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Abstract

Megabenthic assemblages in deep-sea sedimentamorements receive far less
attention than those occurring on rocky environmedespite they have been widely
impacted by destructive trawling activities, mairdye to their association with
important commercial species. ROV dives conductetdathyal muds of the Alboran
Sea continental slope (western Mediterranean) weeed to characterize megabenthic
assemblages, as well as assess their responsawtingr and benthic litter. We
identified a multispecific assemblage, dominatedhsy isididlsidella elongata and
two monospecific assemblages composed by the sed-peaiculina quadrangularis
andKophobelemnon stelliferunThese assemblages are defined as vulnerableemarin
ecosystems by international institutions. Trawleeaa exhibit significant low
densities of habitat-forming species and a strikingpoverishment of habitat
complexity and diversity. Plastic debris and lashihg gears were the most abundant
components of the marine litter. This study highiggthe destructive effects of human
activities on bathyal muds, emphasizing the needifgent conservation measures.

Keywords Mediterranean Sea, vulnerable marine ecosysteragabenthos, soft sediments,
bottom trawling, marine litter.
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1. Introduction

The present-day advances in underwater technol@gised the access to scientific
Remotely Operated Vehicles (ROVs), Autonomous Uwdesr Vehicles (AUVS) and
high-frequency imaging systems, able to operateigtt depths during increasingly
long acquisition periods (Wynn et al., 2014; Aguetzal., 2019; Price et al., 2019; Bo
et al., 2020). These advances generate a suddemsap on the deep-sea benthic
ecology studies, and related physical processesdbas image analysis and high-
resolution acoustic mapping (e.g. Benoist et ab1® Corbera et al., 2019). In
parallel, the technological expansion in marinesces enhanced the awareness that
human-related activities exert a strong and peveaisnpact on deep-sea ecosystems,
with a detrimental effect on habitat complexity dnddiversity (de Moura-Neves et
al., 2015; Clark et al., 2019).

Image-based investigations of deep-sea habitate wainly focused on benthic
communities or key structuring species occurringhard substrates (Mortensen and
Buhl-Mortensen, 2005; Althaus et al., 2009; Pritale 2019), while similar studies
on deep-sea sedimentary settings are scarce (Raoimkduniper, 2012; De Leo et al.,
2017). This represents a significant knowledge gegnsidering that deep-sea
sediments are among the most widespread benthiatsain the world, covering vast
areas of continental shelves, slopes and abyssahsp(Gray, 2002). Deep-sea
sedimentary environments have been traditionalhsictered as barren fields sparsely
populated by megabenthic organisms (Jones etQfl7)2However, in specific areas,
deep-sea sedimentary floors have been shown to thoest-dimensional complex
megabenthic assemblages, such as sponge grousdssie anthozoan aggregations
(de Moura-Neves et al., 2015; Maldonado et al.,520These assemblages locally
enhance biomass and act as biodiversity hotspst)ey provide habitat for a large

variety of associated species, including a wideyeaof species of economic interest
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(Maynou and Cartes, 2012; de Moura-Neves et all520aldonado et al., 2017;
Mastrototaro et al., 2017; Pierdomenico et al.,801

Deep-sea benthic communities are generally compogdichgile organisms having
very slow recovering rates (Clark et al., 2019)nsmmuently, the impact of over-
exploiting human activities produce extremely Idagting degrading effects
(Jobstvogt et al., 2014; Vanreusel et al., 2016arlCét al, 2019).

In 2006, the need to preserve Vulnerable Marinesistems (VMES) from the
negative impacts caused by human activities, ledhto development of specific
management and conservation measures to preventéggadation (UNGA, 2007).
To achieve this goal, several international stiagggsuch as thelrfternational
guideline for the management of the deep-sea ishar the high sedgFAO, 2009)

or the EU’s Marine Strategy Directive (2008/56/CEaye been developed during the
last decade. Deep-sea soft sedimentary environnoéritee Mediterranean Sea host
several VMEs, mainly represented by the isidgidella elongata and the
pennatulacearsuniculina quadrangulari@ndKophobelemnon stelliferum.

Amongst the many anthropogenic impacts on the raaenvironment, bottom
trawling is the widest spread physical disturbaircehe world’'s seabed (Watling,
2013; Hiddink et al., 2017). Impacts associateddtbom trawling include removal or
damage to epibenthic fauna, reduction of habitahptexity and alteration of
sedimentary and geochemical processes (e.g. Deeted., 2017; Hiddink et al.,
2017; Paradis et al., 2019). With bottom trawlinrggressively expanding to deeper
environments, VMEs associated to sedimentary batdrave undergone a vast
decimation (Sarda et al., 2004; Gerovasileiou gt20119; Pusceddu et al., 2014),

restricting their distribution to isolated regiooisareas inaccessible to trawlers, such
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as sub-vertical walls or regions surrounded by yookitcrops (Bo et al.,, 2015;
Pierdomenico et al., 2018).

Marine litter represents a further extremely peasnd fast-growing anthropogenic
pollution affecting the world’s oceans (Bergmanrakt 2015). Specifically, benthic
marine debris, defined as the macro-litter thatleseon the seafloor (Spengler and
Costa, 2008), can damage benthic organisms thramganglement or coverage
(Pham et al., 2014; Bergman et al., 2015). Litted aspecially plastic debris are a
considerable source of persistent organic pollstant chemical additives, which are
toxic to marine species (Rochman et al., 2013). Gieakdown products of plastic,
the so-called microplastics, are proven to be itegeby a variety of organisms, with
potential ecotoxicological effects still poorly assed (Browne et al., 2013; Carreras-
Colom et al., 2018; Cau et al., 2019a).

