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Abstract: Utilising satellite images for planning and development is becoming a common practice as
computational power and machine learning capabilities expand. In this paper, we explore the use of
satellite image derived building footprint data to classify the residential status of urban buildings
in low and middle income countries. A recently developed ensemble machine learning building
classification model is applied for the first time to the Democratic Republic of the Congo, and to
Nigeria. The model is informed by building footprint and label data of greater completeness and
attribute consistency than have previously been available for these countries. A GIS workflow is
described that semiautomates the preparation of data for input to the model. The workflow is
designed to be particularly useful to those who apply the model to additional countries and use
input data from diverse sources. Results show that the ensemble model correctly classifies between
85% and 93% of structures as residential and nonresidential across both countries. The classification
outputs are likely to be valuable in the modelling of human population distributions, as well as in a
range of related applications such as urban planning, resource allocation, and service delivery.

Keywords: machine learning; building classification; superlearner; residential; building footprint

1. Introduction

The UN Sustainable Development Goals (SDGs) highlight that urban areas in lower income
settings each have unique development needs associated with human health, livelihoods, changes in
family patterns, and the local environment [1,2]. Consequently, urban areas require more detailed,
disaggregated population data in local contexts in order to monitor and tackle such issues [3]. In low
and middle income countries, however, vital registration is nonexistent, and population and housing
censuses often have less than decadal frequencies. Where there is an absence of recent population
and housing census data, population models can provide high resolution and reliable estimates
of population distribution [4]. It has been demonstrated that covariates which express settlement
characteristics (or proxies for these, e.g., night time light brightness, impervious surface mapping)
are able to inform population models most effectively [5–7]. However, there is a need for greater
recognition of the whereabouts of residential and nonresidential building types, particularly in
urban areas which have varying residential and socioeconomic characteristics. When population
models are better informed by such data, it is possible to equip national, regional, and local levels of
government (or nongovernmental organisations or private subcontractors) with more accurate datasets
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of population distribution. These are essential in order to ensure successful management of urban
areas, resource allocation, and service delivery. Further, to obtain modelled predictions of building
type is preferable to time consuming and labour intensive manual delineation of such settlement
characteristics from imagery using human operators. Modelling is also necessary because building
footprint data (i.e., an assemblage of building outlines) rarely provide details pertaining to building
type unless linked to property or personal attribute data. An exception to this is if the source settlement
dataset is volunteered geographic information (VGI), such as open source OpenStreetMap (OSM),
where incomplete and inconsistent labelling may be present.

As discussed by Jochem et al. [8], settlement models using geospatial vector data (points,
lines, polygons) have shown the potential to identify building type or urban land uses [9,10].
Such data are routinely assembled by commercial cartographic organisations, by volunteers (i.e., VGI),
and increasingly by the ‘Big Tech’ companies, with vector polygons most used to delineate the
geometry of buildings (i.e., building footprints). However, in some datasets each individual building
is represented only by a single point, often with significant error margins on building location.
Barr et al. [10] distinguish between morphological properties (e.g., area, orientation, or compactness)
and spatial relations (e.g., proximity or connectivity between polygons) to organise shape measurements.
At a localised scale, the geospatial characteristics of many polygon geometries together (and, to a
much more limited extent, point geometries) are useful in forming a pattern that can be harnessed by
machine learning algorithms in decision making. Such patterns allow the algorithm to identify broad
features within the built landscape and so allow determination of probable land use.

Quantifiable patterns provide a route to improve automated land use classifications [11]. Several
previous studies aimed to identify building use and to automate map generalisation [8,9,12–17].
Sturrock et al. [18] focus on the binary classification of building footprint data into residential and
nonresidential building types, in data poor urban areas across each of two low/middle income countries.
Their study applies the principles of stacked generalisation, as established by Wolpert [19], in an
ensemble machine learning approach in order to classify building function within urban areas. The work
broadly builds upon that of Lu et al. [20] and Xie and Zhou [21]. Data inputs are OSM building footprint
and highway (© 2017 OpenStreetMap contributors; geofabrik.de) datasets, and an impervious surface
dataset for Africa [22]. OSM highway input includes all roads available within the dataset per country.
Training and testing of the model employs building structure attribute labels contained in the building
footprints. A variety of commonplace building or urban morphological properties and spatial relations
are calculated by the model as predictor variables in order to inform predictions.

This paper describes a newly developed GIS workflow that performs the extensive processing
necessary to input new building footprint and label data to the recently developed building classification
model of Sturrock et al. [18]. The model is applied to urban areas in two new case study countries—the
Democratic Republic of the Congo (COD), and Nigeria (NGA). The workflow is designed to be
particularly useful to those who apply the model to additional countries and use input data from
diverse sources, especially as separate footprint and label data become more widely available in the
future. We elucidate and discuss the statistical and visualised, real world (i.e., human operator checked)
performance of the model for each country, illustrated by use of selected classified building footprint
outputs. We compare the statistical outputs to those of Sturrock et al. [18].

2. Materials and Methods

2.1. Source Datasets

Although building footprints are becoming more commonly available for low and middle income
countries, coverage can be patchy and completeness within areas of coverage can be poor—particularly
in open source data (such as OSM). Further, the lack of label data is currently often a barrier to
satisfactory building classification modelling performance. The case study countries (COD and NGA)
were selected based on availability of additional, new (licensed and open), building footprint and
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label data of improved coverage, completeness, and attribute consistency. Further, the case studies
were selected for being similar and proximal low and middle income settings to those explored by
Sturrock et al. [18], with similar spatial distribution of urban centres. This allows useful comparisons
to be drawn between the two studies, of the statistical outputs of the building classification model.

