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Abstract

Rationally justifying Bitcoin markets’ huge price fluctuations has remained a persistent

challenge for both investors and researchers in this field. A primary reason is our po-

tential weakness towards a robust quantification of unquantifiable risks or ambiguity

in Bitcoin returns. This paper introduces a behavioural channel to offer the degree of

ambiguity aversion as prominent source of abnormal returns from investment in Bitcoin

markets. Using daily data over a period of ten years, we show that in general, Bitcoin

investors depict an increasing aversion to ambiguity. Furthermore, we find that Bit-

coin investors earn abnormal returns only when ambiguity is low. Robustness exercise

reassures validity of our results.
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1. Introduction

“But Bitcoin is an example of ambiguity, and the efficient market theory does not capture

what is going on in the market for this cryptocurrency.”

—— Robert Shiller1

“Bitcoin valuation is ’exceptionally ambiguous’ ”.

—— Robert Shiller2

1.1. Contextualisation

These quotes from Robert Shiller could hardly be more accurate in describing the aim of the

present study, in which we attempt to answer the broad question of how ambiguity determines

abnormal returns in virtual currencies, such as Bitcoin. Virtual currencies represent both the

emergence of a new form of currency and a new payment technology to purchase goods and

services. Among virtual currencies, Bitcoin has undoubtedly emerged as the most prominent

new form of currency and a new payment technology to purchase goods and services (Dwyer,

2015; White et al., 2020). Due to its importance to the financial institutions, its susceptibility

to large-scale price manipulations, and investors’ increasing tendency of its choice over other

established theory-backed assets (Trimborn and Härdle, 2017), ambiguity plays a major role

in quantifying the magnitude of abnormal returns. This paper fills a gap in the literature by

1https://www.nytimes.com/2017/12/15/business/bitcoin-investing.html
2https://www.cnbc.com/2017/12/19/robert-shiller-bitcoin-valuation-is-exceptionally-ambiguous.html

1



rigorously studying the impact of ambiguity in Bitcoin returns in the spirit of Brenner and

Izhakian’s (2018).3

As the leading cryptocurrency, Bitcoin continues to draw high attention from investors,

entrepreneurs, regulators and the general public. Many of the recent public discussions relating

to Bitcoin have been triggered by the substantial changes in their prices (Garćıa-Monleón, et

al., 2021), claims that the market for Bitcoin is a bubble without any fundamental value, and

also concerns about evasion of regulatory and legal oversight (Akyildirim, 2020; Alexander

and Heck, 2020). A large strand of literature attempts to understand market phenomena

through the lens of the traditional neoclassical finance theories (Borri, 2019; Corbet et al,

2020l; ). Specifically, Urquhart (2016) shows that Bitcoin returns do not follow the random

walk model, based on which he concludes that the Bitcoin market exhibits a significant degree

of inefficiency, particularly in the early years of its existence. In the time and frequency

domains, Corbet et al. (2018) analyze the relationship between the return of three different

cryptocurrencies and a variety of other financial assets, showing lack of relationships between

crypto- and other assets. Liu and Tsyvinski (2020) investigate whether cryptocurrency pricing

bears any similarity to stocks: however, none of the risk factors explaining movements in stock

prices applies to cryptocurrencies in their sample. Moreover, movements in exchange rates,

commodity prices, or macroeconomic factors of traditional significance for other assets play

little to no role for most cryptocurrencies.

3Camerer and Weber, 1992 in an early effort provided evidence, theoretical explanations, and applications
of research on ambiguity and subjective expected utility. Recent efforts include a design of a survey module
by Cavatorta and Schroeder, 2019 to experimentally validate ambiguity preference that has wider applications
for economics and finance.
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All that apart, Bitcoin is an example of uncertainty and ambiguity, and the neoclassical

theory fails to explain the behavior in the market for this cryptocurrency.4 There has not

been enough daily information coming in to rationally justify Bitcoin’s huge price fluctuation.

This type of uncertainty may arise for two reasons: (1) the technology is rather complicated

and opaque to unsophisticated traders, and (2) the fundamental value of cryptocurrencies

is unclear. As we highlighted above, even if it is strictly positive, it is likely to be derived

from intangible factors and, as such, is rather uncertain. Therefore, we wish to extend our

understanding of this cryptocurrency market from a behavioral finance perspective. This

paper examines the role of the perspective of unquantifiable risk, or ambiguity in Bitcoin

returns.

The notion of uncertainty has been investigated in the literature since the seminal works

of Keynes (1921) and Knight (1921) from two perspectives: risk and ambiguity. While risk is

a situation in which the beliefs of a decision maker (DM) are captured by a unique probability

measure, ambiguity is a situation in which a DM’s beliefs are not pinned down by a unique

probability measure because of a lack of information(Snow 2010; Cavatorta and Schroder

2018). When investors choose between different assets, their knowledge of future returns is

critical. When they are fully confident about the return of the investment, we can consider it

a safe asset.

4A recurrent issue in financial theories is to study how agents make decisions on investments under risk.
This is different from the concept of ambiguity, which is the subject of our study. While risk refers to situations
where the perceived likelihoods of events can be represented by a unique probability distribution, ambiguity
refers to situations where an agent’s subjective knowledge about likelihoods of contingent events is consistent
with multiple probability distributions. Importantly, the agent does not know what the precise distribution
is.
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In another recent study, Driouchi et al. (2018) investigate the behavior of US index put

option holders during the pre-crisis and credit crunch period 2006–2008. They find evidence

of ambiguity in the US index options market during 2006–2008 and measure the effect of

ambiguity on realized index volatility that is implied directly from observed option prices.

Based on portfolio data from a large financial institution in France, Bianchi and Tallon (2018)

show that ambiguity averse investors are relatively more exposed to the French stock market

than to the international stock market. This result implies that ambiguity aversion plays a

significant role in explaining home bias in equity markets. Most research on ambiguity focuses

on traditional financial assets while a few studies explore the role of ambiguity in the upcoming

digital currency such as Bitcoin.

In this paper, we refer to ambiguity as uncertainty over the probability of potential fu-

ture outcomes, while risk refers to uncertainty over those outcomes following Knight (1921).

Specifically, we estimate ambiguity using five-minute Bitcoin returns based on the model of

Brenner and Izhakian (2018). Our findings show that ambiguity plays an important role in

Bitcoin returns; that is, investors take into account ambiguity when they price ambiguity. Our

evidence further implies that investors show an increasing aversion to ambiguity.

We conduct a battery of robustness tests to verify our findings. For example, we use the

forward-looking implied volatility from the S&P 500 index i.e. VIX in our regression model as

VIX is used as a proxy for ambiguity in prior studies (e.g., Williams, 2015). We also control for

higher moments including skewness and kurtosis. Further, we test for unstructureed attitude
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towards risk without imposing a specific functional form (e.g., constant relative risk aversion

or constant absolute risk ) over attitude towards risk.

In the spirit of Baker and Wulger (2006), we further examine the performance of Bitcoin

returns conditional on ambiguity. Liu and Tsyvinski (2020) show that cryptocurrency returns

cannot be explained by the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner

(1965), the Fama–French (1993) three-factor model (FF3FM), the Carhart (1997) momentum-

extended FF3FM, and the Fama–French (2015) five-factor model (FF5FM). We first confirm

their findings and further show that investors earn the abnormal returns of Bitcoins only when

ambiguity is low but not when ambiguity is high.

