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Abstract 

In this paper I examine evidence from research to argue that geometry education at the 

school level needs to attend to two closely-entwined aspects of geometry: the spatial 

aspects and the aspects that relate to reasoning with geometrical theory. Both of these 

aspects can be taught, but the challenge for research in mathematics education is to 

find way in which both geometric and spatial reasoning can be taught in a way that 

each supports the other.  
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Introduction  

In the foreword to a book entitled The Best Writing on Mathematics 2010, the great 

mathematician Bill Thurston (1946 - 2012), in one of his last contributions to 

mathematics education, wrote: 

“We humans have a wide range of abilities that help us perceive and 

analyze mathematical content. We perceive abstract notions not just 

through seeing but also by hearing, by feeling, by our sense of body 

motion and position. Our geometric and spatial skills are highly trainable, 

just as in other high-performance activities. In mathematics we can use 

the modules of our minds in flexible ways - even metaphorically. A 

whole-mind approach to mathematical thinking is vastly more effective 

than the common approach that manipulates only symbols” (Thurston, 

2011, p. xiii) 

This quote captures, in a most elegant way, the themes of this paper: that geometric and 

spatial reasoning are essential to mathematics and that they can be taught in ways that 

enhance overall mathematical thinking. The challenge for research in mathematics 

education is how geometric and spatial reasoning can be taught in a way that supports 

what Thurston calls the “whole-mind approach to mathematical thinking” (ibid). In this 

paper I examine evidence from research to argue that geometry education at the school 

level needs to attend to two closely-entwined aspects of geometry: the spatial aspects 

and the aspects that relate to reasoning with geometrical theory. These twin aspects of 

geometry, the spatial and the deductive, I argue, are not separate; rather, they are 

Cite as: Jones, K. (2012). Geometrical and spatial reasoning: Challenges for research in mathematics education. In 
Hélia Pinto, Hélia Jacinto, Ana Henriques, Ana Silvestre & Cláudia Nunes (Eds.), Atas do XXIII Seminário de 
Investigação em Educação Matemática (SIEM XXIII) (pp.3-10). Lisbon: Associação de Professores de Matemática.



4 

interlocked. Just as the renowned mathematician Michael Atiyah refers to geometry as 

one of the two “pillars of mathematics” (Atiyah 2001, p. 657), alongside algebra, I 

argue in this paper that geometric and spatial reasoning are the yin-yang of geometry 

education in that they are interconnected and inter-dependent in such a way that each 

gives rise to the other.  

In this paper, I first examine the nature of geometrical and spatial reasoning. Then, after 

a review of research with primary-school pupils, I review issues that impact on learners’ 

progression in spatial and geometrical reasoning through the secondary school years. I 

conclude by suggesting issues that continue to present a challenge for research and 

where more evidence is needed. The overall thrust of what I say is adapted from the 

chapter on spatial and geometrical reasoning that I led for the book entitled Key Ideas in 

Teaching Mathematics due to be published in February 2013 (Watson, Jones & Pratt, in 

press). Where I can I use evidence from research that I have conducted, often in 

collaboration with colleagues internationally. 

The nature of geometrical and spatial reasoning 

A useful definition of geometry is one attributed to the mathematician, Christopher 

Zeeman: “geometry comprises those branches of mathematics that exploit visual 

intuition (the most dominant of our senses) to remember theorems, understand proof, 

inspire conjecture, perceive reality, and give global insight” (Royal Society, 2001, p. 

12). This definition encapsulates what can be thought of as the dual nature of geometry 

in that it is both one of the most practical and reality-related components of 

mathematics, and it is an important area of mathematical theory. This means, on the one 

hand, that geometry can be seen all around us (and is widely utilised in art, design, 

architecture, engineering, and so on) while, on the other hand, it is simultaneously a 

theoretical field that allows geometers and other mathematicians, together with 

cosmologists and other scientists, to work with hypothetical objects in n-dimensional 

space using, amongst other things, mathematical visualisation techniques with high-

powered computers.  

