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Abstract: Occupants’ thermal response is influenced by their sensitivity to temperature variations, i.e. the rate 
of change in occupants’ thermal sensation per unit change in indoor temperature. Thermal sensitivity is 
commonly taken as constant (Griffiths constant) in the calculation of occupants’ comfort temperature. This 
constant is based on small differences found between buildings’ ventilation modes [naturally ventilated (NV) vs. 
air conditioned (AC)]. However, recent research found significant differences depending on building type, 
ventilation mode, age, gender and climate. This paper reviews thermal sensitivity within the same building type 
and main ventilation mode using longitudinal surveys and monitoring data from school buildings, two in the UK 
(U1 and U2) and one in Sweden (S1). Results show that in two of the schools (U1 and S1) children were half as 
sensitive as in school U2 and the difference is statistically significant. A similar result with slightly different 
thermal sensitivities was derived from comparison by clusters derived from the classrooms’ indoor 
temperatures. This outcome suggests that building ventilation mode (AC/NV), which is typically considered the 
main determinant of occupants’ thermal experience and often the only building information recorded in field 
surveys, is inadequate to explain this important occupant response factor. 
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1. Introduction  
People’s thermal sensation changes with temperature and the rate of this change signifies 
their ability to adapt to varying thermal conditions, i.e. it is an indicator of people’s thermal 
sensitivity. People’s sensitivity to temperature change determines how quickly their thermal 
state departs from the comfort zone and how quickly it reaches discomfort levels or even 
unacceptable thresholds. It is therefore an important thermal response factor for thermal 
comfort but also for people’s ability to adapt to rapid temperature changes, in light of the 
increasing warm temperature extremes and the likelihood of more frequent and longer heat 
waves (IPCC, 2014). 

Regression analysis on thermal comfort survey data, with thermal sensation as the 
dependent variable and temperature as the predictor variable, gives an estimate of people’s 
sensitivity to temperature changes (regression coefficient) and their neutral (or “comfort”) 
temperature (temperature at which thermal sensation= neutral). When the surveys span over 
days or longer periods people have adapted to day-to-day changes and therefore the 
regression coefficient is shallower compared to short survey periods where there is little 
adaptive opportunity. The regression coefficient for the case where no adaptation is assumed 
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to take place is the maximum rate of change of thermal sensation with temperature and is 
considered to be a standard value, the so-called ‘Griffiths slope’ or ‘Griffiths constant’. 

Initial analysis by Humphreys et al. (2007) on the ASHRAE (de Dear and Brager, 1998) 
and the SCATs (McCartney and Nicol, 2002) thermal comfort databases found the regression 
gradient to reach a maximum value of 0.4 when the standard deviation of the operative 
temperature during the survey period is around 1K, a value typical for short survey periods 
where people would have limited adaptive opportunities. The regression gradient dropped 
below and above 1K standard deviation of temperature, probably due to the effects of error 
in the predictor variable in the former case and the effect of increased adaptation in the latter 
(Humphreys et al., 2007). Considering that error in the predictor variable and some 
adaptation error will always be present, it was concluded that an appropriate value for the 
sensitivity to temperature changes would be higher than 0.40/K and a value of 0.50/K was 
chosen (Nicol and Humphreys, 2010). 

Further analysis (Humphreys et al., 2010, Humphreys et al., 2013), led to the day-
pooling method, where data collected in a single day (limited adaptation) were used to derive 
a value for the Griffiths constant from the SCATs and ASHRAE databases. This value was 
0.50/K, the same as previously estimated. The difference between centrally conditioned (AC) 
and naturally conditioned (NV) buildings was small and not statistically significant and 
therefore this value was proposed for the Griffiths constant when estimating the neutral 
temperature from survey data. 

The value of 0.5K for the Griffiths constant has been widely used in thermal comfort 
research. There are also studies which explored the sensitivity of the estimated neutral 
temperature with different values for the Griffiths constant and found its role to be important 
(Nguyen et al., 2012, Haddad et al., 2019) and studies that explored the applicability of the 
value 0.5K in other building types, i.e. schools (Teli et al., 2015) and homes (Ryu et al., 2019). 
A recent study investigated the validity of Griffiths constant for different contexts and found 
that it varies depending on building type (office, school, residential) and ventilation mode 
(AC/NV), recommending that different values should be used according to these categories 
(Rupp et al., 2019). In the previous studies, for the investigation of differences in thermal 
sensitivity, samples were grouped according to building type (office, school, etc.) and 
ventilation mode (AC/NV). To explore further these differences and the above 
recommendation, this paper reviews thermal sensitivity within the same building type and 
main ventilation mode. The analysis aims to explore the impact of sample grouping (by 
building type or AC/NV mode) on determining people’s thermal sensitivity. 

