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Abstract—Adaptive block-based least-mean squares (BLMS)-
based techniques are conceived for channel estimation in single-
carrier (SC) wideband millimeter wave (mmWave) hybrid MIMO
systems. In this context, a frequency-domain channel estimation
model is developed for SC wideband systems, followed by a novel
fast BLMS (FBLMS) technique, which has a significantly lower
computational complexity than the existing channel estimation
schemes designed for mmWave hybrid MIMO systems. The
proposed FBLMS technique is also robust, since it does not
require any second-order statistical information, such as the
cross-covariance vector and covariance matrix. Next a beamspace
domain representation of the mmWave MIMO channel is ob-
tained, followed by the development of the sparse-FBLMS (SF-
BLMS) scheme for the estimation of the wideband mmWave
MIMO channel that additionally exploits the angular-sparsity for
improved channel estimation performance. Analytical expressions
are derived for the mean squared estimation error (MSEE) and
mean squared observation error (MSOE) of both the proposed
FBLMS and SFBLMS techniques. Furthermore, a systematic
procedure is developed for determining the beneficial range of
the values of the regularization parameter, which ensures a high
channel estimation accuracy of the SFBLMS over FBLMS. A
hybrid precoder and combiner design is also proposed for SC
wideband systems by employing the channel estimates obtained
using the above techniques. Simulation results are presented to
illustrate the performance of the proposed BLMS-based schemes
in comparison to the existing schemes, which closely match the
theoretical results derived.
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I. INTRODUCTION

M ILLIMETER wave (mmWave) technology, which relies
on the wide bandwidth available in 30 GHz-300 GHz

band for wireless communication, has emerged as one of
the leading candidates for achieving ultra-high data rates
in 5th generation (5G) wireless systems [1]–[3]. mmWave
technology is envisioned to empower various cutting edge
applications such as wireless high-definition (HD) [4], smart
wearables [5], virtual reality (VR) [6], high-speed wireless
local area networks (WLANs) [7] and most importantly, 5G
new-radio (5G-NR) devices [3]. However, communication in
the mmWave regime faces a number of challenges such as
higher free-space losses, reduced scattering and diffraction
of the transmitted radio signal [1], [2], [8]. The solution
therefore is to leverage the smaller wavelength [9], which
allows us to pack numerous antennas even into a headset to
support multiple-input multiple-output (MIMO) transceivers
to enhance the signal-to-noise-ratio (SNR). On the other
hand, the implementation of large antenna arrays in mmWave
MIMO systems is quite challenging in terms of the associated
hardware complexity due to the high sampling rate of analog
to digital/ digital to analog converters (ADC/ DACs) coupled
with the high power consumption of the radio-frequency (RF)
chains connected to each transmitter/ receiver. To overcome
this impediment, without substantially compromising the gains
promised by mmWave MIMO systems, a hybrid MIMO ar-
chitecture [2], [10]–[13] has been proposed as a practical
solution. In contrast to the conventional communication sys-
tems wherein a majority of the MIMO signal processing tasks
are performed in the baseband, the hybrid mmWave MIMO
architecture partitions the overall signal processing between
the RF and baseband domains, which leads to a substantially
reduced number of RF chains (RFCs) compared to the number
of transmit antennas (TAs) and receive antennas (RAs). In
hybrid mmWave MIMO systems, the analog beamforming
is performed using a digitally controlled network of phase-
shifters to achieve a beneficial beamforming gain, while the
baseband precoding/ combining is done in the digital domain
for attaining a substantial multiplexing gain. It is important to
note that the design and analysis of this pioneering mmWave
MIMO architecture is critically dependent on the accuracy of
the available channel state information (CSI) of the mmWave
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MIMO channel [14]. Hence, channel estimation plays a central
role in such systems and therefore it has been explored in
numerous research contributions, such as [11], [12], [15]. A
brief review of the seminal treatises addressing this challeng-
ing problem is provided next.

A. Review of the Existing Contributions in mmWave MIMO
Channel Estimation

Due to the associated large antenna array size and low SNR
experienced prior to beamforming [2], [16], the traditional
least squares (LS) and minimum mean squared error (MMSE)-
based channel estimation schemes rely on a substantial pilot
overhead in mmWave hybrid MIMO systems. Additionally,
these traditional approaches can only provide a sub-optimal
performance even at significantly higher pilot overheads,
since they do not exploit the angular-domain sparsity of
the mmWave MIMO channel [2] arising due to the reduced
multipath components [8] coupled with the highly directional
beamforming of large antenna arrays. The natural approach is
to estimate the parameters of the mmWave MIMO channel,
namely the angles of arrival (AoAs), angles of departure
(AoDs) and the corresponding path-gains. Early contributions,
such as [17]–[19] have proposed various beam-training meth-
ods for CSI acquisition, which rely on pilot-beams from a
codebook to estimate the AoA/ AoD pairs of the available
spatial multipaths. Although these schemes are straightforward
to implement, they require substantial amount of feedback for
finer angular resolutions. Moreover, the feedback increases
linearly with the number of devices connected to the access-
point. In [16], [20], the authors have proposed to invoke the
classic multiple signal classification (MUSIC) algorithm for
mmWave MIMO channel estimation. Although, the MUSIC
algorithm is indeed capable of extracting multiple paths, it is
quite sensitive both to the position of antenna elements, as
well as to their gain and phase errors.

Several studies, such as [11], [15], [21]–[25] have exploited
the sparse scattering nature of mmWave propagation for ac-
quiring the CSI of mmWave hybrid MIMO systems. In these
approaches, the AoA and AoD spaces are divided into a finite
number of grid-points in order to obtain the beamspace rep-
resentation of the mmWave MIMO channel, which is sparse.
Subsequently, the sparse beamspace channel can be estimated
using a variety of compressive sensing-based approaches, such
as sparse Bayesian learning (SBL) [12], [22], [26], orthogonal
matching pursuit (OMP) [15] and their variants, using a sig-
nificantly reduced pilot overhead. However, most of the above
contributions consider a narrowband frequency-flat mmWave
MIMO channel. Recent studies, such as [10], [13], [27]–
[32], have focused on the estimation of a practical wideband
frequency-selective mmWave MIMO channel. In this context,
the authors of [29] develop a distributed compressive sensing
(DCS)-based sparse channel estimation scheme for a wideband
multiuser uplink scenario. However, a key drawback of their
scheme is that it only estimates the line-of-sight (LoS) chan-
nel. In [13], the authors represented the frequency-selective
mmWave MIMO channel in the sparse beamspace domain
by employing a ‘sparsifying-dictionary’ matrix comprising the

array response vectors from a suitably chosen angular-grid for
the AoA/ AoD spaces. The pertinent sparse signal recovery
problem is then solved using the OMP technique, which
selects the columns of the ‘sparsifying-dictionary’ matrix in
a greedy manner to obtain the best approximation of the
received pilot vector [13]. However, the performance of the
OMP algorithm is heavily dependent on the selection of the
stopping criterion and the dictionary-matrix employed, with
minor variations leading to the potential error propagation
and convergence errors that degrade the performance. The
wideband mmWave MIMO channel also exhibits a spatial-
wideband effect [32], which arises due to the non-negligible
time delay of the electromagnetic waves across the large an-
tenna array aperture. Moreover, it is sparse in the delay-domain
[31], [32]. Most of the existing literature ignores this spatial-
selectivity. The work in [32] considers the dual wideband
effects, i.e. spatial- and frequency-wideband effects. Efficient
uplink and downlink CSI estimation approaches are developed
that exploit the beamspace domain sparsity together with
the delay-domain sparsity, and require significantly reduced
training overheads. On the other hand, most of the existing
contributions in mmWave do not consider time-selectivity
arising due to mobility. In this context, a recent contribution
[31] exploits the above-mentioned doubly-sparse nature of the
mmWave MIMO channel for time- and frequency-selective,
i.e. doubly-selective CSI estimation, by suitably designing the
training pattern. The proposed doubly-sparse doubly-selective
(DSDS) CSI estimator proceeds along the following lines:
1) random probing followed by identifying dominant channel
taps via the well-established energy detector, 2) employing
an adaptive-block OMP (A-BOMP) to recover the dominant
angular directions, 3) finally, the path gains and Doppler shifts
are estimated using steering-probing. The authors of [30] also
exploit the joint angular and delay domain sparsity of the
wideband mmWave MIMO channel, considering a MIMO
system having low-resolution ADCs. The channel estimation
schemes proposed therein are based on the approximate mes-
sage passing (AMP) algorithm. A key drawback of the many
schemes proposed in the existing literature is that they estimate
the mmWave MIMO channel only after receiving all the pilot
beams, thereby increasing the processing delay. Moreover, the
existing sparse channel estimation schemes such as [12], [13],
[15] are computationally complex due to the requirement of
several matrix inversions. A brief summary of the various
existing contributions is presented in a tabular format in Table-
I. Furthermore, single-carrier (SC) transmission is favored
over multicarrier orthogonal frequency division multiplexing
(OFDM) in uplink [33], [34], since the mmWave transmitters
at the users are designed to transmit with low peak to average
power ratio (PAPR). Against this background, we develop the
novel wideband mmWave hybrid MIMO channel estimation
techniques for overcoming the drawbacks of the existing
schemes listed above. In this context, low complexity block
least-mean square (BLMS)-based [35]–[37] online channel
estimation techniques capable of accurate tracking and learn-
ing capabilities are eminently suitable for practical wideband
mmWave hybrid MIMO systems. Moreover, these schemes
only rely on the instantaneous estimates of the 2nd-order
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statistics of the signal, namely the cross-covariance vector and
covariance matrix, but do not require prior knowledge of these
quantities. Thus, these benefits can be exploited for channel
estimation in a wideband mmWave hybrid MIMO system,
which is the focus of this study. The key contributions of this
treatise are summarized next.