The notion of ‘figural concept’ (Fischbein, 1993; Fischbein and Nachlieli, 1998) 

captures the combined role of the figural and the conceptual in geometry. This means 

that in ‘seeing’ a circle represented on paper, or on a computer screen, what we see is a 

textual representation of something which is an element of geometrical theory. One way 
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to work with this dual nature of geometry is to distinguish between a ‘drawing’ and a 

‘figure’ (Parzysz, 1988) in that, as Laborde (1993, p. 49) explains, ‘drawing refers to 

the material entity, while figure refers to a theoretical object’. Another way is to follow 

Phillips et al. (2010, p.3-4) and take a geometric diagram as “an unusual thing in that it 

is not an abstraction of an experienced object. Rather, it is an attempt to take an abstract 

concept and make it concrete”. In this sense, the term ‘geometric diagram’ is being used 

by Phillips (and by Laborde, 2004) to capture the idea that any geometric object that we 

see is both a material ‘drawing’ and a theoretical ‘figure’. 

Ever since the time of Euclid’s Elements (the third century BCE, or thereabouts), 

geometrical reasoning has been synonymous with the deductive method. As such, for 

the purposes of this paper, I take geometrical reasoning to align with deductive 

reasoning. In terms of spatial reasoning, this is defined by Clements and Battista (1992, 

p. 420) as “the set of cognitive processes by which mental representations for spatial 

objects, relationships, and transformations are constructed and manipulated”. As such, 

spatial reasoning is a form of mental activity which makes possible the creation of 

spatial images and enables them to be manipulated in the course of solving practical and 

theoretical problems in mathematics. This links to visualisation, something which is 

generally taken as “the ability to represent, transform, generate, communicate, 

document, and reflect on visual information” (Hershkowitz, 1989, p. 75). Both spatial 

reasoning and visualisation play vital roles not only in geometry itself and in geometry 

education, but also more widely in mathematics and in mathematics education 

(Giaquinto, 2007; Jones, 2001). 

In addition to Fischbein’s ‘figural concept’ noted above, influential researchers on the 

nature of spatial and geometrical reasoning, and its development in learners, include (in 

chronological order) Piaget, van Hiele, and Duval, amongst others. Here I have no 

space even to give a brief outline of each; for such detail, see Battista (2007, pp. 846-

65). What such research suggests about the nature of spatial and geometrical reasoning 

is that various types of geometric ideas, both spatial and theoretical, appear to develop 

over time, becoming increasingly integrated and synthesised. Geometrical ideas 

symmetry, invariance, transformation, similarity and congruence relate to the more 

global mathematical ideas of proof and proving. Importantly, an ever-growing strand of 

research is examining the influence of the use of various classroom artefacts on the 
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development of geometrical and spatial reasoning, especially the impact of computer-

based tools (for teacher-oriented reviews, see Jones, 2005; 2012).  

Geometrical and spatial reasoning across the primary school years 

Research on geometrical and spatial reasoning during the pre-school and primary school 

years has examined classroom activities that engage learners in visualising, drawing, 

making, and communicating about two- and three-dimensional shapes (Levenson, et al., 

2011; Roth; 2011). During these years, it seems that much geometry teaching focuses 

on the development of language for shape (for example, the names of polygons) and for 

location (for instance, left and right). Of course, knowledge of mathematical 

terminology is essential for modelling, visualising and communicating in all areas of 

mathematics. Even so, the problem can be that a heavy emphasis on descriptive 

language and definitions, even if relatively informal, at the expense of geometrical 

problem solving, might mean that children’s progression in geometry during their 

primary school years is somewhat limited (Clements, 2003, pp.151-2; Jones and 

Mooney, 2003).  

Through primary school, while young children may learn the names of simple shapes 

(though see below for some cautions regarding the influence of prototypical 

representations), it can be more difficult for them to recognise the relation between 

transformed shapes through rotation, reflection and enlargement. For example, primary 

school children are likely to need a lot of experience with transforming shapes before 

they are able to complete rotation or reflection patterns. This may be because children’s 

earlier experiences of mathematical shapes focus primarily on enabling them to 

recognise the same shape whatever its location or size (for example, that a shape is a 

square no matter what size it is) rather than also helping them to be aware of relevant 

transformations of the shape. Research also indicates that children experience particular 

problems with measuring lengths and areas, even though they may understand the 

underlying logic of measurement. Similarly, learning how to represent angle 

mathematically is not straightforward for younger children, even though angles occur 

everywhere in their everyday life. For a very useful summary of such research, see 

Bryant (2009).  