Data inputs to the GIS workflow, for eventual ingestion to the model, are Maxar Technologies
(DigitizeAfrica data© 2020 Maxar Technologies, Ecopia.AI) building footprint (vector polygon) data,
and OSM building footprints (vector polygon) and building attribute labels (© 2020 OpenStreetMap
contributors; geofabrik.de). Further inputs are the World Bank [23], Oak Ridge National Laboratory
(ORNL) [24], eHealth Africa and WorldPop (University of Southampton) [25], and University of
California–Los Angeles and Kinshasa School of Public Health (UCLA and KSPH) [26] manually field
mapped building attribute (vector point) labels. OSM highway (vector line) data (acquired in January
2020) were input directly into the model without the need for processing by GIS workflow. Values were
extracted (at individual building footprint locations) from raster US NASA (SEDAC) Global Man-made
Impervious Surface (GMIS) Landsat data [27] and converted into tabular data by the GIS workflow
for input to the model. Input highway and impervious data allow the calculation of some advanced
predictor variables for use in the model, such as distance of structure to nearest road, and urbanicity,
discussed in Section 2.2. Source datasets used as input to the building classification model, either via
the GIS workflow or directly, are summarized in Table 1.

The label datasets map building use (usually simply denoted as residential or nonresidential).
The World Bank dataset originates from a regional electrification survey and has coverage for Kinshasa
and North Ubangi, COD. The ORNL and eHealth Africa datasets each come from household surveys
and together have coverage for 16 states of NGA (Abia, Adamawa, Akwa Ibom, Bauchi, Ebonyi, Edo,
Enugu, Gombe, Kaduna, Kebbi, Lagos, Ogun, Oyo, Sokoto, Yobe, and Zamfara). The UCLA and KSPH
dataset similarly originates from a household survey and has coverage for five provinces of COD
(Kinshasa, Kongo Central, Kwango, Kwilu, and Mai-Ndombe). The OSM footprints data make up the
remainder of the label coverage. The distribution of the building attribute label data within each case
study country are shown in Figure 1. The label data are well distributed throughout urban centres in
both countries.

Source datasets are provided in geographic coordinate system WGS1984, except Maxar building
footprints which are provided in UTM projection and converted to geographic coordinate system
WGS1984 in common with other datasets used in this study. Raster impervious data are provided at
0.000267 decimal degree spatial resolution (approximately 30 m resolution at the Equator).

The Maxar Technologies building footprint data have been produced using a combination of
machine learning and manual curation [28], derived from Maxar Vivid imagery of greater than 50 cm
horizontal spatial resolution, with greater than 90% accuracy for buildings (less than 10% false negatives
and false positives). The location of partially covered buildings (i.e., shadow or vegetation) were
inferred using prior knowledge of typical building design (i.e., the knowledge that buildings normally
have parallel lines, symmetrical designs, etc.). The quality control process uses recursive human
operator review (aided by further machine learning to identify potential human errors in quality control)
until results surpass the required accuracy specification (Maxar Technologies, personal communication).
Accuracy and completeness statistics are not available for the specific countries studied. However,
for every 1000 km2 of processed area, 50 km2 was randomly selected and features manually digitised
and compared to reach 95% completeness [29].
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Table 1. Source datasets used as input to the building classification model, either via the GIS workflow or directly. Source datasets are here described. Data source,
type, format, and spatial information are summarized.

Name Source Acquisition Publication
Year Data Type Spatial

Resolution
Format/Pixel Type

and Depth
Spatial

Reference Spatial Coverage

Maxar Technologies
building footprints

DigitizeAfrica data. Maxar
Technologies, Ecopia.AI 2009–2019 Late 2019/

Early 2020
Building footprints,

vector
Comparable to

1” (≈30 m)
ESRI polygon

shapefiles
UTM WGS

1984 National (COD and NGA)

OpenStreetMap
(OSM) building

footprints

OpenStreetMap contributors;
geofabrik.de Up to Jan-20 Jan-20

Building footprints
with building

attribute labels,
categorical vector

Comparable to
1” (≈30 m)

ESRI polygon
shapefiles

GCS WGS
1984 National (COD and NGA)

OpenStreetMap
(OSM) highways

OpenStreetMap contributors;
geofabrik.de Up to Jan-20 Jan-20 Highways,

categorical vector
Comparable to

1” (≈30 m)
ESRI polyline

shapefiles
GCS WGS

1984 National (COD and NGA)

Democratic Republic
of the Congo

(COD)—building
points for Kinshasa
and North Ubangi

The World Bank Group [23] 2018 2018
Building attribute
labels, categorical

vector

Comparable to
1” (≈30 m)

ESRI point
shapefiles

GCS WGS
1984

Kinshasa and North Ubangi
provinces, COD

Nigeria
(NGA)—household

survey data

Oak Ridge National
Laboratory (ORNL) [24] 2016–2017 2018 Building attribute

labels, categorical
vector and table

Comparable to
1” (≈30 m)

ESRI point
shapefiles/CSV

tabular

GCS WGS
1984

Abia, Adamawa, Akwa Ibom,
Bauchi, Ebonyi, Edo, Enugu,

Gombe, Kaduna, Kebbi, Lagos,
Ogun, Oyo, Sokoto, Yobe,
and Zamfara states, NGA

eHealth Africa and
WorldPop (University of

Southampton) [25]
2018–2019 2019

Democratic Republic
of the

Congo—household
survey data

University of California,
Los Angeles (UCLA) and
Kinshasa School of Public

Health (KSPH) [26]

2017–2018 2018
Building attribute
labels, categorical
vector and table

Comparable to
1” (≈30 m)

ESRI point
shapefiles/CSV

tabular

GCS WGS
1984

Kinshasa, Kongo Central, Kwango,
Kwilu, and Mai-Ndombe

provinces, COD

Global Man-made
Impervious Surface

(GMIS) Dataset from
Landsat, v1

US NASA (SEDAC)/Center
for International Earth

Science Information Network
(CIESIN), Columbia

University [27]

2010 2018
Impervious surface

(percentage per pixel),
continuous raster

1” (≈30 m) Geo-tiff/uint8 GCS WGS
1984 National (COD and NGA)
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Figure 1. Distribution of OpenStreetMap (OSM) and other building label data, in (A) the Democratic
Republic of the Congo (break-out box shows city of Lubumbashi in greater detail, including road
network) and (B) Nigeria (break-out box shows city of Kano). Green and red points represent
residential and nonresidential structures respectively. Data are plotted with opaque colours,
and thus darker colours indicate more buildings of the same type (UCLA and KSPH [26]; eHealth
Africa and WorldPop (University of Southampton) [25]; ORNL [24]; World Bank Group [23]; ©
2020 OpenStreetMap contributors).

