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Summary. We propose an approach for assessing the risk of individual identification in the
release of categorical data. This requires the accurate calculation of predictive probabilities
for those cells in a contingency table which have small sample frequencies, making the prob-
lem somewhat different from usual contingency table estimation, where interest is generally
focussed on regions of high probability. Our approach is Bayesian and provides posterior pre-
dictive probabilities of identification risk. By incorporating model uncertainty into our analysis,
we can provide more realistic estimates of disclosure risk for individual cell counts than are
provided by methods which ignore the multivariate structure of the data set.
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1. Introduction

Suppose that an agency releases data on a sample of individuals from a population, and
that the sample data consists of the values of a number of categorical variables, recorded
for each individual in the sample. Then, the sample data can be expressed as a a multiway
contingency table. One important form of identification risk occurs when there are sam-
ple cell counts of 1 (uniques) in the marginal table representing the cross-classification of
individuals by a subset of v key variables (those variables whose values in the population
are available to a potential intruder from a source external to the released data under con-
sideration). If the intruder can determine, with confidence, that a sample unique in the
contingency table of key variables, is also unique in the population, then this individual can
be identified and the data release allows disclosure of the values of the remaining (non-key)
variables for this individual. See Bethlehem et al (1990) for more detailed discussion.

Common measures of disclosure risk are based on probabilities of key records being
population uniques. Let f1, . . . , fK denote the sample cell counts in the contingency table
of key variables and F1, . . . , FK the corresponding population cell counts and let n and N
represent the sample and population totals respectively. Skinner and Elliot (2002) discuss
three possible measures of risk

P (PU) =
1

N

K
∑

i=1

I(Fi = 1) (1)
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the probability of a randomly chosen record being a population unique,

P (PU |SU) =

∑K

i=1 I(Fi = 1, fi = 1)
∑K

i=1 I(fi = 1)
(2)

the probability of a randomly chosen sample unique being a population unique, and

θ =

∑K

i=1 I(fi = 1)
∑K

i=1 FiI(fi = 1)
(3)

the probability of a randomly chosen population record from a sample unique cell being the
actual sampled record, where, in each case, I(·) is an indicator function taking the value 1 if
· is true and 0 otherwise. Skinner and Elliot (2002) argue that θ gives the most appropriate
measure of overall disclosure risk. For Bernoulli sampling, where each population record is
sampled independently with common probability π, they propose the design-based estimator

θ̂ =
πn1

πn1 + 2(1 − π)n2
(4)

where n1 is the number of sample uniques and n2 is the number of sample cells with
frequency 2. They show that, under a particular asymptotic framework, θ̂ is a consistent
estimator of θ.

The above quantities all measure the overall disclosure risk of the data release. However,
it is also important to be able to assess the risk associated with the release of individual
records. Benedetti and Franconi (1998) noted that the probability of a randomly chosen
population record from a particular cell i matching a selected sampled record is 1/Fi,
and suggested that this quantifies the disclosure risk for cell i. Alternatively, one might
consider risk to be defined by uniqueness, and hence quantify risk by the binary indicator
I[Fi = 1, fi = 1] identifying those sample unique cells i which are also population uniques.

Typically, the contingency tables involved are large. Skinner and Holmes (1998) present
an example with of a 6-dimensional table with 83 600 cells, Polettini and Stander (2005)
and Elamir and Skinner (2005) use 5-dimensional tables with 20 384 and 14 560 cells, re-
spectively. The tables are typically also very sparse. In the example of Skinner and Holmes
(1998) 74 067 cells are empty in the population and 79 603 are empty in the sample. The
example we use in this paper is of a similar size and structure; see Section 5 for details.
The functions of interest focus on cells with low sample and population counts. Hence, the
estimation problem is different from more standard contingency table inference problems,
where interest is more likely to be focussed on the cells with larger frequencies.

In this paper, we propose a model-based Bayesian approach to estimation of such mea-
sures of disclosure risk. This approach has elements in common with other approaches
to the uniques problem, which we summarise here. Bethlehem et al (1990) proposed a
Poisson-Gamma superpopulation model where population cell frequencies Fi are modelled
as independent Poisson observations with means Nπi. The πi parameters are given in-
dependent gamma distributions with parameters α and β, which are estimated using the
sample cell frequencies fi. It is then straightforward to estimate, for example, P (PU |SU)

(or equivalently under this model I[Fi = 1, fi = 1]) using [(1 + nβ̂)/(1 + Nβ̂)]α̂+1; see
Rinnott (2003). The Poisson-gamma model is slightly unnatural, as the Fi should be con-
strained to sum to N , and the πi to sum to one. Takemura (1999) proposed an equivalent
Dirichlet-multinomial model which incorporates these constraints; see also Polettini and
Stander (2005).
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One way of interpreting the approach described above, where the superpopulation pa-
rameters α and β are estimated and subsequent inference is based on these estimates is as
parametric empirical Bayes estimation, where the Poisson-gamma (superpopulation) distri-
bution is considered as a prior distribution, but its parameters are estimated based on the
marginal likelihood of the data, rather than specified. Omori (1999) considers the Dirichlet-
multinomial distribution of Takemura (1999) as a prior for the population and provides
expressions for posterior probabilities of population uniqueness, given sample uniqueness.
Rinott (2003) shows that, by imposing α and β with αβ = 1/K and α → 0 in the model of
Bethlehem et al (1990), we obtain the model of Benedetti and Franconi (1998), where the
distribution for the Fi|fi are assumed to be independent negative binomial.