When young children are learning about 2D and 3D shapes, research has documented 

the ways in which they are likely to do some or all of the following: under-generalise by 
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including irrelevant characteristics that inhibit generalisation, over-generalise by 

omitting key properties with a result that their generalisation is too wide, and incur 

language-related misconceptions (for example, that ‘diagonal’ means ‘slanting’). In a 

summary of such research, Hershkowitz (1990, p.82) shows how, for learners, each 

geometric object has “one or more prototypical examples that are attained first” that are 

“usually the subset of examples that had the ‘longest’ list of attributes of all the critical 

attributes of the concept and those specific (non-critical) attributes that had strong visual 

characteristics”. For example, learners are much better at recognising isosceles triangles 

that are ‘standing on their base’ compared to those presented in a different orientation. 

Other issues that learners encounter related to naming shapes (and lines) are linked to 

matters of definition, and to learners’ embryonic understanding of necessary and 

sufficient conditions, and of inclusivity in defining (see below for more on issues of 

definition and defining). Examples of such issues include use of terms such as ‘oblong’ 

(for a rectangle that is not a square) and ‘diamond’ (for a specific orientation of a 

rhombus that is almost certainly a square), and the confusion between ‘regular’ and 

‘symmetrical’. 

One further thing that research suggests is not always fully taken into account in 

primary mathematics education is that children come to school with a good deal of 

knowledge about spatial relations, primarily because we inhabit a spatial world 

surrounded by spatial objects. This means, as Bryant (2009, p.3) puts it, that “one of the 

most important challenges in mathematical education is how best to harness this 

implicit knowledge in lessons”. For some examples of how this can be achieved at the 

primary school level, see Lehrer, et al. (1999). More such research is needed. 

Progression in geometrical and spatial reasoning during secondary school 

As is clear from what has already been said in this chapter, during their later school 

years it seems that students continuously move back and forth between what Laborde 

(1998) calls  ‘spatio-graphic geometry’ (ie spatial reasoning) and  ‘theoretical geometry’ 

(ie deductive reasoning). This means that when attempting a geometric proof, for 

example, a secondary school student might move from making conjectures using 

measures taken from a geometrical drawing, to using definitions and theorems, then go 

back to the drawing, and so on. This moving between ‘spatio-graphic geometry’ and 
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‘theoretical geometry’ relates to the issue of the sometimes uneasy relationship between 

measuring and proving in geometry.  

This uneasy relationship exists even though in area measurement, for example, precise 

solutions can be obtained by considering the theoretical relationships between 

geometric shapes. For example, the ‘base x height’ rule for the area of rectangles 

applies in the same way to parallelograms and this can be proved by transforming a 

rectangle into a parallelogram with the same height and base (knowing that the 

transformation does not change the area). Similarly, the rule for finding the area of a 

triangle [Area = ½ (base   height)] can be justified by the fact that every triangle can be 

transformed into a parallelogram with the same base and height by doubling that 

triangle. Thus, rules for precise area measurement via formulae are built from the 

theoretical relations between geometric shapes. Here it is worth noting, as Bryant (2009, 

p. 22) confirms, that more research is needed on learners’ understanding of this 

centrally-important aspect of geometry and measurement.  

At secondary school level, and even beyond to undergraduate level, learners can 

experience difficulties in using definitions appropriately and may not fully appreciate 

the role of definitions in geometry (Edwards and Ward, 2004; Vinner, 1991). Yet, as 

Freudenthal (1971, pp. 424) pointed out “Though the teacher can impose definitions…, 

this means degrading mathematics to something like spelling, ruled by arbitrary 

prescriptions”. As such, one way to overcome such issues is for students to be actively 

engaged in the defining of geometric objects, as exemplified by de Villiers (1998) in the 

case of quadrilaterals. 

In terms of the idea of geometric similarity, Friedlander and Lappan (1987, p.36) list a 

range of mathematics that is related, including enlargement, scale factor, projection, 

area growth, and indirect measurement. These, say Friedlander and Lappan, are 

“frequently encountered by children in their immediate environment and in their studies 

of natural and social sciences” (ibid.). What is more, similar geometric shapes provide 

helpful mental images of ratios and equivalent fractions, and provide a model for some 

rational number concepts. Ideas of similarity extend to trigonometry and to the notion of 

self-similarity that is characteristic of fractal geometry. 

