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ABSTRACT2

The products of magnetic reconnection in Saturn’s magnetotail are identified in magnetometer3
observations primarily through characteristic deviations in the north-south component of the4
magnetic field. These magnetic deflections are caused by travelling plasma structures created5
during reconnection rapidly passing over the observing spacecraft. Identification of these6
signatures have long been performed by eye, and more recently through semi-automated7
methods, however these methods are often limited through a required human verification step.8
Here, we present a fully automated, supervised learning, feed forward neural network model9
to identify evidence of reconnection in the Kronian magnetosphere with the three magnetic10
field components observed by the Cassini spacecraft in Kronocentric radial-theta-phi (KRTP)11
coordinates as input. This model is constructed from a catalogue of reconnection events which12
covers three years of observations with a total of 2093 classified events, categorized into13
plasmoids, travelling compression regions and dipolarizations. This neural network model is14
capable of rapidly identifying reconnection events in large time-span Cassini datasets, tested15
against the full year 2010 with a high level of accuracy (87%), true skill score (0.76), and Heidke16
skill score (0.73). From this model, a full cataloguing and examination of magnetic reconnection17
events in the Kronian magnetosphere across Cassini’s near Saturn lifetime is now possible.18
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1 INTRODUCTION
Magnetic reconnection is the primary process whereby magnetic fields under strain can reconfigure20
and energy within their structure can transfer. On the dayside, incoming plasma and magnetic fields21
can reconnect, opening previously closed planetary magnetic field lines. At planets like Earth, day-side22
(between 6 and 18 local time) reconnection is considered to play a primary role in energy and mass23
transportation between a planet’s magnetic field and the interplanetary magnetic field (Milan et al., 2007).24
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Similarly, on the night-side (0 to 6 and 18 to 24 local time), open planetary magnetic field lines become25
distended in an extended planetary magnetotail, within which field lines may reconnect to again form26
closed field lines (Dungey, 1961), (Dungey, 1965). This cyclic transition between open and closed field27
configurations allows the transfer of mass, both in and out, of the planetary magnetosphere system.28
Alternatively, reconnection can further occur for rapidly rotating planets which involves no change in29
overall magnetic flux. For example, at Jupiter and Saturn fast rotation rates and significant internal mass30
sources result in the operation of the Vasyliunas cycle. In this cycle mass is lost down the magnetotail31
through the reconnection of centrifugally stretched, mass loaded field lines (Vasyliunas, 1983).32

On a global scale reconnection can facilitate an energy balance, dynamic equilibrium between33
the planetary field and the interplanetary field, and serve as a way to balance the mass budget for34
magnetospheres where there is a significant amount of internal plasma loading, e.g. from volcanic moons.35
However, on a small scale it produces local fluctuations of energy and unstable closed magnetic field36
systems of plasma. These small scale products can be identified by in-situ spacecraft through measurements37
of magnetic field topology and changes in plasma flow. For this study, focus will be on reconnection38
signatures at Saturn, as identified from the Cassini magnetometer and now classified through machine39
learning. Reconnection for Saturn has long focused on the planetary magnetotail whereby two types of40
reconnection signatures are typically reported: dipolarizations and plasmoid ejections. Dipolarizations41
occur on the planetside of the reconnection site where previously stretched magnetic field lines relax,42
under a reconnection event, to a more dipole-like magnetic field (Bunce et al., 2005), (Russell et al.,43
2008), (Jackman et al., 2013), (Jackman et al., 2015), (Yao et al., 2017), (Smith et al., 2018a), (Smith44
et al., 2018b). On the tailside of the reconnection site, closed magnetic field systems encompassing a45
trapped bubble of plasma known as plasmoids are created during reconnection, which are rapidly ejected46
down-tail. These events were first identified in Earth’s magnetosphere (Hones, 1977), but have since47
been identified in Saturn’s magnetosphere (Jackman et al., 2007), (Hill et al., 2008). Observations of48
these reconnection related structures can be further identified indirectly in magnetic field measurements49
in the adjacent magnetotail lobes through compressions in the magnetic field. These features are known50
as travelling compression regions (TCRs; Slavin et al. (1984)) due to their close following of plasmoid51
and dipolarization features. Notably, this indirect method of identification gives no insight to the internal52
structure of the plasmoid but do at least indicate reconnection occurring and hence can be used to estimate53
reconnection rates.54