OSM source data are volunteered geographic information, and so do not comply with standard
quality assurance procedures, instead having intrinsic quality assurance demonstrable through analysis
of the number of volunteered contributions for a given spatial unit. Recent studies show that, for OSM
data, as the number of contributors increases then so does positional accuracy [30]. Whilst effective
spatial resolution of OSM data is therefore typically high, there is a lack of sufficiently standardised
user tagging of attributes. This can cause inaccuracies and difficulties in map rendition [31].

For ORNL, eHealth Africa, UCLA, and World Bank derived building labels, the margin of error of
building label positions, as sampled during original fieldwork surveys, is estimated to be no worse
than approximately 450 m (WorldPop, personal communication). The limitations of GMIS impervious
data are discussed in Brown de Colstoun et al. [32] and Gutman et al. [33]. Some limitations include
those of the source GLS 2010 imagery, which contains residual cloud covered areas and gaps caused by
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the Landsat 7 Scan Line Corrector (SLC) failure. Some of these gaps have not been filled. It is also
possible that small areas with impervious cover have been removed, or small areas of bare soil within
cities have a non-zero impervious cover. These errors are due to limitations of processing by the GMIS
project [32].

2.2. The Model

The stacked generalisation, ensemble, building classification model utilised in this study is
described in more detail in Sturrock et al. [18]. The model employs the Superlearner package [34]
within the R statistical programming environment [35] in order to predict whether buildings are
residential or nonresidential within urban areas. Urban areas are defined by the coverage of the
impervious surface data that is input to the model per country.

We calculated the same set of 10 predictor variables as used in Sturrock et al. [18], by importing
building, highway, and impervious surface data into R. We utilised functions from the commonly
used sp, raster, maptools, and dplyr packages. The same predictor variables were used in order to aid
direct comparison of model statistical outputs to those of the Sturrock et al. [18] study. Calculated
predictor variables comprise building area, number of sides belonging to the structure, number of
subpolygons (i.e., courtyard layout), distance to nearest road, distance to neighbouring structure,
area of nearest neighbouring structure, number of sides of nearest neighbouring structure, number
of subpolygons of nearest neighbouring structure, and the urbanicity of each structure and nearest
neighbour. In this instance, urbanicity is defined as fractional impervious cover either at the pixel level
or buffered (discussed in Section 2.3)—i.e., the degree to which the given geographical area is urban.
The predictor variables identify structures that are similar, and a situational (urban) context that is
more likely to contain residential buildings. Thus, the predictors form the basis for classifying building
footprints as being of residential or nonresidential type.

The model for each country was trained using a randomly selected 90% of each of residential
and nonresidential labelled building footprint data for urban areas in that country. The other 10% of
each act as test data and were used to estimate predictive accuracy of the final model. This is in order
to emulate the approach of Sturrock et al. [18]. For the purposes of training the model, residential
buildings are those that have one of the following labels from input data: residential, detached,
house, hut, apartments, cabin, bungalow, or mixed use. All other labels are considered nonresidential.
On occasion, input building footprint datasets require some geometry cleaning (of polygons) prior to
the subsetting of data into training/testing and predication subsets.

The superlearner ensemble uses cross validation as a selection criteria, and is designed to achieve
higher prediction accuracy than any of the individual modelling approaches (known as base learner
algorithms) contained within it [36]. The superlearner runs chosen base learners in parallel, fitting
each to the training data, and combines individual model outputs in order to reduce statistical variance
and computational expense. In the first instance, this study followed the ensemble of base learners
used by Sturrock et al. [18]. However, during initial testing it became clear that, for COD and NGA
datasets, most base learners consistently contributed nothing to the final superlearner. Consequently,
the final model utilised just two base learners. These are random forest [37] and extreme gradient
boosting [38]. Default tuning parameters were used [34]. The reduction in the number of base learners
has the effect only of reducing computational expense.

Use of the superlearner algorithm maximises the ability to differentiate residential from
nonresidential structures (i.e., maximises the area under the receiver operator curve, or AUC, value of
the final ensemble). The AUC value is a measure of separability, indicating by how much a model
is capable of distinguishing between classes. Hence in this study, the higher the AUC, the better the
model is at distinguishing between residential and nonresidential buildings. An AUC value of 0.5 is
the worst model outcome, indicating that the model has no discrimination capacity. An AUC value
of 1.0 is the ideal outcome, discriminating ideally between the positive class and the negative class.
The algorithm identifies the optimal convex combination of weights to apply to the base learners
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in order to maximise 10-fold cross-validated AUC (CV-AUC) values [18]. As in Sturrock et al. [18],
in order to assert the predictive accuracy of the final trained model, the 10-fold CV-AUC values of the
ensemble were calculated and compared to those of the base learners. DeLong’s test [39] was used to
evaluate the CV-AUC of the best base learner to that of the ensemble, using the roc.test function [40]
within the R pROC package [41]. AUC values were compared across quantiles of local impervious
values, in order to gauge how performance of the model varies by level of urbanicity.