2. Study design 

 Case study buildings 
The data used in the analysis are from thermal comfort field surveys conducted in three 
schools; two in Southampton (UK) and one in Gothenburg (Sweden). Both cities have marine 
west-coast temperate climate, with Köppen Climate Classification Cfb (Kottek et al., 2006). 
The surveys in the UK were conducted in 2011 and 2012 while the surveys in Sweden in 2016.  
Table 1 summarises the characteristics of the three schools. 
 
 
 
 
 



Table 1. Characteristics of the sample of schools 

Country School Year 
surveyed 

Building 
weight 

Classroom 
Ventilation 
strategy 

Class-
rooms 

No of 
questionnaires 

Survey 
days 

UK U1 2011 LW All NV 1-8 1,314 12 

U2 2012 MW All NV 9-19 1,676 14 

Sweden S1 2016 
 

LW 3 EV, 1 NV, 
2 MVHR 

20-25 2,177 26 

Notes: 
Building weight - LW: lightweight, MW: mediumweight, HW: heavyweight.  
Ventilation - NV: naturally ventilated (free-running/ no cooling in summer], EV: fan-assisted exhaust-only 
ventilation (no cooling in summer), MVHR: mechanical ventilation with heat recovery (no cooling in summer) 
 

School U1 is a lightweight building constructed in 1978 while school U2 is a Victorian 
medium-weight building built in 1884 (Figure 1). Both UK schools are naturally ventilated 
through window opening. School S1 is housed in 9 buildings, seven of which were built in the 
turn of the 18th to the 19th century and two in the end of the 20th century. The buildings 
where the surveys took place have a lightweight construction. Three of the classrooms have 
exhaust-only ventilation (supply through wall inlets), one is naturally ventilated through 
window opening and two are equipped with mechanical ventilation with heat recovery. Since 
none of the cases involve summer cooling, it was decided to include all classrooms in the 
study and see whether the analysis will separate the different systems. All classrooms in all 
schools are heated in winter with wet central heating systems. 

 

Figure 1. School buildings were the surveys took place. School S1 is housed in several buildings, two of which are 
shown here. 
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 Data collection 
A total of 5,167 pupils’ questionnaires are used in the analysis, collected from approximately 
650 children during 207 surveys in 25 classrooms. The questions addressed thermal sensation, 
thermal preference, overall comfort, tiredness, perceived air quality and clothing level at the 
time of the survey. The English version of the questionnaire can be found in (Teli et al., 2012). 
During the surveys, measurements of thermal comfort parameters were also taken, i.e. air 
temperature (Ta, 

oC), globe temperature (Tg, oC), relative humidity (RH, %), indoor relative air 
velocity (Va, m/s). In this paper, children’s thermal sensation votes (TSV) and the globe 
(operative) temperature Top at the time of the survey are used, in order to estimate children’s 
thermal sensitivity (relationship between TSV and Top). 

In all surveyed classrooms data loggers were installed which recorded the air 
temperature and relative humidity at 5-minute intervals. These measurements are used in 
the cluster analysis and in the calculation of the measurement error in the predictor variable. 

 Analysis method 
In order to investigate the impact of sample grouping on the estimated thermal sensitivity, 
two groupings were made: the first is by school and the second by cluster. Cluster analysis 
was conducted on the air temperature measurements from the data loggers in order to group 
the classrooms according to the temperatures that the children typically experienced. The 
groups of classrooms with similar indoor temperature profiles are used in order to investigate 
if thermal experience influences occupants’ thermal sensitivity. 

Children’s thermal sensitivity was then estimated by school and by cluster using 
children’s thermal sensation votes and the operative temperature at the time of the survey 
for single day survey runs, following Humphreys’ day-pooling method. More details on the 
methods used are provided below. 

 Sample grouping: cluster analysis 
From the classroom datasets with the 5-minute air temperature measurements, one month 
was selected and used in order to avoid prolonged periods of school holidays, term breaks 
etc. and have as consistent as possible outdoor weather conditions between school surveys. 
The most appropriate month was May. A cluster analysis of the occupied hours of the school 
days (08:30-15:00 weekdays) was conducted to identify groups of classrooms with similar 
profiles of mean daily temperature. Applying an inductive approach through unsupervised 
machine learning, cluster analysis is a tool to identify groups in the units of a data frame. In 
this analysis, each classroom is a unit and each 5-minute monthly mean temperature is a 
variable. As grouping is based on the distance between temperature profiles of each 
classroom, data was first standardised to ensure that each feature contributed proportionally 
to the distance between data points (i.e. 5-minute monthly mean temperature). Classrooms’ 
temperature data were standardised by first subtracting the mean and then dividing the 
values by the standard deviation. The analysis was twofold. First, the number of clusters was 
determined using a scree plot of the within groups sum of squares by the number of clusters. 
Then, both K-means clustering, and Ward’s minimum variance methods were applied to 
determine which classrooms belong to which group. 