Typically signatures of reconnection may be identified by a rapid deflection in the north-south magnetic55
field component, as observed in Figure 1. At Saturn, plasmoids moving are expected to exhibit a south56
to north deflection and vice versa (north to south deflection) for planetward-moving dipolarizations. For57
plasmoids in particular, it is important to recognize the true velocity of the signature may have some58
azimuthal/corotational component following release (McAndrews et al., 2009), (Thomsen et al., 2013),59
(Neupane et al., 2019), (Kane et al., 2020). The nature and magnitude of magnetic field deflection depends60
not only on the intensity of incoming reconnection event, but also on the orientation and direction of travel61
of the observing spacecraft through this region (Cowley et al., 2015). Spacecraft travelling through the62
center of reconnection signatures observe stronger deviations from the background north-south component63
of magnetic field, and vice versa. Without a priori knowledge of reconnection, these signatures are the64
principal identifiable feature in magnetic field data, and any deviation in north-south field component present65
a potential indication of magnetic reconnection. Notably, this is not a definitive method of classification66
as random turbulent motion in the magnetosphere or waves in the plasma sheet can reproduce similar67
signatures in the magnetic field observations (Nakagawa and Nishida, 1989), (Jackman et al., 2009),68
(Martin and Arridge, 2017).69
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Figure 1. Model north-south magnetic field (Bθ) measurements for a spacecraft as it passes through a
dipolarization, plasmoid and TCR associated with a magnetic reconnection event. Notably, a significant
deflection occurs as the spacecraft travels through the center of this region, with directionality of the field
even possibly being reversed (going from positive to negative).

Only recently has there been sufficient data to catalogue and identify large numbers of reconnection70
events in Saturn’s magnetosphere. During 2006 the Cassini spacecraft executed a series of tail orbits to a71
maximum downtail distance of 68 RS (1 RS = 60268 km) and reconnection signatures from these data72
were catalogued by Jackman et al. (2007), Hill et al. (2008). These catalogues were built upon in Jackman73
et al. (2011), where 34 additional plasmoid signatures were identified in the 2006 orbit, and again expanded74
in Jackman et al. (2014) which reported a total of 99 events, 86 of which are identified moving tailward.75
Estimations of mass loss from large-scale events in this catalogue could not balance the mass gain in the76
system from Enceladus and other sources (Bagenal and Delamere, 2011). Multiple theories have been77
submitted to account for this imbalance including unobserved mass loss in the magnetospheric flanks78
(Burkholder et al., 2017), (Ma et al., 2017), through small scale processes (Bagenal and Delamere, 2011),79
simply that the definition of reconnection event duration under-accounted for the mass in a plasma structure80
(Cowley et al., 2015), or unaccounted for reconnection on the day-side may balance the mass transfer81
budget (Guo et al., 2018). Most recently, Smith et al. (2016) attempted to more fully quantify the mass82
imbalance through the creation of a more comprehensive model and catalogue of tail reconnection events.83
This model was applied to the equatorial dawn flank orbits and midnight tail orbits of 2006, the dusk flank84
orbits of 2009, and similar low latitude dusk orbits throughout 2010. Across this observing window 209385
individual events were identified and validated forming a substantial catalogue of reconnection events for86
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Saturn’s magnetosphere. However, their semi-automated technique required the selection of observationally87
defined limits and thresholds.88

Here, we apply established methods of machine learning (ML) to planetary magnetospheric reconnection89
classification to expand these previous surveys to spatially cover the entire Kronian magnetosphere and90
temporally cover all of Cassini’s near Saturn lifetime. ML is an application of artificial intelligence91
that allows computers the ability to learn from large datasets and experience without being explicitly92
programmed. This method aides in the prevention of biases and limitations that would otherwise be93
imposed by a human created model, such as event size and spatial constraints. Furthermore, these models94
perform well at identifying underlying structures that humans otherwise would not, or could not, that are95
essential for classification and can be extrapolated to identify features in previously unobserved datasets and96
have already been implemented across the field of astrophysics to solve a variety of problems (Ruhunusiri97
et al., 2018; Ruhunusiri, 2018; Waldmann and Griffith, 2019).98

2 DATASET AND OBSERVATION
The datasets used in this study are magnetic field component measurements as observed by the Cassini99
magnetometer (MAG; Dougherty et al. (2004)) instrument. Cassini was launched onboard a Titan IV rocket100
in 1997 and following Saturn Orbit Insertion (SOI) in July 2004, it orbited the planet until 2017. During its101
lifetime it observed a variety of environments within the Kronian magnetosphere which can be used to102
gain a greater understanding of Saturn’s magnetic processes. For this research, Kronocentric radial, theta,103
phi (KRTP) coordinates are used as this coordinate system has been shown to be useful in distinguishing104
reconnection related events from turbulent motion in the hinged current sheet (Jackman et al., 2009). In105
this spherical coordinate system the radial component (Br) is positive outward from Saturn, the meridional106
component (Bθ) is positive southward (at the equator), and the azimuthal component (Bφ) is positive in the107
direction of corotation (prograde). Furthermore, one minute cadence observations are analyzed as it has108
been shown that reconnection events last an average duration of ∼10-20 minutes and can be accurately109
identified at this cadence (Jackman et al., 2014), (Smith et al., 2016).110