1.2. Contribution

We contribute to the literature in several ways. First, we make a behavioural attempt at

identifying the potential impact of ambiguity on asset pricing and the risk-return relationship.

This is useful, because the use of Bitcoin, in a wider portfolio management strategy, has been

shown to provide hedging benefits (Kajtazi and Moro, 2018; Atsalakis et al. 2019; Ma et al.,

2020; Thampanya et al., 2020); yet Bitcoin markets are typically characterized by crashes

(Fry and Cheah, 2016), excessive volatility (Katsiampa, 2017), and positive returns when the

fundamental value is shown to be zero (Cheah and Fry, 2015). It is well known that traditional

asset pricing models have difficulties in explaining the Bitcoin returns. Our study extends our

understanding of the cryptocurrency market from a behavioral finance perspective, and we

find that ambiguity plays an important role in explaining the abnormal returns of Bitcoin.
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Second, our study is related to general studies which have focused mainly on the theoretical

aspects of attitudes toward (aversion to) ambiguity, rather than on the actual measurement

of ambiguity. Only a few studies used market data to measure ambiguity; for example, Ulrich

(2013) uses entropy of inflation and Williams (2015) uses the Volatility Index (VIX). Following

Brenner and Izhakian (2018), we explore the importance of ambiguity in the cryptocurrency

market using Bitcoin data.

Our study has important implications for sustainability. By studying the unique ambiguous

feature of Bitcoin, we aim to at least partially take into account “the dynamics” of this highly

volatile currency. This way, we aim to empower investors — small or big, to be able to make

informed decisions regarding their choices. Moreover, our proposal has practical importance

too. Not only individual investors but various funds—such as Crypto Fund AG—have risk

exposure to Bitcoin. This paper helps to shed light on their investment decisions on Bitcoin.

If investors can indeed earn the risk premium after adjusting for systematic risk, then it is

helpful to allocate their wealth to Bitcoin. However, if the risk premium is conditional on

ambiguity as shown in our results, caution should be exercised by investors in “real-time”

trading because the risk premium becomes insignificant during periods of high ambiguity.

Our work also has important implications for policy makers. While Bitcoin markets are

largely unregulated under current market conditions, policy makers can use our study to guide

regulations if they plan to implement these in the future. For example, policy makers can use

our method to estimate the ambiguity of Bitcoin which can help to identify potential market

bubbles. They can also use the ambiguity of Bitcoin to cool-off trading in the Bitcoin markets.
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The remainder of the paper proceeds as follows. Section 2 discusses the construction of the

ambiguity measure. Section 3 describes the data while section 4 reports the main empirical

results and performs various robustness tests. Section 5 concludes the paper.

2. The ambiguity measure

As we noted before, ambiguity refers to situations where an agent’s subjective knowledge

about likelihoods of contingent events is consistent with multiple probability distributions,

there has been an evolution in the way we measure ambiguity, focusin in particular, on the

way we embed information. For the purpose of our paper, we follow Izhakian (2018) and

define ambiguity as

f2[r] =

∫
E[ϕ(r)]V ar[ϕ(r)]dr, (1)

where r is the Bitcoin return, ϕ(r) is the marginal probability, E[] is the expectation, and

V ar[] is the variance. While risk can be measured by the volatility of returns, f2[r] captures

the fact that ambiguity can be measured by the volatility of probabilities (Rothschild and

Stiglitz, 1970). By construction, f2[r] is independent of risk, attitudes towards risk and/or

attitude towards ambiguity and takes into account the variance of all the moments of the

outcome distribution (Brenner and Izhakian, 2018).

In line with Andersen et al. (2001), we use five-minutes intervals price to compute returns

to minimize microstructure effects. For each day we use five-minute returns to compute the

normalized (by the number of intraday observations) daily mean (µ) and variance of the return
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(σ), respectively. Following Scholes and Williams (1977), we estimate σ by taking into account

the adjustment for nonsynchronous trading. Specifically, σ is computed as

σ2
t =

Nt∑
i=1

(ri,t − E[ri,t])
2 +

Nt∑
i=2

(ri,t − E[ri,t])(ri,t−1 − E[ri,t−1]), (2)

where there are Nt five-minute returns, ri,t, in day t.

Following Brenner and Izhakian (2018), we assume that the intraday returns are normally

distributed. We then compute for each day the cumulative probability of favorable returns

(gain), P (r ≥ rf ) = 1 − Φ(rf ;µ, σ), where any return greater than the risk-free rate is

considered favorable.

We represent each daily return distribution by a histogram. Specifically, we divide the

range of daily returns, from -6% to +6%, into 60 intervals (bins), each of width 0.2%. For

each day, we compute the probability of the return being in each bin. In addition, we compute

the probability of the return being lower than -6% and higher than +6%. We then compute

the mean and the variance of the probabilities for each of the 62 bins separately. Finally, we

estimate the degree of ambiguity of each month using the following discrete form

f2[r] =
1

ω(1− ω)
×

{
E
[
Φ(r0;µ, σ)

]
V ar

[
Φ(r0;µ, σ)

]
+

60∑
i=1

E
[
Φ(ri;µ, σ)− Φ(ri−1;µ, σ)

]
× V ar

[
Φ(ri;µ, σ)− Φ(ri−1;µ, σ)

]
+ E

[
1− Φ(r60;µ, σ)

]
V ar

[
1− Φ(r60;µ, σ)

]}
, (3)
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where r0 = −0.06 and ω = r1 − ri−1 = 0.002. The ambiguity in day t is the rolling mean of

Eq. (3) over 30 days.

3. Data

We collect daily Bitcoin data including closing price, high price, low price (all prices are

in dollars), and volume (between 13/09/2011 and 30/11/2019) from bitcoincharts.com. We

download the daily excess market returns (MKTRF ), size factor (SMB), book-to-market

factor (HML), profitability factor (RMW ), investment factor (CMA), momentum factor

(UMD), and treasury bill rate (RF ) from Kenneth French’s website.5 We download the

daily q-factors including the size factor (ME ), investment factor (I/A), return-on-equity fac-

tor (ROE ), and expected growth factor (EG) from global-q.org.6 We download the CBOE

(Chicago Board Options Exchange) Volatility Index from Wharton Research Data Services.

We use the CBOE S&P 500 Volatility Index (V IX). The Bitcoin return is the difference

between closing price at day t and day t− 1 divided by closing price at day t− 1. We obtain

five-minute bitcoin data from Bitcoincharts.

The ambiguity measure of Bitcoin is based on the five-minute intra-day returns. Panel A

of Table 1 reports the summary statistics. The average of five-minute returns is 0.5%, the

standard deviation is 4.2%, and the Sharpe ratio is 24.2% in terms of daily returns. Brenner

and Izhakian (2018) highlight that the high frequency realized returns can be a poor proxy

for long run expected return due to the large standard errors.