 Estimation of thermal sensitivity: day-pooling method 
The day-pooling method for the estimation of the regression coefficient (constant G) was 
formulated by Humphreys et al. (2013). The estimation process gives a weighted average of 
the regression coefficient for all day-surveys, which provides a more reliable statistic 
compared to the analysis of small day-survey samples. 



There are two important parts in the procedure: the estimation of the regression 
coefficient and its adjustment for the presence of error in the predictor variable 
(measurement error of room temperature). 

 
The estimation of the regression coefficient includes the following: 

• Calculation of the variables dTSV and dTo for each response on a single day (day-
survey). dTSV is the difference of the subjective TSV and the mean thermal sensation 
vote for the day-survey (TSV(day mean)) and dTo is the difference of the operative 
temperature during the survey (To) and the mean operative temperature on that day 
(To(day mean)). 

• Regression analysis of dTSV on dTo of all the day-surveys. 
 

The estimated regression coefficient (b) is then corrected to account for measurement 
error in the operative temperature, using equation 1 (Humphreys and Nicol, 2000). 

 
badj = b (σ2

dTo )/ (σ2
dTo - σ2

err) (1) 
 

Where σ2
dTo is the variance of the variable dTo and σ2

err its error variance. This error can 
be attributed to sensor limitations and to its positioning in relation to the survey respondent. 
The sensor limitations are hard to estimate, and the positioning error can only be 
approximated if there is available data for this to happen. In the absence of more appropriate 
data for this approximation, Humphreys et al. (2013) used the vertical difference of 1m 
between the globe sensors on the measuring stations in the ASHRAE database and got a value 
for the error variance of 0.158 K2. The error variance is estimated here from the logged 
temperatures in the classrooms. 

The significance of the differences in the estimated regression coefficients was assessed 
with t-testing and validated by running regression models with interaction terms on the raw 
data (Potthoff analysis). 

3. Results 
For the analysis, inconsistent cases (strongly contradicting thermal sensation and preference 
votes) were excluded (6% of the sample). More details about the exclusion criteria can be 
found in Teli et al. (2013). A total of 4,851 thermal sensation votes (TSV) are used for the 
estimation of thermal sensitivity. 

 Cluster analysis 
The clustering analysis units were defined as the 25 classrooms and the variables were 
defined as the monthly mean of 5-minute air temperature recordings. As introduced in 
section 2, the analysis was twofold. A review of the scree plot determined the number of 
clusters, which was set at 3. Then K-means clustering and Ward’s minimum variance methods 
were applied. Both methods resulted in the same group membership, as described in Table 2 
and shown in Figure 2. Cluster 1 consists of 3 classrooms from the lightweight UK school U1 
and all 6 classrooms from the Swedish school S1. Cluster 2 consists of 5 classrooms from U1 
and 3 from U2. Finally, cluster 3 consists only of classrooms from the medium-weight school 
U2. 
 
 



Table 2 Membership of classrooms by clusters (cluster 1: blue, cluster 2: green, cluster 3: yellow) 

U1 1 2 3 4 5 6 7 8    

U2 9 10 11 12 13 14 15 16 17 18 19 

S1 20 21 22 23 24 25      

 

Figure 2 shows the monthly mean of 5-minute air temperature profiles of the 
classrooms (thin lines) and the clusters (thick lines). Cluster 1 has the highest mean 
temperature (Ta-mean=24.2 oC), cluster 2 follows with Ta-mean= 22.6 oC and finally cluster 3 with 
Ta-mean=21.2 oC.  

 

 

Figure 2. Monthly mean of 5-minute air temperature profiles of the 25 classrooms and the 3 clusters 

 

Further cluster analysis applied the same method for the same unit (‘classroom’) but a 
different variable. Here, the interest lies in the temperature difference experienced over 15 
minutes. As the classrooms have similar occupancy (heat gain), the difference in monthly 
mean temperature over 15 minutes mainly lies in fabric performance, gains and ventilation, 
including window opening behaviour. As introduced in section 2, the analysis was twofold. 
The number of clusters was set at 3. K-means clustering and Ward’s minimum variance 
methods resulted in the same group membership. Interestingly, classrooms were grouped by 
their associated schools, as described in Table 3 and shown in Figure 3.  
 