Figure 2 illustrates the near-Saturn lifetime trajectory of Cassini in Kronocentric solar magnetospheric111
(KSM) coordinates. This Cartesian coordinate system is oriented such that the x axis points toward the112
Sun, the x-z plane contains the planetary dipole axis, and the y component completes the right-handed set.113
The trajectories of Cassini during the Smith et al. observing window is highlighted in red for comparison.114
The full 13 years dataset shows the various magnetic environments about Saturn that the Cassini satellite115
has explored. Similarly, the trajectories during the highlighted observations cover much of these varied116
environments, however are focused primarily on longer observation times of Saturn’s magnetotail within117
the equatorial plane. Furthermore, this observing window covered times when Saturn’s night-side current118
sheet was hinged upward (southern hemisphere summer), was parallel to the equatorial plane (e.g. equinox;119
Khurana et al. (2009)), or even hinged downward (northern hemisphere summer) later in the mission120
(Arridge et al., 2011). By allowing for identification across the entire Cassini lifetime, more accurate121
statistical investigations can be performed on reconnection occurrence across the entire morphology of122
Saturn’s magnetosphere.123

For the construction of a supervised ML model, a previous, labeled database is required for the model124
to learn the parametric identifiers of the magnetic reconnection class, and to test against to validate the125
model’s accuracy. The Smith et al. (2016) catalogue (hereafter S16) of reconnection is selected as this126
classified dataset due to its large number of samples, variety of orbital trajectories sampled, and its final127
human based verification step. However, to utilize this catalogue, the limitations of its selection criteria128
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Figure 2. Lifetime trajectory (black) of Cassini around Saturn (yellow). The Cassini trajectories during the
observing window employed in the creation of the Smith et al. (2016) catalogue of magnetic reconnection
are highlighted in red for comparison. For the creation of a machine learning training set, observations of
events are taken from the Smith catalogue and null events are randomly taken from a variety of local times
and radial distances during the Smith catalogue observing window.

must be understood. This catalogue was constructed from a semi-automated model with many hard-coded129
limitations. Excluding the aforementioned temporal limitations of observation window selection, this130
model further includes spatial and magnetic parametric limitations. Spatially, this model is defined within a131
’viewing region’ where events are strictly only identified within the night-side, at distances greater than132
15 RS from Saturn, and strictly within the magnetosphere. Figure 3 demonstrates the spatial constraints on133
the S16. This figure illustrates the entire 2010 trajectory of he Cassini instrument seperated into spatial134
constraints where the S16 could identify reconnection events (blue) and those where identifications are135
spatially ineligible (red). This catalogue has similar magnetic parametric limitations. Primarily events136
are identified from the background through a quadratic fit to Bθ polarity crossings with a least squared137
goodness of fit value of r2 ≥ 0.9. Identified candidates are then verified through138

|∆Bθ|
BRMS
θ

≥ 1.5 (1)
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Figure 3. 2010 trajectory of Cassini about Saturn (yellow) separated by colour into regions where the S16
could identify reconnection events (blue) and the trajectories that were spatially ineligible for identification
(red). Notably, at large distances (>35 RS) eligibility appears to be very patchy, this is due to the changing
position of the magnetopause boundary under the varying balance between solar wind dynamic pressure
and internal plasma pressure.

where |∆Bθ| is the magnitude of deflection during the event and the root-mean-square (RMS) of Bθ is139
calculated for a period extending 30 minutes both sides on the candidate. A secondary validation step140
follows this such that:141

|∆Bθ| ≥ 0.25 nT (2)

where symbols have their previous meaning. These validation steps are imposed as it is difficult for142
humans to verify candidates that fall below these parametric limitations due to a signal to noise ratio143
problem. Through these identification and validation methods, the Smith et al. model identifies 2094 (1083144
planetward and 1011 tailward) reconnection signatures within their observation window.145
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These events identify the temporal windows which act as a labeled dataset for a supervised training ML146
method. However, training of a ML model requires a collection of input parameters, from which the ML147
model learns the association of parameters to events. For this research, exclusively magnetic observations148
in the three spatial components of the KRTP coordinate systems are used for identification. This selection149
is made due to the coverage of Cassini’s lifetime that the MAG instrument remained operational. While150
signatures of planetary reconnection exist in other property observations such as plasma density, MAG151
data is used as a predominant identifier for human based identifications. Furthermore, the Cassini plasma152
spectrometer (CAPS; Young et al. (2004)) did not remain operational across the entirety of Cassini’s near153
Saturn lifetime, being permanently inactive post-2012, nor did it provide a full 3D picture of the plasma154
environment, and so may miss any reconnection related jets due to pointing in the ‘wrong’ direction.155
A model for identifying magnetic reconnection signatures using only magnetic field component data156
would also ease possible transitions, and transfer learning of a ML model to use with new satellites157
and for different planetary magnetic fields. Hence, plasma property observations for these reconnection158
events are not used in this research, however, plasma observations could and should be used in any future159
implementation where the plasma measurements are comprehensive in both time and 3D viewing. Finally,160
it is envisioned that the construction of a catalogue using this method across the entire Cassini dataset will161
enable the examination of numerous case studies of reconnection using multiple instruments.162

