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Enumeration Areas (EAs) are the operational geographic units for the collection and dis-
semination of census data and are often used as a national sampling frame for various types
of surveys. In many poor or conflict-affected countries, EA demarcations are incomplete,
outdated, or missing. Even for countries that are stable and prosperous, creating and updating
EAs is one of the most challenging yet essential tasks in the preparation for a national census.
Commonly, EAs are created by manually digitising small geographic units on high-resolution
satellite imagery or physically walking the boundaries of units, both of which are highly time,
cost, and labour intensive. In addition, creating EAs requires considering population and area
size within each unit. This is an optimisation problem that can best be solved by a computer.
Here, for the first time, we produce a semi-automatic mapping of pre-defined census EAs
based on high-resolution gridded population and settlement datasets and using publicly
available natural and administrative boundaries. We demonstrate the approach in generating
rural EAs for Somalia where such mapping is not existent. In addition, we compare our
automated approach against manually digitised EAs created in urban areas of Mogadishu and
Hargeysa. Our semi-automatically generated EAs are consistent with standard EAs, including
having identifiable boundaries for field teams to follow on the ground, and appropriate sizing
and population for coverage by an enumerator. Furthermore, our semi-automated urban EAs
have no gaps, in contrast, to manually drawn urban EAs. Our work shows the time, labour and
cost-saving value of automated EA delineation and points to the potential for broadly
available tools suitable for low-income and data-poor settings but applicable to potentially
wider contexts.
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Introduction

lobally, population data count and distribution data in the

form of census enumerations, are used for population

segmentation, planning, and a myriad of other functions
that support the government. EAs are the operational geographic
units for the collection of census data (UN, 2007). The set of all
EAs of a country constitutes a partition of that country, with EAs
not overlapping with each other. In principle, EAs are designed
such that each unit contains a similar population size and con-
forms to certain constraints imposed by the logistics of counting
large numbers of people with limited resources. Regardless of
being created manually or digitally, the design of EAs should take
several criteria into account including (i) be mutually exclusive
(none-overlapping) and exhaustive (cover the entire country), (ii)
have boundaries that are easily identifiable on the ground, (iii) be
consistence with the administrative boundary hierarchy, (iv) be
compact without pockets or disjoint sections, (v) have popula-
tions of approximately equal size (vi) be small enough and
accessible to be covered by an enumerator within the census
period, (vii) be small and flexible enough to allow the widest
range of tabulations for different statistical reporting units, (viii)
be large enough to guarantee data privacy, (ix) be useful for other
types of censuses and data collection activities, (x) be satisfactory
to the needs of government departments and other data users
(BUCEN, 1978; Unite, 2000). In some countries, census data can
be outdated or incomplete in which EAs might not be available or
need to be updated. Creating and updating digitised EAs in the
preparation for a national census is among the most complex and
massive peacetime exercises. However, with the availability of
data on population density at a sufficiently high spatial resolution
(e.g., 100 m), the process of designing EAs can be semi-auto-
mated, which could accelerate the census mapping process.

In some LMIC contexts, and particularly in conflicted affected
areas, EAs are based on old population data or do not exist, a fact
that has far-reaching consequences. In particular, the lack of
properly defined EAs means that there is no nationally repre-
sentative sampling frame. National sampling frames are used to
draw representative samples from the population to understand
the geographic distribution of population characteristics (Turner,
2003). Without sample weights in which an accurate national
sampling frame is an essential input, survey data sampled from a
country’s population are likely to be inefficient, typically under-
sampling vulnerable populations (Thomson et al., 2012; Ellard-
Gray et al, 2015). Therefore, the creation of EAs to form a
sampling frame creates significant benefits to generate nationally
representative data to allow evidence-based analysis informing
governments and NGOs. Especially in resource constrained
environments (like Fragile, Conflicts and Violence (FCV) set-
tings), it is best to have an up-to-date population sampling frame
because it increases efficiency and therefore reduces costs.

Historically, the creation of census EAs has been an expensive
task solved by approaches such as physically walking to map EA
boundaries, which can require intensive resources and multiple
years to complete (Lu, 2009; Yacyshyn and Swanson, 2011). For
instance, in Zambia, the 2010 census mapping exercise was
expected to take about two years to be completed at a total cost of
US $7 million (Yacyshyn and Swanson, 2011). Since the advent of
Geographic Information Systems (GIS) and high-resolution
satellite photography census cartographers in some countries
have been able to manually digitise EA boundaries from satellite
imagery, leading to better control of EA delineation. However,
manual digitisation of EAs is still costly and labour-intensive. It is
also prone to human error and can have poor accuracy (Alazab
et al,, 2009; Balinski et al., 2010; Cockings et al., 2011). In addi-
tion, in the manually digitise EA approach, it can be challenging

to accommodate population and area constraints. Furthermore,
EAs or sampling frames in countries with large population dis-
placements and rapid urbanisation need regular updating,
meaning that the manual digitisation process must be replicated.
Combining automation and manual approaches could be a viable
middle ground to accelerate this process.