Most of the information regarding VMESs of deep-sediments derives from invasive
sampling gears (e.g. experimental trawling, epithiensledge) (Gili and Ros, 1987,
Maynou and Cartes, 2012; Mastrototaro et al., 2018)ich despite providing
relevant information on species occurrence, delimaited knowledge on sessile taxa
abundance, assemblage composition, habitat chasticee and their state of
conservation (Soltwedel et al., 2009; Chimientilet2018). Recently, several image-
based studies carried out in the canyon headsedsthf of Lion and Tyrrhenian Sea,
and the open slope of the Balearic archipelagoe mevided new insights on the
VMEs of sedimentary environments, highlighting inosh cases their poor
conservation status (e.g. Fabri et al., 2014; M&staro et al., 2017; Pierdomenico et
al., 2018). Overall, our knowledge of deep-searabtages located on soft bottoms is

still limited and thus, it is urgent to improve ounderstanding of these VMEs in



110

111

112

113

114

115

116

117
118

119
120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

order to support sound conservation and managemeasures (Maldonado et al.,

2015; Mastrototaro et al., 2015).

Based on the analyses of ROV footage collectedinvahdepth range of 500-860 m,

we aim at (1) characterizing the composition ofpde®gabenthic assemblages found
on sedimentary bottoms of the Alboran Sea (west#aditerranean), and (2) quantify

the effects of human activities on these assemblagé a major focus on changes in

habitat complexity and biodiversity caused by bottoawling.

2. Material and Methods
2.1. The Alboran Sea

The Alboran Sea is the westernmost basin of theitélednean, which is enclosed
between the Iberian Peninsula and the North Afitcanected to the Atlantic Ocean
through the Straits of Gibraltar (Fig. 1). The AlAo Sea displays a relatively
complex seafloor geomorphology, including three mstib-basins (i.e. West, East
and South Alboran Basins) separated by the Alb&idge, a major NE-SW oriented

structural high (Mufioz et al., 2008; Lo lacono let 2014; Gracia et al., 2006, 2012,
2019; Fig. 1). The shelf of the Alboran Sea displayariable extension, from 3.5 to
12 km, and is bounded by the shelf edge at a d&fpil00-115 m. The slope is 10 to
50 km wide and displays variable gradients, conngdb the base of slope at a depth
between 575 and 1000 m, transitioning to the deenb. The sediment dynamics of
the margin are strongly controlled by the prevailialong-slope current regimes,
which gave origin to large contourite deposits (et al., 2016, 2019, Juan et al.,
2016). They are locally interrupted by turbiditenda mass-wasting deposits and
volcanic outcrops (Mufioz et al., 2008; Lo laconakt 2008; Ercilla et al., 2019).

The Alboran Sea is mainly characterized by a siastic sedimentation controlled by

the river sources, together with the aeolian in@stghe main source of terrigenous
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sediments (Moreno et al.,, 2002). Nevertheless, high input of organic-rich
sediments is associated to the relatively high4pcodity of this basin, in contrast
with the general oligotrophic characteristics of thlediterranean Sea (Oguz et al.,
2014). Phytoplankton primary productivity is mainiglated to the local circulation
pattern, controlled by the entrance of Atlanticface waters into the Mediterranean
and the development of anticyclonic gyres (Sarharale 2000). Oceanographic
conditions in the Alboran Sea are strictly relatedhe interaction between Atlantic
and Mediterranean water masses, which create an@gthermohaline circulation
(Vargas-Yarfez et al., 2010). The Atlantic water8M)A warmer and less salty than
Mediterranean ones (115 °C, $-36.2 psu, T~13.5 °C S~38.4 psu, respectively),
enter the Alboran Sea through the Straits of Giarand flow within the first 150—
200 m of the water column at a velocity ©60 to up to 150 cm-5 (Millot and
Taupier-Letage, 2005). The AW circulation is driviey two semi-permanent anti-
cyclonic gyres: The Western Alboran Gyre and thst&rn Alboran Gyre (Renault et
al., 2012; Fig. 1). Deeper than the AW, the colded salty Mediterranean Water
(T~13.5 °C, $38.4 psu), named Levantine Intermediate Water (L.iN@yvs towards
the Straits of Gibraltar at10 cm-§' (Garcia Lafuente et al., 1998) (Fig. 1). The LIW
extends down to 600 - 700 m and flows above thestyidg high density western
Mediterranean deep water (<12.7-12°G;38.40-38.52 psu), whose circulation is
largely conditioned by the local physiography o thasin (Millot, 2009). Despite the
lack of exhaustive studies on the deep-sea bergbsemblages of sedimentary
substrates in the Alboran Sea, muddy substrat@stenspersed patches within hard
frameworks of cold-water coral communities havenbegoorted to host colonies bof

elongataand the pennatulace#n stelliferum(Hebbeln et al. 2009).
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2.2. The ROV video acquisition

