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Abstract 
In game theory and statistical decision theory, a random 
(i.e. mixed) decision strategy often outperforms a deterministic 
strategy in minimax expected loss. As experimental design can 
be viewed as a game pitting the Statistician against Nature, the 
use of a random strategy to choose a design will often be 
beneficial. However, the topic of minimax-efficient random 
strategies for design selection is mostly unexplored, with 
consideration limited to Fisherian randomization of the 
allocation of a predetermined set of treatments to experimental 
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units. Here, for the first time, novel and more flexible random 
design strategies are shown to have better properties than their 
deterministic counterparts in linear model estimation and 
prediction, including stronger bounds on both the expectation 
and survivor function of the loss distribution. Design strategies 
are considered for three important statistical problems: (i) 
parameter estimation in linear potential outcomes models, (ii) 
point prediction from a correct linear model, and (iii) global 
prediction from a linear model taking into account an L2-class of 
possible model discrepancy functions. The new random design 
strategies proposed for (iii) give a finite bound on the expected 
loss, a dramatic improvement compared to existing 
deterministic exact designs for which the expected loss is 
unbounded. 

Key words: Randomization, potential outcomes, statistical decision theory. 

1 Introduction 

1.1 Decision-theoretic design and random decisions 

In frequentist decision-theoretic experimental design, the success of the 

experiment in relation to its objective is quantified by the value of a loss function, 

( , )θ α . Here, the vector θ  contains the true parameter values and is chosen by 

Nature, while the vector ( , )h yα ξ  contains estimates of the interest parameters, 

( )aα θ . Additionally, 
1( , , )n x xξ  denotes the design, to be chosen by the 

Statistician, and 1( , , ) n

ny y  y
T  is the vector of responses, yet to be 

observed. 

Prior to the experiment the loss is a random variable and so cannot simply be 

minimized. Thus the design is instead chosen to give a favourable pre-

experimental distribution of possible losses. Usually in the optimal design 

literature only deterministic choices of ξ  are considered. However, we will argue 

that if Nature is a passive participant rather than a reactive and antagonistic 

opponent, then one can often obtain a loss distribution with better properties by 

instead using a suitable random strategy to select ξ . 
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In the conventional approach, favourability of the loss distribution associated with 

design ξ  is measured by considering the expected loss, ( , ) E[ ( , )]R θ ξ θ α , also 

known as the risk. If the risk is independent of θ , then ξ  is simply chosen to 

minimize ( , )R θ ξ . Otherwise a minimax design is typically used instead, i.e. a 

mMξ  that minimizes ( ) max ( , )R  
θ

ξ θ ξ  with respect to ξ , where Θ is the set 

of possible values for θ . Most standard ‘alphabetic’ design optimality criteria for 

linear models, such as A-, L- and V-optimality, can be derived from this 

framework via an appropriate choice of loss function. Note that ( ) ξ  is a tight 

upper bound for the (unknown) expected loss, ( , )R θ ξ , attained at the true 

parameter values. Hence, among all deterministic designs, 
mMξ  gives the 

strongest possible bound on the attained expected loss. 

Though the above property appears to give a strong argument in favour of the 

use of 
mMξ , in fact in both game theory and statistical decision theory it is widely 

recognized that a minimax deterministic decision is often outperformed by a 

randomized decision strategy (e.g. Blackwell and Girshick 1979, Berger 1985, 

Ch.5, Thie and Keough 2011, Ch.9). Since design selection can be viewed as a 

decision problem, or alternatively a game pitting the Statistician against Nature, it 

stands to reason that random decision strategies should also be beneficial for 

experimental design. Nonetheless, aside from a few minimax analyses of 

Fisherian randomization (Wu 1981, Li 1983, Hooper 1989, Bhaumik 

and Mathew 1995), the topic of minimax random strategies for design selection 

appears almost totally unexplored in the literature. 

In this paper, we address this deficiency by introducing the notion of a general 

random design strategy (RDS) and investigating the performance of a minimax 

RDS in a number of important design problems. We find that a minimax RDS 

typically gives a substantially reduced upper bound on the attained expected 

loss, and a substantially reduced upper bound on the survivor function, i.e. the 

probability that the loss exceeds a given threshold. It is able to do so by 
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exploiting our key assumption that Nature is passive, and does not change θ  in 

response to our choice for ξ . 

The generality of our decision-theoretic formulation enables a wide variety of 

design problems to be addressed in a unified framework. Specifically, in this 

paper we consider: 

(i) design for parameter estimation in a linear potential outcomes model with 

fixed (i.e. non-random) unknown unit effects (cf. 

Bailey 1981, Wu 1981, Dasgupta et al. 2015, Ding 2017). 

(ii) design for prediction at an unknown point in a correctly-specified, normal-

response linear model. 

and, of particular importance, the problem that motivated this work: 

(iii) model-robust design for global prediction in a normal-response linear 

model contaminated by an unknown model discrepancy function belonging to 

an L2-class (cf. Wiens 2015). 

1.2 Organization of the paper 

In Section 2, the definition of a minimax random design strategy is presented, 

and general bounds are introduced for the survivor function of the loss 

distribution. The connections between the proposed framework and other related 

notions in the literature are discussed. 

In Section 3, random design strategies are explored for a linear potential 

outcomes model in which unit-treatment additivity may not hold. We show for the 

first time that a well-known design and analysis strategy from the additive case 

remains minimax under these weaker assumptions. In particular, we show that 

under appropriate conditions the minimax combination of random design strategy 

and estimator is to use complete randomization of a classical optimal design and 

ordinary least squares (cf. Li 1983). 
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Section 4 illustrates for the first time how random design strategies improve 

minimax efficiency under a loss function extending G-optimality, under the 

assumptions of mean-zero normal unit effects and finite design space. Examples 

are presented in which a minimax RDS gives a reduced bound on the expected 

loss and the survivor function of the loss distribution compared to both a 

deterministic G-optimal exact design (cf. St John and Draper 1975) and a G-

optimal approximate design. 

The most interesting results are given in Section 5, where random translation 

design strategies are proposed for model-robust prediction, in the presence of 

model discrepancy from an L2-class. Our new strategies give designs with finitely 

many runs and bounded expected loss. This represents a major improvement on 

existing model-robust design theory, in which it is only possible to achieve 

bounded expected loss by using a design with infinitely many runs, a practical 

impossibility. 

Section 6 contains further discussion of the context of our results. Proofs are 

deferred to the supplementary material. 

2 Random design strategies 

2.1 Some terminology and assumptions 

The vector , 1, ,i i n  x , denotes the treatment applied to the ith 

experimental unit. The set, , of possible treatments is assumed to be a 

compact subset of q  for some q . Let Ξ denote the set of competing 

designs, so that 1( , , )n  x xξ . Throughout this paper, it is assumed that 

n  ; that is, any run order of any choice of n treatments from , not 

necessarily distinct, is permitted. Clearly this would not be the case if, for 

example, a multi-stratum design structure were required (Bingham 2015). Given 

 ξ ξ  and  θ θ , the response vector y is assumed to be a random draw from 

the probability measure (·| , )P  ξ θ  on n . 
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2.2 Random design strategies 

Definition 2.1. A random design strategy (RDS) π is a probability measure on Ξ 

such that the n-point design ξ  to be run in the experiment is chosen at random 

by sampling from π. 

A design ξ  chosen via application of a random design strategy is called a 

random design. Note that a deterministic design is a special case of a random 

design; it corresponds to a strategy which assigns probability 1 to a particular 

 ξ , i.e. a strategy π with singleton support supp( ) { }  ξ . Hence there is no 

disadvantage to considering random designs; if a random design gives no 

improvement over a deterministic design, then the optimal π will be a point-mass 

distribution,  ξ . Where emphasis is required, we refer to a RDS with more than 

one support design as non-deterministic. For mathematical precision, we 

suppose that ( )A  is defined for any Borel-measurable subset A . 