Several tools are available for creating a population sampling
frame from gridded population estimates such as GridSample
(Thomson et al, 2017) and Geo-sampling tool (Cajka et al,
2018). Some approaches have used remote sensing data and GIS
techniques to generate homogeneous regions and spatial sample
design (Kumar, 2007; Lang et al., 2014; Wang et al., 2019). Other
works have employed statistical region merging techniques to
group areas into zones for a range of purposes including inves-
tigation of neighbourhood effects on health and release of census
data (Cockings et al.,, 2011; Flowerdew et al., 2007; Haynes et al.,
2007). Statistical region merging uses algorithms to segment an
image into regions of similar intensity or colour (Nock and
Nielsen, 2004). For instance, Folch and Spielman (2014) showed
the advantage of applying the improved max-p algorithm on
growing the irregular regions from census EAs. The max-p was
also introduced as a new spatially constrained clustering problem
in which a set of geographic areas will be clustered into the
maximum number of homogeneous regions such that the value of
a spatially extensive regional attribute is above a predefined
threshold value (Duque et al., 2012). The challenge with such
approaches is that the derived EAs may not align with landmarks
such as roads and buildings, which are needed by enumerators on
the ground. By contrast, the ArcGIS/AZTool toolkit, a region-
merging tool, was developed to design new reporting geographic
units using the 2006 census data and existing EAs as their bas unit
(Martin and Lyndon, 2009). The AZTool approach has the
advantage of using existing EAs which are assumed to align with
known geographic features. However, in a lower and middle-
income countries where existing EA data may be outdated or
even paper-based, making them unsuitable for region-merging

While suitable EA-level data may not be available in many
LMIC contexts, many new and freely available data sources have
recently emerged, which can directly inform the creation of EAs.
Two basic ingredients are needed. First, reliable spatial data on
suitable infrastructure and environment elements are needed to
inform boundaries of EAs. For this, global, road data from OSM
are available. OSM data are ~83% complete and more than 40%
of countries (including several in the developing world) have a
fully mapped street network (Barrington-Leigh and Millard-Ball,
2017). As well, other features such as rivers, elevation and
buildings can often be used to provide greater detail on fine-scale
landscape features. The second required ingredient is an estimate
of population density, to inform suitable sizing for EAs, such that
they can be covered by enumerators in a suitable timeframe. For
this element, global high-resolution population models such as
WorldPop (WorldPop, 2019a) provide estimates of population
density are available in many contexts and can be used to help
inform the creation of EAs.

Here for the first time, we describe how these freely available
data on population and georeferenced features can be combined
to design a new full set of pre-defined census EAs, using the
example of Somalia to demonstrate the process.

Methodology

We applied the semi-automated EA delineation process to build a
national sampling frame for Somalia. This section describes our
approach then details its application in the context of Somalia.
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General approach. Our process automatically creates EAs within
user-defined ranges of population size and area for an entire
country, combining Our proposed automated process is based on
a ‘split and merge’ methodology inspired from the field of image
processing, specifically image segmentation using mathematical
morphology (e.g., watershed and waterfall algorithms). The pro-
cess first combines all sources of vector data to split the country
into small sub-areas as small as possible that follow visible
boundaries (e.g., roads, waterways), as well as available admin-
istrative boundaries, then progressively re-merge them so that
they are as large as possible while respecting user-defined con-
straints on the area and population size. As well, the process
defines a number of ‘hard’ boundaries across which regions
cannot be merged, such as administrative units. As a con-
sequence, the resulting EAs do not cut cross buildings and have
boundaries that can be seen from the ground by enumerators. In
addition, at each merging move, the compactness criterion is
calculated and tested in order to merge with the neighbour region
to avoid creating complex shapes. In regions where data on
geographic and manmade features are too sparse to obtain small
enough regions after the splitting stage (either non-existent e.g.,
desertic areas or unmapped), a quadtree algorithm is used to
further split the country. In this case, not all automated EAs
follow visible boundaries, however quadtree-derived areas can
then be further subdivided through a manual process (Qader
et al., 2020). A visual description of this process is given in Fig. 1.

Case study area: Somalia. Somalia is situated in the Horn of
Africa with an official population estimated at 12.3 million in
2014, up from the 1975 estimate of 4.1 million (UNFPA, 2016). In
2012, the first nationwide Population Estimation Survey (PESS)
took place. The Somalian Government, United Nations Popula-
tion Fund (UNFPA), and United Nations Development Pro-
gramme (UNDP) collaborated, prepared, and carried out this
survey, aiming to use the PESS as a basis for a census. The PESS
survey in 2014 estimated that 42% of the population was per-
manently settled in urban areas and 23% in rural areas, while 26%
were nomadic people and 9% were internally displaced persons
(IDPs) (UNFPA, 2014). The Somali population is rapidly
increasing with almost 3% population growth per year and a high
fertility rate of 6.26 children per woman, which is the fourth
highest in the world (Gure et al., 2015).

However, the results of the PESS alone were not suitable for
creating a nationally representative sampling frame, as the PESS
only created EAs in urban areas. The risks associated with
fieldwork and the lack of funding were just two hurdles faced by
the PESS. As a consequence, significant displaced populations
exist in parts of Somalia, without any official population
information available. Rebuilding Somalia’s statistical infrastruc-
ture and capacity is key in supporting resilience efforts and
proposed a spatial analysis approach as an innovative way to
create a new sampling frame, especially given the barriers in this
context.

Data sources. To conduct this work, several datasets have been
compiled and combined from various sources (Table 1).