B. Contributions of the Paper

1) Motivated by the inherent tracking capability and low
computational complexity, this paper develops novel
BLMS-based adaptive channel estimation schemes for SC
wideband mmWave hybrid MIMO systems. To this end, a
computationally-efficient frequency-domain equalization
(FDE)-based channel estimation model is developed for
wideband mmWave hybrid MIMO systems, which sub-
stantially simplifies the channel estimation procedure and
the subsequent data detection process, both of its time-
domain counterpart.

2) A frequency-domain sparse channel estimation model
is developed using the beamspace domain model of
the mmWave MIMO channel, which utilizes a suitable
sparsifying-dictionary comprised of the quantized receive
and transmit array response vectors.

3) Next, a stochastic gradient based fast BLMS (FBLMS)
framework is developed for adaptive online channel es-
timation in SC-FDE-based wideband mmWave hybrid
MIMO systems, which minimizes the mean squared ob-
servation error (MSOE). The proposed FBLMS technique
does not require knowledge of the first and second order
statistical information of the wideband mmWave MIMO
channel, and therefore it is eminently suited for both
stationary and non-stationary environments, strengthening
its practical importance. Analytical expressions are also
derived for characterizing both the finite frame length
and asymptotic mean squared estimation error (MSEE)
as well as MSOE performance of the proposed FBLMS
technique.

4) In order to additionally exploit the sparsity for attaining
an improved performance, a novel sparse-FBLMS (SF-
BLMS) framework is developed, which makes use of
a regularized cost function by incorporating a sparsity-
inducing penalty term along with the standard MSOE.
The corresponding analytical MSEE and MSOE results
are also developed. Furthermore, a systematic approach
is conceived for determining the regularization parameter
that ensures lower MSEE of SFBLMS in comparison to
FBLMS.

5) A hybrid precoder and combiner design is also proposed
for the SC-FDE based wideband mmWave MIMO sys-
tems by employing the channel estimates obtained using
the above techniques.

6) Analytical bound and simulation results are presented for
characterizing the performance of the proposed BLMS-
based schemes, which are benchmarked against the ex-
isting techniques.

C. Organization of the Work

The organization of this paper is as follows. Section-II
presents the wideband SC-FDE-based mmWave hybrid MIMO
system model, followed by the sparse channel estimation
model. Our FBLMS technique is developed in Section-III,
while Section-IV develops SFBLMS technique, followed by
the proposed design of hybrid precoder and combiner in
Section-V. This is followed by our simulation results in
Section-VI. Section-VII concludes the paper, which is fol-
lowed by the proofs of the results in the Appendices.

D. Notation

The quantity diag(a1, a2, · · · , aN ) represents a diagonal
matrix having the principal diagonal elements given by
a1, a2, · · · , aN and IN denotes the N × N identity matrix.
Superscripts AT , AH , A∗ and A−1 denote the transpose,
Hermitian, conjugation and inverse respectively. The vector
equivalent of the matrix A is denoted by vec(A), which is
formed by stacking the columns to form a single column
vector. Similarly, vec−1(a) denotes the corresponding inverse
vectorization operation to provide the original matrix. The
maximum eigenvalue of a matrix is denoted by λmax(·) and
the trace operator is denoted by Tr(·), while E{·} denotes
the statistical expectation. The probability density function
(pdf) of a complex Gaussian random vector having a mean
vector of µ and covariance matrix of Σ is denoted by
CN (µ,Σ). U [a, b] denotes uniform distribution between the
range a and b. Furthermore, ∇(·) represents the gradient
of a function, while ‖x‖p denotes the lp norm of vector
x. A well-known property of the vec (·) operator, given by
vec (ABC) =

(
CT ⊗A

)
vec (B), is used in the paper, where

⊗ denotes the Kronecker product of two matrices.

II. SC WIDEBAND MMWAVE HYBRID MIMO SYSTEM
AND CHANNEL MODEL

Consider a SC wideband mmWave hybrid MIMO sys-
tem having Nt TAs, Nr RAs and NRF RFCs both at the
transmitter and receiver to transmit Ns data streams, where
Ns ≤ NRF << min(Nt, Nr). The mmWave hybrid MIMO
transmitter comprises a baseband precoder FBB ∈ CNRF×Ns
and RF precoder FRF ∈ CNt×NRF in cascade. Similarly,
the receiver consists of an RF combiner WRF ∈ CNr×NRF
and baseband combiner WBB ∈ CNRF×Ns . It is important
to note that the RF precoder and combiner matrices FRF
and WRF , respectively, constitute a network of digitally
controlled phase-shifters, i.e., their elements are constrained to
constant magnitudes [2]. Without loss of generality, we assume
|FRF (i, j)| = 1√

Nt
, |WRF (i, j)| = 1√

Nr
. Let us consider

a wideband mmWave MIMO channel, which is frequency-
selective with L delay taps, where the lth, ∀ 0 ≤ l ≤ L − 1,
delay tap is represented by the complex channel matrix Hl

of size Nr × Nt. Let furthermore x(ñ) ∈ CNs×1 denote the
transmit symbol vector at time instant ñ. The output signal
vector ỹ(ñ) ∈ CNs×1, after the baseband combining, is given
by

ỹ(ñ) = WH
BBWH

RF [Hñ ∗ x̃(ñ)] + WH
BBWH

RFv(ñ), (1)
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TABLE I: Summary of literature survey on mmWave hybrid MIMO channel estimation

[15] [13] [10] [12] [21] [26] [29] [32] [31] Proposed

Spatial-sparsity
Delay-domain sparsity × × × × × × × ×
Time-selectivity × × × × × ×
Frequency-selectivity × ×
Cluster-based channel model × × × × × × ×
Single-carrier (SC) system × × × × ×
SC-FDE system × × × × × × × ×
Low Complexity
(Matrix-inversion not required) × × × × × × × × ×

SC-FDE hybrid
precoder/ combiner design × × × × × × × × ×

Online and adaptive schemes × × × × × × × × ×
Convergence analysis × × × × × × × × ×

Fig. 1: Frame-structure for the proposed SC-FDE-based wideband mmWave hybrid MIMO channel estimation.

Fig. 2: Block diagram of frequency-domain signal processing in a SC-FDE-based wideband mmWave hybrid MIMO system.

where x̃(ñ) = FRFFBBx(ñ) ∈ CNt×1 and v(ñ) ∈
CNr×1 denotes the noise at the receiver that is distributed
as CN (0Nr×1, σ

2INr ). The notation ∗ represents linear con-
volution between the mmWave MIMO channel taps Hl and
the precoded symbol vector x̃(ñ). As observed in [13], owing
to the higher complexity encountered in channel estimation
and the subsequent data detection in the above time-domain
(TD) model, one can employ the overlap-add method of [38]
described next in order to obtain an equivalent frequency-
domain (FD) representation.

A. SC-FD Channel Estimation Model
Consider the transmission frame-structure shown in Fig.

1. Each frame in this transmission scenario is comprised of

training and data phases. The training phase in a frame is
further divided into M blocks, each having Np pilot vectors.
The block diagram of the associated FD signal processing
in a typical SC wideband mmWave hybrid MIMO system is
illustrated in Fig. 2. Let s

(p)
m,n ∈ CNRF×1 denote the pth,

0 ≤ p ≤ Np − 1, complex pilot vector corresponding to
the mth block in the nth frame. In each mth block, the
Add ZP block appends (L − 1) zeros to the transmit pilot
sequence of the individual RFC in order to generate a zero-
padded (ZP) block of size K = Np + L − 1. The sequence
of channel taps Hl is also padded with (Np − 1) zero-
matrices of size Nr × Nt in order to obtain a ZP block of
size K. For compactness of notation, the ZP pilot vector
and the mmWave MIMO channel tap sequences are described
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as
{

s
(q)
m,n

}K−1

q=0
= {s(0)

m,n, s
(1)
m,n, · · · , s(Np−1)

m,n ,0, · · · ,0︸ ︷︷ ︸
L−1

} and

{Hq}K−1
q=0 = {H0,H1, · · · ,HL−1,0, · · · ,0︸ ︷︷ ︸

Np−1

}, respectively.

Let FRF,m ∈ CNt×NRF and WRF,m ∈ CNr×NRF rep-
resent the training RF precoder and combiner, respectively,
corresponding to the mth block. The output signal vector
ym,n(q) ∈ CNRF×1, 0 ≤ q ≤ K − 1, corresponding to the
mth block in the nth frame is given as

ym,n(q) = WH
RF,m

(
Hq ~K s̃(q)

m,n

)
+ WH

RF,mvm,n(q), (2)

where s̃
(q)
m,n = FRF,ms

(q)
m,n and vm,n(q) denotes the noise

vector distributed as CN (0Nr×1, σ
2INr ). The notation ~K

denotes the circular-convolution of the K-length sequences{
s̃

(q)
m,n

}
and {Hq}. Let the mth TD output block be defined

as {ym,n(q)}K−1
q=0 = {ym,n(0),ym,n(1), · · · ,ym,n(K − 1)}.

The equivalent FD representation of the wideband mmWave
hybrid MIMO system is obtained by taking the K-point fast
Fourier transform (FFT) of the above output block. Thus, the
mth FD output block {y̌m,n[k]}K−1

k=0 is obtained as

{y̌m,n[k]}K−1
k=0 = FFT

(
{ym,n(q)}K−1

q=0

)
= {y̌m,n[0], y̌m,n[1], · · · , y̌m,n[K − 1]} .