A total of six dives were recorded during the o@egaphic expedition "SHAKE",
onboard the R/V “Sarmiento de Gamboa” (May-Junel520(SHAKE Cruise:
CGL2011-3005-C02-02) (Fig. 1, Table 1). Dives wesegried out with the ROV
“Max-Rover”, owned by the Hellenic Centre for MaifResearch. It was equipped
with a HD video camera (1920x1080 pixels), a malaifgn arm for sampling tasks
and two parallel laser beams (10 cm apart) thatiged a reference scale to measure
targets and define a fixed width of 1 m for the saduent video analysis. ROV
positioning was achieved by means of an ultra-shadeline (USBL) transponder
mounted on the vehicle, which tracked their posiig every 3 seconds,
approximately. Dives were conducted on both, nonttend southern sectors of the
eastern Alboran Sea between 500 and 860 m depthie(Tg, along three areas
characterized by the occurrence of active faultarb@Gneras Fault, North-South
Faults, Al-ldrissi Fault (Gracia et al., 2006, 202219; Fig. 1). The ROV moved at a
constant speed of ~0.3 knots. Along each dive, Weuorganisms were collected to
confirm the taxonomic identification determined time image analyses. Sampled
organisms were fixed and preserved in 10% formé&n further analyses, were
identified with the support of taxonomic expertslanmanual on deep megabenthic

fauna of the Mediterranean Sea (Fourt et al., 2017)
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Fig. 1. Topographic and bathymetric map of the AdiboSea, white rectangles indicate the

location of dives, whose location correspond tdedént fault systems: North-South fault
system (N-S), Carboneras fault system and Al-ldif@ult System. WAB: West Alboran

Basin, EAB: East Alboran basin, SAB: South AlboBasin. Yellow and red lines indicate

the simplified patterns of the Atlantic Water (AWfyres and the Mediterranean Levantine
Intermediate Waters (LIW), respectively. Upper lgfset: Western Mediterranean region
indicate the Alboran Sea (AS).

2.3. Video analysis

Quantitative video analysis was performed accortiniipe methodology described in
Griny0 et al. (2016), using the software Final @ub 7 (Apple Inc.). When the ROV

was stopped or moving in loops, sequences werevesto avoid over-estimation of

megabenthic organisms’ abundance and dive lengtherg/the ROV was too

detached from the seafloor or suspended sedimeatemed a clear view of the
seafloor, sequences were considered unusable aodrdied from analyses. ROV
dives covered a total distance of 5842 m, of wiiBR1 m was considered suitable

for post-processing video analysis, correspondin@dt5% of the total footage.
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Video analysis was aimed at quantifying the encen@at megabenthic organisms, the
lebensspuren items (i.e. sedimentary forms produlbgdmetazoans biological
activity) (Fig. 2), trawl marks and marine littéll these items were quantified within
a width of 1 m (estimated from the laser beam d#a Lebensspuren was classified

into four categories: furrows, mounds, holes aad tnarks (Fig. 2).

Fig. 2. Lebensspuren categories: a) furrow witlBatynectes maravignarab inside, b)

mound, c¢) hole aggregations, and d) trail-mark gmed byMesothuria intestinalisScale

bar: 20 cm.

Litter items were categorized according to themmposition into five classes: plastics
debris (i.e. plastic bags, bottles, small plagégments), lost fishing gears (long-lines
and nets), metal debris, glass bottles and clotAdsditionally, two categories of

substratum were defined: untrawled and trawled opmit Sediment texture and
seafloor gradients were not considered in the valealysis due to the homogeneity

of these variables. Each observation (organisnwltraark, lebensspuren, marine
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litter) was assigned a position within the divd|dwing the methodology described
by Griny6 et al. (2016).

2.4. Data treatment

2.4.1. Megabenthic fauna occupancy and abundance

To measure megabenthic fauna occupancy (i.e. ¢ogiéncy of occurrence in the set
of sampling units) and abundance (i.e. the numbendividuals per sampling unit)
and to assess megabenthic assemblage compositicim,déve was split into 2 m
sampling units (0.7 m width and 2.9 m long). A tadd 1904 sampling units were
obtained. Each sampling unit was characterized Hgy abundance of organisms,
number of sessile megabenthic species, lebensspackhtter items. On the basis of

trawl mark presence, sampling units were classtietrawled or untrawled.

2.4.2. Sessile megabenthic assemblage composition

Sessile megabenthic assemblages, defined hersamladages constituted by sessile
and low motile invertebrates such as echinodermsnyG et al., 2018), were
identified based on species composition by meare rdn-metric multidimensional
scaling ordination (nMDS) of the sampling unitsthwispecies abundances being
square root transformed, and ordination performiad av Bray-Curtis dissimilarity
matrix. Adonis permutation multivariate analysisvafiance and subsequent pairwise
tests were used to test for significant differenagsongst assemblages. The nMDS
and adonis test were performed using the R-langdagetion “metaMDS” and
“Adonis”, available in the vegan library of the Rftsvare platform (Oksanen et al.,

2016). Species occurring less than 3 times werkiéed from the nMDS analysis.

