a process of developing mental reflexes and,
like other similar tasks, it is time-consuming. We just need to be aware
that this is the task and that it is important, so that we won’t instinctively
revert to a symbolic and denatured encoding....

A whole-mind approach to mathematical thinking is vastly more
effective than the common approach that manipulates only symbols”
(Thurston, 2011, p. xi-xiii)

The great challenge for research in mathematics education is how geometric and spatial
reasoning can be taught in a way that supports what Thurston calls the “whole-mind

approach to mathematical thinking” (ibid).
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