
 

 

EURODYN 2020 

XI International Conference on Structural Dynamics 
M. Papadrakakis, M. Fragiadakis, C.  Papadimitriou (eds.) 

Athens, Greece, 23–25 November 2020 

DAMAGE FEATURE RECOGNITION BASED ON LAMB WAVES 

DETECTION 

Xiaohui. Wang1, Jinhui. Liang1, Bin. Zhang1*, Yeping. Xiong2 and Jun. Gao1 

1 School of Mechanical, Electrical & Information Engineering, Shandong University  

180 Wenhuaxi Road, Weihai, China 

e-mail: wangxiaohui@mail.sdu.edu.cn 

liangjinhui@mail.sdu.edu.cn, bin.zhang@sdu.edu.cn, shdgj@sdu.edu.cn 

2 Faculty of Engineering and Physical Sciences, University of Southampton 

Boldrewood Innovation Campus SO16 7QF, Southampton United Kingdom 

y.xiong@soton.ac.uk 

Keywords: Structural health monitoring, Lamb wave, Damage feature, Damage identification. 

Abstract. Owing to the superiority of lamb waves in the field of Structural Health Monitoring, 

the Lamb wave-based damage detection and identification technology are widely used. To de-

termine the degree of damage, two damage feature recognitions are proposed in this paper. 

One is extracted from the time domain, where the lamb wave signals are processed by Hilbert 

Transform (HT) with the time-domain analysis. According to the law of signal attenuation, the 

differential signal envelope amplitude procced by the Hilbert Transform is regarded as a dam-

age feature parameter relating to the damage size. The other one is extracted by Fast Fourier 

transform (FFT) in frequency domain analysis. Two characteristic parameters,  the amplitude 

and probability density in the time domain and the signal roughness parameters in the fre-

quency domain, are defined  to characterize the damage size. 
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1 INTRODUCTION  

With the increase of service time, the plate structure is prone to subject all kinds of damages, 

such as cracks, delaminations, via holes, corrosion, inclusions, and so on[1]. The Structural 

Health Monitoring (SHM)[2,3] technology is commonly used in predicting and monitoring struc-

tural health conditions. Researchers have been keen to improve the accuracy of determining the 

damage location[4,5]. Besides the location, the damage size is another important indicator, de-

pending on which different maintenance methods are required. For example, small damage 

which has little impact on the structure security can be repaired as needed; and the large damage 

usually needs to be repaired or replaced as soon as possible. Therefore, after confirming the 

damage location, the relevant characteristic parameters of the damage signal can be extracted 

and the type/size of the damage can be identified. It will be more beneficial to the long-term 

use and maintenance of the structure. 

Cawley[6,7] studied the effects of notch damage in metals and delamination damage and 

Lamb waves in composite laminates. In 1992, Wu[8] began to use the Artificial neural network 

(ANN) to detect structural damage. They explored the application of neural network's self-or-

ganization and learning ability in structural damage assessment and trained neural networks to 

identify damage. Then ANN is widely used to judge the degree of structural damage[9,10]. To 

accurately identify damage characteristics, it is necessary to select the appropriate damage fea-

ture parameters for ANN training and learning. Mares[11] introduced a genetic algorithm into 

the damage identification and used the residual force method to realize the damage location and 

quantitative identification. Law[12] selected the sensitivity of wavelet packet transform compo-

nent energy as damage feature parameter. Li[13] reported a damage identification method based 

on Lamb wave multi-feature fusion, and determined the damage type by ANN. Sun[14] used 

energy distribution to identify damage in the structure by ANN. It can be concluded that finding 

suitable damage feature parameters is the key to improve the success rate of damage recognition. 

This work will extract the damage features by analyzing the data based on numerical simu-

lation. The damage size characteristics of the time/frequency domain are analyzed and summa-

rized. 