Figure 4 illustrates example magnetic time series across the three KRTP spatial components as well as163
the total magnetic field, |B|, used during training as a null classification (left) and an event classification164
(right). The X-axis of these plots denotes the time of observation and the spacecraft ephemeris data for165
Cassini at that time. The time constraint of ML training is highly dependant on the size of input parameters,166
hence, only the three elementary components of magnetic field measurements from Cassini are used as167
inputs for ML training in this study.168

|B| =
√
B2
r +B2

θ +B2
φ (3)

3 MACHINE LEARNING ARCHITECTURE
3.1 Class balancing and Data Augmentation169

The greatest risk for poorly constructed ML identification of relatively rare features is the possibility170
of a class imbalance (Buda et al., 2017). For this case, magnetic reconnection events are only identified171
occupying ∼<1-10% of the total observing time dependant on the identification method, hence, ML172
training with this ratio will exhibit bias towards the majority class (Guo et al., 2008), (Johnson and173
Khoshgoftaar, 2019). Hence, an unbalanced ratio of non-events to events will cause the ML algorithm,174
in its interest of maximizing its accuracy, to simply classify all inputs as nulls to obtain an accuracy175
of ∼90% without truly learning underlying identifying signatures. To alleviate this issue, a randomized176
under-sampling of non-reconnection events is used to balance with the ∼2000 events in the S16. This177
renders ∼4000 total observations to construct training, test and validation sets, which is a low number178
of samples to perform ML methods to and expect the overarching reconnection features to be accurately179
identified, rather than the ML model simply memorizing the training set.180

The issue of a small sample size can be solved through data augmentation, such as data synthesis, or the181
transformation of already existing data (Mikołajczyk and Grochowski, 2018), (Fawaz et al., 2018). Data182
synthesis is simply the creation of data through the combination of a model with some overlying noise183
in an attempt to create real-like datasets, however this method can be inaccurate if predictive models are184
inaccurate, or missing some underlying understanding. Data transformation takes already existing data185
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Figure 4. Examples of magnetometer data for a non event (left) and event (right) used to train a machine
learning algorithm. Titles of these plots denote the time at at center of these observing windows in a
YYYY-MM-DD format.

and applies some kind of transformation, such as adding noise or filters over the existing measurements186
or translating the data either spatially or temporally. Since the signatures of magnetic reconnection occur187
across a number of minutes, averaging ∼8 minutes (Smith et al., 2016), it is possible to increase our188
number of samples by considering every minute of an event as a unique positive identification. Hence, a189
single event lasting 5 minutes would be considered as 5 consecutive positive labelled identifications every190
minute between the start and end time of an event. This method increases the total available observations191
to ∼32000 (16000 positive labels and 16000 randomly selected negative labels). This increased number192
of samples allows for more complex ML architectures and a more robust final model. In this instance,193
nulls are selected randomly from the S16 observing window with the same spatial limitations of the S16,194
e.g. at distances greater than 15 RS from Saturn, etc. Finally, since these events occur and are identified195
across multiple minutes of magnetic data, due to their temporal structure, for the ML model to identify196
these events, it must have a time window of magnetic measurements as input. 15 minutes both before and197
after the central label in the three KRTP spatial magnetic field components (Br, Bθ, andBφ) are used as198
this window is wide enough to cover the longer duration events in the S16 catalogue, but short enough to199
identify label changes occurring between event clusters. This renders a total of 90 magnetic property inputs200
for each of the 32000 labels for any given ML model.201
3.2 Machine Learning Types202

A variety of ML models exist, ranging in complexity to allow for identification of more elaborate and203
subtle features within datasets. This research focuses on identification of features within three singular204
dimension magnetic field time series, hence, only relatively simple supervised learning ML methods will205
be investigated, namely: support vector classifier with a linear (LSVC) and non-linear kernel (NLSVC),206
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Table 1. Comparison of validation set accuracy for ML event classification using a linear support vector
classifier (LSVC), a non-linear support vector classifier (NLSVC), a random forrest classifier (RFC),
and artificial neural network (ANN). This accuracy value is calculated as the ratio of correctly identified
samples to total samples.