2.4.3. Influence of anthropogenic impacts



240 Anthropogenic impact was assessed by estimatingeberrence of trawl marks and
241 the density and typology of litter in each samplingit. The effect of human
242 disturbance on megafauna was analyzed within diyesomparing the frequency of
243 occurrence of each megabenthic species in trawkedfling units where trawl-marks
244 were present) and un-trawled (sampling units wheasvl marks were absent)
245 sampling units, with similar environmental condioin terms of substrate and
246 inclination. Furthermore, we quantified the vapatiin habitat complexity and
247 diversity between trawled (dives were trawl marksevpresent) and untrawled (dives
248 were trawl marks were absent) areas, by compaebgnisspuren abundance (Gage,
249 1996) and the variation in species turnover (bétardity) by means of a randomized
250 species accumulation curve (De Leo et al., 201Hjs $tatistical approach allows us
251 to find the average species accumulation curve igndtandard deviation from
252 random permutations of data (n=100), eluding mig®gntation in the curves due to
253 differences in species abundance and samplingtgf@otelli and Colwell, 2001).
254  Megabenthic species, also including decapods dmtyicfauna, were considered to
255 calculate the randomized species accumulation cuaitleough species that present
256 positive phototactism were not considered (e.g.toplids or squids). Randomized
257 species accumulation curves were calculated witanguage function “specaccum?”,
258 using the vegan library of the R software platfdfksanen et al., 2016).

259

260 3. Results

261 3.1. Description of physical characteristics al&®@V dives

262 Dive lengths ranged between 168 m to 1700 m déefdblé 1). In all the dives, the
263 seafloor was considered sub-horizontal and comstenuddy sediments. A total of

264 nine pockmarks were observed, one in dive 4 antiteiy dive 5 (Table 1).



265 Pockmarks displayed a circular shape, with diamsetanging between 1.5 and 3 m
266 and a maximum depth df40-50 cm. No carbonate concretions nor fluid or gas
267 release were observed within the pockmarks, suiggeshat these features are
268 currently inactive.

269

270 Table 1 Location (geographic coordinates in WGS8&dngth, pockmark abundance and
271 depth (minimum and maximum depth) of the SHAKE R@Ves. CFS: Carboneras fault

272 system, NSFS: North-South fault system, AIFS: Aidsli fault system, and Dv: Dive.

273
Zone | Dv Start End Length N° of Depth
Lat® N  Lon°W | Lat°N Lon® (m) Pockmarks range (m)
W
CFS 1| 36.524 3.088| 36.519 3.077 1700 0 704 - 722
NSFS| 2 | 36.481| 2.695| 36.481 2.694 1109 0 639 - 685
NSFS| 3 | 36.515| 3.051 | 36.520 3.052 1368 1 638 - 688
CFS 4 | 36.532 2.619| 36.541 2.618 168 0 836 - 860
CFS 5 | 35.498 3.737| 35.504 3.739 726 8 821 - 842
AIFS | 6 | 36.501] 2.660| 36.508 2.662 7738 0 500 - 526
274

275 3.2. Megabenthic organisms: Occupancy and abundance

276 A total of 447 organisms from 9 different specietobging to 5 different phyla were
277 observed in the study area (Fig. 3 and Table 2uming in 17.3% of the 1904
278 sampling units. The bamboo considella elongata the cerianthidArachnanthus
279 oligopodusand the spongd&henea muricataFigs. 3a, 3b and 3f) were the most
280 abundant species, representing 26.4%, 23.7% artd616f all observed organisms,
281 respectivelyA. oligopoduswvas the most frequent species, occurring in 37 %he
282 occupied sampling units, followed by bdthelongataand T. muricata,which both
283 occurred in 21.6% of the occupied sampling uniteb{@ 2). Abundance and
284 frequency progressively decreased from the astddgidenodiscus coronat the

285 crinoid Leptometra phalangiurand the holothuriaMesothuria intestinaligTable 2).



286 The remaining species accounted for less than 5%llodbserved organisms and

287 occurred in less than 6% of sampling units (Table 2

288

289 Fig. 3. Most common sessile and low motile megatienspecies occurring in the Alboran
290 sedimentary bottom. dhenea muricatah) Isidella elongataandLeptometra phalangiur{Lp), c)
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Funiculina quadrangularis,d) Kophobelemnon stelliferume) Cerianthus membranaceus)
Arachnanthus oligopoduyg) Mesothuria intestinalisand h)Hymenodiscus coronat&cale bar: 10
cm.

Table 2 Total and relative abundance of sessileatvagthic species together with their
occupancy (n° of sampling units occupied by a gmdcnd frequency (% of occurrence in
the whole set of occupied sampling units) in thelgtarea. Average and maximum density of

each sessile species within the occupied samplmits (n=329) are also shown. ind:

individuals.
Class Species Abundance Occupancy Average Max density
density + SD
Number (%) Number (%) (ind. M (ind. m?)