All of the models described above generally treat the cells of the underlying contingency
table as exchangeable. Hence, for example, any two sample uniques will be estimated
to have the same probability of being population unique under these models. Similarly,
although the models allow ‘borrowing strength’ across cells, this is restricted to a shrinkage
towards a uniform pattern of population frequencies. In particular, each other cell in the
table contributes the same amount to the inference concerning any given cell. Intuitively, we
might expect closer cells, in the sense of having more values of the cross-classifying variables
in common, to be weighted more highly in this process. Hence, although borrowing strength
is desirable, particularly in sparse tables, we would expect it to be achieved in a way which
reflects the natural (multivariate) structure of the data.

One approach which does precisely this was proposed by Skinner and Holmes (1998).
They replaced the Poisson-gamma superpopulation (prior) distribution with a Poisson-
lognormal distribution. The population cell frequencies Fi are modelled as independent
Poisson observations with means λi which are given independent lognormal distributions.
However, the means of the lognormal distributions for the cells follow a log-linear model.
This does not imply that the population frequencies reflect the given model, as the variance
of the lognormal may be large. Hence, the superpopulation parameters consist of the log-
linear parameters together with a lognormal variance. This model does not treat the cells
of the underlying contingency table as exchangeable, and allows differential borrowing of
strength from other cells. Skinner and Holmes approach to estimation is analogous to that
of Bethlehem et al (1990), in that the log-linear parameters are estimated using the sample
frequencies. Elamir and Skinner (2004) adapt this approach by dropping the second-stage
lognormal distribution and assuming that the population follows the given log-linear model.
Computation is then more straightforward.

An alternative approach, also based on a log-linear model, was proposed by Fienberg
and Makov (1998). They propose assessing disclosure risk by considering a probability
distribution for the N − n non-released records based on the conditional distribution of
a table of size n, under a particular log-linear model, given the sufficient statistics for
the model parameters. Specifically, the non-released records are considered to have been
generated as the sum of a set of (N − n)/n tables of size n each with the same sufficient
statistics as the released table. Although we do not adopt this approach in the current
paper, we note that it is again based on a particular log-linear model, and Fienberg and
Makov (1998) make the important point that, with such a method, the potential for model
mis-specification becomes an issue. Skinner and Holmes (1998) find that their results can be
sensitive to the log-linear model they choose for their λi parameters. Fienberg and Makov
(1998) suggest that model uncertainty could be taken into account by using a Bayesian
approach, and it is such an approach, but applied to the Multinomial-Dirichlet framework
of Omori (1999), that we adopt in this paper.
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The key feature of our approach is to allow for model uncertainty, in a fashion which
is much more explicit than in the approaches described above. There, lack of model fit is
accounted for, if at all, by lognormal (or gamma) variation. There are potential estimation
benefits in considering a multiplicity of models, and using the sample information to de-
termine which are supported by the data, and hence are likely to be of use for disclosure
risk estimation. Furthermore, the Bayesian approach we adopt does not require a single
model from a candidate set to be selected for the purposes of prediction, and allows model
uncertainty to be fully incorporated into estimation. In the following sections we describe
the theory behind the approach, and develop efficient methods for computing the result-
ing disclosure risk summaries. An additional attractive feature of the Bayesian approach
adopted is that these summaries can all be easily interpreted as predictive probabilities for
some disclosure event.

2. Bayesian inference

In our Bayesian approach, the population cell frequencies Fi are considered as the main
parameters (unknowns). Inference about these parameters will enable inference about the
various measures of disclosure risk discussed in Section 1. Therefore, we require a prior for
these cell frequencies. Following Omori (1999), we assume that F = (F1, . . . , FK) has a
multinomial(N, π) distribution. Now, we assume a log-linear model for π,

log π = Xmβm

where m indexes the particular model under consideration, and Xm and βm are the cor-
responding model matrix and vector of model parameters, respectively. The prior may be
completed by adding a further hierarchy, consisting of a prior distribution for the log-linear
parameters βm. One possibility is a multivariate normal distribution, but this leads to an
intractable posterior distribution, which generally requires Markov chain Monte Carlo com-
putation. Nevertheless, for general log-linear models, no alternative tractable prior exists.
However, if a log-linear model m is a decomposable graphical model, then the hyper-Dirichlet
family, a class of prior distributions based on the Dirichlet distribution for the saturated
model (no log-linear constraints) and developed by Dawid and Lauritzen (1994), provides
an attractive alternative, for which posterior computation is straightforward.

For details of graphical models, see Cowell et al (1999). Briefly, an undirected graphical
model can be represented by a graph where the vertices correspond to variables, and the
absence of an edge between two vertices represents conditional independence of the cor-
responding variables, given the values of the other variables. A decomposable undirected
graph is one with no chordless cycles of four or more vertices (in other words, every circuit
of four or more vertices, has an edge ‘short-cutting’ the circuit). A decomposable graph
admits a perfect numbering, that is a numbering 1, . . . , v of the vertices, such that for each
vertex number i = 2, . . . , v, the set of those vertices numbered in {1, . . . , i − 1} which share
an edge with i in the graph is complete (there are no missing edges in the graph formed by
this subset). An important consequence for Bayesian analysis is that, for a decomposable
graphical model we can exploit the alternative parameterisation

πi(βm) =

v
∏

j=1

βj(ij |pa(j) = ipa(j)) (5)
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where βj is the conditional probability for variable j and the ordering 1, . . . , v of the variables
corresponds to a perfect numbering. The index iC represents the cell of the marginal
table for variable set C corresponding to cell i for the full table and, for any variable
j, pa(j) represents the subset of {1, . . . , j − 1} which share an edge with j in the graph
of m. The probability vectors βj(ipa(j)) = {βj(ij |pa(j) = ipa(j)), ij ∈ levels of j} are
then unconstrained by the model, and hence parameterise the model, so we write βm =
({βj(ipa(j))}, j = 1, . . . , v) where {βj(ipa(j))} is the collection of conditional probability
vectors for variable j over all combinations of levels of pa(j).