(3)

Let H[k] ∈ CNr×Nt denote the mmWave MIMO channel
frequency response (CFR) matrix at the kth subcarrier, which
can be evaluated as

H[k] =

L−1∑
l=0

Hle
−j 2πl

K k. (4)

The output vector y̌m,n[k] ∈ CNRF×1 in (3) at the kth
subcarrier index is given by

y̌m,n[k] = WH
RF,mH[k]FRF,msm,n[k] + WH

RF,mvm,n[k],
(5)

where sm,n[k] ∈ CNRF×1 and vm,n[k] ∈ CNr×1 represent
the kth FFT-point of the transmit pilot sequence s

(q)
m,n and

noise sequence vm,n(q), respectively. Let h[k] = vec(H[k]) ∈
CNrNt×1 denote the vectorized mmWave MIMO CFR at
the kth subcarrier. Upon exploiting properties of the vec(·)
operator described in Section-I-D, Eq. (5) yields

y̌m,n[k] =
(
sTm,n[k]FTRF,m ⊗WH

RF,m

)︸ ︷︷ ︸
Φ̌m,n[k]∈CNRF×NrNt

h[k] + v̌m,n[k], (6)

where v̌m,n[k] = WH
RF,mvm,n[k] ∈ CNRF×1 denotes the

noise at the output of the combiner at the kth subcar-
rier, which is distributed as CN

(
0, σ2Γm

)
with Γm =

KWH
RF,mWRF,m. Finally, the whitened received signal

ym,n[k] = Γ
−1/2
m y̌m,n[k] corresponding to the mth block is

given by

ym,n[k] = Φm,n[k]h[k] + ṽm,n[k], (7)

where Φm,n[k] = Γ
−1/2
m Φ̌m,n[k] denotes the sensing-matrix

and ṽm,n[k] = Γ
−1/2
m v̌m,n[k]. It can be readily verified that

the noise vector ṽm,n[k] is distributed as CN
(
0, σ2INRF

)
.

The next subsection details the mmWave MIMO specific
clustered channel model that exploits the spatial-sparsity for
channel recovery.

B. Sparse Channel Estimation Model for the Wideband
mmWave Hybrid MIMO Systems

The lth delay tap Hl of a wideband frequency-selective
mmWave MIMO channel can be modeled using the spatial
channel model (SCM) formulated in [12], [14], [23] as

Hl = γ

Ncl∑
i=1

Nray,i∑
j=1

αijp (lTs − τij) aR (φij) aHT (θij) , (8)

where Ncl denotes the number of clusters, Nray,i represents
the number of rays in the ith cluster and γ =

√
NrNt/Nray

with Nray =
∑Ncl
i=1Nray,i. The quantities Ts and p(·) repre-

sent the symbol duration and pulse shaping filter response, re-
spectively. The 4-tuple (αij , φij , θij , τij) denotes the complex
channel gain, AoA, AoD and the delay corresponding to the
jth spatial ray in the ith cluster. The vectors aR(φij) ∈ CNr×1

and aT (θij) ∈ CNt×1 denote the receive and transmit array
response vectors corresponding to the AoA φij and AoD θij ,
respectively, and are expressed as

aR
(
φij
)

=
1√
NR

[
1, e−j

2π
λ dR cosφij , . . . , e−j

2π
λ (NR−1)dR cosφij

]T
,

(9)

aT
(
θij
)

=
1√
NT

[
1, e−j

2π
λ dT cos θij , . . . , e−j

2π
λ (NT−1)dT cos θij

]T
,

(10)

where λ denotes the carrier wavelength, and dR and dT
represent the inter-antenna spacings of the uniform linear
RA and TA array, respectively. Let AR ∈ CNr×Nray
and AT ∈ CNt×Nray denote the receive and transmit
array response matrices, respectively, defined as AR =[
aR (φ11) ,aR (φ12) , . . . ,aR

(
φNclNray,Ncl

)]
and AT =[

aT (θ11) ,aT (θ12) , . . . ,aT

(
θNclNray,Ncl

)]
. The model in

(8) can be compactly written as

Hl = ARDlA
H
T , (11)

where Dl ∈ CNray×Nray is a diagonal matrix defined as

Dl = diag
(
d11, d12, · · · , dNclNray,Ncl

)
, (12)

with dij = γαijp(lTs − τij). As described in [2], [8], [16],
[39], the number of clusters obeys Ncl << min(Nt, Nr), due
to the reduced scattering, diffraction and highly directional
signal propagation, coupled with the increased attenuation
from blockage in the mmWave regime. This motivates the
development of the sparse beamspace model for representing
the wideband mmwave MIMO channel tap Hl, which is
described in the sequel.

Let the AoA and AoD spaces spanning the interval of [0, π)
be partitioned into grids of size Gr and Gt, respectively, where
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we have Gr, Gt ≥ max{Nt, Nr}. Let the uniformly-spaced
AoA-grid ΦR and AoD-grid ΘT be defined as

ΦR =

{
φg : φg =

π(g − 1)

Gr
,∀ 1 ≤ g ≤ Gr

}
,

ΘT =

{
θg : θg =

π(g − 1)

Gt
,∀ 1 ≤ g ≤ Gt

}
.

Let furthermore AT (ΘT ) ∈ CNt×Gt and AR (ΦR) ∈
CNr×Gr denote the dictionary matrices corresponding to the
transmit and receive array responses, respectively, which are
defined as AR (ΦR) = [aR (φ1) ,aR (φ2) , . . . ,aR (φGr )] and
AT (ΘT ) = [aT (θ1) ,aT (θ2) , . . . ,aT (θGt)]. The beamspace
domain representation of the wideband mmWave MIMO chan-
nel can thus be obtained as [2], [12], [15]

Hl ≈ AR (ΦR) Hb,lA
H
T (ΘT ) , (13)

where Hb,l ∈ CGr×Gt represents the beamspace channel
matrix corresponding to Hl. Since, the number of clusters Ncl
is much lower than the grid-size Gr and Gt, due to the reasons
described earlier in this section, the beamspace channel matrix
Hb,l is sparse, i.e., only a few of its entries are significant, with
the rest being close to zero. Furthermore, when the quantiza-
tion intervals π/Gr and π/Gt of the AoA and AoD spaces,
respectively, are suitably fine, any column of the receive and
transmit array response matrices AR and AT of the mmWave
MIMO channel can be closely approximated by a column of
the corresponding dictionary matrices AR (ΦR) and AT (ΘT ),
respectively. Thus, ignoring the effect of quantization errors in
(13) and substituting it into (4), the mmWave MIMO matrix
H[k] can be formulated as

H[k] = AR (ΦR)

(
L−1∑
l=0

Hb,le
−j 2πkl

K

)
︸ ︷︷ ︸

Hb[k]

AH
T (ΘT ) , (14)

where Hb[k] ∈ CGr×Gt represents the beamspace CFR matrix
corresponding to H[k]. Since we know from (8) that the AoAs/
AoDs corresponding to all the delay taps Hl are identical, this
implies that the locations of the significant elements in Hb,l do
not change across the delay taps. Furthermore, we also know
from (14), the beamspace CFR matrix Hb[k],∀ 0 ≤ k ≤ K−1,
also exhibits an identical sparsity profile as that to Hb,l. Note
that although the channel impulse response (CIR) {Hl}L−1

l=0 is
sparse in the delay domain [31], [32], the CFR {H[k]}K−1

k=0

obtained via FFT is not sparse in the subcarrier domain. Hence,
in this work, the beamspace domain sparsity of the CFRs is
exploited for CSI estimation, rather than capitalizing on the
delay-domain sparsity. Once again, by exploiting the properties
of the vec(·) operator, the vectorized mmWave MIMO channel
h[k] can be expressed as

h[k] = [A∗T (ΘT )⊗AR (ΦR)] hb[k], (15)

where hb[k] = vec (Hb[k]) ∈ CGrGt×1 represents the vector-
ized beamspace CFR, which is sparse in nature. Substituting
(15) in (7), the sparse channel estimation model of the system
under consideration is given as

ym,n[k] = Ψm,n[k]hb[k] + ṽm,n[k], (16)

where Ψm,n[k] = Φm,n[k] [A∗T (ΘT )⊗AR (ΦR)] ∈
CNRF×GrGt denotes the equivalent sensing matrix. The next
section develops an online adaptive filtering based FBLMS
scheme for estimating the wideband mmWave MIMO channel.