The following assumption that Nature is passive and not antagonistic seems 

plausible in most situations, and is key to our analysis. For a detailed discussion 

of why this assumption is needed, see Section 6. 

Assumption 2.2. θ  is fixed, i.e. it is chosen independently of ξ . 

If Assumption 2.2 holds then, prior to the sampling of a specific design 

realization, the pre-experimental loss distribution is that induced on ( , )θ α  by the 

joint distribution of ξ  and y. The attained pre-experimental expected loss is thus 

( , ) E[ ( , )] [ , ( , )] ( | , ) ( ) ( , ) ( )
n

R h dP d R d  
 

    y yθ θ α θ ξ ξ θ ξ θ ξ ξ . This can be 

given a tight upper bound via ( , ) ( ) max ( , )R R     
θ

θ θ . 

Definition 2.3. A minimax RDS, mM , minimizes the upper bound ( )  with 

respect to π. 

Note that writing ( , )R θ  and ( )  for the risk and risk bound of an RDS π is a 

slight abuse of notation as we have already defined ( , )R θ ξ  and ( ) ξ  as the risk 
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and risk bound of a deterministic design ξ . However, the concepts are 

analogous, and it should be clear from the context which is intended. 

2.3 Survivor function of the loss distribution 

So far we have only considered the expected loss. To analyse the loss 

distribution in more detail, one can consider its survivor function, Pr[ ( , ) ]uθ α  

(for a related idea see the quantile criterion of Kapelner et al. 2020). For an RDS 

π, this is ( , , ) { [ , ( , )] } ( | , ) ( )
n

S u I h u dP d 


   y yθ θ ξ ξ θ ξ , where (·)I  denotes 

an indicator function. For a deterministic design ξ , it is 

( , , ) ( , , ) { [ , ( , )] } ( | , )
n

S u S u I h u dP   y y
ξ

θ ξ θ θ ξ ξ θ . 

The attained survivor function ( , , )S uθ  is unknown due to its dependence on θ . 

However it can be bounded tightly in a similar way to the attained expected loss, 

namely ( , , ) max ( , , ).S u S u  
θ

θ θ  A weaker bound can be obtained using 

Markov’s inequality, giving 
max

( )
( , , ) min 1, [ ] ,S u I u

u




 
  

 
θ  where 

max
( , , )

sup [ , ( , )].h
  

   
y

y
θ ξ

θ ξ  This latter bound is not tight, but it can be useful for 

comparison of a minimax RDS with a minimax deterministic design in cases 

where mMmax ( , , )S u 
θ

θ  is difficult to compute. Compared to a minimax 

deterministic design, a minimax RDS typically gives a reduced upper bound on 

the survivor function. Figures 1, 2, and 5 illustrate this phenomenon. 

2.4 Relationship with other approaches 

Fisherian randomization 

In practice, an element of randomness in design selection is already commonly 

recommended by most statisticians. Specifically, it is almost unanimously 

accepted as beneficial to perform Fisherian randomization of the allocation of 

treatments to experimental units. This has many advantages, but we focus on 

two. 
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First, randomization can be used as a basis for statistical inference without 

strong modelling assumptions, for example using Neymannian randomization-

based estimation or Fisher’s exact test. These techniques can only be applied if 

an appropriate randomization has been used, or alternatively a valid 

rerandomization procedure (e.g. Morgan and Rubin 2012). They are not 

applicable with a fully deterministic optimal design (Li et al. 2018). 

Second, Fisherian randomization improves experiment robustness, although this 

benefit is not captured by design performance metrics such as D-efficiency. In 

our view, this inability to explain the advantage of randomization is a regrettable 

weakness of standard optimal design theory. In contrast, with minimax theory 

randomization arises as a necessary consequence of optimality under 

appropriate conditions. For example, in a small series of pioneering papers it was 

shown that, under uncertainty about the mean of the random errors in a linear 

model, Fisherian randomization of a standard optimal design is minimax (see 

Wu 1981, Li 1983, Hooper 1989, Bhaumik and Mathew 1995), deepening the 

mathematical foundation of longstanding statistical practice. 

Despite its many advantages, Fisherian randomization is quite restrictive when 

viewed within the wider space of general random strategies. As a consequence it 

will not be optimal in all situations. From the existing literature it is currently 

unclear what is a minimax strategy when there is uncertainty about aspects of 

the problem other than the unit effects, for example the functional form of the 

regression model, or the choice of a location for prediction. Our more flexible 

approach enables good statistical properties to be obtained in a wider range of 

problems. 

Approximate designs 

In addition to the exact designs discussed in Section 1.1, another traditional 

optimal design approach is to work with an approximate design 
ˇ ˇ

1 1{ , , ; , , }K Kw w   x x , with support points 
ˇ ˇ

1, , K x x  and weights 
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1, , 0Kw w   (
1

1
K

k

k

w


 ) (e.g. Kiefer and Wolfowitz 1959). Many numerical 

methods exist for constructing an approximate design that is optimal with respect 

to some criterion such as G- or D-optimality (e.g. Yang et al. 2013, Harman 

et al. 2020). 

Practical implementation of an approximate design depends on the use of a 

rounding method to determine an integer number, 
k kn nw , of runs to be 

allocated to treatment 
ˇ

kx , subject to 
1

K

k

k

n n


 . Most commonly the rounding is 

determined via an optimization procedure. For example, with Kiefer rounding the 

nk are selected to minimize max | / |k k kn n w , and with Adams rounding the nk 

are selected to maximize min / ( )k k kn nw  (Pukelsheim 2006, Ch.12). Adams 

rounding gives an optimal efficiency bound. Another common approach is 

Federov’s method (Pronzato and Pázman 2013, 296-7). We refer to a 

deterministic (exact) design obtained by one of these procedures as a 

deterministic ROAD (Rounded Optimal Approximate Design). The choice could 

also be randomized, by selecting one member uniformly at random from the set 

of discretizations satisfying the Kiefer or Adams criteria (see Section 4.1). 

Sometimes this randomized rounding procedure gives a minimax RDS (e.g. 

Sections 4.1.2 and 4.1.3), other times it does not (e.g. Section 4.1.4). 

Note that independent random sampling of points from the approximate design 

measure exhibits poor properties and is never recommended. For small n it gives 

a non-negligible probability of obtaining a singular exact design. Its asymptotic 

performance is also inferior compared to other rounding methods. Specifically, 

under independent sampling the difference between the proportion, /kn n , of 

runs allocated to 
ˇ

kx  and the optimal proportion, wk, is of order 1/2( )pO n  as 

n . In contrast, with the Adams method the difference is of the smaller order 

(1/ )O n . 
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An RDS π is a measure on exact designs, unlike η which is a measure on 

treatments. Consequently π contains much more detailed information about the 

experimental procedure than η. For example, unlike η, the RDS π implicitly 

specifies the probability distribution of the unit-treatment allocation, and any 

correlations between the replication numbers of two treatments over different 

realisations of the design. In Section 4 we show that this additional detail can 

enable superior statistical performance, especially in multifactor experiments with 

small sample size. 

Random balance designs 

Despite the superficially similar nomenclature, the approach presented in this 

paper has little in common with the much-criticised ‘random balance’ designs 

(Satterthwaite 1959). Our perspective is that it is not the randomness of such 

designs that is an issue per se, but the poor structure of that randomness, as 

those strategies are chosen without any decision-theoretic justification. For 

polynomial response surface models, random balance designs can often lead to 

problems such as highly correlated parameter estimators or even non-

estimability due to partial or total confounding of some factor effects. In contrast, 

we show that the random strategies proposed in Sections 4 and 5 for the 

estimation of polynomial response surface models give demonstrably better 

efficiency than deterministic designs. 

3 Randomization in linear potential outcomes models 

3.1 Potential outcomes models 

The potential outcomes framework was first introduced by Neyman for designed 

experiments (Splawa-Neyman et al. 1990), and has been extended to 

observational studies (e.g. Rubin 2005) and factorial experiments (Dasgupta 

et al. 2015). We denote by ( )iY x  ( 1, ,i n  ) the potential outcome for the 

response that would occur if the ith experimental unit were to receive treatment 

x . The totality of these counterfactual potential outcomes is referred to as the 
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science. However, the ‘fundamental problem of causal inference’ is that only one 

treatment can be applied per unit and hence the science can only ever be 

partially observed. 