2 ANALYSIS OF ALUMINUM ALLOY PLATE DAMAGE IDENTIFICATION  

2.1. Aluminum Alloy Plate Model 

The 3D finite element model of the aluminum alloy plate is built with a dimension of 800 

mm in length, 800 mm in width and 1 mm in height. The material parameters of the aluminum 

alloy plate are shown in Table 1, eight PZT sensors are arranged as circular and uniformly 

distributed with a square damage on the plate. The coordinates of the damage and sensors are 

as shown in Table 2.错误!未找到引用源。. 

Table 1. The material parameters of the aluminum alloy plate 

Parameter Unit Value 

density kg/m3 2750 

Young's modulus Gpa 69 

Poisson's ratio -- 0.33 

Table 2. The coordinate of damage and sensors 

 Coordinate  Coordinate 

Sensor1 (250，250) Sensor2 (550，250) 
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Sensor3 (550，550) Sensor4 (250，550) 

Sensor5 (400，188) Sensor6 (612，400) 

Sensor7 (400，612) Sensor8 (188，400) 

Square damage (425，340)   

The locations of PZT sensors and damage are shown in Figure 1. Eight sensors served as an 

actuator to excite Lamb waves in turns while the other PZT sensors act as receivers to collect 

the Lamb wave signals. 

  

(a) (b) 

Figure 1. Finite Element Model of The Aluminum Alloy Plate. (a) Sensor and damage location; (b) Simulation 

model 

2.2.  Damage Feature Extraction Based on Time Domain 

As shown in Figure 2, when there is a damage in the aluminum plate, the lamb wave signal 

goes along with the route "exciter 1-damage-receiver 2". The reflection wave can be obtained 

by subtracting the non-damage signal from the damage signal.  

 

Figure 2. The propagation of damage reflection signal 

Taking the square damage as an example, PZT sensor 1 excites a Lamb wave of 200KHz, 

and PZT sensor 2 receives that signal. The signal is shown in Figure 3. 
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Figure 3. The damage reflection and differential signal  

When a wave propagates in medium, its amplitude will gradually decrease with the increase 

of distance. Generally, the relationship between wave amplitude and propagation distance is 

 
D

0A A e=  (1) 

where, A0 denotes the amplitude of excitation, α denotes the attenuation coefficient, and D 

denotes the propagation distance. To determine the coefficient of the lamb wave, the wave am-

plitudes in different lengths are collected in the aluminum plate, and the results are shown in 

Figure 4. 

 

Figure 4. The attenuation of Lamb wave 

By use of curve fitting, the attenuation coefficient is obtained as α = -179.1. Then the ampli-

tude attenuation function of the lamb wave in the aluminum plate is shown as 

 
D

10 179.18.05 10A e
−

−=   (2) 
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In order to analyze the dynamic regularity of the reflected wave signal with the degree of 

damage, the envelope processings are performed on the difference signals of various damage 

size based on Hilbert Transform(HT), as shown in Figure 5-(a). It is easy to observe that the 

reflection wave gradually stronger as the size of the damage increases. The energy distribu-

tion feature of the signal in the time domain is represented by the HT envelope, and the dam-

age characteristic of size is reflected by extracting the amplitude magnitude. The different 

sizes of damage are simulated, and the amplitude of the reflected wave signal is plotted in 

Figure 5-(b). 

 
 

(a) (b) 

Figure 5. Lamb wave feature in time domain. (a) The upper envelope of different damage size; (b) The ampli-

tude of the envelope with different damage size 

In Figure 5 (b), it can be seen that as the degree of damage increases, the amplitude of the 

envelope gradually increases to the upper limit value. As the spread of lamb wave energy has 

limits, the strength of the reflected wave also has a limit and will not increase unlimitedly. 

Through curve fitting, the functional relationship of the envelope amplitude along with different 

damage size is 

 
11 11 17.348.36 10 8.83 10

x

y e
−

− −=  −   (3) 

2.3. Damage Feature Extraction Based on Frequency Domain 

Based on the frequency domain analysis, the Fast Fourier transform (FFT) is used to extract 

the frequency domain features from the Lamb waves signal. Frequency components and ampli-

tude characteristics of lamb wave signals are obtained to identify the damage features of an 

aluminum plate. The amplitude-frequency curve with different damage size are shown in Figure 

6. 