Data pre-processing

Definition of urban and rural stratum within 18 pre-war regions.
Defining major strata is the first step in generating EAs as the
maximum population size and area constraints of EAs may need
to vary in different strata, or adhere to existing administrative
segmentation. For example, Urban versus Rural strata typically
need very different constraints to account for the differing
population densities and landscape features. In Somalia, urban

strata were defined using the previous urban EAs from PESS 2014
(UNFPA, 2014). The previous urban EAs were dissolved using
the dissolve tool in ArcGIS. The remaining area outside of the
urban strata was considered rural. To define and compute the
urban and rural strata for each Somalia pre-war region, urban
and rural strata were intersected with the 18 pre-war regions
administrative boundary. Based on expert opinion (Philip Roth-
berg, personal communication) the urban and rural strata in
Banadir were merged and considered as urban since the region is
almost urban.

National definitions of urban and rural areas vary significantly
from one country to another, therefore, comparing these areas
across national borders is difficult. Many countries rely on
maximum population size to define urban areas whereas in other
countries the urban areas are defined by administrative
boundaries. For instance, the World Urbanisation Prospects
(2018) uses minimum population size, either exclusively or in
combination with other criteria or indicators to define urban and
rural areas in 233 countries and areas (UN DESA P.D., 2018). In
this project, regardless of population density, it was suggested by
World Bank that the manual digitisation PESS 2014 urban areas
must be used to define urban areas. The outline of the urban EAs
is not always in line with the edge of the cities. In some cases, the
outline of a city may not cover the entire city, or some densely
populated areas were not considered as urban areas. In other
cases, the outline of the cities included rural areas. The
misclassification of urban and rural areas might have negative
consequences on the construction of the EAs. It may either
produce EAs with a small population size in urban areas or
complicate EA creating in rural areas. The complication in rural
areas could be because of reducing the flexibility in the merging
process or further datasets may be required to split the area.

Settlement boundaries. Data on settlement locations and bound-
aries provide valuable data to inform EA delineation in the
‘merge’ part of the algorithm and are also used to create our
refined 100 m population density estimates. Recent increased
availability of high-resolution satellite imagery and high-power
computing resources with adequate image processing algorithms
have advanced the development of high-resolution human set-
tlement layers (Vijayaraj et al., 2007; Florczyk et al., 2016; Roy
et al., 2018). Examples of recently developed human settlement
layers include Global Urban Footprint (GUF) (Esch et al., 2017),
Global Human Settlement Layer (GHSL) (Pesaresi et al., 2013)
and LandScan Settlement Layer (LandScan SL) (Cheriyadat et al.,
2007). These datasets either are not available for Somalia or are
incomplete for the country or are inappropriate for Somalia since
the country is facing a constant regional instability and severe
drought that forced substantial migration within the region. The
existing available settlement datasets such as GUF and GHSL for
Somalia at the time of this work were overlaid against high-
resolution satellite imagery to assess their quality. It was found
that these datasets miss many settlements across Somalia parti-
cularly in a rural context. In addition, during this work, several
new datasets on settlements were available from a variety of
sources (Table 1), each of which contains unique georeferenced
settlements. We combined these diverse datasets into an
improved high-resolution settlement map. Details on the pro-
cessing done on each dataset can be found in the supplementary
information Section 1. The resulting settlement map was used to
improve population density predictions and EA delineation
(Fig. 2a).

High-resolution population density estimates for Somalia. A high
spatial resolution population map (100 m x 100 m, in this case) is
necessary to estimate the population of each sub-region created
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Fig. 1 Schematic diagram of our semi-automated EA delineation process. The first step is to split the territory into regions as small as possible using
georeferenced features such as administrative and natural boundaries (e.g. rivers, terrain), settlement location and outlines, and road and path networks
(a). We then compute the estimated population in each region thus obtained (using a very high spatial resolution population density map) (b) and check if
all regions have a population and an area below given thresholds. If not, we further split regions using the quadtree algorithm, until all regions are below the
population and area thresholds. We then merge regions so that they exceed the given minimum area threshold and until they are as close as possible to but
remain below the maximum population and area thresholds. The merging process does not merge regions across a set of specified boundaries (e.g.
administrative boundaries and large rivers). The result is a partition of the country into EAs that follow visible boundaries, that are not across obstacles or
administrative boundaries, and that comply with given ranges of population size and area.

during the automated EA delineation process. Multiple high to
moderate resolution global modelled population datasets are
freely accessible to download including WorldPop (WorldPop,
2019), Global Rural-Urban Mapping Project, Version 1
(GRUMP) (CIESIN, 2011), Gridded Population of the World
Version 4 (GPWv4) (CIESIN, 2017), Gridded Population of the
World, United Nation (Azar et al., 2013) and Global Human
Settlement Population Grid (GHS-POP) (JRC and CIESIN,
2015). However, none of these datasets on their own was suf-
ficient for our purposes as they were created without the use of
the PESS 2014 population data, or the final total population was
not adjusted to match the PESS regional total. In addition, we