A convenient prior distribution for the unconstrained probability vectors βm can be con-
structed by putting independent Dirichlet[µj(ipa(j))] prior distributions on each βj(ipa(j)).
Then the posterior distributions are independent Dirichlet[µ∗

j (ipa(j))] where

µ∗
j (ipa(j)) = µj(ipa(j)) + f j(ipa(j)) (6)

and f j(ipa(j)) is the vector of marginal cell counts for variable j derived from the conditional
subtable restricted to pa(j) = ipa(j). The hyper-Dirichlet distribution can be thought of as
a special case of this independent Dirichlet prior, where the µj(ipa(j)) are chosen in a way
such that the resulting prior distribution on the cell probabilities for the clique margins
(marginal tables which are unrestricted by the model) are Dirichlet. This is easy to achieve
if, for example, the µj(ipa(j)) are derived as marginal distributions from a common Dirichlet
distribution over π; see Dawid and Lauritzen (1994) for further details.

Where the number of cross-classifying variables is small (up to 3 or 4, say) the restriction
to decomposable graphical models is unlikely to be significant, as most hierarchical log-
linear models are also decomposable graphical models. For example, for three variables,
we only lose the no three-way interaction model. In higher dimensions, the model class is
considerably reduced, but still provides a rich class of structural models with which we might
expect to considerably improve upon any disclosure assessment approach which assumes an
exchangeable model.

Having specified a prior distribution, and observed sample cell frequencies f = (f1, . . . , fK),
inference concerning disclosure risk is obtained from the posterior distribution P (F |f ) or
equivalently from P (F −f |f), as having observed the sampled records it is only the unsam-
pled records about which uncertainty remains. Assuming a sampling scheme under which
records are exchangeable, for example Bernoulli sampling or simple random sampling with-
out replacement, then we can assume that F −f and f are conditionally independent given
βm and hence, following Ericson (1969), we can write

P (F − f |f) =

∫

P (F − f |βm)P (βm|f )dβm. (7)

The first term in the integrand, P (F − f |βm), is just a multinomial(N − n, π) probability
function, with probabilities π determined from βm using (5). For marginal inference about
a single cell, P (F − f |βm) is replaced by the binomial probability function P (Fi − fi|βm).
Using Bayes theorem, the second term of the integrand is

P (βm|f) ∝ P (f |βm)P (βm),

the product of a multinomial(n, π) probability function for f and the prior density for
βm. The sample records may have been selected using a more complex sampling scheme.
However, a potential intruder’s knowledge of the sampling framework, and its relationship
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to the sampled and unsampled units is still likely to be sufficiently weak that a prior
distribution which is exchangeable, with respect to individual records, is appropriate.

To this point, we have only described inference under a single log-linear model. In
practice, it is unlikely that we will be certain about which model is the most appropriate
for building the prior distribution for F . A Bayesian approach allows this uncertainty to be
coherently incorporated into the prior distribution. Let M denote the set of possible models,
and suppose that prior uncertainty about m is encapsulated by a prior distribution over M ,
involving a set of prior model probabilities P (m). In practice, a discrete uniform distribution
over M is commonly used, to represent prior ignorance. The prior distribution over F , m
and {βm, m ∈ M} now consists of three components, the multinomial P (F |βm, m), the
prior for the parameters of each possible log-linear model P (βm|m) and the prior model
probabilities P (m). Note that the first two distributions are now explicitly conditional on
m, as both the form of the log-linear model, and the prior distribution for its parameters,
will depend on which model is under consideration.

Under model uncertainty, the posterior distribution for the unobserved cell counts F −f

in (7) becomes

P (F − f |f ) =
∑

m∈M

P (m|f)

∫

P (F − f |N − n, βm, m)P (βm|f , m)dβm. (8)

The posterior model probabilities, which appear in (8) but not (7) are obtained, using Bayes
theorem as

P (m|f) =
P (m)P (f |m)

∑

m∈M P (m)P (f |m)
(9)

where P (f |m) is the marginal likelihood for the sampled cell counts, obtained as

P (f |m) =

∫

P (f |m, βm)P (βm|m)dβm. (10)

The posterior distribution (8) under model uncertainty is obtained as a weighted average
of the posterior distributions (7) under the various models. This is sometimes referred to as
model-averaging; see Hoeting et al (1999) for further details. Where the quantity of interest
is a posterior expectation for some function θ(F ), as are all the measures of disclosure risk
considered in this paper, then we obtain

E[θ(F )|f ] =
∑

m∈M

P (m|f )E[θ(F )|m, f ]. (11)

and hence the posterior mean taking into account model uncertainty is simply the model-
average of the posterior means under each of the models. Care is required when performing
model-averaging, that the quantity which is being averaged is one which shares a common
interpretation across the component models. That is clearly the case here, where we are
averaging functions of cell frequencies. The posterior model probabilities are not of partic-
ular interest in themselves here, as we do not necessarily believe that the population was
exactly generated by a particular multinomial log-linear model. Their function is to indicate
the appropriate weight, based on the sample data, to be applied to the various models in
any inference required. Consequently, they determine the differential impact of other cells,
when making inference about a particular population cell frequency.