Our assumptions can be more clearly stated after rewriting the potential 

outcomes as 

( ) ( ) ( ),i iY  x x x  (1) 

where 
1

1
( ) ( ) ( )

n

i

i

Y Y
n




  x x x  denotes the mean response under conditions x, 

and ( )i x  denotes the unit effect of the ith unit under treatment x. By 

construction, the unit effects satisfy 
1

1
( ) 0

n

i

in 

 x  for all x . Unlike 

conventional statistical modelling, in the Neymanian approach the unit effects are 

treated as fixed unknowns instead of random variables. The only manner in 

which randomness arises in the observed responses is therefore from the 

random assignment of treatments to experimental units. There is no need to 

assume normality or independence of the unit effects. It is even possible to relax 

the assumption of unit-treatment additivity, equivalent to the condition that 

( )i iex  for all x , which is commonly made in experimental design (e.g. 

Kempthorne 1955, Bailey 1981, 2017). 

In the remainder of this section we adopt a linear potential outcomes model, in 

which 

( ) ( ) , x f x β
T  (2) 

where 0( ) [ ( ), , ( )]pf f f x x x
T , with :jf   ( 0, ,j p  ) a known regression 

basis function that is continuous with respect to the topology on , and 

1

0( , , ) p

p    β
T  a vector of unknown parameters. We typically assume that 

0( ) 1f x , i.e. the model has an intercept. The response actually observed for the 

ith unit, which receives treatment ix , is 
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( ) ( ) ( ).i i i i i iy Y  x f x xβ
T  (3) 

In the absence of blocks, the traditional approach to designing an experiment is 

to use a completely randomized design (CRD). This consists of selecting a 

deterministic n-tuple of treatments, 1( , , )n x xξ , and allocating these to 

experimental units according to a random permutation ~ Uniform( )nS , giving 

1 ( )ii x x . Here Sn denotes the symmetric group of order n. 

The probability measure corresponding to the CRD strategy can be denoted 

concisely using the concept of a pushforward measure. Specifically, the 

permutation 
nS   acts as a bijection on n   via 1 1(1) ( )

( ) ( , , )
n 

   x xξ  for 

1( , , )n  x xξ , and on random design strategies via the pushforward 

operation :    , with 1( ) ( ( ))A A   

  , with A a Borel-measurable subset 

of Ξ. The probability measure corresponding to the CRD defined above can then 

be written as CRD, 1
,

!
nSn 

  


 ξ ξ  where  ξ  denotes the point-mass probability 

distribution with support { }ξ . 

Under a CRD, a reordered version of the response vector can be shown to follow 

a correlated heteroscedastic non-normal linear model, as we see below. Let 

( ) ( )ii ir Y x  denote the response from the unit which is allocated to treatment ix  

under the CRD. Further let 
1( ) ( ( ), , ( ))n x x x

T  denote the vector of unit effects 

functions and ( )E ξ  denote the n × n matrix with i, jth entry ( )i jx . Also let 

2 2

1

1
( ) ( )

n

i

i

S
n 

 x x  denote the variance of the unit effects for treatment x , 

1[ ( ) ( )]n F f x f x
ξ

T  denote the model matrix, and 1diag[ , , ]na a  denote an n × n 

diagonal matrix with (i, i)th entry ai. 

Proposition 3.1. With the strategy CRD, ξ  and model (3) the re-ordered response 

vector 1( , , )nr r r
T  satisfies 2E( ) , Var( ) ( )iir S r F x

ξ
β , and 

2 2
1

1
Var( ) ( ) diag[ ( ), , ( )] ( ) ( )

1 ( 1)
n

n
S S

n n n
   

 
r V x x E Eξ ξ ξ

T . 
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3.2 Minimax estimator and design strategy 

Before identifying the minimax estimator and design strategy, we must first 

specify the loss function and its corresponding risk, together with our 

assumptions about the set of possible unit effects and the estimator used. 

It is supposed that the experimental goal is estimation of a transformation of the 

parameters,  Λα β , where Λ  is an ( 1)r p   matrix and β0 is not of interest, so 

that the first column of Λ  consists of zeroes. A corresponding loss function is 

( , ) ( ) ( ),  θ α α α α α
T  (4) 

where ( , )h yα ξ  is the estimator, not necessarily ordinary least squares, and 

1( , ) p   θ β , where  denotes the set containing all unit effects 

function vectors  considered possible prior to the experiment. When computing 

the risk no integral is needed with respect to y, since y is uniquely determined 

given ξ  and θ  under model (3). Hence ( , ) E[ ( , )] [ , ( , )] ( )R h d 


   yθ θ α θ ξ ξ  

and ( ) max ( , )R  
θ

θ . 

Two possibilities are considered for the set of possible unit effects, denoted 
1
 

and 
2
, giving rise to two possibilities for Θ, namely 1

1 1

p    and 

1

2 2

p   . The first is 

1 1

2 2

1 1

(·) ( (·), , (·)) :  is measurable,

 with ( ) 0 and ( )  for all .

{ |

}

n i

n n

i i

i i

n
 

   

   x x x
 

This set consists of all unit effects function vectors such that 2 2( )S x . This 

corresponds to the situation where the variances of the potential outcomes are 

bounded and allowed to differ among treatments, but there is no prior knowledge 

that a particular treatment has a smaller variance. The second possibility is 

2

2 { (·) | ( ) , , 0, }n n    x e e e 1 e e
T T  
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which corresponds to the case of unit-treatment additivity with 2 2 2( )S s  x . 

The sets 
1
 and 

2
 are both invariant to permutations of the unit labels, 

corresponding to an assumption that prior knowledge about the units is 

homogeneous. If it is instead believed that there is some structure to the 

experimental units, such as blocking, then a more heterogeneous set of possible 

unit effects function vectors should be considered. 

Several conditions are imposed on the estimator α . First, we suppose it is linear, 

i.e. ( , )h y A y
ξ

α ξ , as is conventional for Neymanian point estimation (cf. 

Dasgupta et al. 2015, Zhao et al. 2018). In addition we will suppose that α  is 

invariant, i.e. ( ( ), ( )) ( , )h h  y yξ ξ  for all 
nS  . In other words, permutation of 

the order in which the data are written yields identical estimates. Further, we 

suppose that α  is continuous in the sense that the map  A
ξ

ξ  is continuous 

on the support, supp( ) , of the RDS. These properties are all satisfied by the 

ordinary least squares estimator, 1
OLS

 ΛM F y
ξ ξ

α
T , provided the RDS is non-

singular, i.e. det 0 M
ξ

 for any supp( ) ξ , where M F F
ξ ξ ξ

T  denotes the 

information matrix (see Lemma B.1 in the supplementary material). 

Under more restrictive assumptions about the unit effects than adopted here, the 

optimal combination of estimator and design is well-known. In particular, with 

normal random errors 2~ (0, )i N   it is known by the Gauss-Markov theorem that 

OLSα  is the best linear unbiased estimator. Moreover, in this case the design 

strategy minimizing the expectation of the loss (4) would be an L-optimal 

deterministic design, i.e. a 
L

 ξ  that minimizes 1tr[ ]
Λ ΛM

ξ

T  with respect to 

ξ . 

The result below identifies the minimax combination of RDS and estimator for the 

potential outcomes model (3). 

Theorem 3.2. For model (3) and loss function (4) with 1    or 2 : 
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(i) if α  is invariant, given any non-singular π the strategy 
1

!
nSn 

  


   

obtained by uniform random permutation of the treatments sampled from π 

satisfies ( ) ( )   ; 

(ii) for the strategy  , the ordinary least squares estimator OLSα  is unbiased 

and minimax among all continuous linear invariant estimators. With this 

design strategy and estimator, we have 
2

1( ) tr[ ] ( )
1

n
d

n


 


 

  Λ ΛM
ξ

ξ
T ; 

(iii) subject to the constraint that α  is continuous, linear and invariant, a 

minimax combination of RDS and estimator is complete randomization of an 

L-optimal deterministic design together with OLSα α . 