4

had access to more recent datasets (high-resolution Digi-
talGlobe population estimates), which we wanted to use to
ensure that our EA delineation of Somalia is based on the most
up to date population estimates. Therefore, we produced a
100 m x 100 m population density map to calibrate our EA
delineation. We give below an only succinct overview of the
method employed as the generation of accurate population
surfaces was beyond the scope of this paper and it does not
influence the description of our novel approach for EA deli-
neation. We used multiple data sources to create population
surfaces for rural and urban areas, including information on
building density, household density and population density (see
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Dataset Data used Source Date
Road data (OSM) Lines www.openstreetmap.org 2016
Waterway (OSM) Lines 2016
River (OSM) Lines 2016
Residential area (OSM) Points and polygons 2016
Building (OSM) Polygons 2016
‘places’, ‘hamlet’, and ‘villages' (OSM) Points 2016
Waterbody (OSM) Polygons 2016
DLR Global Urban Footprint (GUF) Binary raster (Esch et al., 2017) 2016
BMGF/DigitalGlobe (DG) population estimates Scatter points (BMGF/DigitalGlobe)* 2015
World Bank/Flowminder/WorldPop building counts from Polygons (World Bank/Flowminder/WorldPop)* 2016
Google Satellite imagery
UNFPA/PESS urban Enumeration Areas Polygons (World Bank)* 2014
UNFPA/PESS urban Enumeration Areas (EAs) # households per EA.  (World Bank)* 2014
household number
BMGF/DigitalGlobe (DG) settlement outlines for North Polygons (BMGF/DigitalGlobe)* 2015
Somalia
UNFPA/PESS rural population estimates Points (World Bank)* 2014
Pre-war regions boundary Polygons OCHA, HDX (https://data.humdata.org/dataset/ 2016
somalia-administrative-boundaries)
The data that are marked with asterisks (*) cannot be shared
OSM an open street map, BMGF Bill and Melinda Gates Foundation, UNFPA United Nations Population Fund.

(a) High resolution (100x100m) settlement map

(b) High resolution (100x100m) population map
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Fig. 2 Delineated urban, rural settled, settleable, and unsettled areas, high gridded population estimates, in Somalia. The high-resolution settlement
map (100 m x 100 m) (a) represents the spatial distribution of different settlement types across Somalia and it has been obtained from transformation and
compilation of multiple data sources. b High resolution population density map provides total population estimates per 100 m2. The detail on the process
done on each dataset to generate both products can be found in the supplementary information section 1 and 2.

supplementary information Table S2, S3 and S5). We used the
World Bank survey (World Bank, 2017) to estimate a median
number of people per building and per household to approx-
imate population density from data on building and household
densities (see supplementary information Table S2). In places
lacking data but identified as settled we modelled population
density based on the distribution of population estimates in
similar settlements. We then set population density to zero in

locations known to be not settled, and to a low value in loca-
tions that could be settled but for which we have no data
(around known settlements). Finally, we rescaled the popula-
tion density map thus obtained using the PESS 2014 regional
totals (UNFPA, 2014) (Fig. 2b). The detail on the processing
done on each dataset to generate high resolution gridded
population data can be found in the supplementary information
Section 2.
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Split and merge algorithm for the creation of Enumeration
Areas (EAs)

Splitting process. The aim of the splitting process is to partition
the country into regions that are as small as possible so that the
subsequent merging process has enough flexibility to combine
them into optimal EAs. We used three steps to do this.

Step 1-Splitting based on geo-referenced features to create regions
with tangible boundaries:. The country was split using road data,
rural settlement boundaries, waterway and river data and
administrative boundaries from OpenStreetMap (OSM), using
the feature to polygons tool in ArcGIS. These datasets where
either lines or polygons, whose geometry will be used to create
area features, were the input features to the tool. From the
merging of these features, each small “closed” area became a
feature in the output feature class (here called ‘Primary Units’
(PU). This first step results in a set of fully contiguous units that
are much smaller than the target EA size, with no gaps or islands
and with all regions delineated by georeferenced features. If the
road data is complete, then the process ensures that no building
will be cut.

Step 2-Estimate population and area. With the primary units
feature set defined, we were able to then compute the population
size for each primary unit using the high-resolution gridded
population datasets in R software.

Optional step 3-Splitting based on Quadtree algorithm:. Some
areas do not contain sufficient line data to create small enough
regions to meet the 9km? area threshold or the 750 person
population threshold—this was particularly true in sparse and
non-populated areas, which remained larger than 9 km?, in spite
of having a population below 750. We further split any areas still
larger than 9 km? or containing more than 750 people after steps
1 into square grid cells using a quadtree algorithm (Finkel and
Bentley, 1974). A quadtree is a tree data structure in which each
internal node in the underlying tree has exactly four children
(Wanderer, 2017). This approach is commonly employed to
partition a two-dimension space by recursively decomposing it
into four equal quadrants or regions (Feng and Watanabe, 2015).
Here, the algorithm splits the area and population into succes-
sively smaller quadrants by checking whether the content of each
split is smaller than prescribed values (e.g., population >750 and
area <9km?). Following this step, all shapes produced were
smaller than 9 km? and contained fewer than 750 people (Fig. 3).
For a more detailed discussion on the Quadtree approach, see
Qader et al. (2020).

Merging process. When all split regions have population size and
area smaller than the requested thresholds, the regions are then
merged until they match constraints designed to facilitate on-the-
ground logistics of enumeration (Table 2). The merging process
tries to obtain regions as close to the target population of 650 as
possible while keeping below the threshold of 750 and area within
0.1 to 9 km?. At the same time, the algorithm ensures that merged
areas do not cut across obstacles or administrative borders. With
a lower priority, the process also tries to produce shapes that are
as compact as possible. By construction, the boundaries of the
EAs resulting from the merging process will also follow geo-
referenced features (or square sides, if quadtree squares are
needed).