An optimal cut-off threshold was utilised, above which predicted probabilities of the final model
were recoded to a hard classification of 1 (residential), otherwise 0 (nonresidential). Here, we defined
the optimal threshold as that which produces the same sensitivity (proportion of truly residential
structures that are correctly classified) and specificity (proportion of truly nonresidential that are
correctly classified) in the cross validated prediction values generated for the test set. The optimal
threshold was calculated by plotting the percentage of residential and nonresidential structures that
are correctly classified across all prediction cut-off values and then selecting the cut-off value where
performance is equal. In an ideal case, where the training and test data are known to be a representative
sample of all buildings, a default cut-off threshold of 0.5 would be acceptable. However, for the
datasets in question it cannot be known whether the ratio of residential to nonresidential structures
in the training and test subset of data are representative of the whole building dataset, and so the
optimal cut-off was used to recode test set predictions to the hard classification, and a confusion
matrix generated.

For each country, the relevant trained model was applied to all building structures for which
no label exists (i.e., the prediction dataset) in order to predict whether buildings are residential or
nonresidential. Output predictions were also classified using the optimal cut-off threshold. Predicted
output per building (i.e., decimal values ranging from zero to one, in hundredths) and corresponding
building ids were output to csv file (see Section 2.5) for use in other analyses and applications, such as
population modelling. The recoded output and corresponding building ids were similarly exported to
csv file as a basis for visualisation of model results. The original code and sample datasets, pertaining
to the Sturrock et al. [18] model, can be downloaded from GitHub [42]. The statistical outputs of the
building classification model are described in the Results.

2.3. Running the Model

The model was run using a semiautomated script from within the R (version 3.5.1) environment [35]
via a Red Hat Enterprise Linux 7.4 operating system on the ‘Iridis 5’ University of Southampton High
Performance Computer (HPC). If the model is run with reduced numbers of base learners then it will
run adequately on a modern desktop machine, depending on the size of the input datasets. If input
datasets are large then large amounts of memory are required (64–128 GB ordinarily), which is why
use of an HPC is recommended.

Input datasets to the model consist of an OpenStreetMap style building footprint polygon geojson
or shapefile (depending on dataset size)—with OSM-like building footprint attributes, an OSM highway
polyline shapefile, and two csv files that contain impervious surface values. One of these contains
imperviousness values extracted at the pixel level, per each building polygon centroid. The other
file contains mean impervious values within a 9 × 9 pixel (270 × 270 m) square buffer around the
pixel at each building polygon centroid (as used by Sturrock et al. [18]). Each csv file contains the
impervious surface values (expressed as a percentage in decimal values ranging from zero to one,
in hundredths) wherever a building is present. Each csv also contains the relevant OSM building
id (unique, numerical), or simulated OSM id where the source is non-OSM, and the corresponding
latitude and longitude (in decimal degrees) of each building.

Due to the sparsity of available data, it is often necessary to combine several building footprint
and several building structure label datasets from a variety of sources in order to make the most of
available data for input to the model. To this end, we apply a GIS workflow in order to merge the
new building footprint datasets and new label datasets into one, and to cast both relevant buffered
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and unbuffered impervious surface data as csv files. A diagrammatic summary of the GIS workflow,
also displaying how outputs integrate into the building classification model, is shown in Figure 2.
Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 

 

 

Figure 2. Flow diagram of GIS workflow, including how outputs integrate into the building 

classification model. Input datasets to the workflow are denoted in grey, with GIS workflow 

processes shown in blue. Inputs to the model are shown in green, and are depicted with blue outlines 

if also outputs from a GIS workflow process. The model is denoted in red, with model outputs and 

associated processes, respectively, shown in black with red outlines. 

2.4. GIS Workflow to Prepare Model Inputs 

A semiautomated Windows batch script was executed (per case study country), on a desktop 

computer, in order to produce the GIS layers that act as input to the model. Grass GIS 7.8 

(grass.osgeo.org), Python 2.7 (python.org), and SpatiaLite 5.0 beta (gaia-gis.it/gaia-sins) secondary 

scripts were executed from the primary script, which otherwise automates the main GDAL 3 

(gdal.org) commands at the command line interface. Installation of the OSGeo4W open source 

geospatial software package (osgeo.org/projects/osgeo4w) ensures that relevant bindings are 

available at command line. The GIS workflow scripts relating to this study are provided in 

Supplementary Materials to this article. 

The first step was to merge OSM and non-OSM (in this case, Maxar Technologies) building 

footprints into a single dataset. Grass GIS was used to extract building polygons from the non-OSM 

dataset where they do not intersect OSM building polygons. Buildings in non-OSM datasets that 

intersect OSM buildings were excluded and not considered further because these are typically less 

well delineated versions of OSM buildings. As an exception, this particular GIS operation was 

undertaken on the HPC due to computational expense (i.e., memory limitations). Extracted building 

polygons were merged with the OSM building dataset using the GDAL ogrmerge utility. The output 

building footprint layer from this step forms the basis of the training, testing, and prediction datasets 

in the model after non-OSM building point labels were added to it (see following steps). Both OSM, 

and non-OSM building footprints and labels were well represented in the output. 

Figure 2. Flow diagram of GIS workflow, including how outputs integrate into the building classification
model. Input datasets to the workflow are denoted in grey, with GIS workflow processes shown in
blue. Inputs to the model are shown in green, and are depicted with blue outlines if also outputs from
a GIS workflow process. The model is denoted in red, with model outputs and associated processes,
respectively, shown in black with red outlines.

2.4. GIS Workflow to Prepare Model Inputs

A semiautomated Windows batch script was executed (per case study country), on a desktop
computer, in order to produce the GIS layers that act as input to the model. Grass GIS 7.8
(grass.osgeo.org), Python 2.7 (python.org), and SpatiaLite 5.0 beta (gaia-gis.it/gaia-sins) secondary
scripts were executed from the primary script, which otherwise automates the main GDAL 3 (gdal.org)
commands at the command line interface. Installation of the OSGeo4W open source geospatial software
package (osgeo.org/projects/osgeo4w) ensures that relevant bindings are available at command line.
The GIS workflow scripts relating to this study are provided in Supplementary Materials to this article.