Table 3 Membership of classrooms by clusters (cluster 1: blue, cluster 2: yellow, cluster 3: green) 

U1 1 2 3 4 5 6 7 8    

U2 9 10 11 12 13 14 15 16 17 18 19 

S1 20 21 22 23 24 25      

 
Figure 3 shows the difference over 15 minutes of monthly mean of 5-minute air 

temperature profiles of the classrooms (thin lines) and the clusters (thick lines). Cluster 1 has 
the largest range in temperature difference (dTa-mean=1.5oC), cluster 2 follows with dTa-

mean=0.7oC and finally cluster 3 with dTa-mean=0.3oC.  
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Figure 3. Difference over 15 minutes of monthly mean of 5-minute air temperature profiles of the 25 
classrooms and the 3 clusters 

Following the above results, thermal sensitivity is reviewed by the clusters established 
in both methods; (1) 3 clusters of monthly mean of 5-minute air temperature profiles (refer 
to Table 2) and (2) 3 schools (refer to Table 3). 

 Thermal sensitivity 
For each day visit to each school and each thermal sensation response (TSV), the variables 
dTSV and dTo were calculated. Table 4 summarizes the results from the regression analysis of 
dTSV on dTo to derive the regression coefficients (b) for the entire dataset, by school and by 
cluster. The resulting regression coefficients are first compared without the adjustment for 
the error in the predictor variable. 

As can be seen, for all schools combined the regression coefficient is 0.28/K (Figure 4). 
This is close to the value Humphreys et al. (2013) derived from the NV buildings at the SCATs 
database (0.308/K) and considerably lower than the overall regression coefficients for SCATs 
and ASHRAE databases (all building types) of 0.38/K and 0.37/K respectively. 

Table 4. Regression coefficients (b, thermal sensitivity) by building and by cluster 

Dataset N 

Variance 
of dTo 
(oC2) 

Error 
variance of 
dTo (oC2) b 

Standard 
error of b R p-value Adjusted b 

All schools 4581 0.756 0.227 0.277 0.022 0.181 <0.001 0.396 

By school         

U1 1224 0.762 0.154 0.194 0.045 0.122 <0.001 0.243 

U2 1511 0.912 0.118 0.389 0.040 0.248 <0.001 0.447 

S1 2116 0.642 0.222 0.220 0.032 0.152 <0.001 0.336 

By cluster         

cluster 1 2566 0.739 0.199 0.194 0.028 0.139 <0.001 0.266 

cluster 2 1190 0.685 0.141 0.408 0.049 0.236 <0.001 0.513 

cluster 3 1095 0.680 0.118 0.247 0.054 0.138 <0.001 0.299 
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Figure 4. Regression of the day-surveys in the entire school sample. 

Looking at the breakdown by school, differences can be seen. The regression coefficient 
for school U2 is 0.39/K, nearly double those of schools U1 and S1 (0.19/K and 0.22/K 
respectively), and these differences are statistically significant (p < 0.05). The difference 
between schools U1 and S1 is small and not statistically significant. 

The breakdown by cluster gives a similar result but with very different groups. This time, 
cluster 2 has the highest regression coefficient (0.41/K) and the differences with the other 
two clusters is statistically significant (p < 0.05). Cluster 2 consists of 5 classrooms from school 
U1 (which had b= 0.19/K) and 3 classrooms from school U2 (b= 0.39/K). Cluster 3, with all 
classrooms from school U2, has b=0.25/K, which is much lower than the entire school’s 
regression coefficient (b= 0.39/K). In both cases we get statistically significant differences, but 
the sample has been grouped in different ways. 

The second part of the day-pooling method involves the correction of the regression 
coefficient for error in the measurement of the room temperature. It is therefore important 
to estimate its value. In this study, the estimation of error variance is based on air 
temperature measurements in two locations in the surveyed classrooms: at the centre of the 
classroom, where the thermal comfort instrument was placed, and at one of the side walls, 
where the data logger was installed. In most cases, the desk distribution in the classrooms 
covered this distance and therefore the error is considered representative. The average 
distance between the two locations was approximately 4m. The air temperature is used as a 
proxy for the operative temperature here, since only the air temperature was measured at 
the second location and the difference between To and Ta was overall small. 