ML type Accuracy
LSVC 0.73
NLSVC 0.75
RFC 0.87
ANN 0.90

random forest classifier (RFC), and a simple artificial feed forward neural network (ANN). All of these207
models are available in the sklearn python packages (Buitinck et al., 2013) and the TensorFlow libraries208
(Abadi et al., 2015). A LSVC creates a multi-dimensional hyperspace of observed parameters. The labeled209
data are then input into this hyperspace and a linear hyperplane is created as a decision boundary to210
optimally separate data of opposing labels with the widest possible margins. This hyperplane seperator is211
then stored and used to predict the labels of new datasets. A NLSVC behaves similarly to its linear variant,212
by creating some hyperplane as a decision boundary, however, the kernel function utilized by a NLSVC213
can non-linearly transform the feature space such that the classes become separable. RFC similarly creates214
a multi-dimensional hyper space, but instead of separating data by a continuous hyperplane, a vast array of215
boolean decision tree networks, of variable depth, are created to segment a training dataset non-linearly.216
New data sets are then input into this array of decision trees and a classification is judged by majority vote217
outcome. The final type, ANNs, rely on the creation of input (parameters) and output (labels) neural nodes,218
interconnected by a collection of initially random weights and biases. This method of ML is optimized219
through tuning of various hyperparameters such as: the non-linear activation function on each of the nodes,220
the number of nodes within each layer, the loss and optimization functions, and the number of hidden221
layers within the architecture. These hidden layers of neural nodes between the input and output nodes have222
no true observable parameter, however they enable more complex feature identification by the ANN. To223
judge which of these models is optimal for identification of reconnection signatures, each must be trained224
and the model that exhibits the highest accuracy can be selected for further fine tuning. It is important to225
note that model accuracy is not typically the greatest indicator of a model’s performance, and many other226
metrics will be discussed later, however this metric is significant enough to indicate a single ML model that227
can be best improved, and hence will be further investigated in this research. Table 1 indicates the accuracy228
for these four ML models to identify the signatures of magnetic reconnection using only the three KRTP229
magnetic field components observed by Cassini for times within the spatial and temporal limitations of230
the S16. Overfitting of these models was prevented by standard methods of train/test/validation splitting,231
principle component analysis and algorithm complexity limitations. The train/test/validation split had a232
weighted random assignment across all years in the S16 catalogue with no temporal disjoint. This means233
the training set was composed of events from 2006, 2009, and 2010 allowing it to learn the structure of234
reconnection from varied spacecraft orbits and trajectories. However, set assignment was performed on a235
reconnection event basis, meaning all minutes of observations associated with an individual reconnection236
event are assigned to a single set. Most notably, ANNs exhibit the highest accuracy rating, likely due to237
their allowed higher complexity when compared to the other methods mentioned. Hence, ANNs are further238
utilized for this research.239
3.3 Artificial Neural Networks240

Figure 5 demonstrates the architecture of a simple ANN created and trained during this research to241
identify signatures of magnetic reconnection. In this architecture, input properties are directed into the242
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Figure 5. NN architecture used to train to identify reconnection signatures in Cassini magnetometer data.
This structure shows 90 input nodes composed of three 30 minute time windows centered on the label time
(tlabel), in the three KRTP magnetic field components (Br, Bθ, and Bφ). These nodes are then fed into a
40 node hidden layer (HL) with a 0.3 dropout, which feeds into a 20 node HL with a 0.3 dropout. This
final HL is then categorized using a 2 node, one-hot classification system. During training, every epoch,
the weights and biases interconnecting each layer are varied to under a gradient descent to optimize the
accuracy of classifications.

architecture in the input layer. Operations are performed on these parameters between each interconnected243
layer, with the goal being to accurately recreate the desired outputs in the output layer. ANNs are generally244
optimized and fine tuned through a process of trial and error, however some simple rules for their creation245
exist to prevent overfitting of training data. Generally, the number of free parameters must not exceed the246
number of samples used for training, i.e.247

NS > NFP =
i∑
i=1

(
(Ni−1 ×Ni) +Ni

)
(4)
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where NS is the number of training samples, NFP is the number of free parameters, and Ni describes the248
number of nodes in the ith layer. No strict consensus exists to decide the number of nodes in ANN hidden249
layers, however it is generally accepted for the number of nodes in a hidden layer to be approximately half250
way between the number of nodes in the previous and next layers. Through trial and error, it was found251
that a two hidden layer ANN architecture was most efficient at identifying magnetic reconnection in the252
training set, however Huang (2003) proved an upper limit to the total available hidden nodes available in253
this system to be254