For a deterministic design, the minimax estimator and maximum risk under the 

potential outcomes model (3) are given by the following result. 

Proposition 3.3. For model (3), loss function (4), and a deterministic design, ξ , 

with M
ξ
 invertible: (i) OLSα  is minimax among all estimators of α  for 

1    or 

2 ; (ii) 
1 2

2 1

1 2 max( ; ) max ( , ) max ( , ) ( ; ) ( )R R n   

           Λ ΛM
θ θ ξ

θ ξ θ ξ ξ
T

, where max (·)  denotes the maximal eigenvalue of a matrix; and (iii) the survivor 

function of the loss distribution satisfies 

1 2 2max ( , , ) max ( , , ) [ ( ; )]S u S u I u       
θ θ

θ ξ θ ξ ξ . 

The max-risk efficiency of RDS   relative to π is defined as 

eff ( ; ) ( ) / ( )        . From Proposition 3.3(ii) we see that, relative to the 

completely randomized version of ξ , the max-risk efficiency of the unrandomized 

version of ξ  satisfies 

1

CRD,

1

max

tr( )
eff[ ; ]

( 1) ( )n
 










Λ ΛM

Λ ΛM

ξξ ξ

ξ

T

T
 (5) 

for 1 2,   , with equality when 2   . 

3.2 Example: full quadratic model, three factors, 3{ 1,0,1}  , n = 20 runs 
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Here 2 2 2

1 2 3 1 2 1 3 2 3 1 2 3( ) (1, , , , , , , , , )x x x x x x x x x x x xf x
T  for 

1 2 3( , , )x x x x
T  and we set 

1[ | ]p pΛ 0 I . By Theorem 3.2 the minimax random design strategy, 
mM , is to 

apply Fisherian randomization of the run order to an L-optimal design, 
L


ξ . Such a 

design has been computed using co-ordinate exchange and is given in the 

supplementary material (Table 2). The risk bound for this strategy is 

2

mM( ) 1.34   . Randomization provides a substantial efficiency gain: by (5) the 

max-risk efficiency of the unrandomized version of 
L


ξ  is at most 24.9% relative to 

mM . 

Figure 1 shows, for each of 
L


ξ  and 

mM , an upper bound on the attained survivor 

function of the loss distribution in the case 
2   , using Proposition 3.3(iii) and 

the Markov bound from Section 2.3. Here we have exploited the fact that the 

bounds only depend on the ratio 2/u   to produce a plot without assuming a 

specific value of 2 . We see that, compared to the unrandomized L-optimal 

design, the minimax RDS reduces the worst-case probability of a loss exceeding 

u for all values of u shown. Note that by ‘reduces’, we mean ‘gives a value which 

is less than or equal to the original value’. 

From the above, it is clear that randomization provides a substantial benefit. 

However, it is noteworthy that it is nonetheless inadequate to randomize the run 

order of a poor set of treatments. For example, the CRD based on 
badξ  in Table 2 

has a max-risk efficiency of at most 0.9% relative to 
mM , far lower than the 

unrandomized L-optimal design. 

4 Point prediction in normal-response linear models 

4.1 G-optimal random design strategies 

In this section it is assumed that  is finite, and that under treatment x  the 

response is distributed as 2[ ( ), ]N  x  with 2 0   unknown. In addition the model 

is assumed to be linear, i.e. the mean response function satisfies (2). 
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A classic deterministic optimal design for prediction for this model is the G-

optimal exact design, n

G

 ξ , which minimizes 

2 1ˆmax Var ( ) max ( ) ( )  

    
x x

x f x M f x
ξ

T  with respect to ξ . Above, 

OLS
ˆ ( ) ( ) x f x β

T  denotes the ordinary least squares prediction of the mean 

response. 

The G-optimal exact design above may be derived as a minimax deterministic 

decision-theoretic design via the choice of an appropriate loss function. To do so, 

we must assume that the goal of the experiment is to predict ( ) ( )  x f x β
T  at 

a point x , which (a) is not known by the Statistician at the time of planning 

the experiment, (b) does not change as a result of the choice of ξ , and (c) is 

known during analysis. For example, this may be the case if the prediction is 

made by someone else. Then an appropriate loss function is given by the 

predictive squared error, 

2ˆ ˆ( , ) [ ] ,   θ  (6) 

depending on the unknown 2 2 2 1( , , ) [ , ] p       xθ β , with 2  and 2  

defining lower and upper bounds on 2 , respectively. Under an alternative 

experimental goal, a different loss may be more suitable. For example, if the aim 

is instead to globally estimate the whole function μ, then integrated squared 

prediction error may be appropriate. In Section 5, the latter loss function is 

applied for such global prediction problems in the context of approximate linear 

models. 

To verify that the minimax deterministic design under loss (6) coincides with a G-

optimal exact design as claimed, first note that it is minimax to set ˆ ˆ ( )  x  (see 

Proposition B.5 in the supplementary material). In this case the loss simplifies as 

2ˆ ˆ( , ) [ ( ) ( )] ,   x xθ  (7) 

and the risk of a deterministic design ξ  becomes 
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2

2

| , ,
ˆ ˆ( , ) E ( , ) Var[ ( )| ] ( , ),R R


    

y
x x

ξ β
θ ξ θ ξ ξ  (8) 

with 1( , ) ( ) ( )R x f x M f x
ξ

ξ
T . It is clear from this that the G-optimality criterion is 

equivalent to minimization of max ( , )R 
θ

θ ξ  with respect to ξ . 

The assumption that x does not change in response to the choice of ξ , 

i.e. assumption (b) above, is analogous to Assumption 2.2. Therefore decision-

theoretic arguments indicate that a minimax deterministic design may be 

outperformed by an RDS π. The risk of π is 2

2

, | ,
ˆ( , ) E ( , ) ( , )R R


    

y
x

ξ β
θ θ , 

with 1( , ) ( )E{ } ( )R  x f x M f x
ξ

T , and a minimax RDS minimizes 

2( ) max ( , )R    
x

x  with respect to π. We also refer to a minimax RDS as a 

G-optimal random design strategy. If the numbers of elements of  and Ξ are 

sufficiently small, then it is possible to obtain a minimax RDS numerically by 

solving an appropriate linear programming problem, using a standard method 

from game theory (see Section A in the supplementary material). However, this is 

not suitable as a general-purpose approach if n is large or if  has a large 

number of points. 

Before proceeding we note that for any non-singular RDS the worst-case survivor 

function of the loss distribution can be computed using the following result. 

Proposition 4.1. For a normal response linear model 2 2| , , ~ [ , ]nN y F I
ξ

ξ β β , loss 

function (6), and a non-singular RDS π, the survivor function of the loss 

distribution satisfies 

1 1/2

supp( )

max ( , , ) max 2 2 { ( ) ( )} ( )
u

S u


 


 

 



   
        

    
x f x M f xθ ξ

ξ

θ ξ
T . 

4.1.1 Approximate designs 

A G-optimal approximate design   for this problem minimizes 

1max ( ) ( )



x
f x M f x

T  with respect to the approximate design η, where 

( ) ( ) ( )d  M f x f x x
T  is the information matrix. From the general equivalence 
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theorem, this is equivalent to a D-optimal approximate design. The following 

results show that for certain sample sizes a deterministic rounding of   can be 

minimax or highly minimax efficient within the set of RDS, in which case it is not 

necessary to use a non-deterministic strategy. 

Proposition 4.2. Suppose that   is minimally supported and n is divisible by p + 

1. Then (i) the support points of   are equally weighted; (ii) the ROAD has 

/ ( 1)n p  replicates of each support point of  ; and (iii) the deterministic ROAD 

is minimax within the set of RDS. 