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
6http://global-q.org/index.html. Hou et al. (2015) and Hou et al. (2019, 2020) provide detailed discussions on

factor constructions.
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Panel B of Table 1 continues to report the summary statistics in daily frequencies. The

daily Bitcoin return in excess of risk-free rate is 0.4%. Our risk measure, the standard deviation

of the prior 30 daily returns (σ), has a mean of 3.8%. Another risk measure, the absolute

deviation (ϑ = E
[
| r − E[r] |

]
) which is the average absolute daily deviation of returns

from the rolling prior 30 average daily return, has a mean of 2.7%. The average of favorable

returns is 0.540 similar to the favorable returns of US equity index as in Brenner and Izhakian

(2018). The average degree of ambiguity (f) is 1.173. Figure 1 plots the time-series of

realized Bitcoin ambiguity and excess returns from February 2012 to November 2019. As can

be seen, some high ambiguity periods are related to low Bitcoin returns and price crashes

including the periods of August 2012, April 2013, January 2015, and February 2018, similar

to the findings of Brenner and Izhakian (2018). Brenner and Izhakian (2018) argue that this

is because investors have concerns over high price (low rates of return) period due to “the

correction” (a price drop after a price soar). This correction leads to high ambiguity, i.e., the

variance of probability of a price drop. Panel C of Table 1 reports the correlation between key

variables. The favorable probability is positively related to returns, consistent with Brenner

and Izhakian (2018).

4. Empirical results

4.1. Estimating expected values

In our empirical tests, we use the estimated expectations of the following four variables,

namely, the volatility (σ), the average absolute deviation of returns from the expected return

(ϑ), the probability of favorable returns (P ), and the degree of ambiguity (f). Following
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Andersen et al. (2003) and Brenner and Izhakian (2018), we estimate the expected volatility

based on realized volatility using the coefficients estimated by the time-series autoregressive

moving average ARMA(p, q) model with the minimal corrected Akaike information criterion

(AICC):

ln
√
νt = Ψ0 + εt + Ψ1ln

√
νt−1 + θ1εt−1, (4)

where νt is realized volatility in day t. We use the natural logarithm of volatility (ln
√
νt) to

avoid negative expected volatility estimates as νt is skewed following Brenner and Izhakian

(2018). The expected volatility (νEt+1) is then estimated as the fitted value from Eq. (4), i.e.,

νEt+1 = e2l̂n
√
νt+V ar[ut], where V ar[ut] is the variance of error term. For each day, we use a

rolling window regression with the prior 365 days to estimate Eq. (4). Similarly, we estimate

the expected absolute deviation, ϑ, using its monthly realized values, to obtain its expectation

of ϑE.

We also estimate expected ambiguity using ARMA(p, q) similar to the method used to

estimate the expected volatility. Specifically, we estimate the expected ambiguity based on

realized ambiguity using the coefficients estimated by the time-series model:

lnft = Ψ0 + εt + Ψ1lnft−1 + θ1εt−1, (5)

where ft is realized ambiguity in day t. The expected ambiguity (fE
t+1) is then estimated

as the fitted value from Eq. (5), i.e., fE
t+1 = e2

̂lnft+V ar[ut], where V ar[ut] is the variance of

11



error term. Further, we estimate expected probability of unfavorable returns using ARMA(p,

q). Specifically, we estimate the expected ambiguity based on realized ambiguity using the

coefficients estimated by the time-series model:

lnQt = Ψ0 + εt + Ψ1lnQt−1 + θ1εt−1, (6)

whereQt = Pt
1−Pt and Pt is realized probability of favorable returns in day t. The expected prob-

ability (PE
t+1) is then estimated as the fitted value from Eq. (6), i.e., QE

t+1 = e2l̂nQt+0.5V ar[ut]

1−e2l̂nQt+0.5V ar[ut]
,

where V ar[ut] is the variance of error term.

Panel A of Table 2 reports summary statistics of estimated values of volatility, absolute

deviation, the probability of favorable returns, and ambiguity. Each value is obtained from

the fitted value from the ARMA model discussed above. Compared with the realized values

in Panel B of Table 1, we find that the variation of expected values are generally smaller than

the corresponding realized values. This is similar to Brenner and Izhakian (2018).

4.2. Main empirical tests

We now turn to test the impact of ambiguity on returns using the following empirical design.

The expected probability is between 0.368 and 0.768. We divide this range into 37 equal bins

of 0.01 each,indexed by i.7 For example, the first bin is from 0.38 to 0.39. The few values

lower that 0.38 are indexed as i = 1, while the few values higher than 0.75 are index as i = 37.

We construct a dummy variable for each probability bin. Specifically, the dummy variable

7Brenner and Izhakian (2018) also use bins of 0.01 each.
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(Di) is equal to one if the expected probability of favorable returns in a day t belongs to bin

i, and zero otherwise. The empirical model is described by:

rt+1 − rf,t+1 = α + γ · νEt + η · (f2
t )
E × ϑEt

+
37∑
i=2

ηi ·
(
Di,t × PE

t × (f2
t )
E × ϑEt

)
+ εt (7)

where PE
t is the midpoint of probability bin i. It is worth noting that the attitude toward

ambiguity varies when the expected probability of favorable returns changes, while the attitude

towards risk remains constant.

The coefficients from Eq. (7) can be written as η(PE) = η̂+ η̂i, which represents investors’

attitude towards ambiguity conditional on the expected probability of favorable returns (PE)

falling into bin i. A negative value of η(PE) means that investors show ambiguity-loving

behavior which leads to a negative ambiguity premium, while a positive value means that in-

vestors show ambiguity-averse behavior which leads to a positive ambiguity premium. Further,

a high η̂i falling into the bins of low probabilities of favorable returns implies an increasing

pursuit of ambiguity, while a high η̂i falling into the bins of high probabilities of favorable

returns implies an increasing aversion to ambiguity.

We run both ordinary least square (OLS) and weighted least square (WLS) regressions to

test Eq. (7). Specifically, in the WLS regressions, the weights are inversely proportional to

the sum of the estimated risk and the estimated ambiguity, i.e., 1√
νEt +fEt

following French,

Schwert, and Stambaugh (1987) and Brenner and Izhakian (2018).
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Table 3 reports the OLS and WLS regressions results. In the first specification, expected

volatility, as a measure of risk, is the only independent variable. It has a positive coefficient,

consistent with the well-known facts that high risk is related to high returns. We then intro-

duce expected ambiguity in the subsequent regressions. We first focus exclusively on expected

ambiguity. We find that it is insignificant, consistent with Brenner and Izhakian (2018).

Next, we investigate the effect of expected ambiguity on returns conditional on attitude to-

ward ambiguity as specified by Eq. (7). The ambiguity coefficient in high probability bins

of favorable returns (e.g., η34) is significant, indicating that Bitcoin investors have increasing

aversion towards ambiguity.

4.3. Robustness: Alternative volatility measures

In this subsection, we use alternative volatility measures rather than the expected volatility in

our regressions. Cheah, Luo, Zhang, and Sung (2020) show that the forward-looking implied

volatility (VIX) from S&P index options can predict Bitcoin returns. Cao, Wang, and Zhang

(2005) and Garlappi, Uppal, and Wang (2007) suggest the role of the volatility of mean in

ambiguity. Following these work, we use the VIX index and the volatility of mean. Consistent

with our previous tests, we use the expected average volatility, V OLME, which is estimated

from an ARMA (p,q) model of the realized standard deviation of the prior 30 daily average

returns. Average returns are the rolling average over the prior 30 days. Specifically, we

examine the role of ambiguity based on the following two equations:
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rt+1 − rf,t+1 = α + γ · V IXt + η · (f2
t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t × PE

t × (f2
t )
E × ϑEt

)
+ εt. (8)

rt+1− rf,t+1 = α+ γ · V OLME
t + η · (f2

t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t×PE

t × (f2
t )
E × ϑEt

)
+ εt. (9)

Table 4 reports the results under alternative volatility measures. The effect of ambiguity

on returns is robust to the alternative risk measures. Specifically, the ambiguity coefficient

in high probability bins of favorable returns (e.g., η34) remains significant, which provides

support for increasing aversion towards ambiguity of Bitcoin investors.