Bearing in mind the geometrical ideas of symmetry, invariance, transformation, 

similarity and congruence, there are many reasons, as Freudenthal (1971, p.434) 

explains, why a focus on symmetries is a good idea. This is not to say that symmetry is 
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simple or uncomplicated to teach. Research tracing the development of students' 

knowledge of symmetry in school geometry, such as that by Leikin et al. (2000), has 

revealed a range of difficulties that learners encounter with ideas of symmetry. These 

range from straightforward errors such as identifying an incorrect symmetry axis, or 

failing to recognise a correct symmetry axis, to difficulties with reflecting in oblique 

lines. There are matching difficulties when secondary school students work with 

symmetry in three-dimensions (Cooper, 1992). Research with suitable digital 

technologies is providing examples of how students might gain a more multi-faceted 

appreciation of symmetry (e.g., Hoyles and Healy, 1997; Clements et al., 2001). 

Invariance, like symmetry, while a central idea of mathematics in general, is especially 

relevant and important in geometry. Most theorems in geometry can be seen as resulting 

from the study of what change is permitted that leaves some relationships or property 

invariant. There is research indicating that the use of transformations can be a means by 

which ideas of invariance can be studied most easily and by which the formal 

definitions of congruence and similarity can be related to learners’ previous intuitive 

ideas. Here is a place where research indicates that digital technologies such as DGS 

can play a valuable role (see Hollebrands et al., 2008; Laborde et al., 2006). 

While an important aim of geometry teaching is for students to develop their geometric 

and spatial reasoning in order that they can tackle relatively complex problems 

productively, research with which I have been involved indicates that even though 

many Grade 9 students in Japan can write down a proof, around 70% do not understand 

why proofs are needed (Kunimune, Fujita & Jones, 2009; 2010). Such research raises a 

number of challenges for research. These include: what geometrical definitions might 

be used when formulating geometrical problems for classroom use and how might 

students be involved in constructing definitions, and with what consequences? How do 

different (or even differently-orientated) representation of geometric objects, including 

representations constructed using software, impact on students reasoning in geometry? 

What is the impact of teacher’s instructions on students’ reasoning in geometry?  

Concluding comments 

This paper argues that school geometry is not solely about naming shape or proving 

circle theorems; rather, as Malkevitch (2009, p.14) illustrates, geometry is more akin to 
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“the branch of mathematics that studies visual phenomena” in all their glories and 

richness. This is why geometry is such an important part of the school mathematics 

curriculum, and why the teaching of geometry across the school years needs to ensure a 

sustained focus on the twinned aspects of geometry: the spatial aspects, and the aspects 

that relate to reasoning with geometrical theory. In forming the yin-yang of geometry 

education, each gives rise to the other and each only exists in relation to the other.  

Del Grande (1990, p.19) argued some time ago that “geometry has been difficult for 

pupils due to an emphasis on the deductive aspects of the subject and a neglect of the 

underlying spatial abilities acquired by hands-on activities that are necessary 

prerequisites for understanding and mastery of geometrical concepts”. Bill Thurston put 

it this way: 

“We have an inexorable instinct that prompts us to convey through 

speech content that is not easily spoken. Because of this tendency, 

mathematics takes a highly symbolic, algebraic, and technical form. Few 

people listening to a technical discourse are hearing a story. Most readers 

of mathematics (if they happen not to be totally baffled) register only 

technical details - which are essentially different from the original 

thoughts we put into mathematical discourse. The meaning, the poetry, 

the music, and the beauty of mathematics are generally lost.... 

Another source of the cloud of illusions that often obscures meaning in 

mathematics arises from the contrast between our amazingly rich abilities 

to absorb geometric information and the weakness of our innate abilities 

to convey spatial ideas - except for things we can point to or act out.... 

Since our minds all have much in common, we can indeed describe 

mental images in words, than surmise and reconstruct them through 

suggestive powers. This is a process of developing mental reflexes and, 

like other similar tasks, it is time-consuming. We just need to be aware 

that this is the task and that it is important, so that we won’t instinctively 

revert to a symbolic and denatured encoding…. 

A whole-mind approach to mathematical thinking is vastly more 

effective than the common approach that manipulates only symbols” 

(Thurston, 2011, p. xi-xiii) 

 

The great challenge for research in mathematics education is how geometric and spatial 

reasoning can be taught in a way that supports what Thurston calls the “whole-mind 

approach to mathematical thinking” (ibid).  
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