Bayesian Disclosure Risk Assessment 7

The overall measures of disclosure risk in (1)-(3) and I[Fi = 1, fi = 1] and 1/Fi as
measures of record-level risk, each depend on the population frequencies F . Indeed they
can each be thought of as P (E|F ) where E represents an event indicative of disclosure risk.
If the population frequencies F are known, then P (E|F ) is a single known probability,
but given only the sample data f , uncertainty exists about the true value of any P (E|F ).
This uncertainty can be expressed through the posterior probability distribution. Posterior
inference is straightforward in principle. The marginal posterior distribution of P (PU),
P (PU |SU) or θ can be obtained directly from the posterior distribution P (F − f |f) in (7)
or (8). For example,

P (θ = φ|f ) =
∑

F∈F

P (F |f) (12)

where F is the set of those F such that the probability of interest, θ, takes the value φ.
We note that P (E|f ) = E[P (E|F )|f ] where the expectation is with respect to the pos-

terior distribution P (F − f |f ). Hence, the posterior mean of any P (E|F ) is the predictive
probability of event E, given the observed sample data alone representing, from a Bayesian
perspective, the probability of E given the available information. For example, θ is the
probability of matching a uniform randomly selected population record in a sample unique
cell to a sample unique over potential multiple attempts, sampling with replacement. The
posterior distribution for θ reflects our uncertainty about that (frequentist) probability.
However, the posterior mean of θ is a particularly important measure of disclosure risk, as
it represents the predictive probability, given the available data, of matching a randomly
selected population record to a sample unique in a single attempt.

Hence, we focus on posterior means of P (PU), P (PU |SU) or θ to summarise overall
disclosure risk. In the case of the first two quantities, these posterior means can be simply
expressed as

E[P (PU)|f ] =
1

N

K
∑

i=1

P (Fi = 1|f)

=
1

N

K
∑

i=1

P (Fi − fi = 1|f)I(fi = 0)

+
1

N

K
∑

i=1

P (Fi − fi = 0|f)I(fi = 1) (13)

and

E[P (PU |SU)|f ] =

∑K

i=1 P (Fi − fi = 0|f)I(fi = 1)
∑K

i=1 I(fi = 1)
(14)

respectively. Similarly, at the record level

E[1/Fi|f ] =

N−n
∑

j=0

1

fi + j
P (Fi − fi = j|f) (15)

and
E[I[Fi = 1, fi = 1]|f ] = P (Fi − fi = 0|f)I[fi = 1] (16)

Hence, each of these disclosure risk measures may be represented as explicit functions of
predictive probabilities P (F −f |f). This is not possible for E[θ|f ] where θ is defined by (3).
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To compute this disclosure risk measure it is necessary first to enumerate, or approximate
the posterior distribution P (θ|f) as in (12).

3. Monte Carlo Computation

There are three computational difficulties associated with calculating the predictive prob-
abilities which are proposed as disclosure risk measures. The first is the evaluation of the
integrals in (7) and (8). These integrals are analytically intractable for general log-linear
models, where the prior on the log-linear parameters is multivariate normal, as suggested in
Section 2. However, they can be straightforwardly evaluated when a hyper-Dirichlet prior
distribution is used for a decomposable log-linear model. The second problem is evaluation
of the sum in (8), in cases where the number of models is so large that evaluation of the
summand for every model is infeasible. Finally, evaluation of the sum in (12) can also be
prohibitively time consuming, as it is over a potentially large space of possible values of
(multivariate) F . Exactly the same consideration applies when computing the marginal
posterior distributions of individual population cell frequencies P (Fi|f ) required in (13)-
(16), as the marginal predictive probabilities P (Fi − fi|f) are not directly available for a
hyper-Dirichlet posterior and hence must be enumerated using P (F |f ).

Monte Carlo methods of computation are particularly attractive as, given a sample from
the posterior distribution of F , or equivalently F − f , the probabilities P (Fi|f) are simply
estimated by sample proportions, which can then be plugged into (13)-(16). Similarly E[θ|f ]
can be approximated by a Monte Carlo sample average. To sample from the posterior
distribution of F , we sample from the joint posterior distribution P (m, βm|f) and then
the multinomial P (F |m, βm). As we are assuming that F − f and f are conditionally
independent given m and βm, then

P (Fi − fi|f) = E[P (Fi − fi|m, βm)|f ], i = 1, . . . , k,

where the expectation is over the posterior distribution P (m, βm|f). Hence, more accurate,
‘Rao-Blackwellised’ estimates of the probabilities P (Fi − fi|f ) are obtained by averaging
the binomial probabilities

P (Fi − fi|m, βm) =

(

N − n

Fi − fi

)

πFi−fi

i (1 − πi)
N−n−Fi+fi (17)

where the cell probabilities π are determined from m and βm using (5), over a sample
generated from the joint posterior distribution of m and βm. Hence, more accurate Monte
Carlo estimates of quantities such as (13)-(16) are available, without ever sampling F , by
replacing P (Fi − fi|f ) by E[P (Fi − fi|m, βm)|f ], estimated using Monte Carlo sample
averages of (17).

Computing the posterior mean of θ, using the marginal posterior distribution (12),
requires a summation over all possible sets of population cell frequencies F , and hence
Monte Carlo estimation of θ is only feasible by generating a sample of F from its posterior
distribution. Similar considerations may apply to (15) where the number of terms in the
summand (N − n + 1) is typically large, leading Monte Carlo generation of F to be the
preferred method of calculation.

For decomposable models and hyper-Dirichlet prior distributions, some of the calcula-
tions can be performed exactly. For example, marginal likelihoods (10) may be computed
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explicitly, as

P (f |m) =

v
∏

j=1

∏

ipa(j)

Γ
[

∑

ij
µj(ij |ipa(j))

]

∏

ij
Γ[µ∗

j (ij |ipa(j))]

Γ
[

∑

ij
µ∗

j (ij |ipa(j))
]

∏

ij
Γ[µj(ij |ipa(j))]

(18)

where µj(ij |ipa(j)) represents the ijth component of µj(ipa(j)), and µ∗
j (ipa(j)) is given by (6).

Hence, provided that the number of models under consideration is not too great, posterior
model probabilities (9) are available. For more than a few (3 or 4) cross-classifying variables,
it is unlikely to be feasible to calculate posterior probabilities for all models, and some kind
of Monte Carlo sampling may be required. Madigan and York (1996) describe an efficient
Markov chain Monte Carlo (MCMC) approach to sampling decomposable graphical models
according to their posterior model probabilities.