4.3.1. Higher-order moments

In this section, we conduct further robustness tests by taking into account higher order mo-

ments; namely, skewness, kurtosis, and volatility of volatility. Prior studies show that higher

moments play an important role in asset prices. Kelly and Jiang (2014) and Bollerslev et al.

(2015) show that skewness is related to tail and crash risk. Jondeau et al. (2019) find that

average skewness can predict stock market returns. Cheah et al. (2020) examine the role of

skewness and kurtosis in Bitcoin return predictability. Brandt and Kang (2004) and Brenner

and Izhakian (2018) argue that ambiguity can be related to volatility of volatility. Following

these studies, we run the following equation to take into account skewness (Skew), kurtosis

(Kurt), and volatility of volatility (V OLV )
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rt+1 − rf,t+1 = α + γ · νEt + η · (f2
t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t × PE

t × (f2
t )
E × ϑEt

)
+ β1 · SkewEt + β2 ·KurtEt + β3 · V OLV E

t + εt. (10)

Consistent with our prior tests, we use the expected values which are estimated from

ARMA (p,q) models. Table 5 reports the results, showing the effect of ambiguity on returns

after controlling for expected skewness (SkewE), kurtosis (KurtE), and volatility of volatility

(V OLV E). Consistent with prior results, we again find that Bitcoin investors have increasing

aversion towards ambiguity.

4.4. Robustness: Unstructured risk attitudes

Following Brenner and Izhakian (2018), in this subsection we test a further discrete model

where attitudes towards ambiguity depending on wealth and risk attitudes contain a finite

number of values. Specifically, we divide the wealth range (the logarithm of gross Bitcoin

return in excess of risk-free rate) into nine equal bins of 0.5 each, indexed by i. For example,

the first bin is from 0.5 to 5. The few values lower that 0.5 are indexed as i = 1, while the

few values higher than 5 are indexed as i = 9. The number of wealth bins is consistent with

the number of expect probability bins as in Eq. (7).

We then generate a dummy variable for each wealth bin. If the wealth in a give day t

belongs to bin j, the dummy variable Cj,t is equal to one and zero otherwise. Specifically, we

run the following equation to take into account wealth,
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rt+1−rf,t+1 = α+γ·νEt +
9∑
j=2

γj·
(
Cj,t×wj×νEt

)
+η·(f2

t )
E×ϑEt +

9∑
i=2

ηi·
(
Di,t×PE

t ×(f2
t )
E×ϑEt

)
+εt,

(11)

where wj is the midpoint of wealth bin j. It is worth noting that risk attitudes in the model can

comove with the wealth. γ + γj captures Bitcoin investors’ attitudes toward risk conditional

on the wealth w falling into wealth bin j. If the sum is negative, it indicates that investors

exhibit risk-loving behaviors which implies a negative risk premium. Conversely, if the sum is

positive, it indicates that investors exhibit risk-verse behaviors which implies a positive risk

premium.

Table 6 reports the results. We find that γ+γj is positive. Thus, investors exhibit risk-verse

behaviors and result in a positive risk premium. Further, Bitcoin investors still have increasing

aversion towards ambiguity according to the ambiguity coefficient in high probability bins of

favorable returns.

4.5. Performance of Bitcoin returns conditional on ambiguity

Liu and Tsyvinski (2020) show that cryptocurrency returns cannot be explained by the cap-

ital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), the Fama–French

(1993) three-factor model (FF3FM), the Carhart (1997) momentum-extended FF3FM, and

the Fama–French (2015) five-factor model (FF5FM). In the spirit of Baker and Wulger (2006),

we examine the performance of Bitcoin returns conditional on ambiguity. Hibbert and Stan

(2020) examine the pricing of ambiguity in the cross-sectional stock returns of various port-
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folios. Following these studies, we examine whether ambiguity helps us to understand the

performance of Bitcoin returns.

We measure the performance of Bitcoin returns based on several asset pricing models

including the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), the

Fama–French (1993) three-factor model (FF3FM), the Carhart (1997) momentum-extended

FF3FM, the Fama–French (2015) five-factor model (FF5FM), and the Hou et al. (2020)

five-factor model (q5FM). Specifically, we run the following time-series regressions:

Ri,t − Rf,t = αi + βi,mfMKT ,t + εi,t, (12)

Ri,t − Rf,t = αi + βi,mfMKT ,t + βi,sfSMB ,t + βi,hfHML,t + εi,t, (13)

Ri,t − Rf,t = αi + βi,mfMKT ,t + βi,sfSMB ,t + βi,hfHML,t + βi,wfWML,t + εi,t, (14)

Ri,t − Rf,t = αi + βi,mfMKT ,t + βi,sfSMB ,t + βi,hfHML,t + βi,rfRMW ,t + βi,cfCMA,t + εi,t,(15)

Ri,t − Rf,t = αi + βi,mfMKT ,t + βi,mefME ,t + βi,roefROE ,t + βi,iafIA,t + βi,egfEG,t + εi,t, (16)

where Ri,t is the day-t return of portfolio i, Rf,t is the risk-free rate for day t, fMKT ,t is

the day-t value of the market factor, fSMB ,t is the day-t value of the Fama–French (FF) size

factor, fHML,t is the day-t value of the FF book-to-market factor, fWML,t is the day-t value of

the momentum factor, fRMW ,t is the day-t value of the FF profitability factor, fCMA,t is the

day-t value of the FF investment factor, fME ,t is the day-t value of the HMXZ (i.e., Hou et

al., 2020) size factor, fROA,t is the day-t value of the HMXZ profitability factor, and fI/A,t is
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the day-t value of the HMXZ investment factor, and fEG,t is the day-t value of the HMXZ

expected growth factor.

Panel A of Table 7 reports the performance of the Bitcoin returns under various asset

pricing models over the whole sample period. Consistent with Liu and Tsyvinski (2020),

we find that the abnormal return (α) of Bitcoin is significantly positive under the CAPM,

the FF3M, the momentum-extended FF3FM, the FF5FM, and the q5FM. For example, the

abnormal return of Bitcoin under the FF5FM is 0.004 (t = 4.26). Further, the risk loadings

(i.e., the coefficients of risk factors, β) are all insignificant, indicating that well-known equity

risk factors have difficulties in explaining the Bitcoin returns. This is similar to the findings of

Cheah et al. (2020) which show that equity risk factors have no predictive power on Bitcoin

returns.

Panels B and C of Table 7 report the performance of the Bitcoin returns under various asset

pricing models over high and low ambiguity periods. High ambiguity periods are those above

the median of ambiguity while low ambiguity period are those below the median of ambiguity.