NH ≤
2

α

√
(NO + 2)NS (5)

where NS has its previous meaning, NH represents the total available hidden nodes, NO is the number255
of output nodes, and α is a robustness factor usually between one and ten. From equations 4 and 5, and256
the aforementioned 32000 samples, it is possible to train the robust two hidden layer neural network in257
Figure 5: 90 input nodes with a dropout of 0.3 connected by a rectified linear units (relu) activation function258
to 40 first hidden layer nodes, which are in turn connected with a dropout of 0.3 and a relu activation259
function to 20 second hidden layer nodes, which connects fully with a softmax activation function to two260
output nodes representing a boolean classification of reconnection occurring. After each training epoch, the261
model was trained towards improving a binary cross entropy accuracy metric. During training, however, it262
was observed that a significant number of events were identified outside the magnetosphere, along portions263
of Cassini’s orbit in the magnetosheath and solar wind. This is likely due to the ML algorithm never264
encountering observations from these magnetic regions during training. Since these regions are unique265
classifications and differ from null training samples within the magnetosphere, they can be included in266
training as a unique classification of nulls. This means our number of samples will increase to ∼16000267
reconnection events, ∼16000 magnetosphere nulls, ∼16000 magnetosheath nulls, and ∼16000 solar wind268
nulls. Given a train-test-validation split of 60-20-20, ∼38400 samples are available for training.269

The relative effectiveness of this architecture is displayed in Table 2 through four confusion matrices.270
A confusion matrix exists for each of the training, test and validation set, and a fourth confusion matrix271
illustrates the effectiveness of the ANN to identify reconnection events across the entirety of 2010,272
replicating how the model will perform on large continuous datasets. The year 2010 was selected for this273
comparison as it is one of two full years which the S16 covered, along with 2006. 2010 was selected274
between these two years as the trajectory of Cassini for this year included a wider sampling of varied275
magnetic environments, hence being the most stringent full year comparison possible. It is important to276
recognize that this 2010 confusion matrix includes identifications from the training, test, and validation277
datasets. Across each of these confusion matrices an accuracy of ∼90% is attained and the training, test,278
and validation sets have high skill metrics: the Heidke skill score (HSS; 0.75; Heidke (1926)), the true skill279
statistic (TSS; 0.76), and the threat score (TS; 0.68). It is important to reinstate, the final step of the S16280
catalogue’s final step is a human verification, hence our comparison in the validation confusion matrix281
shows the effectiveness of the ML model against human verified data. However, in the 2010 confusion282
matrix, the number of false positives (FP; 32954) significantly outweigh the number of true positives (TP;283
5111) leading to a high false alarm ratio. Hence the imbalance in this confusion matrix is represented in284
its HSS; 0.21, TSS; 0.75, and TS; 0.13. These skill score metrics quantifiably describe the ability of this285
model to replicate the observable data. The HSS measures the fractional improvement of the forecast over286
a standard forecast and ranges from −∞ to 1, with 1 being perfectly skillful, a value of 0 representing no287
skill, and a value of 0.3 being considered of good skill. The TSS, also known as the Peirce’s skill score,288
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Table 2. Confusion matrices for a feed-forward neural network classification of magnetic reconnection
within the Kronian magnetosphere

Train Test
Pred. Null Pred. Event Pred. Null Pred. Event

Obs. Null 26690 (0.92) 2278 (0.08) 3272 (0.94) 226 (0.06)
Obs. Event 1564 (0.16) 8092 (0.84) 672 (0.19) 2826 (0.81)

Validation 2010
Pred. Null Pred. Event Pred. Null Pred. Event

Obs. Null 3020 (0.93) 232 (0.07) 486400 (0.94) 32954 (0.06)
Obs. Event 614 (0.19) 2638 (0.81) 1134 (0.18) 5111 (0.82)

Figure 6. Output of reconnection signatures identified by a feed forward neural network (red areas) across
half of 2010 compared to identifications from the Smith catalog (blue areas) for the same period. These
areas are overplot onto the Bθ component of the magnetic field, where reconnection signatures are easiest
identified by eye. Each successive plot examines zoomed in windows to observe finer structure in magnetic
field measurements and identifications.

compares classification to a random selection classifier and ranges from −1 to 1, with 1 being considered289
perfectly skillful, and 0 having no skill. TS measures the fraction of observed and/or classified events290
that were correctly identified and ranges from 0 to 1, with 0 having no threat detecting capabilities and 1291
being a perfect identifier. The imbalance of these classifications is illustrated in Figure 6 which compares292
identification of magnetic reconnection across 2010 by the ANN architecture compared to the S16. In this293
figure, events are highlighted over underlying Bθ magnetic components as measured by Cassini. Events294
from the S16 are highlighted in blue, whereas events classified by the ML algorithm are highlighted in red.295
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4 DISCUSSION
The results and corresponding skill scores from Table 2 would imply a significant bias of the neural network296
to mis-classify null observations, as classified by the S16 catalogue, as events. Investigations into the297
spatial distribution of events to identify the cause of this large number of mis-classification are illustrated298
in Figure 7. This figure demonstrates the distribution of total time during the observation window of299
Smith et al. (2016) (purple) across radial distance, latitude and the Kronian local time. Additionally, the300
time spent observing reconnection related events as stated by the S16 (blue) and the time spent observing301
reconnection products as classified by the ANN (gray) are displayed for comparison. Blue percentile302
values illustrate the percentage of total time of a given distribution spent observing reconnection as found303
by S16. As is illustrated, the ANN observations have a similar spatial distribution of identifications to304
the S16, simply the ANN recognizes more minutes of reconnection occurring due to more events being305
identified. In the local time distribution, all events identified by both S16 and the ANN for 2010 are located306
on the planetary dusk side due to the orbital trajectory of the Cassini spacecraft at this time, being very307
close to the planet (<15RS) at other local times. Most notably, the local time distribution of the ANN308
identifications shows a non-zero rate of reconnection on the day-side of Saturn, while the Smith et al.309
model maintained a strict cut-off of dayside events due to its hard coded spatial limitations. Evidence for310
dayside reconnection has been identified previously (Delamere et al., 2015), (Guo et al., 2018), hence,311
inclusion of dayside reconnection identification within this catalogue allows for more future exploratory312
research to be performed.313