To complete the merging step, we used the Automated Zone-
design Tool (AZTool, (Martin, 2002), which is based on
Openshaw’s (1977) Automated Zoning Procedure (AZP), origin-
ally developed by the Office for National Statistics (ONS) for the
2001 census in England and Wales (Cockings et al., 2011; Martin

6

and Lyndon, 2009). The software is written in VB.NET and no
GIS software is required to run AZTool. However, data
preparation and visualisation of the results require GIS software.
Before employing the AZTool, the ESRI (shapefiles) containing
polygon data must be converted to .aat and .pat files in the format
required by AZTool. This process can be done using AZTIm-
porter. The AZTool and AZTImporter are freely available at
https://www.geodata.soton.ac.uk/software/AZTool/.

AZTool iteratively combines and recombines sets of geographic
areas to generate larger zones optimised to meet a set of pre-
defined user-specified constraints. Such specified constraints
include population threshold (Min, Max and target) and
compactness of the shape (ie., avoiding difficult shapes such as
snake-like or donut shapes). In our case, The merging process
takes as inputs: (1) the primary unit features defined in the split
process, (2) ranges of target population and area values for EAs
(Table 2), (3) the gridded population density dataset to compute
the population for the re-merged region at each step, and (4) a set
of specified boundaries across which regions should not be
merged (e.g., large rivers, delineation of urban and rural strata,
administrative boundaries).

The AZTool was originally designed for contexts in which
good data on existing household locations and EAs are available.
Given the potential for large uninhabited areas and a paucity of
road and other data in many regions of Somalia, we modified the
AZTool process to include a constraint on the maximum and
minimum area. Since this is a computationally intensive process
when applied to large areas, the method was applied to 18 pre-
war regions separately. Separation of the country into 18 units
does not influence the output results as the algorithm would
normally be constrained to keep EAs within these 18 units.

Computation of EA probability of selection. The split and
merge algorithm results in a partition of the country into regions
that satisfy the definition of an EA. We calculate the probability of
selection for each EA proportional to the population within each
pre-War region. This probability was defined according to the
expected population within each EA divided by the total popu-
lation in the regional stratum, recalling that the country was
divided into 18 pre-war regions and further subdivided into
urban/rural strata.

_ EApop;;
P(E4y) = i1 EApop; @

so that YP(EA;j) =1 for each j (j=1...18).

P(EA;) is a probability of selection for an EA in a specific
stratum (Urban or rural) and pre-war regions (e.g., rural Bari), i is
an EA number, j is the regional stratum type. EApop;; is the
population within an EA in a specific regional stratum, n is the
number of EAs within a regional stratum.

Comparison between Manual PESS urban EAs and our semi-
automated approach Urban EAs. In UNFPA’s 2014 PESS, no
Rural EAs were created, and the urban EAs were manually
digitised based on high-resolution Google Earth Imagery. We
compared the results of our semi-automated methodology against
those manually digitised EAs in urban areas in both Mogadishu
and Hargeysa cities. Since the boundary of PESS urban EAs and
their household size are confidential, we were unable to publish a
complete comparison. Instead, we compared the distribution of
population size between automatically and manually generated
urban EAs. In the AZTool, maximum, minimum and target
population should be defined. For this exercise, we have set the
maximum urban population as 2000 people, minimum as 150
and the preferred target is 1000 people per an EA different to the
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Fig. 3 Primary units (PU) and population sizes in rural areas generated from the splitting process. After the splitting process, the rural territory in
Somalia was subdivided into small geographic units and each unit has total population estimates computed from high gridded population dataset.

Table 2 lllustrates the criteria were set in AZTool to generate sensible EAs in Somalia's rural and urban (Mogadishu and
Hargeysa cities) areas.
Criteria Hard constraints Soft constraints On or off
Rural Urban Rural Urban
Shape compactness Yes Yes On
Population Min=0 Min =150 Target = 650 Target =1000 On
Max =750 Max =2000
Area Min =1km?2 Min = 0.002 km?2 Target = 8.8km? Target = 2 km? On
Max = 9 km? Max = 4 km?
Donuts Yes Yes On

rural setting criteria (Table 2). The target population size per EA
is based on the population and area that an enumerator could
reasonably cover in a day. Usually, population size per EA is
larger in urban areas compared to the rural since the population
density is higher. Similarly, for the purpose of this comparison,
the total population for EAs used in the 2014 PESS were esti-
mated using updated WorldPop gridded population data.
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Results: Somalia case study

Rural EAs

Description of results from our split and merge algorithm. A total
of 253,833 polygons were created in Somalia’s rural areas after the
splitting process. The region merging technique resulted in
113,367 rural EAs, with population size ranging from 0 to 750
and a maximum area of 9km? (Fig. 4a). In addition, the
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Fig. 4 The population size per regional strata. a Rural EAs in Somalia with the population size after the merging process, b Urban and rural EAs with their
probability of selections proportional to the population size per regional strata. This product was generated after merging the splitting units until they
match constraints designed to facilitate on the ground logistics of enumeration.

probability of EA selection proportional to the population size
was also computed for each EA. Furthermore, the probabilities of
selection were summed up in each regional stratum type and are
equal to 1 (Fig. 4b).