Proposition 4.3. The max-risk efficiency of a deterministic ROAD, 
Aξ , obtained 

via Adams apportionment of the G-optimal approximate design   is at least 

1 /K n , where K denotes the number of support points of  . 

As an example, consider the implications of these results for a one-factor 

polynomial regression of degree d. It is well-known that the G- (equivalently D-) 

optimal approximate design is minimally supported. Hence the deterministic 

ROAD 
Aξ  is minimax if n is divisible by the number of parameters, or highly 

efficient if n is large. However for small sample sizes or multi-factor problems, a 

rounding of the G-optimal approximate design may be inefficient compared to a 

minimax RDS. Inefficiency can arise whether the rounding is chosen 

deterministically (e.g. Sections 4.1.2–4.1.4) or at random from the set of optimal 

discretizations (e.g. Section 4.1.4). 

4.1.2 Example: first-order model, 1 factor, n = 3 runs, { 1,0,1}   

Here ( ) (1, )x xf
T  for x . The minimax random design strategy mM , found 

using linear programming, is to choose between 1 ( 1, 1,1)  ξ  and 2 ( 1,1,1) ξ  

each with probability 
1

2
. This strategy has 2

mM( ) 0.75   . 

In contrast, the deterministic designs obtained using standard methods are 

suboptimal. For example, the G-optimal deterministic exact design, mM ( 1,0,1) ξ
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, has a max-risk efficiency of 
mM mM100 ( ) / ( )% 90%  ξ . The G-optimal 

approximate design   has two support points, 1x   , each with weight 
1

2
. 

Rounding   gives either 
1ξ  or 

2ξ ; each of these roundings satisfies both the 

Kiefer and Adams rounding criteria. Note therefore that in this case the minimax 

RDS can be viewed as a random choice of one of the two possible Adams 

roundings of the G-optimal approximate design. The randomization is essential: 

viewed as deterministic exact designs, both 
1ξ  and 

2ξ  are suboptimal, each with 

a max-risk efficiency of 75%. 

4.1.3 Example: quadratic model, 1 factor, n = 4 runs, { 1,0,1}   

Here 2( ) (1, , )x x xf
T  for x . For n = 4, the minimax RDS assigns an equal 

probability of 
1

3
 to each of the designs 

1 2( 1,0,1, 1), ( 1,0,1,0)    ξ ξ , and 

3 ( 1,0,1,1) ξ , each of which is a Kiefer rounding of the G-optimal approximate 

design 
1 1 1

{ 1,0,1; , , }
3 3 3

   . We have that 2

mM( ) 0.8333   , and 

2

1 2 3( ) ( ) ( )      ξ ξ ξ . This shows that, once more, randomization of the 

rounding is essential: considered as a deterministic design, each of 
1ξ , 2 3,ξ ξ  has 

a minimax efficiency of just 83%. 

4.1.4 Example: full quadratic model, 2 factors, n = 6 runs, 2{ 1,0,1}   

Here 2 2

1 2 1 2 1 2( ) (1, , , , , )x x x x x xf x
T  for 1 2( , )x x x

T . There are 76 possible non-

singular deterministic designs modulo permutations of the run order, which under 

the model assumptions in Section 4 do not affect the risk function and so are 

irrelevant. (If weaker assumptions were used, such as in Section 3, then the run 

order would also need to be considered). The minimax deterministic design has 

2

mM( ) 2.75 ξ . 

A minimax RDS, mM , was obtained using linear programming (see Figure 2, left 

panel). This has 8 support designs, 1 8, ,ξ ξ , with varying probabilities, and 

2

mM( ) 1.55   ; in fact, mM( , ) 1.55R  x  for all x . Support designs 1ξ , 5 6,ξ ξ  
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and 
7ξ  are minimax deterministic designs; the remaining four are not but they are 

helpful in reducing the risk bound for the random design strategy. 

The minimax RDS again outperforms traditional deterministic designs. The 

deterministic G-optimal exact design has a max-risk efficiency of 

1.55 / 2.75 100% 56%   relative to the minimax RDS. The G-optimal approximate 

design for this problem is given in Table 1. The 6-run Kiefer roundings of this 

approximate design contain all 4 corner points and the center point, plus one 

edge mid-point. The max-risk efficiency of a fixed (i.e. non-randomized) Kiefer 

rounding is just 56.4% relative to the minimax RDS. Adams rounding is not 

recommended here: due to the small sample size, it may give a singular design. 

Randomizing the choice of Kiefer rounding leads to a strategy with a max-risk 

efficiency of just 73%. Hence randomized rounding of a G-optimal approximate 

design is inadequate in this example, and the more flexible general RDS is 

necessary. 

Figure 2 (right panel) shows that, compared to several other strategies, the 

minimax RDS gives a reduced upper bound on the attained survivor function of 

the loss distribution, ( , , )S uθ . In particular, for a wide range of values of u it 

outperforms the minimax deterministic design, and both fixed and randomized 

Kiefer roundings of the G-optimal approximate design. 

5 Model-robust strategies for global prediction 

5.1 Model-robust design and approximate linear models 

A long-standing problem with many traditional ‘alphabetic’ design optimality 

criteria is their reliance on an assumed model, which must be specified prior to 

the experiment by the Statistician. The resulting designs are often inefficient if the 

true data-generating model differs from the one that has been used to compute 

the optimal design (Box and Draper 1959). This is in part a consequence of the 

fact that most design optimality criteria are variance-based; more robust designs 
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may be obtained by accounting for the bias that is introduced if the model is 

incorrect. For example, suppose that the true data-generating model is 

2~ [ ( ), ]y N  x , with μ not necessarily linear, and the Statistician’s a priori 

assumed model for design purposes is the linear model 2~ [ ( ) , ]y N f x β
T . When 

the experimental goal is global prediction, a common choice for the design is the 

V-optimal design, 
V


ξ , which minimizes 1tr( )

AM
ξ , where 

1

( ) ( )
n

i i

i

M f x f xξ

T  is 

the information matrix and ( ) ( ) ( )d A f x f x x
T , with λ Lebesgue measure. 

Equivalently, the V-optimal design minimizes the integrated variance of 

predictions from the assumed linear model. 

Variance-based criteria such as V-optimality are reasonable if the assumed 

model is correct, i.e. if ( ) ( ) x f x β
T , because in this case the predictions are 

unbiased. However, when the assumed model is incorrect, the predictions are 

biased, and this should be accounted for in the design. For example, we might 

evaluate design performance using the integrated mean squared error of 

predictions from the linear model. On this basis, Box and Draper (1959) found 

that a variance-minimizing design is often outperformed by a purely bias-

minimizing design. However, their conclusions were limited to the somewhat 

unrealistic case where the true model μ is a polynomial, and the assumed linear 

model is a polynomial of lower degree. 

A more flexible approach to model-robust design can be achieved by allowing the 

true and assumed model means to differ by an essentially arbitrary function. 

More precisely, authors such as Wiens (2015) suppose that 

ba( ) ( ) ( ),  for some ,    x f x xβ
T  (9) 

where ψ is a discrepancy function that represents the error that results from 

approximating μ with a linear model. The class  is chosen to include all 

discrepancy functions considered possible a priori by the Statistician; most 

commonly it is defined as 
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 2 2 2

1( ; ) [ ( )] ( ) , ( ) ( ) ( ) ,| pd d           x x x f x x 0  (10) 

where 2( ; )  denotes the set of real-valued functions on  that are square-

integrable with respect to λ (e.g. Wiens 1992, Heo et al. 2001, Dette 

and Wiens 2009). Other choices are possible, for example based on a uniform 

bound or a smoothness class for ψ (Li and Notz 1982, Yue and Hickernell 1999). 