4.1 Evaluation of ANN Performance and Identifications314

As previously mentioned, the S16 is constructed from numerous hard coded spatial and magnetic315
limitations within their semi-automatic identification method that significantly limit their identifications. In316
the ML model, these limitations are not in place, which leads to a substantial number of ML identifications317
that cannot otherwise be identified by the S16 method, thus leading to our abundance of apparent FPs.318
Hence, the confusion matrix for 2010 in Table 2 does not accurately compare the results of the neural319
network to the S16, and it must be corrected. By examining only the neural network reconnection320
identifications that could be recognized by the S16 (i.e. events with δBθ ≥ 0.25 nT , and a significant321
signal to noise ratio: δBθ/Brms ≥ 1.5), and comparing events as a whole, by considering sequential322
positive minute-by-minute classifications as part of the same event, a new confusion matrix is obtained for323
the entirety of 2010. Table 3 demonstrates the corrected confusion matrix for 2010, only comparing events324
that the S16 could identify. This enables us to more fairly assess the performance of our approach. To325
calculate the value of true negatives (TN; 1008), the same method could not be used as TN measurements326
are not considered discrete events, and are not privy to the same parametric limitations that events are. To327
obtain this value, TNs are considered to be all of the periods when a TP, FP, or FN is not applicable, hence:328

TN = TP + FP + FN + 1 = 1008 (6)

This corrected confusion matrix for eligible 2010 events has a significant increase in accuracy (87.0%),329
HSS (0.73), TSS (0.76), and TS (0.74). Figure 8 displays distributions of temporal (duration), magnetic (Bθ330
deflections), and spatial (radial distance and local time of event) properties of TP, FP, and FN events from331
Table 3. No significant discrepancy is evident between these categories spatially or magnetically, however,332
the differences between the ANN and Smith et al. method is visible in the distributions of event duration.333
The ANN identifies a higher number of longer duration events, while finding difficulty in identifying short334
duration events (< 10 minutes). However, as evident by the distribution of ∆Bθ for FNs, these missed335
events represent smaller deflections, which are least likely to be identified by eye, and most likely to be336
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Figure 7. Total time of Cassini observations of Saturn’s magnetosphere during the 2010 observing window
(purple) with radius, latitude and local time respectively. This distribution is compared to the time classified
as magnetic reconnection signatures by Smith et al. (blue) and as classified by a neural network method
(grey). Percentiles indicate relative time spent near reconnection events as found in the Smith et al. catalogue
to the total window.
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Table 3. Confusion matrices of neural network classification considering only events that the Smith et al.
catalogue could have identified

2010
Pred. Null Pred. Event

Obs. Null 1008 (0.82) 208 (0.17)
Obs. Event 58 (0.07) 741 (0.93)

Figure 8. Temporal, magnetic and spatial properties of reconnection events that are classified as true
positives (green), false positives (orange), and false negatives (red) when comparing the neural network
classifications to those of the S16.

spurious identifications. The plotted distribution of FPs is very similar to TPs, excluding the longer average337
durations (∼ 10 minutes). This discrepancy may be due the quadratic fitting and identification method338
of the Smith et al. model, coupled with their model not identifying the inclining and declining phases339
of reconnection which implies a shorter average duration of identifications. Hence, the neural network340
is considered to accurately identify magnetic reconnection events solely from magnetic field component341
measurements, not only under the same restrictions as the S16, but also across the total spatial and magnetic342
domain of Cassini’s lifetime.343