Outlines of some generated Rural EAs are overlaid on high-
resolution Google Earth imagery in Fig. 5, showing that EA
boundaries conform well to natural boundaries in populated
areas. Three categories of EAs boundaries can be seen. The first
category is in towns or highly populated areas where EA
boundaries are well-matched with logical ground natural
boundaries such as roads (Fig. 5a). The second category consists
of very sparsely populated or unpopulated areas, where roads and
natural boundaries are still present (Fig. 5b). Finally, the third
category represents very sparsely populated or unpopulated areas,
where natural boundaries do not contribute to EA shapes (Fig.
5¢). In addition, it can be seen from Fig. 5d, e that the rural EA
boundaries conform to stratum boundaries (urban and rural).

Urban EAs

Results from split and merge algorithm. The semi-automated
approach was applied to both Mogadishu and Hargeysa cities.
Figure 6 presents the results obtained from overlaid our semi-
automated urban EAs boundaries on high-resolution Google
Earth imagery. Figure 6a shows examples of EAs boundaries in
Hargeysa city while Fig. 6b is illustrating the boundary of urban
EAs in Mogadishu city. Importantly the boundary of EAs
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perfectly matches the natural demarcation on the ground parti-
cularly roads, reflecting the good quality of road data available for
these areas. In addition, generated urban EA boundaries are
nested within urban strata (Fig. 6b).

Comparison with PESS manual urban EAs. We compared the
estimated urban population size (based on updated WorldPop
gridded population data) in our semi-automated EAs to the
manually digitised PESS 2014 EAs (Fig. 7). In urban areas across
Somalia, there were 1380 PESS EAs, while our process generated
1775. In terms of usability characteristics, for the most part, PESS
urban EAs follow roads well but we have found some examples
where this is not the case as some may bisect buildings, likely due
to changes in building layouts since the construction of the PESS
EA dataset. The population size per PESS urban EA in Moga-
dishu, (based on high resolution gridded population datasets),
ranges from zero to 17,000 and the area ranges from 5m? to
7 km?. The zero values in population size and small area likely
indicate the presence of gaps in the datasets. The large population
and area size for some of the EAs indicate that the EAs may not
be practical for a surveyor in the urban context as it may either
cover a high-populated area or cover a large space. In the semi-
automated process, these constraints can be tuned based on user
requirements.

The population size in the automated EAs ranged from 150 to
2000. The area constraints ranged from 2000 m? to around 4 km2.
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(a) Dinsoor (Rural EAs)
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Fig. 5 Outlines of rural EAs in different locations over Somalia generated by the split-merge algorithm. In the given examples, the generated rural EAs
are overlaid on high resolution Google Earth imagery. Rural EA boundaries are well matched with logical ground boundaries in highly populated areas (a)
whereas this might be different in other areas with respect to data availability and ruralness (b, ¢). In addition, the EAs are nested within urban and rural
strata (d, e).

(a) Hargesya City (c) Hargesya City A
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% Pre-war region boundary

Fig. 6 Outlines of semi-automated urban EAs in different locations over Hargeysa and Mogadishu in Somalia. a,b The automated urban EA boundaries
are matching well with ground roads and they are nested within urban strata (c).
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Fig. 7 Histogram distribution of population within urban PESS 2014's EAs and automated urban EAs in Hargeysa and Mogadishu, Somalia, based on
high resolution gridded population estimates. For the comparison, we assume that the maximum population could be 2000 people per EA, but the
preferred target is 1000 people per EA. The population size per PESS urban EA in Mogadishu ranges from O to 17,000 and area ranges from 5 m2 to 7 km?2,
In both cities, the population size in the automated EAs ranged from 150 to 2000 and the area constraints ranged from 2000 m2 to 4 kmZ2.

Discussion

This work represents the first attempt to generate an automatic
mapping of pre-census enumeration areas and a population
sampling frame where the boundaries are based on vector data for
roads, settlements and other physical features. Our algorithm
simplifies the complex and time-consuming processes of EA
delineation that is crucial in the preparation of the national
census. The process of EA delineation is a crucial early step in
census preparation as it helps in budgeting and allocating mate-
rials, logistical and personnel requirements, and is a key factor in
the success of census.

While many countries will try to re-use existing census
demarcations for political or logistic reasons, typically EAs need
to be updated when a new census is taking place. In particular, for
some countries transitioning from paper-based census maps, new
EAs will need to be created in places that have never been
enumerated, either due to inaccessibility or growth of new set-
tlement areas. Our proposed approach for the first time facilitates
this process by leveraging increasingly available geospatial data
and computing power to facilitate the EA delineation in a time-
effective and cost-effective manner.

Assuming adequate datasets such as high-resolution gridded
population data (such as WorldPop, which has global population
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estimates at 100 m from 2000 to 2020) and good coverage digital
boundaries (e.g., roads, river, waterways, etc) are available for a
country, our results show that the semi-automatic approach can
produce similar results to manual approaches. Once data were
acquired, our digitisation approach took a matter of weeks for a
team of two people, including data harmonisation, running the
algorithm and checking the results. By contrast, a traditional
manual digitisation approach can take months for a large staff.
Ground-based approaches require even more effort and often
impose a significant risk to on-the-ground mapping staff. In
addition, the task of accounting for appropriate population size
within EAs is much more easily handled algorithmically and
provides more consistent results versus manual digitisation. By
considering recent data on boundaries, roads and other features
the algorithmic process also creates EAs that can account for
features that may not be readily observable from satellite imagery,
thus making them more practical for fieldwork. As well, EAs can
be updated as new data becomes available. Finally, because each
EA is already associated with an estimation of population size,
these EAs can be easily turned into a nationally representative
sampling frame with a probability of selection.