Note that orthogonality condition in (10) is perfectly natural: it corresponds to the 

assumption that the parameter values 
baβ  give the best linear model 

approximation to the true model, as measured by the L2 distance. To see this, 

note that the L2-best approximating parameter values 
baβ  satisfy 

ba

2

ba[ ( ) ( ) ] ( ) [ ( ) ( ) ] ( ) ( ) ( ) ( ) ( ).d d d     


      
   

β

0 x f x β x x f x β f x x x f x x
β

T T

 

An appropriate decision-theoretic formulation can be developed by considering 

the experimental goal of global prediction. In this case the interest ‘parameter’ is 

α , which can be estimated via ˆ ( ) ( ) x f x β
T . A suitable loss function is then 

the integrated squared prediction error of predictions from the assumed linear 

model, i.e. 

2( , ) [ ( ) ( ) ] ( ),d  θ α x f x β x
T  (11) 

where 2 1 2 2

ba( , , ) [ , ]p       θ β . The corresponding risk, ( , )R θ ξ , is 

the integrated mean squared prediction error. It can be shown that the risk is 

independent of 
baβ , and so the maximum risk satisfies 

2 2 2

2

( , ) [ , ]

sup ( , ) sup ( , , )R R
   

 
  


θ

θ ξ ξ . 

Although the discrepancy class (10) has the advantages of being flexible and 

well-studied, to date it has been troublesome to use when the treatment space is 

uncountably infinite, e.g. [ 1,1]q  . In this case, deterministic designs with 

finitely many runs have woeful performance: it can be shown that any such ξ  
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has unbounded expected risk, i.e. ( ) sup ( , )R


     
θ

ξ θ ξ , even if n is large 

(Wiens 1992). Even worse, the survivor function has the undesirable property 

given in Proposition 5.1 below. Roughly speaking, the loss is almost sure to 

exceed any finite bound in the worst case, due to the possibility of arbitrarily 

unfavourable states of Nature. 

Proposition 5.1. For model (9), loss function (11), and a deterministic design, ξ , 

we have that sup ( , , ) 1 for all 0.S u u


  
θ

θ ξ  

To address the poor performance of finite deterministic designs, the existing 

literature proposes the use of an optimal design with infinitely many support 

points, defined through a probability density function f on  (e.g. Wiens 2015). 

However such an f is not practically useful. To obtain a feasible experiment, f 

must be approximated by a design ξ  with finitely many points, yet if chosen 

deterministically any such approximation will suffer from the same problems 

outlined above. Hence nothing is gained by constructing an optimal f. Our novel 

solution to this paradox is to instead use a random translation design strategy 

(see Section 5.2). As we show, such a strategy leads to an experiment with 

bounded risk and improved bounds on the survivor function of the loss 

distribution. 

5.2 Random translation design strategies 

Here we adopt model (9), L2-discrepancy class (10), and loss function (11). We 

assume that the compact design space q , for integer q > 0, has Lebesgue 

measure ( ) 0  . 

The risk for an arbitrary non-singular random design strategy, π, can be written 

as a bias-variance decomposition, 

2 2( , , ) MIV( , ) MISB( , ),R          (12) 
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where the mean integrated variance (MIV) and mean integrated squared bias 

(MISB) are given by 
22 2 1

2
MIV( , ) E tr( ), MISB( , ) ( , )b         AM

ξ ξ
 and 

( , ) E { }.b    K
ξ ξ ξ ξ
ψ ψ  Above, ( ) ( ) ( ),d A f x f x x M F F

ξ ξ ξ

T T  is the information 

matrix, 
2 2

2
( ) ( )d    x x  is the L2-norm, and 1[ ( ) ( )]n  x x

ξ
ψ

T  is the 

vector of evaluations of ψ on design ξ . The bias-sensitivity matrix 

1 1 K F M AM F
ξ ξ ξ ξ ξ

T  quantifies the effect of the discrepancy function on the bias of 

the predictions. 

In the case of no discrepancy, i.e. ( ) 0 x  for all x, the minimax random design 

strategy reduces to a point-mass measure on the traditional deterministic V-

optimal design, 
V


ξ . To see this, note that (12) becomes 

2 2 1 2 1 2(0, , ) E tr( ) tr( ) (0, , )V

V

R R     




   AM AM
ξ

ξ ξ ξ
. 

To find minimax efficient random strategies, we need to be able to compute the 

tight risk bound, 
2 2 2

2 2 1 2

( , ) [ , ]

( ) sup ( , , ) E tr( ) sup ( , ) .R b
   

       

   

       AM
ξ ξ

 

One potential approach would be to devise an algorithm to numerically maximize 

( , )b    with respect to the function   . However, such an algorithm would likely 

be extremely computationally intensive. Thus, it is desirable to obtain analytical 

formulae for ( ) . For general design strategies, this remains an open problem 

for future research. However, we have successfully identified a flexible class of 

random design strategies for which ( )  is analytically tractable. 

Definition 5.2. The strategy π is a non-singular random translation design 

strategy with mean design 1( , , )n  c cξ  and translation set q , denoted 

( , )  ξ
RT , if: 

(i)  is convex and compact, q 0 , and ( ) qd  t t 0 ; 

(ii) the sets { | }i i   c c t t  are subsets of  and are almost disjoint in 

the sense that [( ) ( )] 0i i    c c  for i i  ; 

(iii) the continuous function : d  defined by 1( ) ( , , )n   d t c t c t  is such 

that ( )det 0
d t

M  for all t , so that π is a non-singular strategy; 
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(iv) if ξ  is distributed according to π, then 
1( , , ) ( )n  x x d tξ , i.e. 

, 1, ,i i i n   x c t , with ~ Uniform( ).t  

To interpret this definition, note that if ~ Uniform( )t  then E( ) ( ) qd t t t 0 , 

and so 
ic  describes the mean location of the ith design point over all the different 

potential realizations of the random design. The size of the set  of possible 

translations determines the degree of randomness; when  is small the design 

is close to deterministic. The regularity condition (ii) in Definition 5.2 states that 

the support sets for the different design points must be non-overlapping (apart 

from a set of measure zero) and is needed to prove Theorem 5.3. The realized 

design 
1( , , )n x xξ  is a translation of the mean design 1( , , )n c cξ  by a 

common vector t that is sampled randomly according to a uniform distribution on 

. Thus ξ  retains the same geometric shape as ξ  (see Figure 3). 

For random translation designs, the risk bound is given by the following theorem. 

Theorem 5.3. For a non-singular random translation design strategy 

( , )  ξ
RT , with ( ) 0  , 

2
2 1 2

max ( )( ) sup ( , ) E tr( ) max [ ].
( )

R


    







      t d tAM Kξ ξ
θ

θ  (13) 

An obvious choice is to set [ , ]
2 2

q 
   above, with 0  . Lemma 5.4 below 

gives necessary and sufficient conditions for such a choice to satisfy condition (ii) 

of Definition 5.2 in order to give a valid random translation design strategy. Non-

singularity of the strategy must be checked separately. We refer to such a design 

strategy as a hypercuboidal random translation design strategy, denoted ( , ) ξH

. Note that ( ) q  , and so the conditions of Theorem 5.3 hold only for 0  . 

Nonetheless equation (13) remains valid for δ = 0 provided 2 0  . This is true 

because for δ = 0 the design strategy is deterministic and it is known in this case 

that ( )    (Wiens 1992). 
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Lemma 5.4. Suppose that [ 1,1]q  . The choice 1( , , ) n

n  c cξ  with 

[ , ]
2 2

q 
   satisfies condition (ii) of Definition 5.2 if and only if: (i) 

1 1
2 2

ijc
 

     , for 1, , , 1, ,i n j q    ; and (ii) {1, , }mini i n i i     
 c c . 

5.3 Numerical examples 

5.3.1 Numerical optimization of hypercuboidal strategies 

In order to numerically optimize the strategy H ( , ) ξ , we first need to 

approximate the objective function ( ) ( , )    ξ  in (13). We do so via two 

steps: (i) Monte Carlo estimation of 1E tr( )
AM

ξ ξ  using a Latin Hypercube sample, 

1, , [ 1,1]q

K  s s , of potential (scaled) translation vectors, and (ii) approximate 

maximization of max
( )

2

( )
d t

K  with respect to [ 1,1]q t  via a finite discretization, 

1{ , , }M t t , of [ 1,1]q . This gives 
2 2

1 2

max
( ) ( )

1 2 2

ˆ ( , ) tr( ) max ( )
k

K

q
kK

 

 
  








    t
d s d t

AM Kξ . 