As can be seen, Bitcoin investors earn insignificant abnormal returns during high ambiguity

periods. The premium is only present during low ambiguity periods no matter which asset

pricing mode is tested. For example, the abnormal return of Bitcoin under the FF5FM during

high ambiguity periods is 0.002 (t = 1.02) while it is 0.006 (t = 7.37) during low ambiguity

periods. Comparing the performance over the full periods with that during low ambiguity

periods, we find that the abnormal return is even more pronounced. Overall, our results

indicate that ambiguity plays an important role in understating the Bitcoin performance.
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5. Conclusion

Investors invariably face a choice between known risks over unknown risks and therefore, an

ambiguity-averse investor would rather choose an alternative where the probability distribu-

tion of an investment outcome is known over one where the probabilities that are unknown.

This paper studies, to the best of our knowledge the first time, the important role of ambiguity

in Bitcoin returns, an investment portfolio that has caught investors’ attention like none other

in recent times. Because virtual currencies like Bitcoin, do not conform to conventional asset

pricing theory and hence their returns cannot be theoretically predicted, at least partially,

alternative tools are needed to characterize observed abnormalities in their returns. We bring

in the classical case of ambiguity, contextualised through a design of improved methodologi-

cal underpinning that employs value of information, to understand the extent the degree of

ambiguity aversion contributes to the variable magnitudes of abnormal returns.

Following the approach set out by Brenner and Izhakian (2018) and Baker and Wulger

(2006), we find that Bitcoin investors have increasing aversion towards ambiguity, and such

a characterisation helps in quantifying the extent of the abnormal returns of Bitcoin. We

examine the performance of Bitcoin returns conditional on ambiguity. Towards this we use

several asset pricing models and distinguish the performance of Bitcoin returns between high

and low ambiguity periods. An important finding from this exercise is that Bitcoin investors

earn very low abnormal returns during periods of high ambiguity in contrast to the period

of low ambiguity irrespective of the asset price models we employ. Our results are robust to

alternative measures of volatility in Bitcoin prices, higher order moments (such as skewness)
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that determine asset prices, and design of a further discrete model where attitude towards

ambiguity depends on wealth and risk attitudes.
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Table 1 Descriptive statistics

This table reports descriptive statistics and correlations for the following variables of Bitcoin:

RET : daily Bitcoin returns;

σ: daily volatility;

ϑ: daily absolute deviation;

P : daily probability;

f: daily ambiguity.

Panel A reports the intra-day summary statistics. The mean return, µ5m, is the daily average five-minute returns.
The return standard deviation, σ5m, is the daily standard deviation of five-minute returns. Panel B reports the daily
summary statistics. The return, RET , is the daily returns of Bitcoin. The volatility, σ, is the standard deviation
of the prior 30 daily returns. The absolute deviation, ϑ, is the average absolute daily deviation of returns from the
rolling prior 30 average daily returns. The mean probability, P , is the average daily probability of favorable returns
over a month. A return is considered favorable if it is greater than the risk-free rate, where returns are assumed to be
normally distributed. Probabilities are based on the daily mean and variance of returns computed from the five-minute
returns. Ambiguity, f, is the square root of variance of the daily probabilities of returns over the prior 30 days. Panel
B reports the correlations of the estimated expected values.

Panel A: Intra-day descriptive statistics

µ5m σ5m µ5m

σ5m

Mean 0.005 0.042 0.242

Stdev 0.062 0.069 4.005

Median 0.003 0.030 0.120

Skewness 13.278 23.627 41.265

Kurtosis 455.503 848.383 1909.015

Panel B: Daily descriptive statistics

RET σ ϑ P f
Mean 0.004 0.038 0.027 0.543 1.173

Stdev 0.045 0.024 0.017 0.069 0.701

Medium 0.002 0.033 0.023 0.539 0.996

Skewness 0.047 2.237 2.203 0.405 0.877

Kurtosis 17.120 10.846 10.513 2.839 2.958

Panel C: Correlation

RET σ ϑ P f
σ 0.031 1.000

ϑ 0.031 0.978 1.000

P 0.191 0.197 0.202 1.000

f -0.060 0.738 0.764 -0.210 1.000
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Table 2 Descriptive statistics of expected values

This table reports descriptive statistics and correlations for the following variables of Bitcoin:

σE : daily expected volatility;

ϑE : daily expected absolute deviation;

PE : daily expected probability;

fE : daily expected ambiguity.

Panel A reports the summary statistics. For each day, the expected values are estimated based only on their realized
values over the prior 365 days and using the ARMA(p, q) model with the minimal AICC. The expected volatility, σE , is
the standard deviation of the prior 30 daily returns. The expected absolute deviation ϑE is estimated from the average
absolute daily deviation of returns from the rolling prior 30 average daily returns. The expected ambiguity, fE , is
estimated from the realized ambiguity, where ambiguity fE , is the square root of variance of the daily probabilities of
returns over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed
from five-minute returns. The expected probability of favorable returns, PE , is estimated from the rolling averages
of the daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater
than the risk-free rate, where returns are assumed to be normally distributed. Panel B reports the correlations of the
estimated expected values.

Descriptive statistics

σE ϑE PE fE

Mean 0.002 0.001 0.542 1.998

Stdev 0.003 0.002 0.070 2.208

Medium 0.001 0.001 0.535 1.087

Skewness 4.888 4.275 0.506 1.635

Kurtosis 31.899 26.391 2.903 5.212

Correlation

σE ϑE PE fE

ϑE 0.956 1.000

PE 0.258 0.248 1.000

fE 0.580 0.654 -0.188 1.000
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Table 3 Main OLS and WLS regression tests

The table reports the results of the tests of the main model. Panels A and B report the results obtained using OLS
and WLS regressions in the following equation:

rt+1 − rf,t+1 = α+ γ · νEt + η · (f2
t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t × PEt × (f2

t )
E × ϑEt

)
+ εt.

The estimated expected value of each variable at time t is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. The expected volatility, σE , is the standard
deviation of the prior 30 daily returns. The expected absolute deviation ϑE is estimated from the average absolute
daily deviation of returns from the rolling prior 30 average daily returns. The expected ambiguity, fE , is estimated
from the realized ambiguity, where ambiguity fE , is the square root of variance of the daily probabilities of returns
over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed from
five-minute returns. The expected probability of favorable returns, PE , is estimated from the rolling averages of the
daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater than the
risk-free rate, where returns are assumed to be normally distributed. The dummy variable (Di) is equal to one if the
expected probability of favorable returns in a day t belongs to bin i, and zero otherwise. In Panel B, the weights are
inversely proportional to the sum of the estimated risk and the estimated ambiguity. The numbers in parentheses are
t-statistics.