In this work, semi-automatic EA datasets were produced for
Somalia that span both rural and urban contexts, and which
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showed significant promise relative to pre-existing EAs. Our EA
boundaries are mutually exclusive (non-overlapping) and
exhaustive (cover the entire country). The outlines of the EA
boundaries are in line with ground feature boundaries and easily
identifiable in the urban and populated areas (Figs. 5a and 6b, c).
All the generated EA boundaries are nested within administrative
boundaries and they are not crossing through urban and rural
stratum (Figs. 5d, e and 6c). The EAs are compact and free of
pockets or disjoint sections. The population size and area were set
to thresholds such that each EA can be small enough and
accessible to be covered by an enumerator within the census
period (e.g., max population in a rural area was 750 and area was
set to 9 km2). In addition, with respect to the population and area
constraints, the created EAs are large enough to guarantee data
privacy. Furthermore, the EAs are flexible enough to allow the
widest range of tabulations for different statistical reporting units.

The sampling frame derived from our EA delineation process is
reproducible and complete, making it for other data collection
activities such as nationally representative household surveys,
which typically rely on census data as a sampling frame. While a
complete, recent census makes the best sampling frame, sampling
frames based on outdated or inaccurate census data are the norm
in many countries around the world, resulting in potentially
biased sampling (Turner, 2003). Because our EAs can be based on
the most recently available data and has probability of selection,
the developed sampling frame can generate a sampling frame that
better reflects the population of interest.

One limitation of the method we have presented is that it relies
on quality of high-resolution population estimates, as well as
good quality data on roads and other boundaries. This study was
motivated by the context of Somalia, which presents an extreme
challenge in terms of the availability of good population data and
results circular problem: to get new EA delineations for the
census, we need a good population estimate, for which a census
would be very helpful. For the population data, we overcame
these challenges through extensive manipulations of available
population and settlement data to arrive at a gridded population
estimate that was, to the best of our abilities, the most reliable
gridded population estimate we could find. At the same time, we
recognise that such manipulations are not a desirable feature of
an easily replicable method for delineating Enumeration areas
and highlight that these manipulations were only necessary for
the present context. It should also be noted that population
estimates are inherently wrong and will likely contain various
biases depending on their provenance, originating data and the
methods used to derive them. As well, numerous gridded popu-
lation data are increasingly becoming available globally. It is
therefore vital that the inherent biases and inaccuracies of such
datasets be identified and acknowledged in methods such as ours.
As a counterpoint, we also add that even new census-based
population data can be inaccurate through the deliberate or
accidental exclusion of certain populations. Furthermore, national
populations themselves are inherently variable, especially in fra-
gile contexts. In such cases, modelled population estimates tailor-
made for such contexts may provide more useful results than old
census results that contain uninhabited settlements or ignore
newly settled areas. Whether or not to base trust on modelled
population estimates must, therefore, come down to the needs of
the census or survey in question and the quality of all available
data sources.

Other sources of uncertainty might come from the quality of
the digitised features that have been extracted mainly from OSM.
OSM was chosen for this work because it has offered multiple
publicly accessible comprehensive datasets for Somalia compare
to other sources and the data are up to date as it constantly being
updated by the subscribed users. In addition, in terms of quality

assurance and to help to lead to a better quality of data, OSM has
employed multiple automatic and manual approaches such as bug
reporting, error detection, visualisation, monitoring, assistant, tag
statistics and external compare. Furthermore, numerous studies
have analysed the quality of OSA datasets in different contexts.
For instance, an assessment in London showed that on average
about 6 m of the position recorded by the Ordnance Survey (OS),
and with approximately 80% overlap of motorway objects
between OSM and OS datasets (Haklay, 2010). Although dra-
matic increases in volunteered information have substantially
enhanced geographic data, it has also prompted concerns about
its reliability, quality and overall value (Flanagin and Metzger,
2008). The OSM quality assessment results are heterogeneous if
we compare the various areas investigated. For example, the
spatial accuracy and completeness were generally good enough in
developed countries (Wang et al., 2013; Graser et al,, 2014), while
in South Africa the rate at which data is generated varies in space
and time (Siebritz et al., 2012). Therefore, lack of positional
accuracy and incompleteness of OSM data in Somalia might have
inherited inaccuracies into this work including boundaries might
have cut through buildings. In addition, due to lack of feature
coverage particularly in rural areas, insensible boundaries from
the quadtree approach were incorporated to complete the
national EA coverage.

With regard to infrastructure data, our results demonstrate the
influence of data quality. For example, the boundaries in well-
digitised urban areas (Figs. 5a, 6b and 6c) are aligned with visible
demarcations on the ground. Areas with more sparse data (Fig.
5b, d) have lower spatial coverage data and there is often a visible
discrepancy with the actual natural boundaries where data on
these boundaries do not exist. Finally, boundaries with poor data
(Fig. 5¢) are devoid of boundary data and rely entirely on the
quadtree algorithm to generate EAs. The lack of data is particu-
larly problematic in rural areas because large stretches of land in
Somalia are only sparsely populated. These results are in line with
those of previous empirical studies indicated that urban areas are
often better mapped than rural areas in OSM (Hagenauer and
Helbich, 2012; Siebritz et al., 2012). However, the semi-automatic
EA algorithm could easily be updated and re-run when new data
becomes available. With the increasing prevalence of open-source
data in development contexts (e.g., AidData.org, GRID?), these
data gaps are increasingly being filled and made available.