Having obtained model probabilities, the posterior distributions for the model parame-
ters βj(ipa(j)) for any model m are independent Dirichlet[µ∗

j (ipa(j))]. Now, P (Fi−fi|m, βm)
in (17) involves a polynomial of degree N − n in the cell probabilities. For the product-
Dirichlet distribution, this necessitates expanding the polynomial and evaluating the ex-
pectation of each of up to N − n + 1 monomial terms, for which exact product-Dirichlet
expectations are available, as

E[πt
i ] =

v
∏

j=1

E[βj(ij |ipa(j))
t]

=

v
∏

j=1

Γ
[

∑

kj
µ∗

j (kj |ipa(j))
]

Γ[µ∗
j (ij|ipa(j)) + t]

Γ
[

∑

kj
µ∗

j (kj |ipa(j)) + t
]

Γ[µ∗
j (ij |ipa(j))].

(19)

Where N−n is large, and interest is focussed on small values of Fi−fi, as is typically the
case, it is more efficient to estimate the posterior mean of (17) by Monte Carlo. This involves
generating from the independent Dirichlet distributions for βj(ipa(j)) and substituting into
(5) to obtain a Monte Carlo sample from P (π|f). Similarly, computation of E(θ|f ) using
(12) can be carried out by generating F − f from a multinomial(N − n, π) for each π

generated from P (π|f).

4. Fast approximations

Estimating (13)-(16) by Monte Carlo methods can be time consuming, particularly for
tables with large numbers of cells, as is typical in disclosure applications. In such examples,
it is desirable to try and identify approximations which avert the requirement for generating
samples from posterior distributions.

The Monte Carlo calculations in Section 3 are primarily used to estimate E[P (Fi −
fi|m, βm)|f ] using Monte Carlo averages of (17) over samples generated from P (m, βm|f ).
In the examples we are interested in, N − n, which we now denote by u, is large so we
replace (17) with the Poisson approximation

P (Fi − fi|m, βm) ≈
(uπi)

Fi−fi exp(−uπi)

(Fi − fi)!
(20)

Under the hyper-Dirichlet distribution for βm associated with each model m, the distri-
bution for cell probabilities πi can be expressed as a product of v independent beta variates.
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Hence, it is possible to evaluate E(πi|f ) and V ar(πi|f ) directly, using (19) with t = 1 and
t = 2. We propose approximating the distribution of πi|f by a gamma distribution with
mean E(πi|f) and variance V ar(πi|f ). This approximation is certainly plausible as in the
special case of the saturated model (no conditional independence structure), the marginal
distribution of πi|f is beta with parameters whose sum is the sample size plus the sum over
all cells of the prior parameters. The beta(α1, α2) distribution has a gamma limit, both as
α2 → ∞ for fixed α1, and as α1, α2 → ∞ at the same rate. Hence, with a sufficiently large
sample, a gamma approximation is valid for πi|f , for cells i with both small and moderate
posterior means. Fan (1991) provides numerical results which suggest that the product of
independent betas may be approximated by a beta distribution with the same moments.
Our approach then replaces this approximating beta(α1, α2) distribution with a gamma
distribution, which is justified above, provided that α2 is large.

A gamma(α, λ) approximation for the posterior distribution of πi|f , together with the
Poisson approximation (20) leads to the negative binomial approximation

P (Fi − fi|f) ≈

(

λ

λ + u

)α (

u

λ + u

)Fi−fi Γ(α + Fi − fi)

Γ(α)(Fi − fi)!
(21)

For the saturated model (no log-linear simplification) this is equivalent to the negative
binomial distribution used by Bethlehem et al (1990), as presented by Rinnott (2003). As
Rinnott (2003) shows, this is also a special case of the distribution proposed by Benedetti
and Franconi (1998). For non-saturated models, the approximations for α and λ lead to
negative binomial distributions whose parameters differ from previous approaches.

The expression in (21) simplifies in (13), (14) and (16) to

P (Fi − fi = 0|f) ≈

(

λ

λ + u

)α

(22)

and

P (Fi − fi = 1|f) ≈

(

λ

λ + u

)α
αu

λ + u
(23)

Furthermore, (15) can now be written as

E[1/Fi|f ] ≈

∞
∑

j=0

1

fi + j

(

λ

λ + u

)α (

u

λ + u

)Fi−fi Γ(α + Fi − fi)

Γ(α)(Fi − fi)!

=

(

λ

λ + u

)α
1

fi
2F1(α, fi, fi + 1, u/(λ + u)) (24)

where 2F1 is the hypergeometric function (see, for example, Abramowitz and Stegun, 1965),
which can be computed in R, as part of the Davies package (Hankin, 2005). Polettini
(2003) notes that a similar expression arises in the approach of Benedetti and Franconi
(1998), where they are required to calculate E(1/Fi|fi), under the assumption of a negative
binomial model for Fi|fi.