Using a reparameterization, we may recast the problem of optimizing ξ  and δ 

subject to the complicated constraints in Lemma 5.4 as a simpler box-

constrained problem. Specifically, we work in terms of 

1 1( , , ) ( / (1 ), , / (1 ))
2 2

n n

 
     c c c cξ  and / mini i i i     

 c c , noting that 

,ξ  satisfy the constraints of Lemma 5.4 if and only if 1 1ijc    and 0 1  . 

Hence minimization of ˆ ( , ) ξ  with respect to ( , )ξ  is equivalent to minimization 

of 
2

2 min
ˆ ˆ( , ) 2 / (2 min ),

2 min

i ii i

i ii i

i ii i


 



 


 


 


 
     
  
 

c c
c c

c c
ξ ξ  with respect to 

( , )ξ  subject to the box constraints [ 1,1], [0,1]ijc    . We address this box-

constrained problem using multiple random initializations of a cyclic co-ordinate 

descent algorithm (cf. Gotwalt et al. 2009). The discretization  is refined 

iteratively (cf. Pronzato and Pázman 2013, p.311; for details see the 

supplementary material). 
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5.3.2 Simple illustrative examples 

For illustration we present approximately minimax hypercuboidal random 

translation design strategies for the following problems: (i) n = 3 runs, q = 1 

factor, and an approximate quadratic model, i.e. 2( ) (1, , )x x xf
T , and (ii) n = 4 

runs, q = 2 factors, and an approximate first-order model, i.e. 

1 2 1 2( ) (1, , ) , ( , )x x x x f x x
T T . Minimax strategies were identified using the 

approach described in Section 5.3.1 and are plotted in Figure 4 for a range of 

values of 2 2/  . For both problems, it is clear that the minimax choice for ξ  is 

similar to the V-optimal deterministic design (for q = 1, ( 1,0,1)V

  ξ ; for q = 2, V


ξ  

is the 22 factorial), modified to account for the constraints of Lemma 5.4. The 

minimax choice for δ increases as 2  increases, i.e. if protection is sought 

against a discrepancy function with larger L2 norm, then an RDS with greater 

variance must be used. 

5.3.3 Heuristics for larger examples 

In our experience, for problems with larger dimensionality it is computationally 

expensive to identify a global optimum of ( , ) ξ  using the brute-force 

optimization approach described in Section 5.3.1. However, the results for the 

simple illustrative examples suggest that Heuristic 5.5 below may be adequate to 

identify a combination of ,ξ  with high minimax efficiency. The heuristic 

essentially performs a one-dimensional optimization to robustify a V-optimal 

deterministic design. The associated computational cost is minimal, even in 

problems with a large number of factors and runs. Nonetheless, the gain in 

robustness compared to the V-optimal design is dramatic, as the resulting RDS 

has a bounded expected loss. 

Heuristic 5.5. To construct an efficient strategy: 

1. Calculate a V-optimal or highly V-efficient exact design, V


ξ , e.g. by using 

co-ordinate descent to minimize 1tr( )
AM

ξ  with respect to ξ ; 
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2. Form a parameterized mean design, ξ , that approximates 
V


ξ  and which 

satisfies the constraints of Lemma 5.4. To do this, move the points of 
V


ξ  

away from the boundary of [ 1,1]q  if necessary, and split any replicates; 

3. Choose δ to minimize ˆ ( , )  ξ . 

In order to facilitate comparison of the heuristic and brute-force approaches, we 

now give details of an example with a moderate number of factors and runs. 

Consider an n = 12 run design in q = 3 factors for an approximately quadratic 

model, that is 2 2 2

1 2 3 2 3 1 3 1 2 1 2 3 1 2 3( ) (1, , , , , , , , , ) , ( , , )x x x x x x x x x x x x x x x f x x
T T , with 

3[ 1,1]   and 2 20.02  . With around 70 minutes of computation, the brute-

force approach identified a strategy H

11 1( , )   ξ  with 2

1( ) 6.840   . 

Alternatively, a strategy may be found for this example using Heuristic 5.5. For 

Step 2 above, we require a ξ  that approximates V


ξ  and satisfies the constraints 

of Lemma 5.4. This can be obtained from 
V


ξ  by setting 1

2
ijc


   (respectively, 

1
2

ijc


   ) when the corresponding element of 
V


ξ  is + 1 (respectively, 1) , and 

replacing the replicated points ( 0.092, 0.093,0.093), ( 0.092, 0.093,0.093)     with 

( 0.092 , 0.093,0.093), ( 0.092 , 0.093,0.093)
2 2

 
       (for full details see the 

supplementary material). Figure 5 shows ˆ ( , )  ξ  as a function of δ. The optimal 

value of δ, used in Step 3 above, is 0.271   . The resulting heuristic strategy 

has a risk bound of approximately 27.03 , corresponding to a max risk efficiency 

of 97% relative to π1. Computation of this efficient heuristic strategy, 

H

2 ( , )  
 ξ , requires only a few seconds. This is around two orders of 

magnitude less than the brute-force search. 

With no discrepancy (i.e. if ( ) 0 x ) the risk bound from the V-optimal 

deterministic design would be 23.918 , compared with 27.03  in the presence of 

discrepancy if the heuristic random strategy is used. Thus, provided one uses an 

efficient random strategy, the presence of discrepancy only leads to a 34% 

increase in the bound on the root mean integrated squared prediction error. In 
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contrast, if a deterministic V-optimal design is used, the presence of discrepancy 

leads to an unbounded risk. 

Figure 5 also shows upper bounds on the survivor function of the loss distribution 

for both the optimal heuristic strategy π2 and a deterministic strategy (all 

deterministic strategies have the same tight bound). For most values of u the 

random strategy provides a substantially reduced bound on the probability of a 

loss exceeding u. 

Of course, use of a random translation design strategy results in reduced 

variance-efficiency if in fact the model is correct. We quantify this loss using V-

efficiency,    2 2 1 1eff ( ) (0, , ) / (0, , ) tr / tr
V

V VR R  

    AM AM
ξξ

ξ ξ ξ , defined 

assuming that ( ) 0 x . Note that eff ( )V ξ  is a random variable due to 

dependence on ξ . Figure 5 shows that for π2 the realized design typically has a 

V-efficiency of around 70%. This seems more than adequate given that the 

random strategy provides such dramatic improvements in robustness. 

6 Discussion 

We believe that the results in this paper highlight untapped potential for novel 

random design strategies to lead to substantial improvement in the properties of 

the loss distribution for a variety of experimental design problems. We anticipate 

that future research will realise these benefits in diverse areas where there is a 

priori uncertainty, including design for nonlinear models and screening 

experiments. 

The discussion below focusses on two main themes. First, we clarify 

assumptions and potential misconceptions, for example the importance of 

Assumption 2.2 and ideas about optimality over repeated samplings and 

conditional risk. Second, connections with other areas are explored, including the 

Bayesian interpretation of randomization and links with the computer model 

calibration literature. 

Acc
ep

te
d 

M
an

us
cr

ipt



Importance of Nature’s passivity 

We now illustrate the importance of Assumption 2.2 in obtaining improved 

bounds on the expected loss and the survivor function of the loss distribution. 

Without it a minimax RDS would give no advantage over a minimax deterministic 

design. To see this suppose that, instead of θ  and ξ  being independent, it were 

possible for θ  to be a function of ξ . In this case the attained pre-experimental 

expected loss of π would not necessarily be given by ( , ) ( , ) ( )R R d 


 θ θ ξ ξ . 