III. FBLMS-BASED WIDEBAND MMWAVE HYBRID
MIMO CHANNEL ESTIMATION

Let ĥb,m,n[k] denote estimate of the channel hb[k] in the
mth block of the nth frame. Let furthermore the corresponding
MSOE cost function be defined as

Jm,n[k] = E
{∥∥∥ym,n[k]−Ψm,n[k]ĥb,m,n[k]

∥∥∥2
}
. (17)

Employing the steepest-descent method [35], [36], the estimate
ĥb,m+1,n[k] is iteratively updated as

ĥb,m+1,n[k] = ĥb,m,n[k]− µ

2
∇ĥb,m,n[k] (Jm,n[k]) , (18)

where the quantity µ represents the step-size parameter. Upon
defining p = E

{
ΨH
m,n[k]ym,n[k]

}
∈ CGrGt×1 and R =

E
{
ΨH
m,n[k]Ψm,n[k]

}
∈ CGrGt×GrGt , the gradient of the cost

function Jm,n[k] is given by

∇ĥb,m,n[k] (Jm,n[k]) = 2Rĥb,m,n[k]− 2p. (19)

Upon substituting (19) in (18), the update equation is formu-
lated as

ĥb,m+1,n[k] = ĥb,m,n[k] + µ
(
p−Rĥb,m,n[k]

)
. (20)

It can be noted that in practical scenarios, it is rather chal-
lenging to obtain accurate estimates of the quantities R and
p, since this necessitates averaging over a large number of
sample blocks. Thus, to avoid this difficulty, the proposed
FBLMS technique employs a stochastic-gradient approach
[35], [36], which replaces the quantities R and p by their in-
stantaneous estimates R̂m,n = ΨH

m,n[k]Ψm,n[k] and p̂m,n =

ΨH
m,n[k]ym,n[k]. Therefore, the FBLMS estimate ĥb,m+1,n[k]

of the wideband mmWave MIMO channel can be updated as

ĥb,m+1,n[k] = ĥb,m,n[k] + µΨH
m,n[k]em,n[k], (21)

where em,n[k] ∈ CNRF×1 denotes the instantaneous observa-
tion error vector obeying

em,n[k] = ym,n[k]−Ψm,n[k]ĥb,m,n[k]. (22)

Finally, the mmWave MIMO CFR matrix estimate ĤFBLMS
n [k]

in the nth frame is expressed as

Ĥn[k] = AR (ΦR) vec−1
(
ĥb,M,n[k]

)
AH
T (ΘT ) , (23)

where ĥb,M,n[k] denotes the final estimate of the beamspace
CFR vector in the nth frame. The proposed FBLMS technique
is initialized as below:

ĥb,1,0[k] = 0GrGt×1, ĥb,1,n[k] = ĥb,M+1,n−1[k]. (24)

A compact representation of the steps involved in the FBLMS
technique for wideband mmWave MIMO channel estimation
is provided in Algorithm-1. The next subsection derives the
analytical expressions of the resultant MSEE and MSOE of the
proposed FBLMS technique for wideband mmWave MIMO
CFR estimation.
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Algorithm 1: FBLMS-based wideband mmWave hy-
brid MIMO channel estimation

Input: Observation ym,n[k] ∈ CNRF×1, sensing
matrix Ψm,n[k] ∈ CNRF×GrGt

Output: ĤFBLMS
n [k]

1 Initialization: ĥb,M+1,−1[k] = 0GrGt×1

2 for n = 0, 1, 2, · · · do
3 ĥb,1,n[k] = ĥb,M+1,n−1[k]
4 for m = 1, 2, · · · ,M do
5 em,n[k] = ym,n[k]−Ψm,n[k]ĥb,m,n[k]

6 ĥb,m+1,n[k] = ĥb,m,n[k] + µΨH
m,n[k]em,n[k]

7 end
8 return: ĤFBLMS

n [k] =

AR (ΦR) vec−1
(
ĥb,M,n[k]

)
AH
T (ΘT )

9 end

A. Mean Squared Estimation Error (MSEE) for FBLMS

In order to simplify the analysis, the subcarrier index k is
dropped, since the analysis is similar for each subcarrier. The
result below, pertaining to the step-size parameter µ, ensures
the convergence of the ensemble mean of the estimation error
εm,n that is defined as

εm,n = ĥb,m,n − hb,opt, (25)

where hb,opt and ĥb,m,n denote the underlying beamspace
channel and its FBLMS estimate, respectively.

Lemma 1. A sufficient condition for the convergence of the
ensemble mean of the estimation error εm,n to zero, i.e,
lim
n→∞

E[εm,n] = 0GrGt×1, is given by

0 < µ <
2

Tr(R)
. (26)

Proof. Given in Appendix-A.

Let the MSEE of the proposed FBLMS technique be defined
as

EFBLMS
m,n = E

{
Tr
[
εm,nε

H
m,n

]}
. (27)

Let furthermore the eigenvalue decomposition of the matrix
R be given by R = UΛUH , where the diagonal matrix Λ is
comprised of the eigenvalues λi, 1 ≤ i ≤ GrGt, on its prin-
cipal diagonal. Let ε̃m,n = UHεm,n denote the transformed
estimation error. Furthermore, let Ω = [A∗T (ΘT )⊗AR (ΦR)]
represent the sparsifying dictionary matrix, so that h = Ωhb,
with Km,n = E

[
ε̃m,nε̃

H
m,n

]
denoting the covariance matrix

of the transformed estimation error vector in the beamspace
domain, while the quantity ε̃1,0 = UH

(
ĥb,1,0 − hb,opt

)
,

where ĥb,1,0 represents the initial estimate for the 0th frame.
The Lemma below determines the resultant MSEE for the
proposed FBLMS technique.

Lemma 2. The MSEE EFBLMS
m,n for the FBLMS framework,

corresponding to block m and frame n is given by

EFBLMS
m,n = Tr

[
ΩUKm,nUHΩH

]
, (28)

where Km,n is given by the following expression

Km,n = Īs−1K1,0Ī
s−1 + ∆m,n. (29)

The quantity Ī = (IGrGt − µΛ) and ∆m,n in (29) is a
diagonal matrix whose ith diagonal element is given by

∆m,n(i, i) = −µσ
2 (1− µλi)2(s−1)

2− µλi
+

µσ2

2− µλi
, (30)

where s = Mn + m. Furthermore, the asymptotic MSEE
EFBLMS
∞ , lim

n→∞
E
[
‖ε̃m,n‖2

]
in the beamspace domain can

be derived as

EFBLMS
∞ = Tr [∆∞] , (31)

where the quantity ∆∞ is a diagonal matrix with its ith
diagonal elements given by

∆∞(i, i) =
µσ2

2− µλi
. (32)

Proof. Appendix-A provides the detailed proof.

B. Mean Squared Observation Error (MSOE) for FBLMS

Let Jmin be defined as

Jmin = E
{
‖ ym,n −Ψm,nhb,opt ‖2

}
, (33)

which denotes the minimum MSOE achieved by employing
the true beamspace channel hb,opt. It follows from (16) that
Jmin = σ2NRF . The Lemma below derives the MSOE for the
proposed FBLMS technique.

Lemma 3. The MSOE J FBLMS
m,n for the FBLMS framework is

given by

J FBLMS
m,n = Jmin +

GrGt∑
i=1

[λiKm,n(i, i)] . (34)

Furthermore, the asymptotic MSOE J FBLMS
∞ , lim

n→∞
J FBLMS
m,n

is given by

J FBLMS
∞ = Jmin +

GrGt∑
i=1

[
λiµσ

2

2− µλi

]
. (35)

Proof. The proof is given in Appendix-B.

Furthermore, as described in [35] [Eq. (5.104)], the average
time constant τav of the proposed FBLMS method is given by
τav = GrGt

2µTr(R) . The settling time of the FBLMS technique, i.e.
the time taken for the transients to die out, is proportional to
τav. This implies that a higher value of the step-size parameter
µ, while satisfying Lemma-1, yields a faster convergence.
However, since the term µ

2−µλi appearing in Eq. (32) and
(35) is an increasing function of µ, the asymptotic quantities
MSEE EFBLMS

∞ and MSOE J FBLMS
∞ , given by (31) and (35),

respectively, increase for higher values of µ. Thus, there is
a trade-off between the lower MSEE/ MSOE and faster rate
of convergence for the proposed FBLMS algorithm, which
depends on the choice of the step-size parameter µ. This is
also illustrated by our simulations in Section-VI.
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Note that the FBLMS technique estimates the wideband
mmWave MIMO channel h[k] without exploiting the sparse
nature of the multipath components in a typical mmWave
MIMO channel, which is a unique signal propagation char-
acteristic in the mmWave regime. Exploiting this aspect can
further lead to a significant improvement in the quality of the
estimated CSI. To this end, an online adaptive filtering based
sparsity inducing SFBLMS framework is developed next for
estimating the wideband mmWave MIMO channel.

IV. SFBLMS-BASED SPARSE CHANNEL ESTIMATION IN
WIDEBAND MMWAVE HYBRID MIMO SYSTEMS

The problem of estimating the sparse beamspace channel
vector hb [k] can now be formulated as

minimize
hb[k]

‖hb [k] ‖0 (36)

subject to ‖ym,n[k]−Ψm,n[k]hb[k]‖22 ≤ ε, (37)

where ε is a configurable parameter. The above optimization
problem can be readily observed to be non-convex due to the
minimization of the l0-norm. Although there exist a variety
of sparse signal recovery algorithms, such as the SBL [12],
[22] and OMP [15] etc., these are computationally com-
plex and require multiple matrix inversions in each iteration.
Additionally, they are offline in nature, which leads to a
high processing delay. These challenges are addressed by the
SFBLMS framework developed next.

The regularized cost function [40], [41] for the correspond-
ing MSOE is defined as

J̄m,n[k] = E
{∥∥∥ym,n[k]−Ψm,n[k]ĥb,m,n[k]

∥∥∥2
}

+ δ′f
(
ĥb,m,n[k]

)
, (38)

where f(·) represents the sparsity-inducing penalty term and
δ′ denotes the regularization parameter. Upon employing the
steepest descent algorithm [35], the estimate ĥb,m+1,n[k] can
be iteratively updated as

ĥb,m+1,n[k] = ĥb,m,n[k]− µ

2
∇ĥb,m,n[k]

(
J̄m,n[k]

)
. (39)

The gradient of the cost function above is formulated as

∇ĥb,m,n[k]

(
J̄m,n[k]

)
= 2Rĥb,m,n[k]− 2p

− δg
(
f(ĥb,m,n[k])

)
, (40)

where δ =
µδ′

2
denotes the regularization step-size and

g
(
f(ĥb,m,n[k])

)
= ∇ĥb,m,n[k]

(
f(ĥb,m,n[k])

)
represents the

gradient of the sparsity-inducing penalty function f(·). Thus,
the update equation in (39) can be simplified to

ĥb,m+1,n[k] = ĥb,m,n[k] + µ
(
p−Rĥb,m,n[k]

)
− δg

(
f(ĥb,m,n[k])

)
. (41)

Similar to the FBLMS framework developed Section-III, the
quantities R and p can now be replaced by their instanta-
neous approximations ΨH

m,n[k]Ψm,n[k] and ΨH
m,n[k]ym,n[k],

respectively. Following some rearrangement of the terms, it is
simplified to

ĥb,m+1,n[k] = ĥb,m,n[k] + µΨH
m,n[k]em,n[k]

− δg
(
f(ĥb,m,n[k])

)
, (42)

where em,n[k], similar to (22), denotes the instantaneous
observation error. Lastly, the mmWave MIMO CFR matrix
estimate Ĥn[k] for the nth frame can be recovered from
ĥb,M,n[k] using (23). In this contribution, we consider both
l0-norm approximation and l1-norm based sparsity-inducing
penalty functions. The analysis of each is described in separate
subsections below.