Finally, an approximation to E[θ|f ] where θ is defined by (3) can be obtained by ap-

proximating the distribution of
∑K

i=1(Fi − fi)I(fi = 1)|m, βm as a Poisson distribution

with mean u
∑K

i=1 πiI(fi = 1) and the posterior distribution of
∑K

i=1 πiI(fi = 1) by a
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gamma(α, λ) distribution where α and λ are derived from the means and variances of the
individual πi, as if they were independent (which they are not). Then,

E[θ|f ] ≈

(

λ

λ + u

)α
1

f
2F1(α, f, f + 1, u/(λ + u)) (25)

where f =
∑

fiI(fi = 1). If fλ/u ≫ 1, then this approximation may be simplified to
E[θ|f ] ≈ f/(f + uα/λ). This approximation is somewhat more speculative than those in
(22)-(24). The performance of all these approximations will be investigated in our example
in Section 5

The approximations discussed here are all based on a single decomposable graphical
model. In the presence of model uncertainty, the computations are model-averaged, as in
(8) and (11), and we desire a method for evaluating or approximating the posterior model
probabilities P (m|f ) which avoids Monte Carlo sampling. Our approach is based on the
‘Occam’s window’ method of Madigan and Raftery (1994). Starting from the null (complete
independence) model, we identify a set of ‘most plausible’ models, as follows. Our current
set of models is augmented to include all models with exactly one extra edge. The maximum
probability model, m0, in this set is identified. Then, all models, mi, with P (mi|f)/P (m0|f)
less than some prespecified (small) threshold are deleted. The procedure is iterated, starting
from the null (complete independence) model until the model set remains unchanged. As we
are using hyper-Dirichlet priors, relative posterior model probabilities are very conveniently
calculated (see Madigan and Raftery, 1994). The final model probabilities are calculated
under the assumption that any model outside our final set has zero posterior probability,
and it is here that the calculation is only approximate. The final computed disclosure risk
estimated is obtained by computing the relevant quantity for each model in our final set,
and model-averaging with respect to the approximate posterior model probabilities.

Our entire approach to computing disclosure risk estimates can now be summarised as
follows. Using the released sample data, we apply the search strategy described above to
determine a set S of plausible decomposable graphical models, with associated model prob-
abilities calculated using (9) and (18). For each model in S, all of which can be decomposed
as described in (5), we then calculate the mean and variance of each πi using (19) and hence
obtain the parameters α and λ of a gamma approximation to the posterior distribution of
πi. These parameters can then be substituted into (22)-(24) to obtain approximate model-
based probabilities of the various disclosure events. The predictive probability E[θ|f ] is
computed using (25), following a further gamma approximation to the posterior distribu-
tion of the sum of πi over the sample unique cells. Overall disclosure risk estimates are then
computed by model-averaging the individual model-based estimates, using (11).

5. Example

To test the methodology on an example of realistic size, we extracted a six-way table of
potential key variables from the 3% Individual Sample of Anonymized Records (SAR) for
the 2001 UK Census (Office for National Statistics and University of Manchester, 2005). The
table extracted consisted of 154295 individuals living in South West England, cross-classified
by sex (2 categories) age (coded into 11 categories), accomodation type (8 categories),
number of cars owned or available for use (5 categories), occupation type (11 categories)
and family type (10 categories). The full table has 96800 cells of which 3796 are uniques. For
the purposes of this exercise, this is considered to be the population. To mimic the selection
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Table 1. Summary of the joint distribution of sample and population cell frequencies across
the 96800 cells of the sampled table.

Population

0 1 2 3 4 5-9 10-19 20+ Total

0 84867 3682 1694 967 631 1482 757 390 94470
1 — 114 110 118 104 313 322 462 1543
2 — — 0 2 5 28 67 266 368

Sample 3 — — — 0 0 1 15 140 156
4 — — — — 0 0 0 76 76
5-9 — — — — — 0 0 125 125
10-19 — — — — — — 0 48 48
20+ — — — — — — — 14 14

Total 84867 3796 1804 1087 740 1824 1161 1521 96800

into the SAR, where the sampling fraction is 3%, we took a 3% subsample, containing 4761
individuals.

The joint distribution of sample and population cell frequencies for the 96800 cells is
summarised in Table 1. Of particular note is the fact that, in the sample data, only 2330 of
the 96800 cells are non-empty, and of these 1543 are uniques. Hence, 32% of records, and
66% of cells correspond to sample uniques. Of these cells, only 114 (7%) are population
uniques, and the average population total in a sample unique cell is 17, so not all such
cells represent disclosure risk. In any example, the number of sample unique cells will vary,
depending on the total number of cells in the table of interest, and on the size of the sample,
but it is not unusual for the number of sample unique cells to be large as a proportion of
the number of non-empty cells. For comparison, in the actual SAR sample, 32% of the
non-empty sample cells correspond to uniques; in a similar exercise, Skinner and Holmes
(1998) analysed a sample with 40% unique cells.

In disclosure risk estimation, we are attempting to replicate the analysis of a potential
intruder. Hence, our prior distribution should reflect the prior information available to an
intruder. In the absence of any knowledge of external information available to an intruder,
we propose a neutral, weakly informative, prior. Hence, we used a prior distribution where
all decomposable graphical models on the 6 variables were considered a priori equally prob-
able. For each model, the prior distribution on the model parameters was hyper-Dirichlet,
derived from a symmetric Dirichlet distribution over all 96800 cells with parameters all
equal to p/96800. This prior can be interpreted as having the same weight as p prior ob-
servations, and is centred on all cell probabilities being equal. Our default value for p is 1,
corresponding to a single prior observation, but we also investigated sensitivity to the choice
of p, by considering alternative values of p = 50 (equivalent to a prior sample of approxi-
mately 1% of the size of the actual observed data sample in this example) and p = 1/50, a
highly diffuse prior. For all three prior distributions, the posterior distribution was heavily
concentrated on a single model, with five edges. For that model we evaluated the accuracy
of our gamma approximation to the marginal posterior distribution of the cell probabilities,
in estimating our quantities of interest. For the overall measures of disclosure risk, the esti-
mates of the posterior means of (1)-(3) obtained using both the Monte Carlo methods and
approximations are displayed in Table 2 for all three prior distributions. Immediately, we
notice that the approximations are very accurate, even for θ where we had least confidence
that it would be.
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Table 2. Estimates of the overall disclosure measures in (1)-(3) and the corresponding
population value, based on F .