The first step was to merge OSM and non-OSM (in this case, Maxar Technologies) building
footprints into a single dataset. Grass GIS was used to extract building polygons from the non-OSM
dataset where they do not intersect OSM building polygons. Buildings in non-OSM datasets that
intersect OSM buildings were excluded and not considered further because these are typically less well
delineated versions of OSM buildings. As an exception, this particular GIS operation was undertaken
on the HPC due to computational expense (i.e., memory limitations). Extracted building polygons were
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merged with the OSM building dataset using the GDAL ogrmerge utility. The output building footprint
layer from this step forms the basis of the training, testing, and prediction datasets in the model after
non-OSM building point labels were added to it (see following steps). Both OSM, and non-OSM
building footprints and labels were well represented in the output.

The next step was to simplify and merge non-OSM building point labels (in this case from
World Bank [23], ORNL [24], eHealth Africa [25], and UCLA and KSPH [26] sources) into a single
dataset. GDAL ogr2ogr and ogrinfo utilities were employed in this task. Non-OSM label datasets
specify a residential attribute of some sort, with some variation of ‘yes’ or ‘no’ present in the attribute
fields, or have some misspelt or unusual field value that can be safely considered to be residential.
These require simplification and standardisation for input to the model. The specifics of these variations
can be found in the script code in Supplementary Materials.

There is a degree of uncertainty pertaining to the positioning of non-OSM building point labels as
recorded in the original field surveys. Very often a label is located in proximity to the individual building
footprint to which it relates, rather than being located within the bounds of the footprint. In such
circumstances, were labels to be attributed directly to coincident building footprints then this would lead
to errors of commission and omission in output. Instead, and in order to accommodate the positional
uncertainty and so allow attribution of non-OSM labels as appropriately as possible to individual
building footprints, a window generalisation method was employed. This is justified because buildings
of the same type (i.e., either residential or nonresidential) tend to cluster in urban environments.
The method was implemented in Grass GIS, and uses an intermediate rasterisation process, representing
residential point labels as an integer value of 1 and nonresidential as 0. Rasterised (irregularly spaced)
non-OSM building labels were window averaged (moving 5 × 5 pixel, 0.00083333333 decimal degrees
cell size) into a regularly spaced label grid. A total window size of 0.00416666666 decimal degrees,
or approximately 450 m at the Equator, was selected because this generalises the positioning of labels
in line with the estimated maximum margin of error of label positions during the surveys. The selected
window size was the subject of sensitivity testing (see Discussion section) in order to assess whether
different window sizes introduce visually discernible misclassifications into the output of the building
classification model, or whether outputs appear to be satisfactory after comparison to satellite imagery
and place labels derived from web mapping services.

The output from the window generalisation allows subsequent workflow to assign non-OSM
building point labels as appropriately as possible to individual building footprints. Due to the
uncertainty regarding label positions, the workflow uses a cautious approach in which the rasterised
nonresidential labels (which represent around a quarter of non-OSM labels within each country) are
removed from the window averaged non-OSM grid. Of the residential labels that remain, those that
were not coincident with residential labels in the original (i.e., non-averaged) grid were also removed.
This means that only those residential labels remain for which there is a high level of certainty regarding
position. After conversion of these remaining labels to a vector polygon layer, the output comprises
contiguous ‘zones’ within each of which there is a high level of certainty (at given window size) that
buildings contained within will be residential. It follows that the zones are used to assign a residential
attribute to each individual building footprint contained within each zone. Building polygons and
the zone layer were imported into an SQLite database for efficiency of processing, and a SpatiaLite
SQLite shell used to append the attributes to buildings. Building polygons not assigned a label were
included in output. The SQLite script retains real OSM building ids where present, and adds a further
(unique) index for non-OSM building polygons for use in the model. The SQLite table was output to
geojson format for further processing, using ogr2ogr. The significantly smaller subset of non-OSM,
nonresidential labels were not used further in this study. OSM building attributes form an integral part
of the footprint dataset and are not replaced by generalised non-OSM labels when these are assigned
(because label positions of the former are certain). The binary building classification model utilises the
combined footprints and labels, which are of acceptable standard to train and test the model. This is in
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part due to the window generalisation and subsequent workflow that provide confidence in non-OSM
label attribution.

The final part of the GIS workflow is to attribute impervious surface values to individual building
footprints. This involves the creation of the csv files that contain the (buffered and unbuffered)
impervious surface data per building polygon. Source impervious surface raster data was first
processed in order to remove any special values [32] that fall outside of the normal impervious range.
The workflow then proceeds with the production of a vector point layer denoting the centroid of each
building polygon, and the appending of latitude/longitude attribute columns to the centroid layer,
both via ogr2ogr. Impervious surface values at each building centroid are extracted to a csv file using
an open source python script [43]. The script was tweaked to improve memory handling for large file
sizes [44].

In order to calculate the mean impervious values within a square buffer around the centre of the
building polygons, and so replicate the Sturrock et al. [18] method for relevant data, a circular buffer
was first calculated around the building centroids corresponding (at maximum radius) to the preferred
9 × 9 pixel (270 × 270 m) square buffer size (see Section 2.3). Circular buffer radius values are cast in
decimal degrees. Subsequently, the minimum bounding envelope was calculated for each circular
buffer. By this method, for each building, the square buffers were produced. Both the buffers and
envelopes were produced using ogr2ogr. Mean impervious surface values for each fixed square buffer
zone were extracted to a csv file using an open source zonal statistics python script [45]. The script was
tweaked to permit only the mean statistic to be calculated (for computational efficiency).