Desmospongia Thenea muricata 74 16.6 71 21.6 1.04+0.2 2

Anthozoa Isidella elongata 118 26.4 71 21.6 1.5+0.9 7
Arachnanthu 106 23.7 101 30.7 1.0340.2 2
oligopodus
Kophobelemnon 21 4.7 20 6.1 1.04+0.2 2
stelliferum
Cerianthus 17 3.8 17 5.2 1 1
membranaceus
Funiculina 7 1.6 7 2.1 1 1
quadrangularis

Crinoidea Leptometra 35 7.8 26 7.9 1.2+0.6 3
phalangiun

Astroidea Hymenodiscus 36 8 36 10.9 1 1
coronata

Holothuria Mesothuria 33 7.4 33 10 1 1
intestinalis

3.3. Sessile megabenthic assemblage composition

Three megabenthic assemblages, distributed aloegsith ROV dives, could be
identified in the nMDS: two monospecific assembtgemposed by few colonies of
the pennatulacean&. stelliferum and F. quadrangularis respectively, and a
multispecific group composed bfelongata(28%),A. oligopoduq25%),T. muricata
(18%), H. coronata(9%), L. phalangium(8%), M. intestinalis(8%) and Cerianthus
membranaceu§d%) (Fig. 4) The Adonis test and subsequent pairwise test iedea

that all three assemblages were significantly ckffié (p<0.001) from one another.
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Fig. 4. Non-metric multi-dimensional scaling (hnMD&dination plot, data were square root
transformed, and ordination performed via a Brayti€udissimilarity matri}: Sampling
units containing sessile organisms and echinodearasrepresented considering trawling
presence (9 sampling units) and trawling absen@0 (8ampling units). Ara_oli =
Arachnanthus oligopodusCer_mem =Cerianthus membranaceu&un_qua =Funiculina
quadrangularis Hym_cor =Hymenodiscus coronatadsi_elo =Isidella elongataKop_ste =
Kophobelemnon stelliferuni,ep_pha =Leptometra phalangiumMes_int = Mesothuria

intestinalis The_mur =Thenea muricata

3.4. Distribution of anthropogenic impacts
Marine litter was observed in all the ROV divescept dive 6 (Table 3). Overall, 44

items were found, with plastics debris being thestmabundant component (46%),
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followed by lost fishing gears (41%), metallic diski7%), such as a cot and an empty
butane cylinder (Fig. 5a), glass bottles (4%) (Bl) and clothes (2%) (Fig. 6). In
dives 4 and 5, 33% and 100% of marine litter itemese found within pockmarks
(Figs. 5c, 5d and 7c). Marine litter average dessitanged between 0.001+0.09 to
0.01+0.002 items M with maximum densities of 2 itemsvoccurring within
pockmarks. Trawl marks were observed in three efdix dives (Fig. 5e, 5f), with

almost the totality of them concentrated in div@8ble 3). A total of 93 trawl marks

were observed, affecting 93 sampling units (4.88%lIsampling units).

Fig. 5. Evidences of anthropogenic impact on thepelea sedimentary floor of the Alboran
Sea: a) butane cylinder, b) glass bottle, debrisimalation inside pockmarks, c) reinforced
rope, metal plates and plastic debris, d) lostamet light plastic debris, e) trawl-mark with

macrourid fish, f) old trawl-mark wittHymenodiscus coronateéScale bar: 20 cm. white



335

arrows: metallic debris, black arrows: plastic dgbiblue arrow: lost net, discontinuous line:

336 trawl mark delimitation.
337

*° Plastic debris

- Fishing gear

. Metalic debris

- Glass bottle

vI

P ~ Clothes
338
339 Fig. 6. Marine litter composition.
340
341 Table 3 Abundance and frequency of the occurreceanine litter and trawl-marks in the
342 study area. Sampling units with organisms (SO): memof sampling units simultaneously
343 occupied by sessile megabenthic species and méitiee items or trawl-marks. CFS:
344  Carboneras fault system, NSFS: North South fagltesy, AIFS: Al-Idrissi fault system; Dv:
345 dive, Av. Density: Average density.
346
347

Marine litter Trawl marks
Zone | Dv | Abundancel Occupancy| Av. density SO | Abundance| Occupancy| Av. density SO
(N°) (N°) (Mean+SD) | (N°) (N°) (N°) (MeanSD) | (N°)

CFS 1 15 1 0.01+0.002 0 6 6 0.002+0.04
NSFS | 2 7 4 0.060+0.200 1 0 0 0 0
NSFS | 3 14 16 0.015+0.102 0 84 84 0.081+0.2115
CFS 4 1 2 0.001+0.092 0 3 3 0.004+0.043
CES 5 7 4 0.014+0.131 0 0 0 0 0
AIFS 6 0 0 0 0 0 0 0 0

348
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350 Fig. 7. Density plots showing variation of the ablance of different species and
351 anthropogenic impacts along representative divasDénsity plots of an area impacted by
352 bottom trawling (dive 3). b) Density plots of antiawled area covered by dnelongata
353 meadow (dive 4). (c) Density plots of an untrawka@a with pockmarks. This area was
354 dominated by the sea peRsquadrangularisandK. stelliferum(dive 6). Vertical gray lines
355 indicate dive sequences that could not be analgimedto a poor image quality, n=number of
356 litter items/individuals/colonies. Sessile taxahwittractile and non-retractile capacity have
357 been marked in green and blue, respectividigella elongatacolonies epiphyted by.
358 phalangiumare marked in purple. Taxa with motile capacityehbeen marked in red.

359

360 3.5. Relationship between anthropogenic impactssasdile megabenthic fauna

361 With the exception of a lost gear line, which ocedrnext to an. elongatacolony
362 within dive 2 (Table 3), marine litter and megalienispecies did not co-occur. Only
363 9 out of the 93 sampling units containing trawl-ksawere colonized by megabenthic
364 species (Table 3), mainly representedAyoligopodusC. membranaceuand, to a
365 lesser extent, byl. intestinalis L. phalangiumand H. coronata (Figs. 7a ,8).