Figure 9 displays an epoch analysis for events classified by this NN for both day-side (light blue) and344
night side detections (dark blue) compared to the events from the S16 (black). These events are compared345
across 4 criteria: all events for 2010 (top left), all tailward event for 2010 (top right), all event for 2010346
that all within the human built thresholds for S16 (bottom right) and all tailward events that fall within347
this threshold (bottom right). The term tailward here is defined as a reconnection event occurring with a348
negative slope in the deflection phase (Bθ(t0) > Bθ(t1)). The average day-side and average night-side349
epochs are similar in all panels. The main difference between the two is the higher average Bθ in the350
day-side events and the larger ∆Bθ deflections, however this is more likely due to the Cassini spacecraft351
being closer to the planet on the day-side on average for 2010, and hence within a stronger magnetic field352
region. The ANN epochs have a similar structure compared to the Smith et al. epoch, however the ANN353
epochs do not become negative auntil the S16 criteria is applied. This is likely due to the more numerous354
small scale Bθ deflections (∆Bθ < 0.5 nT) occurring within a relatively strong magnetic field regions355
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Figure 9. Epoch analysis of all 2010 events (top left), tailward events (top right), all 2010 events that
meet the S16 criteria (bottom left), and meet the S16 criteria while also being tailward (bottom right)
identified by the NN. Identifications are split onto the day-side (light blue) and night-side (dark blue) and
are compared to the average of events from the S16 for 2010. (left) and tailward.

(Bθ > 1 nT) for the ANN method than the S16 model, which skews the average. Similarly, events identified356
by the ANN have higher average Bθ than events identified by the S16, however this is likely due to the357
ANN not spatially limiting its detections. Interestingly, a secondary deviation is visible in both top panels358
(no limitations on identifications) at T≈12 minutes after the central deviation. This deviation may imply a359
propensity for reconnection events to occur in clusters with a ∼12 minute delay. However, it is uncertain if360
this secondary deviation is simply a statistical anomaly in the data, or if this ∼12 minute delay is related to361
the orbital trajectory of Cassini for 2010, particulary since this feature is not visible in the bottom panels362
(S16 limits in place).363

5 CONCLUSIONS
Here, the operations and effectiveness of ML approaches to magnetic reconnection identification have364
been discussed. A new ANN model has been constructed to identify reconnection signatures in Saturn’s365
magnetosphere through spherical magnetic field measurements with a HSS∼0.73, and hence is considered366
an effective identifier. This ML approach identifies deflections in theBθ field component with no hard-coded367
limitations that a human-built model may otherwise impose and can identify small scale Bθ deflections368
that a human, or human made model, would find difficult. This new model has been used across the entire369
Cassini near-Saturn lifetime to identify ∼46000 reconnection events and their associated properties which370
have been compiled and catalogued. This model and associated reconnection catalogue is available at371
Garton (2020).372
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Further study is required on events within this catalogue to identify statistical properties and spatial373
likelihood of magnetic reconnection in Saturn’s magnetosphere to improve predictive modeling. The374
13 years catalogue created from this research can be used to identify long-term magnetospheric trends375
and create a statistical predictive model of reconnection occurence for extreme and rare events. This376
ANN was constructed using a limited sample of events (∼2000) which may be insufficient to cover the377
spectrum of reconnection signatures, hence this model can be further improved through the inclusion of378
additional samples of manually selected reconnection signatures, or through the inclusion of additional379
particle property observations, should they be available. Furthermore, the training of this ANN involved the380
inclusion of additional null sets which corresponded to non-reconnection events within the magnetosphere,381
the magnetosheath and the solar wind. It is possible other such unique magnetic environments exist382
that could cause spurious identifications where characteristic magnetic field deflections are observed,383
such as during a Cassini flyby of Titan (Simon et al., 2010) or Enceledus (Dougherty et al., 2006).384
Hence, inclusion of datasets within these environments as nulls in the training set could improve the385
overall accuracy and skill of the ANN. Finally, through transfer learning, it is possible to retrain this386
model to identify similar reconnection signatures in other planetary magnetospheres given fewer training387
samples of identification. Through this established method it is possible to create a similar operational388
ML model to identify reconnection signatures at Mercury, or Earth. It is our intention to explore such389
approaches in future, to realise the full capability of ML for uncovering reconnection signatures for a390
variety of planetary magnetospheres. Datasets observing various planetary magnetospheres is abundant,391
e.g. MESSENGER (Solomon et al., 2001) at Mercury, and Galileo(Young, 1998)/Juno(Bagenal et al.,392
2017) at Jupiter, however, exploration of these datasets has only been partially completed by the wider393
community. This insufficient exploration is partly due to the required time to manually investigate the394
datasets and the lack of manpower available. ML infrastructure, of the kind discussed in this paper, will395
enable the processing and full exploration of these large datasets with minimal required human intervention.396
Furthermore, ML identification methods allow the extrapolation of catalogues and allow for an investigation397
of more diverse events at different locations, and even make more accurate estimations of the mass budget398
of magnetospheres. As we rapidly approach a period of data flooding, developing tools to address this issue399
before it arises is essential for the future of planetary research (Azari et al., 2020).400
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