Panel A: OLS Panel B: WLS

α 0.002 0.003 0.002 0.003 0.004 0.003
(2.15) (2.28) (1.95) (3.16) (3.66) (3.04)

γ 0.420 0.535 0.460 0.246
(1.53) (0.56) (1.32) (0.22)

θ 0.000 -0.000
(0.47) (-0.08)

η -0.091 -0.082
(-0.77) (-0.44)

η2 0.554 0.590
(1.32) (0.90)

η3 0.077 0.049
(0.22) (0.09)

η4 0.188 0.182
(0.60) (0.37)

η5 0.409 0.375
(1.40) (0.82)

η6 0.146 0.142
(0.51) (0.32)

η7 0.173 0.113
(0.63) (0.26)

η8 0.210 0.162
(0.75) (0.37)

η9 0.200 0.155
(0.76) (0.38)

η10 0.318 0.287
(1.25) (0.72)

η11 0.056 0.025
(0.23) (0.07)

η12 0.167 0.154
(0.69) (0.40)

η13 0.192 0.182
(0.80) (0.48)
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Table 3 (Continued)

Panel A: OLS Panel B: WLS

η14 0.116 0.090
(0.50) (0.25)

η15 0.180 0.156
(0.78) (0.43)

η16 0.048 0.017
(0.21) (0.05)

η17 0.218 0.220
(0.97) (0.62)

η18 0.184 0.175
(0.85) (0.52)

η19 0.190 0.183
(0.89) (0.55)

η20 0.131 0.121
(0.63) (0.37)

η21 0.161 0.148
(0.78) (0.46)

η22 0.090 0.086
(0.43) (0.26)

η23 0.092 0.087
(0.46) (0.28)

η24 0.118 0.118
(0.59) (0.38)

η25 0.659 0.582
(3.18) (1.83)

η26 0.399 0.424
(1.96) (1.34)

η27 0.036 0.004
(0.17) (0.01)

η28 -0.147 -0.136
(-0.74) (-0.45)

η29 -0.156 -0.162
(-0.79) (-0.54)

η30 -0.031 0.026
(-0.16) (0.09)

η31 0.199 0.210
(1.03) (0.71)

η32 0.314 0.323
(1.67) (1.13)

η33 0.056 0.085
(0.30) (0.30)

η34 1.594 1.657
(6.33) (4.80)

η35 0.000 0.096
(0.00) (0.30)

η36 -0.067 -0.003
(-0.23) (-0.01)

η37 -0.403 -0.287
(-1.43) (-0.81)

Adj-R2 0.0005 -0.0003 0.0726 0.0006 -0.0000 0.0335
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Table 4 VIX and expected average volatility regression tests

The table reports the results obtained using OLS in the following equations:

rt+1 − rf,t+1 = α+ γ · V IXt + η · (f2
t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t × PEt × (f2

t )
E × ϑEt

)
+ εt.

rt+1 − rf,t+1 = α+ γ · V OLME
t + η · (f2

t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t × PEt × (f2

t )
E × ϑEt

)
+ εt.

The estimated expected value of each variable at time t is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. VIX is the value of VIX index. The expected
average volatility, V OLME , is estimated from the realized standard deviation of the prior 30 daily average returns
and average returns are the rolling average over the prior 30 days. The expected absolute deviation ϑE is estimated
from the average absolute daily deviation of returns from the rolling prior 30 average daily returns. The expected
ambiguity, fE , is estimated from the realized ambiguity, where ambiguity fE , is the square root of variance of the
daily probabilities of returns over the prior 30 days. Probabilities of returns are based on the daily mean and variance
of returns computed from five-minute returns. The expected probability of favorable returns, PE , is estimated from the
rolling averages of the daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if
it is greater than the risk-free rate, where returns are assumed to be normally distributed. The dummy variable (Di)
is equal to one if the expected probability of favorable returns in a day t belongs to bin i, and zero otherwise. The
numbers in parentheses are t-statistics.

Panel A: VIX Panel B: V OLME

OLS WLS OLS WLS

α 0.010 0.011 0.011 0.011 0.002 0.002 0.003 0.003
(2.59) (2.77) (3.14) (3.14) (2.02) (1.95) (3.06) (3.05)

V IX -0.043 -0.053 -0.048 -0.050
(-1.76) (-2.14) (-2.17) (-2.23)

V OLME 0.495 0.406 0.505 -0.031
(1.56) (0.38) (1.24) (-0.02)

η2 0.556 0.592 0.554 0.591
(1.32) (0.91) (1.32) (0.90)

η3 0.074 0.048 0.077 0.049
(0.21) (0.09) (0.22) (0.09)

η4 0.183 0.177 0.188 0.182
(0.59) (0.36) (0.60) (0.37)

η5 0.416 0.385 0.410 0.377
(1.43) (0.84) (1.40) (0.82)

η6 0.151 0.145 0.147 0.145
(0.53) (0.33) (0.52) (0.33)

η7 0.172 0.111 0.174 0.115
(0.62) (0.26) (0.63) (0.27)

η8 0.215 0.164 0.212 0.166
(0.77) (0.38) (0.76) (0.38)

η9 0.194 0.148 0.203 0.159
(0.74) (0.36) (0.77) (0.39)

η10 0.309 0.276 0.320 0.290
(1.22) (0.69) (1.26) (0.73)

η11 0.050 0.017 0.059 0.029
(0.20) (0.04) (0.24) (0.07)

η12 0.156 0.142 0.170 0.158
(0.64) (0.37) (0.70) (0.41)

η13 0.177 0.165 0.195 0.186
(0.74) (0.44) (0.81) (0.50)
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Table 4 (Continued)

Panel A: VIX Panel B: V OLME

OLS WLS OLS WLS

η14 0.098 0.070 0.118 0.093
(0.42) (0.19) (0.50) (0.25)

η15 0.167 0.141 0.182 0.158
(0.72) (0.39) (0.79) (0.44)

η16 0.034 0.003 0.049 0.020
(0.15) (0.01) (0.22) (0.06)

η17 0.203 0.203 0.220 0.224
(0.90) (0.58) (0.98) (0.64)

η18 0.170 0.157 0.188 0.181
(0.79) (0.46) (0.87) (0.53)

η19 0.177 0.166 0.193 0.188
(0.83) (0.50) (0.91) (0.56)

η20 0.121 0.106 0.135 0.127
(0.58) (0.33) (0.65) (0.39)

η21 0.151 0.133 0.166 0.155
(0.74) (0.42) (0.81) (0.48)

η22 0.083 0.070 0.097 0.095
(0.40) (0.22) (0.46) (0.29)

η23 0.085 0.074 0.096 0.095
(0.43) (0.24) (0.48) (0.30)

η24 0.112 0.104 0.123 0.126
(0.57) (0.34) (0.62) (0.41)

η25 0.652 0.566 0.665 0.590
(3.18) (1.79) (3.22) (1.85)

η26 0.394 0.409 0.402 0.433
(1.95) (1.30) (1.97) (1.36)

η27 0.024 -0.018 0.044 0.013
(0.11) (-0.06) (0.20) (0.04)

η28 -0.141 -0.145 -0.136 -0.122
(-0.73) (-0.49) (-0.69) (-0.40)

η29 -0.147 -0.169 -0.144 -0.147
(-0.78) (-0.57) (-0.74) (-0.49)

η30 -0.025 0.017 -0.020 0.039
(-0.13) (0.06) (-0.10) (0.13)

η31 0.206 0.204 0.210 0.223
(1.10) (0.70) (1.10) (0.76)

η32 0.327 0.321 0.326 0.339
(1.82) (1.15) (1.76) (1.19)

η33 0.077 0.088 0.072 0.104
(0.44) (0.32) (0.39) (0.37)

η34 1.637 1.667 1.618 1.687
(7.19) (5.17) (6.58) (4.97)

η35 0.029 0.095 0.025 0.124
(0.14) (0.32) (0.11) (0.39)

η36 -0.027 0.000 -0.031 0.032
(-0.10) (0.00) (-0.11) (0.09)

η37 -0.360 -0.276 -0.369 -0.254
(-1.40) (-0.85) (-1.37) (-0.75)

Adj-R2 0.0008 0.0743 0.0017 0.0352 0.0006 0.0726 0.0005 0.0335
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Table 5 Tests after controlling for higher moments

The table reports the results of the tests of the main model after controlling for higher moments. Panels A and B
report the results obtained using OLS and WLS regressions in the following equation:

rt+1 − rf,t+1 = α+ γ · νEt + η · (f2
t )
E × ϑEt

+

9∑
i=2

ηi ·
(
Di,t × PEt × (f2

t )
E × ϑEt

)
+ β1 · SkewEt + β2 ·KurtEt + β3 · V OLV Et + εt.