366 Overall, megabenthic densities in dives where tnanatks were present (0.5+0.2 ind.



367 m? mean+SD) were significantly lower (Adonis, PSEUBG= 26.9, p<0.001) than
368 those where trawl-marks were absent (1.5 + 0.7riidmean+SD).
369 Uprising non-retractile sessile species were eiadlys found on untrawled sediment

370 (Figs. 7b, 7c and 8).

Arachnanthus oligopodus

Cerianthus membranaceus

Mesothuria intestinalis

Leptometra phalangium

Hymenodiscus coronata

Kophobelemon stelliferum

Funiculina quadrangularis

Isidella elongata

Thenea muricata

0 10 20 30 40 50 60 70 80 90 100
% individuals

Untrawled sediments Trawled sediments
371

372 Fig. 8. Percentage of occurrence of sessile andnhotiie species in untrawled (grey) and
373 trawled (green) sampling units. untrawled samplings: 320, trawled sampling units: 9.
374

375 3.6. Variations in habitat complexity and biodivgran trawled vs un-trawled

376 areas

377 A total of 15730 lebensspuren items were obsereedurring on 67.5% of the
378 sampling units. Holes were the most abundant caye@®%) followed by mounds
379  (8%), furrows (1.3%) and trail-marks (0.7%) (Fig. Overall, lebensspuren densities
380 in dives where trawled marks were absent (26+16 n&®B items rif) were
381 significantly higher (Adonis, PSEUDO-F = 1778, p3@1) than those where trawling
382 was present (1.8+3.2 meanSD items$)mSuch pattern was observed for all
383 lebensspuren categories with the exception of-tnaitks, for which no significant

384 differences were found (Fig. 9).
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Fig. 9. Histograms comparing mean densities ofediffit lebensspuren items in untrawled
(grey) and trawled (green) dives. * Representsifsigimt differences (p<0.001, Adonis).
Error bars represent the standard deviation. Al 827 sampling units from dives were

trawling was present and 622 sampling units weneling was absent were used.

Species richness was higher on untrawled divesrav®@ megabenthic species were
observed, than in trawled dives, where 22 specere found. A similar pattern was
observed for species turnover, which resulted higheuntrawled dives than in

trawled ones (Fig. 10).
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4. Discussion

4.1. Sessile megabenthic assemblages

The three megabenthic assemblages identified 81ghidy (Fig. 4) were sparsely
populated and dominated by passive suspension rieddable 1), agreeing with
previous observations on the Mediterranean battmyal environments (Péres, 1967;
Emig, 1997; Mastrototaro et al., 2013, 2017). Teomtrasts with the bathyal soft
sediment assemblages in more productive oceanicshasich as those found in New
Zealand or California, which received high amouwftphytodetrital material and are
dominated by dense aggregations of deposit fed@enith and Hamilton, 1983; De
Leo et al., 2010).

The two monospecific assemblages observed in thislyswere respectively
dominated by the sea-penBuniculina quadrangularis and Kophobelemnon
stelliferum (Figs. 3c, 3d and 4), both being common inhabstaritbathyal muds of

the western Mediterranean Sea (Gili and Ros,198@Grifet al., 2014; De La Torriente
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et al., 2018), where they have already been regpotte form monospecific
assemblages (Pérés, 1967; Mastrototaro et al.,; 2BiEBdomenico et al., 2018).
Although F. quadrangularis were described to form dense aggregations on
Mediterranean bathyal muds (Pérées and Picard, 186 )ow densities observed in
this study resemble previous observations fromfsdtgle and submarine canyon
environments of the western Mediterranean (Fabél.et2014; Grinyo et al., 2018;
Pierdomenico et al., 2018). Converselfy, stelliferumassemblages presented high
densities than those reported by Mastrototaro .ef2813) in Santa Maria di Leuca
(lonian Sea - Central Mediterranean). De Clippel@le (2015) observed that both
species increase diversity at a local scale. Geyta?2% ofK. stelliferumcolonies,
found in the present study, were associated wittapieds and macrourid fishes,
reinforcing the general consensus that this spen@g provide shelter and act as a
feeding grounds for associated species (De Clipptlal., 2015). Conversely.
guadrangularis colonies were not associated to any other megaisestbecies.
However, this observation might have been affettgdhe low number of colonies
reported on this study.

The multispecific assemblage was widely representeturring in 99% of the
occupied sampling units (Fig. 4). In this assemdlaiipe bamboo cordkidella
elongata(Fig. 3b) was the most abundant species (Tabléofirjing meadows that
extended over wide areas (Fig. 7b), which punctualach densities up to 7 colonies
m. These density values are substantially higher thase recorded in other regions
of the Mediterranean Sea (Mastrototaro et al., 2(Riérdomenico et al., 2018;
Ingrassia et al., 2019), whekeelongatareached maximum densities of 2.5 colonies
m? (Bo et al., 2015)l. elongatapopulations appeared to be in good conservation