Xiaohui. Wang, Jinhui. Liang, Bin. Zhang, Yeping. Xiong, Jun. Gao 

 

 

Figure 6. The frequency-domain image of different damage size 

In Figure 6, as the damage size increases, the frequency range of the signal becomes decen-

tralized. The larger the damage, the more uneven the frequency distribution. The reason is that 

when Lamb wave propagates to the position of damage, waveform reflection and modal con-

version occur due to the sudden change of structure, which causes the waveform frequency 

domain signal to fluctuate. The larger the size of the damage, the higher the fluctuation, so the 

signal concentration level of the frequency-domain image can be used as one of the damage 

features for determining the damage size.  

When there is no damage, the signal received by the receiving sensor is only a 200 KHz 

Lamb wave signal modulated by the Hanning window. The frequency-domain image of non-

damage is similar to the frequency-domain figure of the excitation Lamb wave, and the fre-

quency-domain model conforms to the law of the Hanning window rising first and then falling. 

Due to the existence of damage, the - reflected wave causes fluctuations in the frequency do-

main of the received signal. The fluctuations are closely related to the damage size. The above 

results in multiple frequency peaks in the signal spectrum, as shown in Figure. 5.  

In order to characterize the degree of signal decentralization, the signal roughness is intro-

duced in this paper to describe the degree of influence of impairments on frequency-domain 

signals. The equation of signal roughness is defined as 

 
2

( 2) ( 1) ( 1) ( )

1

R=
i n

i i i i

i

y y y y

x x

= −
+ + +

=

− −
−

 
  (4) 

where, R denotes the signal roughness and Δx represents a single increment of the frequency-

domain signal, y denotes the corresponding amplitude. When the peak value or the sudden 

change in the graph increases, the signal roughness increases; when the signal gradually con-

centrates and the sudden change coefficient decreases, the signal roughness decreases. 

As shown in Figure 7, the signal roughness of the frequency-domain figure increase with the 

expansion of damage. Therefore, the signal roughness of the frequency-domain image is a  an 

effective damage feature indicator. 
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Figure 7. The signal roughness of different damage size 

3 THE VERIFICATION OF THE DAMAGE FEATURE PARAMETER 

To further verify the damage feature parameters’ usabilities, the location of the damage 

changed while the transmitter and the receiver changed at the same time. As shown in Figure 

8, the Lamb signal is excited by the sensor 2 and received by the sensor 3. 

 

Figure 8. Change the location of the damage 

When the lamb wave arrives at the damage location, according to the Huygens-Fresnel prin-

ciple, the damage will become a new wave source, and the amplitude of the new wave will be 

lower than the arrival amplitude. The new vibration source wave amplitude is linearly related 

to the arrival amplitude. 

The damage location is shown in Figure 1-(a) and the propagation path length of the reflected 

wave L1-D-2 is 322 mm. Another damage location is shown in Figure 8 and the propagation path 

length of the reflected wave L2-D-3 is 517 mm. By substituting 322 and 517 into eq. (3), the 

theoretical amplitude of path L2-D-3 is 2.9 times that of path L1-D-2. In Figure 8, the curve-fitting 

function in Figure 5-(b) is divided by 2.9 so we can get the relationship between the amplitude 

and the size of the damage as folllows: 
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The relationship between the actual damage size and amplitude is shown in the Figure 9-(a), 

the simulation damage size coincides with the theoretical predictive value calculated by the eq. 

(5). Therefore, the amplitude of the reflected wave can be used as a parameter to characterise  

damagesand the damage size can be successfully predicted. 

 

  

(a) (b) 

Figure 9. Simulation verification results. (a) The amplitude of the envelope with different damage size by sensor 

2 sensor 3; (b) The signal roughness of different damage size by sensor 2 sensor 3 

In Figure 5-(b) and Figure 9-(a), it is clear that the trends of the damage size and the envelope 

amplitude in the two figures are consistent, which can predict the damage size through simula-

tions. From Figure 7 and Figure 9-(b), it can be concluded that the signal roughness is an im-

portant parameter to describe the damage size.  