For example, suppose that after observing our choice of ξ , but before generating 

y from (·| , )P ξ θ , Nature chooses a argmax ( , )R 
θ

θ θ ξ . In this case, the pre-

experimental expected loss under π would be 

mMmax ( , ) ( ) max ( , ).R d R 


   θ θ
θ ξ ξ θ ξ  Hence it would be impossible to 

improve upon the bound on the expected loss that is given by the minimax 

deterministic design. However, it seems implausible and unduly pessimistic to 

suppose that Nature behaves in such a reactive, intelligent and antagonistic 

manner. In the more realistic case that Assumption 2.2 holds, a minimax 

deterministic design will be inefficient compared to a minimax RDS due to its 

focus on guarding against this extreme pathological behaviour. In contrast, a 

minimax RDS is able to reduce the probability of large losses by exploiting the 

fact that Nature cannot change θ . 

Optimality over repeated samplings 

In common with all other optimal frequentist procedures, the minimax RDS is 

derived using an expectation over hypothetical realizations of the same 

experiment. This may cause some to be concerned that use of a design sampled 

from an RDS is optimal only if the same experiment is repeated over and over, 

when in fact it is only conducted once. However, this concern is unwarranted. 

Neyman’s original justification for frequentist procedures that minimize expected 

risk is that if they are applied consistently in many different experiments then the 

total achieved loss across all experiments will be reduced (Berger 1984). Note 

that this point is not unique to our proposed method. Similar repeated sampling 
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properties are also used when deriving traditional deterministic optimal designs, 

which typically minimize the variance of a point estimator. This variance is also 

computed by taking an expectation over hypothetical realizations of the same 

experiment. 

Misconceptions about conditional risk 

A related concern is that if one considers only the conditional risk, ( , )R θ ξ , then 

at first sight it may appear that there are some drawbacks to the use of a ξ  

sampled from a minimax RDS rather than a minimax deterministic design. 

However, these are based on flawed reasoning, and so they should not 

discourage the use of a minimax RDS. 

The first apparent drawback is as follows: once one has chosen ξ , the attained 

risk could be as large as max ( , )R 
θ

θ ξ . The latter is usually larger than the 

maximum conditional risk 
mMmax ( , )R 

θ
θ ξ  that applies if a minimax 

deterministic design is used. This begs the question: has use of a minimax RDS 

really reduced the risk? More careful consideration shows that it is indeed very 

likely to have reduced the risk, because with high probability our random 

sampling procedure will have generated a ξ  with mM( , ) max ( , )R R 
θ

θ ξ θ ξ . For 

example, with the minimax random strategy for linear model prediction in Section 

4.1.4, we have that (i) a tight lower bound on the probability is 

mMPr[ ( , ) max ( , )] 0.684R R  
θ

θ ξ θ ξ ; and (ii) the probability that 

mM( , ) max ( , )R R 
θ

θ ξ θ ξ  is at most 0.118. (For details of these calculations see 

the supplementary material). 

A second apparent drawback is that, if one considers only the conditional risk, it 

may seem that use of a minimax RDS has the disadvantage of replacing a 

certain experimental outcome with an uncertain one. However, this is simply not 

the case: the realized loss is uncertain regardless of whether one uses a 

deterministically- or randomly-selected design. As shown earlier (e.g. in Figures 
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1, 2, and 5) a minimax RDS typically gives stronger bounds on the properties of 

the distribution of possible losses. 

Links with Bayesian approach 

Here we have focussed on the minimax decision-theoretic framework. From a 

Bayesian perspective, randomized decision-making is often regarded as 

unnecessary (e.g. Lindley 1982). However, even in this context randomization 

has several advantages. First, it simplifies Bayesian causal inference 

(Rubin 1978). Second, randomization has been shown to be a Bayesian 

decision-theoretically optimal design strategy in situations where several parties 

have differing prior information or when the analyst, or final decision-maker, is a 

different person from the one designing the study (Berry 

and Kadane 1997, Bonassi et al. 2009). It may be interesting to investigate 

optimal Bayesian random design strategies in more complex experiments with 

multiple stakeholders than the simple settings described in the existing literature. 

Computer model calibration 

We briefly note some similarities and differences between the formulation in 

Section 5 and calibration of a computer simulator of a physical process (e.g. 

Kennedy and O’Hagan 2001). In the calibration literature, the basic idea is to 

approximate the expected response of the physical process under conditions x 

using the simulator output, ( , ) x θ . However, before predictions can be made, 

physically realistic values of the parameters θ  must be determined. This can be 

done by combining data from physical experiments on the real process with data 

from a computer experiment on the simulator. A major challenge is that, due the 

high computational expense of simulator runs, the value of ( , ) x θ  can only be 

computed for a few combinations of inputs ,x θ , necessitating the construction of 

a computationally cheaper approximation of η, known as an emulator. 

Similar to our approach in Section 5, in calibration it is assumed that the true 

mean of the physical process differs from the simulator output by an explicit 
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model discrepancy function, namely 
baE( ) ( ) ( , ) ( )y     x x xθ  (cf. (9)). Here 

baθ  is a vector of parameter values giving a best approximation to the physical 

process. Recently developed L2-calibration approaches impose an orthogonality 

condition similar to the one in (10) (Tuo and Wu 2015, Plumlee 2017). An 

important difference is that in calibration the discrepancy function ψ is explicitly 

estimated, using Gaussian process techniques, whereas in Section 5 predictions 

are made without estimating ψ. It would be interesting to explore further 

connections between model-robust design and calibration in future research. 

Supplementary material 

The online supplementary material contains proofs of the theoretical results and 

some additional supporting numerical results. R code for the examples is 

available from the journal website and via the first author’s personal website, at 

https://github.com/timwaite/random-designs. 
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Fig. 1 Upper bounds on the attained survivor function of the loss distribution, 

( , , )S uθ , for two design strategies in the example of Section 3.2, in the case 

2   . Grey line: unrandomized L-optimal design, 
mMξ  (tight bound). Black line: 

randomized L-optimal design, 
mM  (Markov bound). 
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Fig. 2 Left: minimax random design strategy for the two factor problem 

Example 4.1.4: p = 5, n = 6, 2{ 1,0,1}  . Right: Upper bounds on the attained 

survivor function of the loss distribution, ( , , )S uθ , for four design strategies in 

the example of Section 4.1.4. Grey dashed line: minimax deterministic design, 

mMξ . Black dashed line: fixed Kiefer rounding of the G-optimal approximate 

design. Grey solid line: randomized Kiefer rounding. Black solid line: minimax 

RDS, 
mM . 
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Fig. 3 Three realizations of a random translation design (  – design realization, 

iξ ; •  – mean design, ξ ) 
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Fig. 4 Minimax random hypercuboidal translation design strategies for the 

examples in Section 5.3.2, for several values of 2 2/  . Left: approximate 

quadratic model, n = 3 runs, q = 1 factor ( •  indicates 1 2 3( , , )c c cξ , horizontal 

lines indicate the intervals 
2

ic


 ). Right: approximate linear model, n = 4 runs, q 

= 2 factors ( •  indicates 1 2 3 4( , , , ) c c c cξ , boxes indicate 2[ , ]
2 2

i

 
 c ). 
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Fig. 5 Example: full quadratic model, n = 12, q = 3. Left: approximate risk 

bound ˆ ( , )  ξ  for the heuristic strategy with different values of δ (vertical line: 

optimal value, 0.268  ). Centre: bounds on the survivor function of the loss 

distribution, ( , , )S uθ  (Black line: random strategy H ( , )  
 ξ , Markov bound. 

Grey line: any deterministic design, tight bound from Proposition 5.1). Right: V-

efficiency distribution of H ( , ) 


ξ . 
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Table 1 G-optimal approximate design for Example 4.1.4 

x1 –1 0 1 –1 0 1 –1 0 1 

x2 –1 –1 –1 0 0 0 1 1 1 

weight 0.1458 0.0802 0.1458 0.0802 0.0962 0.0802 0.1458 0.0802 0.1458 
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