status, as no dead colonies where observed andlpatrosis was present in less
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than 6% of the observed colonies. This low necroai® contrasted with what has
been observed in impactédelongatapopulations located on trawling grounds of the
western Mediterranean (Pierdomenico et al., 2018Jongatahas a major ecological
role in bathyal environments of the Mediterranean,$roviding essential habitat for
several ichthyic and decapod species (Cartes,e2@l3; Mastrototaro et al., 2017),
representing a secondary biological hard substraglevated from the surrounding
sediments (Mastrototaro et al.,, 2017). On this ntgd7% ofl. elongatacolonies
where epiphyted by the crinoideptometra phalangiunfFig. 3b) and to a lesser
extent, by the decapodAnamathia rissoanaMore than 90% ofL. phalangium
individuals occurred on top of. elongata colonies, generally hosting 1 crinoid
(1.7£1.0 ind./colony mean£SD), although largesbo@s (>20 cm height) could host
up to 5 crinoids. Sincé. phalangiumis a suspension feeder, it is likely that these
crinoids are using. elongatacolonies as a physical support allowing to be cletd
from the seafloor and gaining exposure to morensgeand food-rich currents,
favoring their feeding rates. A similar functiomalationship has been observed in the
bathyal muds of the Balearic archipelago betwleetongataand the crinoidAntedon
mediterraneunfMastrototaro et al., 2017).

Among the other uprising sessile fauna that integrahe multispecific assemblage,
we encountered the Demosporideenea muricatand the Cerianthid&rachnanthus
oligopodusand Cerianthus membranaceliBigs. 3a, e and f)Thenea muricatdas
been described as a typical inhabitant of Meditexaa bathyal muds (Vacelet, 1969;
Maldonado et al., 2015). In the study area, thexss presented a sparse distribution
and occurred in low densities, in accordance witheo studies from the western
Mediterranean (Santin et al., 2018). Converselsiaothids were amongst the most

abundant species (38% of all sessile fauna), cstiicawith previous observations



468 depicting them as a rare group in Mediterraneahyladtmuds (Cartes et al., 2009;
469 Mastrototaro et al., 2013). Up to date, informatioagarding megabenthic
470 assemblages in deep sedimentary seafloor, mogilyedefrom experimental bottom
471 trawls or benthic sledges (e.g. Gili and Ros, 1%8hsini and Musso, 1991; Maynou
472 and Cartes, 2012; Mastrototaro et al., 2013). Algiothese gears have provided a
473 great amount of occurrence data, they cannot beidered trustworthy from a
474  quantitative point of view, often providing weakkarmation about the abundance and
475 distribution of sessile species (Chimienti et &018). This lack of reliability is
476 magnified for those species that have soft bodies laurrowing or withdrawing
477 behaviors (Durden et al., 2015; Chimienti et al1&). Therefore, since cerianthids
478 rapidly and fully retract into sediments, it isdlig that the abundance of this groups in
479 Mediterranean bathyal muds has been widely underatsd.

480 The asteroidHymenodiscus coronatand the holothuriarMesothuria intestinalis
481 (Figs. 3g and h), typical inhabitants of Meditegan abyssal muds (Mecho et al.,
482 2018), occurred as isolated individuals, being tmest sparsely distributed
483 component of the multispecific assemblage (Figs. ara b). In open slope
484  environments, both species have generally presdotedbundances (Mecho et al.,
485 2018), althoughM. intestinalis has been observed to form massive aggregations
486 coinciding with increments of labile organic mat{€artes et al., 2009).

487 The multispecific assemblage occurred on untrawéstiments (95% sampling units),
488 trawled sediments (3.5% sampling units) and on pagk fields (0.5% sampling
489 units) (Figs. 4, 7b and 7c). Although active pockktsacan potentially influence
490 species distribution and abundance due to theenfla of fluid seepage on water
491 chemistry (Zeppilli et al., 2012), in the study amo chemical nor physical changes

492 were observed through the water column (gas segpmagsurrounding sediments
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(carbonate crusts) in correspondence to theserésathis suggests that inactive
pockmarks in this area do not exert any directugirice on megabenthic fauna
distribution.

No environmental parameters are able to explairséigeegation among assemblages,
which could be identified from the video analysdswever, according to Peres and
Picard (1964), this segregation may derive fromstabe fluidity. While, F.
guadrangularisand K. stelliferum are associated to viscous muidselongata is
associated to compact muds (Peres and Picard, .1BBd)efore, further studies are
warranted to assess potential differences in tlysipal, geological and geochemical
characteristics of the sediments (e.g. grain-gipegsity, water content, composition,
and organic content) to further understand whidiinaé& processes contribute to drive

the distribution of these assemblages.

4.2. Marine litter

Litter observations in this study resemble what dmsady been observed in other
deep Mediterranean environments, where plasticesgmts the most abundant
component (Cau et al., 2019b; Pierdomenico eR@ll9a; Gerigny et al., 2019). Most
marine litter items occurred in low densities, desigher concentrations within

pockmarks, which hosted plastic bags and fishirggéFigs. 5¢ and f). In line with

previous observations, pockmarks may act as a(Jiakiani et al., 2013; Mecho et
al., 2018), constraining bottom-currents aroundrtrend inducing the accumulation
of lighter litter, such as plastic bags or certhshing-related debris (i.e. long-line

fragments). Although the mechanisms behind theraotation of large and heavier
debris, such as steel reinforced rope (Fig. 5cipare largely unknown, it is

reasonable to hypothesize that heavy items moshveal from ships’ discard. A
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maritime-based origin for heavy litter in open-g#agnvironments has been suggested
for other areas of the Mediterranean and North+itaOcean (Ramirez-Llodra et al.,
2013; Pham et al., 2014).