4 CONCLUSIONS 

The characteristics of the Lamb wave signal corresponding to the degree of damage are stud-

ied in this work. Two parameters are defined to describe the damage degree both in the time-

domain and frequency-domain. In the time-domain analysis, the differential signal envelope 

amplitude extracted from the Hilbert Transform is applied as the damage feature parameter 

related to the damage size. In the frequency domain analysis, the signal roughness is proposed. 

It is used as the damage size characteristic parameter. The feasibilities of the envelope ampli-

tude and the signal roughness are verified by numerical simulation. The identification of mul-

tiple damages using the proposed approaches is under further investigation.  

5 ACKNOWLEDGMENTS: 

This project is supported by the Program of National Natural Science Foundation of China 

(Grant No. 51805298), Natural Science Foundation of Shandong Province (ZR201807090390) 

and YSPSDUWH. 

 

REFERENCES  



Xiaohui. Wang, Jinhui. Liang, Bin. Zhang, Yeping. Xiong, Jun. Gao 

 

 

[1] H. Yan, H. Jin, R. Yao, Prediction of the damage and fracture of cast steel containing pores. 

International Journal of Damage Mechanics, 29(1), 166-183, 2020. 

[2] K. Worden, C R. Farrar, G. Manson, et al. The fundamental axioms of structural health 

monitoring. Proceedings of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 463(2082), 1639-1664, 2007. 

[3] Y. Tang H, C. Winkelmann, W, Lestari, et al. Composite structural health monitoring 

through use of embedded PZT sensors. Journal of Intelligent Material Systems and Struc-

tures, 22(8), 739-755, 2011. 

[4] N. Mori, S. Biwa, T. Kusaka. Damage localization method for plates based on the time 

reversal of the mode-converted Lamb waves. Ultrasonics, 91, 19-29, 2019. 

[5] A. De Fenza, A. Sorrentino, P. Vitiello. Application of Artificial Neural Networks and Prob-

ability Ellipse methods for damage detection using Lamb waves. Composite Structures, 

133, 390-403, 2015. 

[6] N. Alleyne D, P. Cawley. The interaction of Lamb waves with defects. IEEE transactions 

on ultrasonics, ferroelectrics, and frequency control, 39, 381-397, 1992. 

[7] N. Guo, P. Cawley. The interaction of Lamb waves with delaminations in composite lami-

nates. The Journal of the Acoustical Society of America, 94(4), 2240-2246, 1993. 

[8] X. Wu, J. Ghaboussi, H. Garrett Jr J. Use of neural networks in detection of structural 

damage. Computers &amp; structures, 42(4), 649-659, 1992. 

[9] C. Su, M. Jiang, S. Lv, et al. Improved damage localization and quantification of CFRP 

using lamb waves and convolution neural network. IEEE Sensors Journal, 19(14). 5784-

5791, 2019. 

[10] G. Wang. Design of damage identification algorithm for mechanical structures based on 

convolutional neural network. Concurrency and Computation: Practice and Experience, 

30(24), e4891, 2018. 

[11] C. Mares, C. Surace. An application of genetic algorithms to identify damage in elastic 

structures. Journal of sound and vibration, 195(2), 195-215, 1996. 

[12] Law. S S, Li. X Y, Zhu. X. Q, et al. Structural damage detection from wavelet packet sen-

sitivity. Engineering structures, 27(9), 1339-1348, 2005. 

[13] R. Li, H. Gu, B. Hu, et al. Multi-feature Fusion and Damage Identification of Large Gen-

erator Stator Insulation Based on Lamb Wave Detection and SVM Method. Sensors, 19(17), 

3733, 2019. 

[14] D. Sun, Q. Wang, X. Xue, et al. Damage Degree Assessment Based on Lamb Wave and 

Wavelet Packet Transform. 2019 Chinese Control And Decision Conference (CCDC). 

IEEE, 3179-3184. 2019. 

 