Estimates Population
Measure Monte Carlo Gamma approximation value

p = 1/50 p = 1 p = 50 p = 1/50 p = 1 p = 50

P (PU) 0.0256 0.0258 0.0321 0.0256 0.0257 0.0321 0.0246
P (PU |SU) 0.1028 0.1027 0.0989 0.1030 0.1029 0.0991 0.0739

θ 0.0568 0.0568 0.0576 0.0568 0.0568 0.0576 0.0582

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 .00 .20 .40 .60 .81 .0

P ( F − f = 0 | f ) ( M o n t e C a r l o )P(F −f =0|f) ( gammaapproxi mati on) ( a )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 .00 .20 .40 .60 .81 .0

E [ 1 / F | f ] ( M o n t e C a r l o )E[1/F|f ]( gammaapproxi mati on) ( b )

Fig. 1. Plots of the approximation based on a gamma distribution for P (πi|f ) (y-axis) against the
corresponding Monte Carlo estimate based on the true posterior distribution (x-axis) for (a) P [Fi −
fi = 0|f ] (sample unique cells) and (b) E[1/Fi|f ] (all cells with positive sample cell counts).

For the record-level measures of disclosure risk, obtained as the posterior means (15) and
(16), we plot, for p = 1, the approximation against the Monte Carlo estimate in Figure 1.
Again, both approximations can be seen to be accurate, with any error of approximation
negligible compared with the variability of the quantities of interest across cells.

Having established that our approximations are sufficiently accurate in this example,
we now address the question of how well our Bayesian methods estimate the quantities
of interest. In the current example, we have the actual population available to us for
comparison. For the overall measures of disclosure risk, the population values of (1)-(3)
are presented in Table 2, together with the estimates. It can be seen that estimation of
θ is very accurate, but P (PU |SU) is overestimated. Estimation of P (PU) is accurate for
p = 1/50 and p = 1, but this quantity is significantly overestimated for p = 50. This is due
to the considerably higher level of smoothing associated with this prior, resulting in the
significantly larger predicted probabilities of population uniques in the sample zero cells.

As discussed in Section 2, the estimates in table 2 are the Bayesian predictive probabil-
ities of different disclosure events, given only the sample table f . Hence, they completely
specify uncertainty about the corresponding disclosure events. However, if required, we
could also use our approach to calculate a posterior distribution (conditional on f) for the
population values (the predictive probabilities we would calculate if we had the complete
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0 . 0 2 4 0 . 0 2 8 0 . 0 3 2 0 . 0 3 6P ( P U ) 0 . 0 9 0 0 . 1 0 0 0 . 1 1 0P ( P U | S U ) 0 . 0 5 4 0 . 0 5 6 0 . 0 5 8 0 . 0 6 0θ
Fig. 2. The posterior densities for P (PU), P (PU |SU) and θ, as given in (1)-(3). Three different
priors are used, p = 1 (solid line), p = 50 (dashed line) and p = 1/50 (dotted line, almost coincident
with solid line).

population table F ). These posterior densities are presented, for all three priors, in Fig-
ure 2. Note that the full Monte Carlo sampling approach was required to produce these.
We see that there is negligible difference between the posterior distributions for p = 1/50
and p = 1, but some sensitivity to increasing p to a value as high as 50. Again, this is most
noticeable for P (PU), for the reasons described above.

However, it is arguably the record-level measures of disclosure risk which are of greatest
interest. Can our approach distinguish between cells with similarly low cell counts in the
sample, but which pose significantly different disclosure risks? For each of the 2330 non-
empty cells j, we calculated the predictive disclosure probability E[1/Fi|f ]. We are also able
to calculate 1/Fi, the probability of a disclosure event when full population knowledge is
available. We compare these quantities, and hence assess the performance of our disclosure
risk assessment procedure by plotting log10(1/Fi) against the estimated log10(E[1/Fi|f ])
for the 2330 non-empty sample cells, in Figure 3.

Given that low frequency sample cells correspond to such a wide range of population
frequencies, accurate estimation of 1/Fi, using sample data alone is a difficult task, and
without some kind of modelling would be hopeless. Indeed, using any approach which
treats the cells as exchangeable, would lead, in the absence of extra external information,
to all 1543 sample uniques having the same estimated risk (0.11 in this example). It is
immediately clear that our approach is providing a more accurate measure of risk for the
cells with low population counts (genuinely risky records). For the 114 genuine population
uniques, we computed an average risk of 0.65. This risk estimate is necessarily downwardly
biased, as we are considering the population units with 1/Fi at the boundary value of 1,
but it is noticeable that the estimate does exceed the next possible population value of 0.5.
For the 111 sample unique cells with population totals greater than 50, the average risk
was estimated as only 0.04. Hence, the method is successfully distinguishing risky and non-
risky cells with the same cell counts. In this context, our approach seems to be performing
quite well, with perhaps a slight tendency to overestimate risk in this example. This slight
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Fig. 3. The estimated record-level measure of disclosure risk E[1/Fi|f ] plotted against 1/Fi for the
2330 non-empty sample cells. The sample unique cells are plotted as x, the non-unique cells as o.
The dashed line represents equality (no error). The solid line is a loess smooth through the plotted
points.
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0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 .00 .20 .40 .60 .81 .0

E s t i m a t e d P ( F = 1 | f ) f o r s a m p l e u n i q u e s
P roporti onpopul ati onuni que

Fig. 4. The proportion of population uniques plotted against the average value of P (Fi = 1|f ), for
cells categorised into 10 intervals according to value of P (Fi = 1|f ). The size of the plotting point
is proportional to the number of cells in each of the intervals. The solid and dashed lines are kernel
smooth fits through the points (P (Fi = 1|f ), I [Fi = 1]) for the sample uniques. The dotted line
represents perfectly calibrated prediction. Three different priors are used, p = 1 (solid line, points
plotted as o), p = 50 (dashed line, points plotted as +) and p = 1/50 (identical to p = 1).

overestimation, particularly for low-to-moderate risk cells is apparent when we fit a smooth
curve through the points of Figure 3. Figure 3 corresponds to the prior with p = 1. Very
similar results were obtained for the other two values of p.