A. SFBLMS using l0-norm Approximation (SFBLMS-l0)

The l0-norm penalty function, denoted by f0(·), is defined
as

f0

(
ĥb,m,n[k]

)
=
∥∥∥ĥb,m,n[k]

∥∥∥
0
=

GrGt∑
i=1

I
(∣∣∣ĥb,m,n[k](i)

∣∣∣ > 0
)
,

(43)

where I(·) denotes the indicator function. Since, the l0-
norm defined above is non-convex, we can employ a suitable
approximation, similar to the one described in [40], [41], as
GrGt∑
i=1

I
(∣∣∣ĥb,m,n[k](i)

∣∣∣ > 0
)
≈
GrGt∑
i=1

(
1− e−α(|ĥb,m,n[k](i)|)

)
,

(44)

where α is a parameter that defines the accuracy of the
approximation above. Thus, the ith element of the gradient
term g

(
f0(ĥb,m,n[k])

)
, denoted by

[
g
(
f0(ĥb,m,n[k])

)]
(i)

,

is obtained as[
g
(
f0(ĥb,m,n[k])

)]
(i)

= αe−α(|ĥb,m,n[k](i)|)

× sgn
(
ĥb,m,n[k](i)

)
. (45)

Substituting (45) into (42) yields the update equation for
SFBLMS-l0.

B. SFBLMS using l1-norm (SFBLMS-l1)

The l1-norm penalty function, denoted as f1(·), is defined
as [40], [41]

f1

(
ĥb,m,n[k]

)
=
∥∥∥ĥb,m,n[k]

∥∥∥
1

=

GrGt∑
i=1

∣∣∣ĥb,m,n[k](i)
∣∣∣ . (46)

The ith element of the gradient term g
(
f1(ĥb,m,n[k])

)
,

denoted by
[
g
(
f1(ĥb,m,n[k])

)]
(i)

, is computed as[
g
(
f1(ĥb,m,n[k])

)]
(i)

= sgn
(
ĥb,m,n[k](i)

)
. (47)

Once again, substituting (47) into (42), yields the update equa-
tion for SFBLMS-l1. A step-by-step procedure along with the
initialization required for the proposed SFBLMS technique is
given in Algorithm-2. Although the conventional initialization
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Algorithm 2: SFBLMS-based wideband mmWave hy-
brid MIMO channel estimation

Input: Observation ym,n[k] ∈ CNRF×1, sensing
matrix Ψm,n[k] ∈ CNRF×GrGt

Output: ĤSFBLMS
n [k]

1 Initialization: ĥb,M+1,−1[k] = 0GrGt×1

2 for n = 0, 1, 2, · · · do
3 ĥb,1,n[k] = ĥb,M+1,n−1[k]
4 for m = 1, 2, · · · ,M do
5 em,n[k] = ym,n[k]−Ψm,n[k]ĥb,m,n[k]

6 Update ĥb,m+1,n[k] using (42)
7 end
8 return: ĤSFBLMS

n [k] =

AR (ΦR) vec−1
(
ĥb,M,n[k]

)
AH
T (ΘT )

9 end

ĥb,M+1,−1[k] = 0GrGt×1 of the beamspace channel provides
accurate estimates, as described in the simulation results of
Section-VI, it typically requires a large number of frames for
the convergence of the MSEE. To overcome this drawback, we
can initialize the proposed SFBLMS framework with a suitable
sparse estimate obtained using any of the existing sparse signal
recovery techniques applied in the 0th frame. This technique
is termed sparse-initialized (SI) SFBLMS (SI-SFBLMS) in
the sequel and has been shown to have better convergence
performance than the non-sparse initialization based SFBLMS.

C. MSEE for SFBLMS

For simplicity, once again the subcarrier index k is dropped.
One can define the estimation error vector corresponding to
the SFBLMS estimate ĥb,m,n as

ε̌m,n = ĥb,m,n − hb,opt. (48)

The condition for convergence of the ensemble mean of the
estimation error ε̌m,n to zero, i.e lim

n→∞
E [ε̌m,n] = 0GrGt×1,

is once again given by Lemma-1. Hence, it is not repeated
here. Let ε̄m,n = UH ε̌m,n denote the transformed estimation
error vector. Furthermore, let the quantities us = um,n and
ts = tm,n be defined as

us = um,n = µUHΨH
m,nṽm,n,

ts = tm,n = −δUHg
(
f(ĥb,m,n)

)
, (49)

where the index s = Mn + m, or equivalently n =
b s−1
M c and m = (s− 1)M + 1. Here, b·c and (·)M de-

note the floor and modulo-M operations, respectively. Let
K̄m,n = E

[
ε̄m,nε̄

H
m,n

]
denote the covariance matrix of the

transformed estimation error vector ε̄m,n and let ε̄1,0 =

UH
(
ĥb,1,0 − hb,opt

)
, where ĥb,1,0 represents the initial es-

timate for the 0th frame. The Lemma below describes the
MSEE for the proposed SFBLMS technique.

Lemma 4. The MSEE ESFBLMS
m,n for the SFBLMS framework is

given as

ESFBLMS
m,n = Tr

[
ΩUK̄m,nUHΩH

]
, (50)

where K̄m,n is obtained by the following expression

K̄m,n = Īs−1K̄1,0Ī
s−1 + ∆m,n +

s−1∑
p=1

Īs−1ε̄1,0T
H
p Īs−1−p

+

s−1∑
p=1

Īs−1−pTpε̄
H
1,0Ī

s−1 +

s−1∑
p,q=1

Īs−1−pKp,q
u,t Ī

s−1−q

+

s−1∑
p,q=1

Īs−1−qKq,p
t,u Īs−1−p +

s−1∑
p,q=1

Īs−1−pKp,q
t,t Īs−1−q,

(51)

relying on the quantities Kp,q
t,t = E

[
tpt

H
q

]
, Kp,q

u,t = E
[
upt

H
q

]
,

Kp,q
t,u = E

[
tpu

H
q

]
and Tp = E [tp].

Proof. Given in Appendix-C

D. MSOE for SFBLMS

The following Lemma provides the MSOE corresponding
to the proposed SFBLMS framework.

Lemma 5. The MSOE J SFBLMS
m,n for the mth block in the nth

frame is given by

J SFBLMS
m,n = Jmin +

GrGt∑
i=1

[
λiK̄m,n(i, i)

]
. (52)

Proof. The proof is similar to that of the FBLMS framework
given in the Appendix-B.

E. Choice of the Regularization parameter δ

As seen in (42), the update equation of the SFBLMS
framework employs a regularization parameter δ. The sim-
ulation results of Section-VI illustrate that the choice of
the regularization parameter is critical and hence it should
be appropriately chosen. The following Lemma provides a
systematic bound on the choice of δ, which guarantees that
the MSEE performance of SFBLMS is always better than that
of the FBLMS.

Lemma 6. The regularization parameter δm,n in the mth
block of the nth frame, which ensures a lower MSEE of
SFBLMS in comparison to FBLMS technique, is given by

0 ≤ δm,n ≤
2<
{
ε̌Hm,n (IGrGt − µR) g

(
f(ĥb,m,n[k])

)}
∥∥∥g (f(ĥb,m,n[k])

)∥∥∥2 .

(53)

Proof. Given in our technical report in [42].

The discussion related to the convergence behavior of the
FBLMS technique, described after Lemma-3, also holds for
the SFBLMS approach. The same is also illustrated by our
simulations in Section-VI.
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F. Complexity Analysis

The computational complexities incurred for each frame of
the proposed FBLMS and SFBLMS schemes are evaluated
next. The number of complex additions and multiplications
required for estimating the beamspace channel vector hb[k]
using the proposed FBLMS, SFBLMS and the existing OMP
[13] schemes are compared in Table-II. Observe from the table
that the computational complexity of the channel estimation
in each frame for both the FBLMS and SFBLMS schemes is
in the order of O (MNRF ), while the same for the OMP is
O
[
(MNRF )

3
]
, which is significantly higher in comparison to

our BLMS-based schemes. In addition, as it will be demon-
strated in the simulation results of Section-VI, the FBLMS and
SFBLMS schemes provide an improved MSEE in comparison
to the existing OMP technique, thus making them extremely
well suited for practical wideband mmWave hybrid MIMO
systems.