Verification and validation are also needed in the case of
manual and algorithmic EA delineation. Although the household
size per urban EA was one of the inputs of the population
modelling, deviation still exists between the actual population
(based on HH size) and estimated population based on the
modelling in manual urban EAs. This result may be explained by
the fact that the modelled population data considered additional
recent datasets besides the urban household information to dis-
tribute the population within the grid cells (See Supplementary
information Table S3 and S5). In addition, there were dis-
crepancies between PESS 2014 household numbers within urban
EAs and regional population estimates. If household size per EAs
were used to generate the total population per region, a similar
total population in the region could not be achieved as it was
reported in the PESS 2014, particularly in Gedo. In addition, the
very high population size based on the gridded population dataset
in the manual urban EAs (Fig. 7) could be a result of their large
spatial coverage. For instance, one urban EA contains 1500
households (The households were listed in the field based on
PESS 2014). The only way to understand these discrepancies is to
conduct spot checks on population and other data used, as well as
on the EAs generated. Indeed, a modern approach to delineation
of enumeration areas should probably include some iterative
approach to generating a first attempt set of areas, followed by
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random ground-based spot checking to determine whether cer-
tain populations are excluded from the frame. Such an approach
could fit readily into existing census protocols and could be
conducted on a small fraction of the areas normally covered by
enumeration teams. Such approaches would also increase local
trust in the results, as well as allowing the algorithm to better
incorporate local context into their processes.

Because of the increasing prevalence of national data on
infrastructure and populations, our method can be easily trans-
ferred and adopted in other countries. Furthermore, such datasets
are becoming more accurate and detailed, facilitating more
granular results. For instance, at the global scale, road data from
OSM is ~83% complete (Barrington-Leigh and Millard-Ball,
2017). Similarly, Facebook has been running a project to perform
Al-Assisted Road tracing within OSM and promise that such
road data will be extracted for many countries around the world
(Facebook AI-Assisted Road Tracing, 2020). In terms of potential
sources of population data, high-resolution gridded population
datasets are now available for all the countries from multiple
sources. For instance, high-resolution population estimates were
recently produced for Afghanistan, DRC and Nigeria, with the
district-level predictive power of ~95% (United Nations Popula-
tion Fund (UNFPA), 2019; WorldPop, 2019b; WorldPop, 2020).
While we acknowledge that modelled population estimates will
never be as good as actual census counts but they can be used
where census data is unavailable or outdated.

Our application of a pre-existing tool identified areas where the
approach can be optimised. For example, AZTool was not devel-
oped to aggregate the multitude of small regions that were created
by splitting the map using so many different datasets. The soft
compactness constraint used by AZTool aims to produce EAs that
are not elongated or convoluted. This constraint is not often
satisfied, possibly because the input data set contained many irre-
gular shapes and donuts, making it difficult for the tool to merge
the neighbouring EAs. We suggest incorporating a compactness
metric based on the comparison of the longest length in a shape
against the diameter of a circle of the same area, which would
provide a more robust selection criterion during the merging pro-
cess and lead to more compact EAs. This metric would be insen-
sitive to shape size, unlike the compactness metric used in the AZ
tool. In addition, some region merging techniques are better than
others at ensuring all final regions match the desired criteria, sug-
gesting another potential area for improvement. Furthermore,
consistent and reliable labelling of data features would enable some
features to be prioritised in the merging process. Such prioritisation
would allow the algorithm to account for traversability through the
ranking of split lines. In addition, additional data sources such as
building delineation derived from satellite imagery (San and Turker,
2010; Vakalopoulou et al., 2015) would supplement road data,
especially in rural areas and could contribute to more targeted EAs
by clustering building locations and excluding large unsettled areas.

Finally, the usability of the present approach is limited to users
of AZTool in ArcGIS software. Subsequent research will aim to
develop a software tool that can be used to generate optimal and
practical EAs with minimal user interaction and tailored to a
wider set of needs. By incorporating a wider range of input
datasets and shapefiles, as well as increased flexibility in the
parameterisation of EAs based on factors described above, we
hope that an open-source software package may have broad
development impact in countries constrained by cost and acces-
sibility considerations.

Conclusion
In many countries such as Somalia, the need for basic spatial
sampling tools such as Enumeration areas are crucial to
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continued development, but on-the-ground logistical constraints,
security and data limitations remain significant barriers. Here, we
show how a novel approach to creating predefined census enu-
meration areas can overcome these barriers. In addition, by
highlighting existing freely available, up-to-date high-resolution
gridded population data and settlement maps we hope to help
make the method more broadly accessible. Future research will
aim to implement the approach in different countries such as the
Democratic Republic of Congo, while improving the usability of
the output areas through introducing more constraints and
parameters, as well as merging algorithms. Ultimately, we aim to
improve the accessibility of the approach by providing a user-
friendly tool based on the approaches described in this paper.

Data availability

The digitised boundaries for roads, waterway, river, residential
area, building delineation, waterbody and locations for places,
hamlet and villages were obtained from Open Street Map (OSM)
(www.openstreetmap.org).
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