To prepare the final csv files in the correct format for input to the model, ogr2ogr and ogrinfo
utilities were utilised. The attribute table of the building centroid layer, and the csv attributes generated
by each of the (impervious) python scripts, were imported into an SQLite database. An SQLite shell
was utilised to format the SQLite table columns for use in the model. Building centroid attributes and
the attributes from the csv data were then added to the table using the ogr2ogr utility, and output to a
shapefile with all the values in one place. From this output, two csv files were generated for input to
the building classification model. The ogrinfo utility was used to format impervious values in each
respective file.

2.5. GIS Workflow to Prepare Model Outputs for Visualization

The HPC was utilised to extract (from the model) predictions and recoded classifications to
separate csv files within the R environment. The ogr2ogr utility was employed to visualise both the
predictions and the recoded classifications from the model, via creation of vector point shapefiles.
The building polygon geojson/shapefile and the two new point shapefiles were converted into separate
tables within an SQLite database. Via an SQLite sql query, the OSM feature ID attribute was utilised
to join the predictions and the recoded attributes from the point shapefiles to the building polygon
dataset. Ogrinfo and ogr2ogr utilities were employed to format values in the two geojson outputs in
order to optimise visualisation of buildings in GIS software.

3. Results

Out of a total of 2,889,858 building structures in COD, and 11,492,791 building structures in NGA,
98,294 (3.4%) and 16,776 (0.15%), respectively, have available label data pertaining to structure type.
Table 2 summarises these data from combined OSM and other label sources.
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Table 2. Summary of structure data for the Democratic Republic of the Congo and Nigeria, used in
building classification model training and testing.

Country Total with Labels Total without Labels

Democratic Republic of the Congo 98,294 2,791,564
Residential 93,794
Nonresidential 4500

Nigeria 16,776 11,476,015
Residential 12,985
Nonresidential 3791

The ensemble was fitted with external cross validation in order to evaluate the performance of the
base learners and ensemble more closely. These statistics are presented in Supplementary Information.

The performance of the final building classification superlearner model on the test data as a
function of level of local impervious (urbanicity) quantile is shown in Figure 3. For COD, AUC generally
increases with increasing level of urbanicity. In contrast, for NGA, AUC values are highest in least
urban and very urban areas.
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Figure 3. AUC values of the final building classification superlearner model by local impervious
(urbanicity) quantile (a higher quantile value is more urban), for the Democratic Republic of the Congo
and Nigeria.

Figure 4 expresses the influence of different cut-off thresholds on the ability of the building
classification superlearner model to correctly classify residential and nonresidential structures.
For COD, the cut-off value at which equally good performance is possible for classifying residential
and nonresidential structures is 0.94, leading to 92.8% of both residential and nonresidential
structures correctly classified. The cut-off for the NGA model is 0.746, leading to 85.4% of structures
correctly classified.
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Figure 4. Classification performance of the building classification superlearner model using different
cut-off thresholds, for (A) the Democratic Republic of the Congo and (B) Nigeria.

Using the test data, the superlearner models achieve an AUC value of 0.98 in COD and 0.93 in
NGA. Table 3 shows the confusion matrices generated using the selected country specific cut-off

threshold. In COD, 92.8% of residential and nonresidential structures are correctly classified. In NGA,
85.3% and 85.5%, respectively, are correctly classified.

Table 3. Performance of the building classification superlearner models when applied to the test
data. The sensitivity (recall, or true positive rate) of the respective models for the two countries
are shown in green, the specificity (true negative rate) in red. Classifications were made using the
country specific cut-off threshold at which CV-classification accuracy was equal for residential and
nonresidential structures.

Observed

Country Nonresidential Residential

Democratic Republic of the Congo
Predicted

Nonresidential 463 753
Residential 36 9668

% correctly
classified 92.8 92.8

Nigeria
Predicted

Nonresidential 360 212
Residential 61 1230

% correctly
classified 85.5 85.3

Predictions made using the final superlearner model suggest that 2,667,015 structures (92.3%) in
COD, and 10,932,929 structures (95.1%) in NGA, are of residential type. A total of 222,843 (7.7%) and
559,862 (4.9%) structures, respectively, are nonresidential. These calculations include structures for
which type is known from the label data.
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4. Discussion

Data on built structures are invaluable for use in population modelling, particularly to assist
humanitarian and development programmes and national planning. Building footprints are becoming
more commonly available in low and middle income settings, but the lack of structural characteristics
attached to the footprints limits their usefulness in some applications. The work of Sturrock et al. [18]
shares similarities with that of Lu et al. [20], and Xie and Zhou [21], in terms of some classification
principles, model methodology, and purpose. However, Sturrock et al. [18] is the first study to use a
country-wide, stacked generalised approach to demonstrate the usefulness of machine learning in the
augmentation of existing building footprint data (OSM, in that instance) by prediction as to whether
urban buildings are residential or not. This is a principle which is useful across a number of sectors
and fields. In this paper we elucidate unique GIS workflow, which is designed to make it easier to
apply the building classification model to additional countries using new building footprint, label,
and impervious surface datasets as these become available in the future. Further, we apply the model
to recently acquired ground observations of building use, OSM building labels and footprints, and new
building footprint data in otherwise data poor settings. The new use cases of the model, in COD
and NGA, compliment those discussed in Sturrock et al. [18], are directly comparable, and harness
footprint and building attribute datasets of greater completeness (Tables 2 and 3), producing statistically
improved results.

4.1. Sensitivity Testing of Window Generalization Method

A window generalisation method was utilised in the GIS workflow in order to assist in the
attribution of non-OSM residential building labels to building polygons. The authors know of no
other examples of studies that use average moving windows in such workflow in order to produce
datasets for input to binary building classification models. For this reason, some sensitivity testing was
undertaken as to the effect that use of different window sizes (or none) have upon visualised building
classifications as output from the superlearner model. Testing assesses (via human operator) whether
window generalisation introduces discernible misclassifications into modelled output, when compared
to satellite imagery and place labels derived from web mapping services. During testing, all workflow
and model parameters are kept constant except for window size. A base case is also considered in
which no window averaging is used. In that base case, a single non-OSM residential building label is
attributed to each building polygon, only where at least one building label is found to be contained
within the polygon. More substantial testing of a quantitative nature is not undertaken because there
is insufficient label data available to this study with which to create a suitably sized subset of the
data used during the actual window sampling or modelling. Were a greater amount of suitable data
available then quantitative testing could provide a useful numerical performance indicator as to the
effect of each different window size upon a test set containing known building label values. In the
future, implementation of a form of quantitative sensitivity testing can be examined when enough new
label data become available.