V. PRECODER AND COMBINER DESIGN FOR
SC-FDE-BASED WIDEBAND MMWAVE HYBRID MIMO

SYSTEMS

This section develops a comprehensive procedure to design
the hybrid precoder and combiner at the transmitter and the
receiver, respectively, of the SC-FDE-based wideband system
using the CSI estimated through the approaches described in
the previous sections. Let s[k] ∈ CNs×1 denote the baseband
transmit symbol vector, which has been normalized to unit
power so that E

[
s[k]sH [k]

]
= 1

Ns
INs . In the proposed

SC-FDE-based mmWave hybrid MIMO system, the received
symbol vector y[k] ∈ CNs×1, after the baseband combining,
is obtained similar to (5) as

y[k] =WH
BB [k]WH

RFH[k]FRFFBBs[k]

+ WH
BB [k]WH

RFv[k], (54)

where v[k] ∈ CNr×1 ∼ CN (0,Kσ2INr ) is the receiver noise.
Let the singular value decomposition (SVD) of the mmWave
MIMO CFR matrix H[k] be given as

H[k] = U[k]Σ[k]VH [k]. (55)

Note that for the mmWave MIMO channel H[k], the
frequency-selective optimal digital precoder Fopt[k] is given
as Fopt[k] = V1[k], where V1[k] is comprised of the first
Ns columns of the right singular matrix V[k]. However, for
the SC-FDE-based system model of (54), one has to design
the subcarrier-independent hybrid precoders FRF and FBB .
The best approximation problem for the design of the optimal
baseband and RF precoders Fopt

BB and Fopt
RF , respectively, can

be formulated as(
Fopt
RF ,F

opt
BB

)
= arg min

(FRF ,FBB)

K−1∑
k=0

∥∥Fopt[k]− FRFFBB
∥∥2

F
.

(56)

As described in Appendix-D, we can reformulate the above
design problem as(

Fopt
RF ,F

opt
BB

)
= arg min

(FRF ,FBB)

∥∥Fopt − FRFFBB
∥∥2

F
, (57)

where Fopt = 1
K

∑K−1
k=0 Fopt[k]. It can be readily observed that

we have C (Fopt) ⊂ R (H[k]), where C(·) and R(·) denote
the column and row space of a matrix. This implies that the
columns of the RF precoder FRF can be suitably selected
from the columns of the transmit array response dictionary
matrix AT (ΘT ), which satisfy the constant magnitude con-
straints |FRF (i, j)| = 1√

Nt
, |WRF (i, j)| = 1√

Nr
. The popular

simultaneous orthogonal matching pursuit (SOMP) technique
[14], also described in our technical report [42], can now be
employed to decompose the optimal frequency-flat precoder
Fopt into the corresponding hybrid precoders FRF and FBB .
The design procedure of the frequency-flat RF combiner WRF

and of the frequency-selective baseband combiner WBB [k]
is presented next. In this context, the optimal digital MMSE
combiner WM[k] is given by

WM[k] = He[k]
(
HH
e [k]He[k] + σ2NsINs

)−1
, (58)

where He[k] = H[k]FRFFBB ∈ CNr×Ns . Let the con-
catenated MMSE combiner WM and the baseband combiner
WBB be defined as

WM = [WM[0],WM[1], · · · ,WM[K − 1]]

WBB = [WBB [0],WBB [1], · · · ,WBB [K − 1]] . (59)

Since, the RF combiner WRF is frequency-flat, the best
approximation of the hybrid combiner is formulated as(

Wopt
RF ,W

opt
BB

)
= arg min

(WRF ,WBB)

‖WM −WRFWBB‖2F .

(60)

It can be once again verified that C (WM[k]) ⊂
C (H[k]) ,∀ 0 ≤ k ≤ K − 1, which implies that the columns
of WRF can be appropriately picked from the columns of
AR(ΦR). Thus, similar to (57), we can employ the SOMP
technique for solving the hybrid combiner design problem
stated above.

VI. SIMULATION RESULTS

A SC wideband mmWave hybrid MIMO system is consid-
ered with the number of TAs and RAs set to Nt = Nr ∈
{8, 16, 32}, the number of RFCs both at the transmitter and
receiver side set to NRF ∈ {4, 8}. The inter-antenna separa-

tion in the TA and RA arrays is dT = dR =
λ

2
. The wideband

mmWave MIMO channel is assumed to be spatially-sparse
having Ncl ∈ {4, 6} clusters, Nray,i ∈ {1, 4},∀1 ≤ i ≤ Ncl,
rays per cluster and the number of delay taps is set to L = 4.
The complex path-gain αij and delay τij corresponding to the
jth spatial ray of the ith cluster is modeled as αij ∼ CN (0, 1)
and τij ∼ U [0, (L − 1)Ts]. The raised-cosine pulse-shaping
filter is considered with the roll-off factor set to 0.85. During
channel estimation, the entries of the RF precoder and com-
biner are set as [13]

FRF,m(i, j) =
1√
Nt
ejϕi,j and WRF,m(i, j) =

1√
Nr

ejψi,j ,

where the phases ϕi,j and ψi,j are drawn with uniform
probability distribution from the set

A =

{
0,

2π

2NQ
, · · · ,

(
2NQ − 1

)
2π

2NQ

}
, (61)
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TABLE II: Computational complexity of FBLMS, SFBLMS and OMP per frame

Algorithm Multiplications Additions
FBLMS M (2GrGtNRF +NRF +GrGt) 2MNRFGrGt

SFBLMS 2MGrGt(NRF + 1) MGrGt(2NRF + 1)

OMP 7
3
(MNRF )

3 + 7
2
(MNRF )

2 + (GrGt + 1)MNRF
5
2
(MNRF )

3 − (MNRF )
2 + (GrGt − 1)MNRF −GrGt
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Fig. 3: (a) NMSEE versus number of frames n performance for the mmWave hybrid MIMO system with simulation parameter Nt =
Nr = 16, NRF = 4, Gr = Gt = 16,M = 20, Ncl = 4, and Nray,i = 1. The analytical NMSEEs for FBLMS and SFBLMS have been
evaluated using Lemma-2 and Lemma-4, respectively. ‘SI-’ stands for sparse-initialized version of the proposed algorithms. (b) MSOE versus
number of frames n performance for the mmWave hybrid MIMO system with simulation parameter Nt = Nr = 16, NRF = 4, Gr = Gt =
16,M = 20, Ncl = 4, and Nray,i = 1. The analytical MSOEs for FBLMS and SFBLMS have been evaluated using Lemma-3 and Lemma-
5, respectively. (c) NMSEE versus number of frames n performance of the FBLMS and SFBLMS-l0 scheme with varying regularizer δ for
the mmWave hybrid MIMO system with simulation parameters Nt = Nr = 32, NRF = 8, Gr = Gt = 32,M = 20, Ncl = 4, Nray,i =
1 and µ = 1

10λmax
. For the adaptive regularization (AR)-based AR-SFBLMS-l0, the regularizer δ is derived using Lemma-6.

with the angle quantization parameter of NQ = 3. The number
of pilot vectors in each block is set as Np = 13, which
implies that the FFT-block size is K = Np + L − 1 = 16.
The elements of the pilot symbol vector s

(p)
m,n are drawn from

an 8-PSK (phase shift keying) constellation with an average
power of unity. The AoA/ AoD space [0, π) is quantized into
Gr = Gt ∈ {16, 32, 64} angular grid-points. The SNR is

defined as
1

σ2
. The parameter α in the l0-approximation in

(44) is set as α = 20. The performance of the proposed and
existing schemes are compared in terms of the normalized
MSEE (NMSEE), which is defined as [10]

NMSEEn =

∑K−1
k=0

∥∥∥H[k]− Ĥn[k]
∥∥∥2

F∑K−1
k=0 ‖H[k]‖2F

. (62)

Fig. 3(a) compares the NMSEE performance versus the num-
ber of frames (n) of the various BLMS-based schemes pro-
posed in this paper. The simulation parameters are set as Nt =
Nr = 16, NRF = 4, Gr = Gt = 16,M = 20 and Ncl = 4.
An on-grid scenario is considered, where the AoA/ AoDs
corresponding to each spatial path are generated with uniform
probability from the angular grid with Nray,i = 1 ray per
cluster. The SNR for this study is set to 15 dB. For the
BLMS-based schemes, the step-size parameter µ is set to 1

8λmax
,

where λmax denotes the maximum eigenvalue value of R. The
regularization parameter δ is set as δ = 0.08µ for SFBLMS-
l0 and δ = 0.5µ for SFBLMS-l1. Observe from the figure

that the NMSEE performance of all the proposed BLMS-
based schemes improve with the frame-index n. It can also be
observed that the SFBLMS techniques outperform the FBLMS
technique. This is due to the fact that the SFBLMS techniques
exploit the spatial-sparsity inherent in the beamspace represen-
tation of the wideband mmWave MIMO channel, which the
conventional FBLMS could not. Furthermore, the SFBLMS-
l0 variant of SFBLMS has a better NMSEE performance than
SFBLMS-l1. This is because the SFBLMS-l0 employs the l0-
norm approximation given in (44), which yields a better fit
to the original l0-norm based optimization objective given in
(36), in comparison to its l1-norm approximation employed
by SFBLMS-l1. Additionally, it can also be observed that the
theoretical NMSEE curves evaluated for the proposed FBLMS
and SFBLMS techniques closely match their counterparts
obtained via simulation. Finally, the proposed sparse initialized
SI-FBLMS and SI-SFBLMS techniques, which utilize the
initial estimate ĥb,1,0[k] obtained from the OMP technique
employed over the 0th frame, are seen to converge significantly
faster in comparison to the zero-initialization given in (24),
which is the conventional initialization employed for the
BLMS-based schemes.