The estimation of the error variance was made for the three schools separately and 
then combined. The variance of the air temperature difference in the classrooms was lowest 
in school U2 (0.118 oC2) and highest in school S1 (0.222 oC2). The difference is quite large and 
likely related to the buildings’ characteristics. Most of the surveyed Swedish classrooms are 
housed in repurposed villas (Figure 1) and have at least two walls connected to outdoors, 
leading to higher temperature differences between the walls and the centre of the 
classrooms. Such differences in the error variance of the room temperature are to be 
expected between different building/room samples. If the sample is treated as one, the error 
variance is estimated at 0.227 oC2. 



The last column of Table 4 shows the estimated adjusted regression coefficients using 
the corresponding error variance. For the clusters, a weighted average of the error variance 
according to the number of classrooms from each school was used. The results confirm the 
observation of Humphreys et al (2016) that the estimate of the adjusted regression coefficient 
is sensitive to the error-variance in the predictor variable. The adjusted regression coefficients 
are between 15-53% higher than before the adjustment, depending on the dataset (all 
schools, school, cluster). For the entire dataset, the adjusted regression coefficient is 43% 
higher than before the adjustment. 

Another aspect to consider is whether season affects the resulting thermal sensitivities. 
The only school where surveys were conducted in winter was the Swedish school, so the 
analysis is done on the S1 sample. As can be seen in Table 5, the regression coefficient for 
spring/summer is 40% lower than in winter. The difference did not reach statistical 
significance with p=0.073, which however is overall low. It appears that there is scope for 
further investigation on the influence of season on thermal sensitivity. 

 
Table 5. Regression coefficients (b, thermal sensitivity) by season in the Swedish sample 

Dataset N 

Variance 
of dTo 
(oC2) 

Error 
variance of 

dTo (oC2) b 
Standard 
error of b R p-value Adjusted b 

S1-winter 2116 0.642 0.222 0.285 0.050 0.182 <0.001 0.436 

S1-spring 1148 0.673 0.222 0.169 0.041 0.126 <0.001 0.252 

 

4. Discussion 
If the sample in this study is treated as one, representing the same building type (school) and 
main ventilation type (NV/no cooling), then according to Rupp et al. (2019) we should use the 
value 0.4/K for the Griffiths constant to estimate comfort temperatures. If the three schools 
are treated separately, then in school U1 thermal sensitivity is lower by approximately 40%, 
while in school U2 15% higher and in S1 approx. 15% lower. If the sample is divided by cluster 
(indoor temperature profiles experienced), the differences from the value 0.4 are -33%, +30% 
and -24% for clusters 1, 2 and 3 respectively. These differences are substantial, considering 
that the samples are from the same building type, main ventilation type and the surveys were 
conducted with the same research protocol. 

An assumption when grouping the sample by building type or ventilation mode is that 
occupants experience similar conditions and have similar levels of adaptation. The results of 
this study however do not confirm this assumption, with significant differences in thermal 
sensitivities within the same building and ventilation type. The day-pooling method itself is 
based on an important assumption, i.e. that there is minimal to no adaptation during a 
working day. Although this may be close to reality for some office and school environments 
on which the assumption was based, it may be rather unrealistic for others, such as homes or 
buildings with large within-day temperature variations that instigate adaptive behaviours. 

Based on Rupp et al. (2019), Griffiths constant should be treated as a variable. This study 
shows that the estimation of occupants’ thermal sensitivity is rather sensitive to sample 
grouping, both in relation to the estimation of the regression coefficient and the error 
variance of the room temperature. It is therefore important to reflect on how reliable the 
resulting thermal sensitivities would be from single comfort study samples. A further issue to 
address is to what extent treating Griffiths constant as a variable contributes to more accurate 



estimations of people’s comfort temperature. On a more general note, the validity in the 
Griffiths method needs to be revisited as an issue with large methodological implications for 
contemporary thermal comfort research. 
 

5. Conclusions 
Based on the findings of this study, thermal sensitivity varies within the same building type 
and ventilation mode as well as between buildings. It appears that building/space 
characteristics other than ventilation mode and within-day adaptive behaviour, which 
perhaps cannot be assumed as minimal, influence occupants’ thermal sensitivity. The 
estimation of occupants’ thermal sensitivity appears to be very sensitive to the room/building 
context. Grouping surveys by building type and ventilation mode for comparing the resulting 
regression coefficients is likely to bring statistically significant results if adequately large 
datasets are used but it does not necessarily mean that the resulting regression coefficients 
can be used with confidence in other samples of the same building/ventilation type. 

Based on the findings from this analysis, there are fundamental and methodological 
issues to investigate before a robust recommendation on the estimation of occupants’  
thermal sensitivity in different contexts. 
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