In sensitivity testing we do not explore the use of window sizes larger than that considered
necessary to generalise the positioning of labels in line with the estimated maximum margin of error of
label positions during field survey (i.e., a 5 × 5 cell square window of total size ≈450 m at the Equator,
the chosen window size). This is because as window size increases, greater numbers of buildings
become classified as residential. This has the effect of inflating the AUC value of a building classification
model. Our window generalisation method mitigates against these issues because non-OSM residential
zones (from which coincident building footprints are assigned residential attributes) are created using
a cautious approach (see Method section). The approach strictly limits zone coverage to where there is
a high level of certainty that building footprints will be residential.

The sensitivity testing indicates that smaller window sizes produce classification ‘banding’
(i.e., zones of misclassified buildings, most likely attributable to insufficient averaging of non-OSM
label positions) in the visualised output for both COD and NGA. Such banding is not present when the
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chosen window size is used, nor in the base case. As is to be expected, model statistical output from
the sensitivity tests show a slight increase in AUC values for both COD and NGA as window size
increases from a 3 × 3 cell square window of total 10 m size at the Equator. This increase is largest
when AUC at the chosen window size is compared to AUC in the base case (though modest at 0.02 and
0.8 for COD and NGA, respectively).

The sensitivity testing reveals that the use of window generalisation is of value in providing
confidence in label attribution to residential buildings, with the caveat that it introduces a further
variable to the method—that of the window size at which the analysis takes place. Whilst testing
indicated that the window generalisation method (at chosen window size) provides best visualised
output, and that the effect on AUC is minimal, nevertheless, both the window and ‘windowless’
(i.e., base case) methods may be considered of value depending on the use case and available label data
(and estimated positional error of these). Indeed, the argument can be made that both methods identify
regions of confidence in label attribution to residential buildings, because in urban locations such
buildings typically cluster (i.e., Tobler’s First Law, which states that things that are closer together share
more similarities than things that are further apart). Residential or nonresidential buildings typically
cluster because of urban planning (and potentially other sociospatial processes). Whether window
generalisation is used to average residential labels into a grid and matched to buildings, or whether
specific labels are matched to specific buildings by spatial coincidence alone, such clustering will be
identified. Future work could further explore the effect that variation in window size has on modelled
predictions, especially when other parameters (predictor variables) of the model are altered. This could
include the use of different window sizes according to the density of buildings, or instead assign labels
to the closest ‘n’ number of buildings within a radius.

4.2. Model Output

The statistical outputs of the building classification model are at national level (apart from local
imperviousness by quantile, which focuses on model performance in locations of differing urbanicity).
This is in order to draw direct comparisons with the model output of Sturrock et al. [18]. We do not
address statistical output from the model at regional or city level. This is due to insufficient sample
sizes to make such comparisons useful, or sometimes even possible—a problem that is particularly
acute in the case of Nigeria. With more data, interesting results might be obtained by training the
model in one region/city and predicting on another within the same country. This would be useful
to show the transferability of the model. Future research should therefore develop this aspect of the
work as more building label data become available. Additionally, some of the predictor variables
that are used in the model incorporate geographical proximity effects into the modelling process.
These might help to mitigate against bias in predictions caused by spatial autocorrelation in the data
(which is often ignored in random forest and similar machine learning modelling processes). However,
the effect of these variables cannot be quantified without the examination of spatial autocorrelation in
the residuals. Exploration of the effect of such variables upon spatial autocorrelation will make an
interesting addition to future work as the model is developed.

With reference to Figure 3, there is a clear increase in building classification model performance
with increasing urbanicity in COD (0.945 to 0.993 AUC). As in the Sturrock et al. [18] Swaziland (SWZ)
example, this increase in performance may be due to differences in the characteristics of buildings in
very urban areas in COD relative to those in very urban areas within NGA, or relative to the same in
the Botswana (BWA) example of Sturrock et al. [18]. The increase in performance is less likely to be due
to the amount of training data available with which to inform the model (Table 2). This is because there
are significantly more training data available for COD than is the case for either SWZ or BWA. Either
way, the AUC value for the COD model is extremely high at 0.98, performing better than the SWZ and
the BWA cases (AUC of 0.95 and 0.96, respectively). For NGA, model performance peaks in least urban
and very urban areas (Figure 3. 0.955 and 0.951 AUC, respectively). This makes sense because in such
areas the built environment should be more homogenous and so easier for the model to predict. This is
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similar behaviour to the BWA case. Whilst the AUC value for the NGA model is very high at 0.93,
the slightly lower performance relative to that for BWA may be due to the still limited availability of
building label data with which to train the NGA model (Table 2). Additionally, the difference could be
due to greater heterogeneity in the built environment of NGA than is the case in BWA, SWZ, or COD.
Nevertheless, both COD and NGA show very good discriminatory performance regardless of setting.