Fig. 3(b) presents the analytical and simulated MSOE
versus the number of frames n for the proposed BLMS-based
techniques for a mmWave setup with simulation parameters set
as Nt = Nr = 16, NRF = 4, Gr = Gt = 16,M = 20. The
noise variance for this analysis is set to σ2 = −10 dB, which
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implies that the Jmin = −3.97 dB. Once again, the MSOE for
all the proposed schemes is seen to decrease upon increasing
the frame-index n. Also, the theoretical MSOEs derived for all
the proposed schemes coincide with their simulated MSOEs.
Finally, the MSOE of the SI-SFBLMS technique is once again
seen to converge significantly faster than the SFBLMS due to
the sparse-initialization.

Fig. 3(c) compares the NMSEE of the proposed SFBLMS-
l0 technique, which employs a fixed regularization parameter
δ, to that of the adaptive regularization (AR) based AR-
SFBLMS-l0 employing δ from Lemma-6. For this study, a
mmWave setup is considered using simulation parameters of
Nt = Nr = 32, NRF = 8, Gr = Gt = 32,M = 20. From
the plot, it can be readily seen that the SFBLMS-l0 with an
empirically tuned δ = 0.5µ has the lowest NMSEE. Any other
fixed value of δ results in a higher NMSEE. Furthermore,
the AR-SFBLMS-l0 uses the regularization parameter δm,n
derived from Lemma-6, which ensures a lower instantaneous
NMSEE in comparison to any other fixed value of δ.

Fig. 4(a) compares the NMSEE versus SNR performance
of the proposed BLMS-based schemes upon convergence and
that of the existing OMP technique for mmWave hybrid
MIMO systems using the simulation parameters Nt = Nr =
8, NRF = 4, Gr = Gt = 16 and M = 20. As the SNR
increases, the NMSEE of all the schemes is seen to improve.
The performance of the existing OMP scheme is seen to
improve with increasing number of blocks M in each frame,
thanks to the larger number of observations. Furthermore, it
can be observed that the NMSEE performance of the BLMS-
based techniques is notably better than that of the existing
OMP scheme. Moreover, the latter has a significantly lower
computational complexity, as derived in Section-IV-F. This is
because the estimation accuracy of the existing OMP scheme
is quite sensitive to the selection of the stopping threshold
and to the equivalent sensing matrix Ψm,n[k], which lead
to its poor overall performance. Thus, its performance is not
robust, unlike that of the BLMS-based approaches. Any minor
modification in the stopping criterion or the sensing matrix
leads to structural and convergence errors [12]. It can also
be observed that the SFBLMS based techniques, which also
exploit the spatial-sparsity of the mmWave MIMO channel,
outperform the FBLMS scheme. Fig. 4(a) also compares the
on-grid and off-grid performance of the various techniques.
The following simulation setup is considered for an off-
grid scenario. The mean-angles of all the Ncl clusters are
considered to be uniformly-distributed over the AoA/ AoD
spaces. Furthermore, the AoA/ AoDs of the Nray,i = 4
spatial-rays corresponding to a cluster are generated using
Laplacian-distribution with standard deviation σas = 0.05
radian, around the mean-angle of that cluster. It can be readily
observed in Fig. 4(a) that the performance of all the schemes
slightly deteriorates in the off-grid scenario. This performance
degradation arises because the actual AoAs/ AoD pairs for
Nray,i = 4 rays of the ith cluster differ from the grid-angles
in the set ΘT and ΦR, which are used for constructing the
equivalent sensing matrix Ψm,n[k]. Finally, one can also ob-
serve an improved NMSEE performance for the BLMS-based
techniques compared to the OMP in the off-grid scenario.

Fig. 4(b) demonstrates the tracking capabilities of the
BLMS-based approaches in a non-stationary scenario for a
wideband mmWave hybrid MIMO setup with simulation pa-
rameters of Nt = Nr = 32, NRF = 4, Gr = Gt = 64,M =
40 at the SNR = 15 dB. The mmWave cellular system is
assumed to operate in the Q-band at 28 GHz. At this carrier
frequency, the user velocity of v = 5 km/h results in a Doppler
shift of fD = 130 Hz. Furthermore, the coherence-time Tc for
the doubly-selective mmWave MIMO channel is set to Tc = 1
ms, while the frame-length TF is set to TF = Tc/10. These
values can be substituted into Jake’s well established model
[43], to evaluate the temporal correlation coefficient ρ yielding
ρ = J0 (2πfDTF ) ≈ 0.9938. For this mobility scenario, the
time-selective complex path gains αij,n follow the first-order
autoregressive (AR1) model given as

αij,n = ραij,n−1 +
√

1− ρ2uij,n, (63)

where uij,n represents the innovation noise that is assumed
to be distributed as CN (0, 1). Furthermore, the AoA/ AoDs
corresponding to the spatial multipath components are changed
at frame-indices of n = 100, 200, 300. It can be readily
observed from the figure that the proposed BLMS-based
techniques are able to track a time-varying channel, since when
the AoA/ AoDs change, the algorithms converge within as few
as 30 − 40 frames. Hence they are eminently suited for the
estimation of a practical non-stationary wideband mmWave
MIMO channel.

Fig. 4(c) demonstrates the effect of step-size parameter µ on
the converged NMSEE and on the rate of convergence for the
proposed BLMS-based approaches. The simulation parameters
are set to Nt = Nr = 16, NRF = 4, Gr = Gt = 16,M =
20 and Ncl = 4. From the figure, it can be readily observed
that the higher value of µ yields faster convergence, but it also
leads higher NMSEE, as analytically described after Lemma-3.
On the other hand, for a lower value of µ, the proposed BLMS-
based algorithms converge to lower NMSEE, however their
convergence rate slows down. Thus, the step-size parameter µ
needs to be appropriately chosen to strike the best NMSEE
versus rate of convergence trade-off.

Fig. 5 demonstrates the resultant bandwidth-efficiency (BE)
with the estimated CSI from the various proposed and existing
channel estimation schemes, which is defined as

BE =

K−1∑
k=0

log2

(∣∣INs + R−1
n He[k]RxH

H
e [k]

∣∣) , (64)

where He[k] is the equivalent channel for kth subcarrier given
by He[k] = WH

BB [k]WH
RF H[k]FRFFBB . Furthermore, Rx

is the transmit covariance matrix and Rn is the noise covari-
ance matrix. The parameters of our mmWave system are set
as Nt = Nr = 8, Ns = NRF = 4, Gr = Gt = 16,M = 20
and Ncl = 6. The transmit covariance is set as 1

Ns
INs .

For benchmarking the BE performance, the digital capacity
of a hypothetical genie-receiver is considered, which uses
the optimal digital precoder and MMSE combiner with the
help of perfect knowledge of the mmWave MIMO CSI. The
hybrid capacity obtained using the proposed hybrid precoder
and combiner design discussed in Section-V using the perfect
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Fig. 4: (a) NMSEE versus SNR performance comparison of the BLMS-based schemes with the existing OMP scheme for the mmWave
hybrid MIMO system with simulation parameters Nt = Nr = 8, NRF = 4, Gr = Gt = 16, Ncl = 4, Nray,i ∈ {1, 4} and µ = 1

7λmax
.

(b) Tracking performance comparison of the BLMS-based schemes for the mmWave hybrid MIMO system with simulation parameters
Nt = Nr = 32, NRF = 8, Gr = Gt = 64,M = 40, Ncl = 4, Nray,i = 1 and ρ = 0.9983. (c) NMSEE versus number of frames
n performance with two different values of the step-size parameter µ for the mmWave hybrid MIMO system with simulation parameter
Nt = Nr = 16, NRF = 4, Gr = Gt = 16,M = 20, Ncl = 4, and Nray,i = 1.
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Fig. 5: BE versus SNR performance for the mmWave hybrid MIMO
setup with Nt = Nr = 8, NRF = 4, Gr = Gt = 16, Ncl =
6, Nray,i = 1,M = 20.

CSI and CSI estimated by the various techniques are also
shown therein. It can be verified that the enhanced mmWave
MIMO CSI estimation accuracy of the proposed FBLMS and
SFBLMS schemes is reflected in its improved BE. Moreover,
the BE of the SFBLMS technique is close to that of various
benchmarks.

VII. CONCLUSIONS

We developed an FBLMS-based low-complexity, adaptive
online channel estimation procedure for SC-FDE-based wide-
band millimeter wave hybrid MIMO systems. Subsequently,
the SFBLMS technique was presented, which also exploits
the sparsity inherent in the beamspace domain model of the
wideband frequency-selective mmWave MIMO channel, in
addition to FBLMS, through a regularized cost function. This
was seen to lead to a substantial improvement in the channel

estimation performance. The theoretical MSEE, MSOE and
the corresponding expressions for their asymptotic values are
also derived for both the schemes. A systematic procedure
was also derived for determining the range of the feasible
values of the regularization parameter that can be employed
for SFBLMS. Finally, a hybrid precoder and combiner design
is proposed for SC-FDE-based wideband mmWave MIMO
system by employing the channel estimates obtained using
the above techniques. Our simulation results illustrated the
enhanced CSI estimation and tracking performance of the pro-
posed BLMS-based techniques compared to the existing OMP-
based technique. More importantly, the proposed techniques
do not require additional information, such as the prior knowl-
edge of AoA/AoDs. Future research may consider frequency-
domain correlation across CFR [44], [45], and develop suitable
schemes to exploit the delay-domain sparsity for estimating the
wideband mmWave MIMO channel.