We investigated how accurately the model can predict population unique cells. For
each of the 1543 sample uniques, we calculate the predictive probability of population
uniqueness, P (Fi = 1|f). Figure 4 summarises the accuracy of the prediction. We divided
the probability range into ten equal intervals, and for sample unique cells with P (Fi = 1|f)
in each of these intervals, we plotted the proportion of population uniques against the
average value of P (Fi = 1|f). We also plotted kernel smooth fits through the points
(P (Fi = 1|f), I[Fi = 1]) for the sample uniques. For accurate estimation we would expect
the points and the smooth fit to lie close to the dotted line on Figure 4; the plot again reveals
a tendency to slightly overestimate the probability of population uniqueness, most evident
in the cells with risk values in the middle of the range. As with the overall measures of
disclosure risk, there is negligible difference between p = 1/50 and p = 1, and more obvious
sensitivity to higher values of p.

The analysis above is based on a single example. To more fully evaluate the performance,
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P ( P U ) ( p o p u l a t i o n )P(PU)( esti mat e)
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θ( esti mat e)
Fig. 5. The estimated overall measures of disclosure risk, P (PU), P (PU |SU) and θ, plotted against
the population values for the 13 UK regions. The Monte Carlo estimates are plotted as +, those
based on the approximations as o. The line on each plot represents equality (no error). For θ, we
also plot (as x) the estimate of Skinner and Elliot (2002), presented in (4).

both of the approximations we have proposed, and of the overall methodology for disclosure
risk assessment, we carried out a more extensive study using all 13 UK regions. As above,
for each region the SAR data were considered as the population and a 3% sample extracted
for disclosure analysis. Henceforth, we focus on a single prior using our default value p = 1.

First, we considered the overall disclosure risk measures P (PU), P (PU |SU) and θ. For
each of these three measures, Figure 5 presents a plot of the estimate against the population
value, for both Monte Carlo and approximation-based estimates. The first thing to notice is
that the Monte Carlo and approximation-based estimates are virtually identical in all cases,
so the approximation can be used with a high level of confidence. (For record-level measures,
the approximations were also strongly validated, with all UK regions producing plots similar
to Figure 1). For P (PU) and θ, the methodology also performs well at providing accurate
estimates of the population quantities, with errors being small relative to the variability of
the measures between regions. For θ, the model-based estimates are generally more accurate
than the (admittedly more straightforward to evaluate) estimator of Skinner and Elliot
(2002), presented in (4). The methodology performs least well for P (PU |SU) where the
risk is consistently overestimated, although the ranking of regions in terms of this measure
is quite accurate. Nevertheless, we consider θ to be the most relevant and practically useful
measure of overall disclosure risk, and are reassured by the generally accurate estimation
of this quantity.

As an assessment of record-level disclosure risk estimation, we evaluated how well our
computed P (Fi = 1|f) performed as a classifier of risky cells in terms of its sensitivity and
specificity. To summarise this, for each of our 13 regions, we plotted the ROC curve for
classification of population uniques by P (Fi = 1|f). These curves are presented in Figure 6.
Although far from perfect, it indicates that P (Fi = 1|f) is of considerable value as a risk
classifier. For all regions except one, there exists a value (approximately 0.12) at which
over 80% of population uniques are correctly identified, with under 20% false positives. The
outlying curve in Figure 6 is for Northern Ireland (the smallest region) where prediction of
uniques is slightly less good.
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Fig. 6. ROC curves for classifying population uniques according to P (Fi = 1|f ). The curves il-
lustrate how the proportions of true positive identifications of population uniques and false positive
identifications vary, as the threshold value of P (Fi = 1|f ) for classifying a cell as population unique
is increased. Curves for all 13 UK regions are superimposed on the same axes.
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6. Discussion

Disclosure risk estimation is a hard statistical problem, in that we are forced to make
inferences where we necessarily have little information with which to do so. Hence, it is
essential that we borrow strength so that, as much as possible, we learn about areas of tables
with sparse data using areas with greater proportions of the population. The approach used
in this paper provides a framework with which to do this. The use of models is an essential
component, and we use the sample data to identify good areas of model space, averaging
across models where uncertainty exists. Bayesian predictive inference provides a natural way
of thinking about disclosure risk measures as predictive probabilities of disclosure events,
and such probabilities can be computed naturally within a framework involving model
uncertainty.

In the paper, we have used approximations to speed up our calculations, avoiding the use
of Monte Carlo wherever possible. The motivation for this is to make the methodology as
efficient as possible for use in scenarios where large numbers of disclosure risk calculations
need to be carried out on a routine basis. All computations were performed in R (see
http://www.r-project.org/) and took, at the most, a few seconds to complete.

The examples presented in Section 5 illustrate that this approach has potential for
identifying cells which may pose a disclosure risk. There is some evidence that the approach
can be slightly conservative, tending to overestimate the risk posed by sensitive cells. It is
possible that this is due to oversmoothing in the estimation procedure. The sample zero
cells, of which there are a large number, will all have posterior means for Fi greater than
zero. The greater the degree of this smoothing, the correspondingly smaller will be the
posterior means for cells with positive sample cell counts, including the risky cells. Hence,
if the degree of shrinkage implicit in the choice of prior distribution is too severe, then this
may lead to an overestimation of risk. The proposal in this paper is to use a symmetric
Dirichlet prior with weight equivalent to that of a single observation, for which the resulting
estimates are largely satisfactory. Nevertheless, this remains an area of further research.
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