The statistical results demonstrate that building classification model performance (AUC) is robust
when a variety of input footprint datasets are utilised for different low and middle income countries in
which building label data are relatively scarce. Additionally, they show that use of more complete
input datasets can considerably improve model performance over that possible when only OSM
footprint and attribute data are utilised (e.g., Sturrock et al. [18]). The additional data used for Nigeria
makes the country modellable using this method, when previously it would not have been due to
lack of data. However, comparison of the source satellite imagery to the classified building footprints
(DigitizeAfrica data© 2020 Maxar Technologies, Ecopia.AI) by a human operator demonstrates that
further improvements in model performance are required if the model is to near perfectly discriminate
between residential/nonresidential classifications in visualised output (i.e., real world performance).
We additionally employed place labels derived from web mapping services in our comparison.
Classification performance of the model is generally effective at ‘neighbourhood’ scale. Figure 5, top,
shows an example of this—residential and nonresidential clusters of buildings appear well defined,
with the assessment by the model of building size, shape, and proximity to nearest neighbouring
building apparently highly effective. The predictor variables mentioned are just some of those used
by the model but can perhaps be considered the most intuitive. However, in suburban localities,
at ‘street’ scale, it is apparent that buildings can sometimes be misclassified. Figure 5, bottom, shows a
predominantly residential area [46] that has many buildings classified as nonresidential. Such apparent
building misclassification might be due to unusual heterogeneity of building structures in the given
locality when compared to urban areas in the country at large, and/or due to limited training data
within the locality. Certainly, additional building label data will be required in the future in order to
train the model more effectively. Future work should also enhance the visualised performance of the
model by developing and expanding upon the predictor variables used within. This might include
finding a way to better discriminate building classification within suburban locations.
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Figure 5. Visualisations of classified residential (depicted in green) and nonresidential (red) building
footprints, (Top) South-western Kaduna, Nigeria (co-ordinate location 7.390E, 10.470N; scale 1:16,000).
The classification performance of the building classification model is observed to be generally effective
at ‘neighbourhood’ scale (see text). (Bottom) North-western Lubumbashi, the Democratic Republic of
the Congo (co-ordinate location 27.436E, 11.648S; scale 1:2700). A predominantly residential suburban
locality at ‘street’ scale, demonstrating apparent building misclassifications (i.e., nonresidential) despite
excellent statistical performance of the model (see text) (DigitizeAfrica data© 2020 Maxar Technologies,
Ecopia.AI;© 2020 OpenStreetMap contributors).

There are limitations and opportunities for future research in addition to those already mentioned.
There may be some error in OSM or other label dataset attributes, or bias could be introduced if
building type information is only available for certain categories of structures, such as for retail



Remote Sens. 2020, 12, 3847 17 of 20

outlets. Whilst the building label data used in this study somewhat address the need flagged by
Sturrock et al. [18] to use ground truthed data as part of that input to the building classification model,
nevertheless, dataset completeness and attribute accuracy will never be perfect. The modelled problem
was a simple binary one, limiting usefulness of the data to other fields. The intention is to address
this in the future by broadening modelled categories to include mixed use, informal, and other types
of buildings.

It might be possible to experiment with training and testing of the building classification model
using highest quality building footprint and label data available for high income countries. This would
be the case only where urban areas are identified as potentially analogous (in terms of settlement
layout, area, and population size) to those in particular low and middle income settings. In theory,
better completeness and accuracy of data in training allows higher quality predictions to be made,
with the proviso that urban areas in the training and prediction datasets must be of similar character.

5. Conclusions

In this paper we developed a novel GIS workflow that semiautomates the preparation of data
for input to a recently developed, stacked generalisation, ensemble, building classification model.
Building footprint data are becoming more commonly available due to image extraction methods.
However, use of such data are somewhat limited by a lack of labels. Other data sources can effectively
label structures (during fieldwork or surveys), and our workflow fuses these disparate sources to
inform the predictive model. The workflow is designed to be particularly useful to those who apply the
building classification model to further countries, and to those who input separate building footprint
and label (as well as impervious surface) data from diverse sources, especially as new data become
available. For the first time, the model was applied to urban areas in the Democratic Republic of the
Congo (COD), and Nigeria (NGA), using footprint and building attribute datasets of greater coverage,
completeness, and attribute consistency than previously available. The classification model predicts
whether buildings are residential or nonresidential within each country. The statistical results show
that the ensemble model correctly classifies between 85% and 93% of structures as residential and
nonresidential across both countries. This is an improvement on previous research [18] that used
less complete datasets as input to the same model, applied to similar and proximal low and middle
income settings. For COD, outputs show better discrimination between residential and nonresidential
buildings than found possible for case studies in the previous study. For NGA, the newly available
source datasets provide sufficient training and test data to make the country modellable for the first
time using the Sturrock et al. model [18], with good results. The classified model outputs will be
particularly useful in informing models of human population. This, in turn, will allow improved
population models to be produced that will better inform a range of related applications including
urban planning, resource allocation, and service delivery.

Future development of the building classification model will involve the modification and
expansion of the classification algorithm to include a greater range of appropriate data inputs
and predictor variables in order to improve predictive power in low and middle income settings.
These inputs might include data pertaining to the height of buildings, patch density of urban form [14],
or discrimination of building roof top types via use of multispectral imagery. Further, we aim to enhance
the completeness and attribute consistency of data input to the model via the acquisition of additional
or improved data as these become available. Future work should also explore model transferability
at regional/city level, the effect of particular predictor variables upon spatial autocorrelation in the
data, and the effect that variation in window size has on building labels and modelled predictions.
Acquisition of training data for urban areas in high income countries that are analogous to urban areas
in low and middle income settings should be investigated in order to improve model predictions if
possible. Finally, our intention is to adapt the model in order to classify a wider variety of building
function. Rather than a simple binary residential/nonresidential classification, the model should be
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expanded to include classifications of mixed use and informal settlements, in order to better inform
population models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/23/3847/s1,
Supplementary Information, Figure S1, CV-AUC values obtained from each of the base learners and superlearner
plotted in decreasing value of AUC for the Democratic Republic of the Congo and Nigeria, Table S1, Coefficients
estimated by the superlearner algorithm for each base learner. And at http://www.mdpi.com/2072-4292/12/23/
3847/s2, Workflow Code.
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