APPENDIX A

Let the estimation error corresponding to h be given by
ε′m,n = ĥm,n−h , where ĥm,n = Ωĥb,m,n. The relationship
between ε′m,n and the estimation error in the beamspace
domain εm,n is given as ε′m,n = Ωεm,n. The corresponding
MSEE for FBLMS is given by

EFBLMS
m,n = Tr

[
E
(
ε′m,nε

′H
m,n

)]
= Tr

[
ΩUE

(
ε̃m,nε̃

H
m,n

)
UHΩH

]
= Tr

[
ΩUKm,nUHΩH

]
. (65)

Subtracting hb,opt from both sides in (21), the update equation
for the estimation error εm+1,n can be obtained as

εm+1,n =
(
IGrGt − µΨH

m,nΨm,n

)
εm,n + µΨH

m,nṽm,n.
(66)
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Using the small step-size theory, the solution of the stochas-
tic difference equation in (66) can be approximated by the
solution of the following differential equation [35]

εm+1,n = (I− µR) εm,n + µΨH
m,nṽm,n. (67)

Employing the eigenvalue decomposition R = UΛUH , the
differential equation above can be transformed as

ε̃m+1,n = (I− µΛ) ε̃m,n + µUHΨH
m,nṽm,n. (68)

Now, taking the expectation E{·} on both the sides in (68),
the ith element, ∀ 1 ≤ i ≤ GrGt, of ε̃m,n is obtained as

E [ε̃m+1,n(i)] = (1− µλi)E [ε̃m,n(i)] , (69)

which follows from the fact that the noise vector ṽm,n and
the sensing matrix Ψm,n are statistically independent, thereby
leading to

E
{
ΨH
m,nṽm,n

}
= E

{
ΨH
m,n

}
E {ṽm,n} = 0GrGt×1. (70)

The result in (69) can be rewritten as

E [ε̃m+1,n(i)] = (1− µλi)s ε̃1,0(i), (71)

where s = Mn + m. It can be readily observed that the
condition lim

n→∞
E [ε̃m,n] = 0GrGt×1 is satisfied if and only

if |1−µλi| < 1,∀ i. This imposes the following constraint on
the value of the step-size parameter µ for ensuring convergence
in the ensemble mean: 0 < µ < 2

λmax
, where λmax is the

maximum eigenvalue of R. Furthermore, by exploiting the
property λmax ≤ Tr(R) =

∑GrGt
i=1 λi, a tighter bound on the

upper limit of µ can be obtained as

0 < µ <
2

Tr(R)
,

which completes the proof of Lemma-1.
Employing the definition of us from (49), Eq. (68) can now

be rewritten as

ε̃m,n = Īs−1ε̃1,0 +

s−1∑
p=1

Īs−1−pup. (72)

Furthermore, the quantity ε̃m,nε̃
H
m,n can be derived as

ε̃m,nε̃
H
m,n = Īs−1ε̃1,0ε̃

H
1,0Ī

s−1 +

s−1∑
p=1

Īs−1ε̃1,0u
H
p Īs−1−p

+

s−1∑
p=1

Īs−1−pupε̃
H
1,0Ī

s−1

+

s−1∑
p,q=1

Īs−1−pupu
H
q Īs−1−q. (73)

Now, applying the expectation operator E{·} on the both sides
of the above equation, the matrix Km,n is obtained as

Km,n = E
[
ε̃m,nε̃

H
m,n

]
= Īs−1K1,0Ī

s−1 + ∆m,n, (74)

where the following simplifications have been employed.
The 2nd and 3rd terms of (73) become zero due to the
independence assumption. Furthermore, as described next, the
expectation of the last term of (73) simplifies to ∆m,n. Note

that ∆m,n =
∑s−1
p,q=1 Īs−1−pE

[
upu

H
q

]
Īs−1−q. It follows

from (49) that E
[
upu

H
q

]
= 0, for p 6= q. Whereas, for p = q,

E
[
upu

H
p

]
= µ2UHE

[
ΨH
m,nṽm,nṽHm,nΨm,n

]
U

= µ2σ2UH E
[
ΨH
m,nΨm,n

]︸ ︷︷ ︸
R

U

= µ2σ2Λ. (75)

The simplifications in the above employ E
[
ṽm,nṽHm,n

]
=

σ2INRF and the eigenvalue decomposition of R as R =
UΛUH . Substituting E

[
upu

H
q

]
= µ2σ2ΛδK(p − q), where

δK(·) denotes the Kronecker-delta function, into the expression
of ∆m,n yields

∆m,n = µ2σ2
s−1∑
p=1

Īs−1−pΛĪs−1−p. (76)

From the above, it can be readily observed that the ma-
trix ∆m,n is a diagonal matrix, whose ith diagonal entry
∆m,n(i, i) is simplified as follows:

∆m,n(i, i) = µ2σ2λi

s−1∑
p=1

(1− µλi)2(s−1−p)

= µ2σ2λi (1− µλi)2(s−1)
s−1∑
p=1

(1− µλi)−2p

=
µσ2

(2− µλi)
− µσ2 (1− µλi)2(s−1)

(2− µλi)
.

This completes the proof of Lemma 2.

APPENDIX B

The MSOE defined in (17) can be modified for the FBLMS
framework as

J FBLMS
m,n = E

{
‖ym,n −Ψm,nhb,opt −Ψm,nεm,n‖2

}
= E

{
‖ṽm,n −Ψm,nεm,n‖2

}
. (77)

Also, it follows from (33) that Jmin = E
{
‖ṽm,n‖2

}
. There-

fore (77) can be further simplified using the independence
assumption in (70) as

J FBLMS
m,n = Jmin + E

{
εHm,nΨH

m,nΨm,nεm,n
}

= Jmin + E
{

Tr
(
εHm,nRεm,n

)}
= Jmin + E

{
Tr
(
ε̃Hm,nΛε̃m,n

)}
, (78)

which simplifies to the desired result in (34). Finally, the
asymptotic MSOE of the FBLMS framework is obtained as

J FBLMS
∞ = Jmin +

GrGt∑
i=1

[
λi

(
lim
n→∞

E
[
|ε̃m,n(i)|2

])]
= Jmin +

GrGt∑
i=1

[λi∆∞(i, i)] , (79)

which gives the desired result of (35).
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APPENDIX C

Subtracting hb,opt from both sides in Eq. (42) and rearrang-
ing the terms, the estimation error ε̌m+1,n for the proposed
SFBLMS framework is given by

ε̌m+1,n =
(
I− µΨH

m,nΨm,n

)
ε̌m,n + µΨH

m,nṽm,n

−δg
(
f
(
ĥb,m,n

))
. (80)

Employing (49), together with the small step-size theory
similar to our MSEE analysis of FBLMS in Appendix-A, the
transformed estimation error ε̄m,n can be written as

ε̄m,n = Īs−1ε̄1,0 +

s−1∑
p=1

Īs−1−pup +

s−1∑
p=1

Īs−1−ptp. (81)

Furthermore, the quantity ε̄m,nε̄
H
m,n for the SFBLMS can be

formulated as

ε̄m,nε̄
H
m,n = Īs−1ε̄1,0ε̄

H
1,0Ī

s−1

+

s−1∑
p=1

Īs−1ε̄1,0u
H
p Īs−1−p +

s−1∑
p=1

Īs−1−pupε̄
H
1,0Ī

s−1

+

s−1∑
p=1

Īs−1ε̄1,0t
H
p Īs−1−p +

s−1∑
p,q=1

Īs−1−qtqu
H
p Īs−1−p

+

s−1∑
p=1

Īs−1−ptpε̄
H
1,0Ī

s−1 +

s−1∑
p,q=1

Īs−1−pupt
H
q Īs−1−q

+

s−1∑
p,q=1

Īs−1−pupu
H
q Īs−1−q +

s−1∑
p,q=1

Īs−1−ptpt
H
q Īs−1−q.

(82)

Now, taking expectation E{·} on both sides of the above
equation, the expression for the matrix K̄m,n is obtained as
given in Lemma-4, where the following simplifications have
been employed. The 2nd and 3rd terms of (82) become zero
due to the independence assumption. The 2nd-last term of
(82) simplifies to a diagonal matrix ∆m,n, whose diagonal
elements can be derived similar to the simplification of the
last term of Eq. (73). The simplification of the remaining
terms in (82) can be readily carried out using the definitions of
Kp,q

t,t ,K
p,q
t,u ,K

p,q
u,t ,Tp in Lemma-4. This completes the proof.

APPENDIX D

(
Fopt
RF ,F

opt
BB

)
= arg min

(FRF ,FBB)

K−1∑
k=0

∥∥Fopt[k]− FRFFBB
∥∥2

F

≡ arg min
(FRF ,FBB)

K−1∑
k=0

Tr

[
− Fopt[k]FHBBFHRF − FRFFBB

(
Fopt[k]

)H
+ FRFFBBFHBBFHRF

]
(83)

≡ arg min
(FRF ,FBB)

Tr

[
−

(
K−1∑
k=0

Fopt[k]

)
FHBBFHRF

− FRFFBB

(
K−1∑
k=0

Fopt[k]

)H
+KFRFFBBFHBBFHRF

]
(84)

≡ arg min
(FRF ,FBB)

Tr

[
− FoptFHBBFHRF − FRFFBB

(
Fopt)H

+ FRFFBBFHBBFHRF

]
, (85)

where Fopt = 1
K

∑K−1
k=0 Fopt[k]. Adding the term Fopt (Fopt)

H

that is independent of the optimization variable FRF and FBB ,
we can reformulate the above design problem as(
Fopt
RF ,F

opt
BB

)
= arg min

(FRF ,FBB)

Tr

[
Fopt (Fopt)H − FoptFHBBFHRF

− FRFFBB
(
Fopt)H + FRFFBBFHBBFHRF

]
(86)

= arg min
(FRF ,FBB)

∥∥Fopt − FRFFBB
∥∥2

F
. (87)
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