It is worth mentioning, that over 25% of globalfi@of trading ships use the north
Alboran Sea (around 60000 transits per year), ngakimhe world’s second busiest
sea route (IUCN, 2007). For navigation safety raasthe International Maritime
Organization (IMO) stablished two mandatory routemmed "traffic separation
schemes" that divide the northern Alboran Sea. @nkis traffic separation schemes,
is coincident with the Carboneras and the Northt#®dault systems (Fig. 1). This
could explain the contrasting situation observetiveen dives performed in the
northern Alboran Sea and the Al Idrissi dive were marine litter items where
observed (Table. 3). However, this pattern sho@ccarefully considered based on
the small sampling effort made on the south Albdsaa.

Finally, no interactions between marine litter ambtile or sessile fauna were
observed in the ROV dives, in contrast with what haen observed in regions with

higher litter densities (Pierdomenico et al., 2078H 9b).

4.3. The impact of bottom trawling

Despite the low sampling effort of our study (siOR dives covering 5521 m) our
results clearly show that bottom trawling affectedssile megabenthic species
distribution and abundance, and caused a redudatidrabitat complexity and beta
diversity (Figs. 9 and 10)l. elongata T. muricata F. quadrangularisand K.
stelliferumwere restricted to untrawled sampling units (RBY. These species are
extremely sensitive to bottom trawling (Massuti aefiones 2005; Mastrototaro et

al., 2013; Pierdomenico et al., 2018) and usedeacdmmon components of the
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Mediterranean trawling by-catch (Relini et al., 89&ili and Ros, 1987; Pansini and
Musso, 1991). In fact, in ROV dives where trawl ksawere present they presented
significantly lower densities (0.5+0.1 ind.“imean+SD; Adonis, PSEUDO-F=15.28;
p<0.0001) than those where trawl marks were abi€e87+0.73 ind. i mean+SD).
These species populations have been widely dedimatéhe last decades, and are
now mostly restricted to areas inaccessible toobottrawling (Mastrototaro et al.,
2013; 2017; Bo et al., 2015; Santin et al., 2018).

In trawled sampling units, occupancy was rather &md was restricted to cerianthids
and echinoderms (Fig. 8). Cerianthids might be ablevithstand bottom trawling
through their ability to rapidly retract within tab that are rooted tens of centimeters
below the sediment surface (Picton and Manuel, 19&&hinoderms in deep
Mediterranean environments are extremely susceptiblthe destructive effects of
bottom trawling, being unable to escape or withgtdrem (Smith et al., 2000; Cartes
et al., 2009). Thus, the presencehbfcoronatain trawled sampling units (Fig. 8)
might be explained by its motile capacity, whichynaélow re-occupancy of sampling
units after the passage of trawl gears. HowevereraéH. coronataindividuals
displayed a peculiar behavior in trawled samplingsu Individuals were observed on
the edge of trawl marks extending their arms ih® water column (Fig. 5f). In this
slightly uplifted position, suspension feeders nisy able to reach water layers
exposed to more intense hydrodynamics, improviegq fieeding rates (Carlier et al.,
20009).

Lebensspuren density and megabenthic diversity Wwgtger in untrawled dives than
in trawled ones (Figs. 9 and 10), resembling sinpktterns observed in other bathyal
Mediterranean environments (Mastrototaro et al1720As nets, trawl-doors and

chains are dragged on the seafloor, sedimentamyctstes are flattened and
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bioturbator and habitat-forming species are remavedamaged (Auster et al., 1996;
Olsgard et al., 2008; Pierdomenico et al., 20183uiting in a reduction of habitat
complexity and, therefore, local biodiversity (Pedbet al., 1997). Indeed, bottom
trawling can greatly alter benthic ecosystem florgtig and productivity (Jennings et
al., 2001), potentially having crucial long-termneequences for local fisheries
(Victorero et al., 2018). Considering the low reergiion rates of most species
characterizing the observed assemblages (MaynouGCamtes 2012), our study’s
findings arise grave concern on the conservatiatustof these vulnerable benthic

assemblages in the deep muddy bottoms of the AllBea.

5. Conclusions

- Three megabenthic assemblages dominated Fapiculina quadrangularis
Kophobelemnon stelliferundlsidella elongatarespectively, were found in bathyal
sedimentary environments of the Alboran Sea, wighdtepth range of 500-860 m.

- I. elongataandK. stelliferumwere associated to motile taxa suggesting thaethe
species may provide shelter and feeding groundaseociated species.

- Marine litter occurred in low densities. Plaséind fishing gears were the most
abundant component of marine litter. Local ciraokatof bottom currents may force
the accumulation of marine litter within pockmampdessions.

- Our results yield clear evidences that bottoavling decreased the abundance of
habitat forming species and lebensspuren itemsjycned habitat complexity and
negatively affecting biodiversity, however moreexgive studies would be advisable

to confirm this trend.
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Highlights

Three benthic assemblages could be identified in the study area.

I. elongata and K. stelliferum provide shelter and feeding grounds for other taxa.

Plastic and lost fishing gear were the most abundant fraction of marine litter.

Trawling decreased the abundances of bioengineering species.

Trawling reduced habitat complexity, negatively affecting biodiversity.
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