The estimated expected value of each variable at time t is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. The expected volatility, σE , is the standard
deviation of the prior 30 daily returns. The expected absolute deviation ϑE is estimated from the average absolute
daily deviation of returns from the rolling prior 30 average daily return. The expected ambiguity, fE , is estimated
from the realized ambiguity, where ambiguity fE , is the square root of variance of the daily probabilities of returns
over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed from
five-minute returns. The expected probability of favorable returns, PE , is estimated from the rolling averages of the
daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater than
the risk-free rate, where returns are assumed to be normally distributed. The dummy variable (Di) is equal to one if
the expected probability of favorable returns in a day t belongs to bin i, and zero otherwise. The expected skewness,
SkewE , is estimated from the realized skewness of the prior 30 daily returns. The expected skewness, KurtE , is
estimated from the realized kurtosis of the prior 30 daily returns. The expected volatility of volatility, V OLV E , is
estimated from the realized volatility of volatility of the prior 30 daily returns. In Panel B, the weights are inversely
proportional to the sum of the estimated risk and the estimated ambiguity. The numbers in parentheses are t-statistics.

Panel A: OLS Panel B: WLS
α 0.002 0.004 0.011 0.003 0.004 -0.050

(1.72) (1.80) (0.27) (2.51) (2.35) (-1.13)
γ -1.121 -1.072 -1.256 -1.541 -1.370 -2.138

(-1.53) (-1.38) (-1.01) (-2.54) (-2.16) (-2.27)
SkewE 0.001 0.000

(0.69) (0.39)
KurtE -0.000 -0.000

(-1.04) (-0.97)
V OLV E -0.009 0.052

(-0.22) (1.19)
η -0.056 -0.061 -0.057 -0.028 -0.032 -0.028

(-0.49) (-0.53) (-0.49) (-0.16) (-0.18) (-0.16)
η2 0.325 0.324 0.324 0.214 0.214 0.216

(0.78) (0.78) (0.78) (0.33) (0.33) (0.34)
η3 0.029 0.028 0.028 -0.022 -0.022 -0.018

(0.08) (0.08) (0.08) (-0.04) (-0.04) (-0.03)
η4 0.195 0.193 0.193 0.149 0.148 0.156

(0.65) (0.64) (0.64) (0.32) (0.32) (0.34)
η5 0.262 0.258 0.257 0.154 0.150 0.160

(0.91) (0.90) (0.89) (0.35) (0.34) (0.37)
η6 0.095 0.088 0.090 0.028 0.022 0.031

(0.34) (0.32) (0.32) (0.06) (0.05) (0.07)
η7 0.021 0.016 0.018 -0.082 -0.086 -0.081

(0.08) (0.06) (0.07) (-0.20) (-0.21) (-0.20)
η8 0.164 0.158 0.158 0.078 0.071 0.086

(0.60) (0.58) (0.58) (0.19) (0.17) (0.21)
η9 0.155 0.150 0.152 0.053 0.048 0.063

(0.61) (0.59) (0.59) (0.14) (0.12) (0.16)
η10 0.181 0.176 0.177 0.099 0.093 0.112

(0.73) (0.71) (0.71) (0.26) (0.25) (0.30)
η11 -0.039 -0.046 -0.045 -0.109 -0.116 -0.093

(-0.16) (-0.19) (-0.18) (-0.30) (-0.32) (-0.25)32



Table 5 (Continued)

Panel A: OLS Panel B: WLS
η12 0.113 0.108 0.109 0.054 0.049 0.071

(0.48) (0.45) (0.46) (0.15) (0.13) (0.20)
η13 0.098 0.091 0.093 0.035 0.027 0.051

(0.42) (0.39) (0.40) (0.10) (0.08) (0.14)
η14 0.061 0.055 0.057 0.002 -0.004 0.016

(0.27) (0.24) (0.25) (0.01) (-0.01) (0.05)
η15 0.053 0.043 0.048 -0.030 -0.040 -0.015

(0.22) (0.18) (0.20) (-0.09) (-0.11) (-0.04)
η16 0.016 0.006 0.011 -0.047 -0.056 -0.032

(0.07) (0.03) (0.05) (-0.14) (-0.17) (-0.09)
η17 0.138 0.129 0.134 0.097 0.088 0.106

(0.63) (0.58) (0.61) (0.29) (0.26) (0.32)
η18 0.087 0.078 0.082 0.033 0.024 0.043

(0.41) (0.37) (0.39) (0.10) (0.07) (0.13)
η19 0.114 0.105 0.108 0.065 0.057 0.079

(0.55) (0.51) (0.52) (0.21) (0.18) (0.25)
η20 0.052 0.042 0.046 0.005 -0.004 0.016

(0.25) (0.21) (0.23) (0.02) (-0.01) (0.05)
η21 0.061 0.051 0.056 0.005 -0.005 0.015

(0.30) (0.25) (0.28) (0.02) (-0.02) (0.05)
η22 0.041 0.028 0.035 -0.013 -0.025 -0.008

(0.20) (0.14) (0.18) (-0.04) (-0.08) (-0.03)
η23 0.085 0.070 0.079 0.038 0.024 0.044

(0.43) (0.36) (0.40) (0.13) (0.08) (0.15)
η24 -0.034 -0.048 -0.040 -0.063 -0.078 -0.058

(-0.17) (-0.25) (-0.20) (-0.21) (-0.26) (-0.19)
η25 0.552 0.540 0.546 0.444 0.431 0.458

(2.72) (2.66) (2.69) (1.46) (1.42) (1.51)
η26 0.311 0.293 0.305 0.294 0.277 0.293

(1.56) (1.48) (1.53) (0.98) (0.93) (0.98)
η27 -0.095 -0.113 -0.102 -0.173 -0.191 -0.161

(-0.45) (-0.53) (-0.48) (-0.56) (-0.62) (-0.52)
η28 -0.198 -0.220 -0.205 -0.233 -0.255 -0.237

(-1.03) (-1.14) (-1.07) (-0.81) (-0.89) (-0.83)
η29 -0.214 -0.238 -0.222 -0.260 -0.284 -0.266

(-1.13) (-1.26) (-1.18) (-0.93) (-1.01) (-0.95)
η30 -0.046 -0.064 -0.054 -0.010 -0.029 -0.002

(-0.23) (-0.32) (-0.26) (-0.03) (-0.10) (-0.01)
η31 0.111 0.089 0.103 0.086 0.064 0.088

(0.58) (0.47) (0.54) (0.30) (0.23) (0.31)
η32 0.213 0.187 0.204 0.182 0.157 0.177

(1.15) (1.01) (1.11) (0.67) (0.57) (0.65)
η33 -0.010 -0.039 -0.018 -0.036 -0.064 -0.048

(-0.05) (-0.21) (-0.10) (-0.14) (-0.24) (-0.18)
η34 0.891 0.857 0.884 0.913 0.880 0.876

(4.31) (4.14) (4.27) (3.11) (2.99) (2.98)
η35 0.011 -0.036 0.004 0.096 0.049 0.046

(0.05) (-0.15) (0.02) (0.31) (0.16) (0.15)
η36 -0.476 -0.535 -0.482 -0.531 -0.591 -0.613

(-1.50) (-1.68) (-1.50) (-1.40) (-1.55) (-1.60)
η37 -0.406 -0.449 -0.417 -0.320 -0.370 -0.319

(-1.44) (-1.59) (-1.49) (-0.93) (-1.07) (-0.92)
Adj-R2 0.0080 0.0079 0.0079 0.0085 0.0085 0.0085
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Table 6

Unstructured risk attitude
The table reports the results of the tests of the risk attitude model. Panels A and B report the results obtained using
OLS and WLS regressions in the following equation:

rt+1 − rf,t+1 = α+ γ · νEt +

9∑
j=2

γj ·
(
Cj,t × wj × νEt

)
+ η · (f2

t )
E × ϑEt +

9∑
i=2

ηi ·
(
Di,t × PEt × (f2

t )
E × ϑEt

)
+ εt.

The estimated expected value of each variable at time t is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. The expected volatility, σE , is the standard
deviation of the prior 30 daily returns. The expected absolute deviation ϑE is estimated from the average absolute
daily deviation of returns from the rolling prior 30 average daily return. The expected ambiguity, fE , is estimated
from the realized ambiguity, where ambiguity fE , is the square root of variance of the daily probabilities of returns
over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed from
five-minute returns. The expected probability of favorable returns, PE , is estimated from the rolling averages of the
daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater than the
risk-free rate, where returns are assumed to be normally distributed. The dummy variable (Cj) is equal to one if the
wealth w in that day falls in the range of j of wealth and zero otherwise. The dummy variable (Di) is equal to one if
the expected probability of favorable returns in a day t belongs to bin i, and zero otherwise. In Panel B, the weights
are inversely proportional to the sum of the estimated risk and the estimated ambiguity. The numbers in parentheses
are t-statistics.

Panel A: OLS Panel B: WLS
α 0.004 0.004

(2.71) (3.63)
γ 3.668 6.602

(1.41) (2.56)
γ2 -2.918 -5.638

(-1.46) (-2.85)
γ3 -1.877 -3.149

(-1.29) (-2.14)
γ4 -2.887 -4.623

(-2.32) (-3.59)
γ5 -1.441 -2.325

(-1.47) (-2.33)
γ6 -1.212 -2.086

(-1.58) (-2.74)
γ7 -3.152 -4.165

(-3.32) (-4.39)
γ8 -0.097 -0.586

(-0.12) (-0.65)
γ9 -0.793 -1.468

(-1.36) (-2.43)
γ10 -1.061 -1.634

(-2.11) (-3.27)
η -0.088 -0.077

(-0.75) (-0.41)
η2 0.559 0.604

(1.33) (0.93)
η3 0.073 0.040

(0.21) (0.07)
η4 0.185 0.174

(0.60) (0.36)
η5 0.421 0.373

(1.44) (0.82)
η6 0.152 0.125

(0.53) (0.28)
η7 0.186 0.111

(0.67) (0.26)
η8 0.224 0.150

(0.80) (0.35)
η9 0.228 0.167

(0.86) (0.41)34



Table 6 (Continued)

Panel A: OLS Panel B: WLS
η10 0.352 0.305

(1.38) (0.77)
η11 0.093 0.050

(0.38) (0.13)
η12 0.223 0.206

(0.91) (0.54)
η13 0.236 0.222

(0.98) (0.59)
η14 0.154 0.122

(0.65) (0.33)
η15 0.216 0.184

(0.93) (0.51)
η16 0.090 0.052

(0.39) (0.14)
η17 0.252 0.252

(1.12) (0.72)
η18 0.221 0.210

(1.02) (0.62)
η19 0.215 0.197

(1.00) (0.59)
η20 0.156 0.140

(0.74) (0.43)
η21 0.183 0.161

(0.89) (0.50)
η22 0.120 0.119

(0.57) (0.37)
η23 0.113 0.103

(0.56) (0.33)
η24 0.138 0.143

(0.69) (0.46)
η25 0.698 0.615

(3.34) (1.93)
η26 0.414 0.446

(2.02) (1.41)
η27 0.045 -0.004

(0.21) (-0.01)
η28 -0.132 -0.152

(-0.66) (-0.50)
η29 -0.137 -0.174

(-0.69) (-0.58)
η30 -0.015 -0.010

(-0.08) (-0.03)
η31 0.218 0.183

(1.11) (0.61)
η32 0.344 0.348

(1.81) (1.21)
η33 0.076 0.066

(0.40) (0.23)
η34 1.265 1.062

(3.51) (2.60)
η35 0.059 0.145

(0.25) (0.45)
η36 -0.005 0.046

(-0.02) (0.12)
η37 0.545 0.707

(1.33) (1.53)
Adj-R2 0.0768 0.0410
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Table 7 Abnormal returns

This table reports the performance of Bitcoin returns under various asset pricing models. fMKT ,t is the day-t value of the market factor, fSMB,t is
the day-t value of the Fama–French size factor, fHML,t is the day-t value of the Fama–French book-to-market factor, fWML,t is the day-t value of the
momentum factor, fRMW ,t is the day-t value of the Fama–French profitability factor, fCMA,t is the day-t value of the Fama–French investment factor,
fME,t is the day-t value of the HXZ (i.e., Hou, Mo, Xue, and Zhang, 2020) size factor, fROA,t is the day-t value of the HXZ profitability factor, and
fI/A,t is the day-t value of the HXZ investment factor, and fEG,t is the day-t value of the HXZ expected growth factor. The numbers in parentheses are
t-statistics.

Panel A: Full period Panel B: High ambiguity Panel C: Low ambiguity

α 0.004 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.002 0.001 0.006 0.006 0.006 0.006 0.006

(4.20) (4.22) (4.21) (4.26) (4.20) (0.89) (0.92) (0.92) (1.02) (0.97) (7.34) (7.38) (7.38) (7.34) (7.38)

fMKT ,t 0.036 0.040 0.042 0.000 0.060 0.069 0.070 -0.033 -0.011 -0.031 -0.035 -0.009

(0.35) (0.39) (0.40) (0.00) (0.37) (0.42) (0.43) (-0.18) (-0.11) (-0.28) (-0.31) (-0.08)

fSMB,t -0.005 0.003 -0.038 -0.118 -0.100 -0.222 0.164 0.156 0.189

(-0.03) (0.02) (-0.21) (-0.38) (-0.32) (-0.69) (0.94) (0.88) (1.07)

fHML,t 0.097 0.118 0.209 0.087 0.149 0.389 0.106 0.089 0.028

(0.54) (0.59) (0.93) (0.28) (0.42) (1.00) (0.62) (0.47) (0.13)

fWML,t 0.033 0.091 -0.029

(0.23) (0.36) (-0.22)

fRMW ,t -0.145 -0.379 0.113

(-0.50) (-0.74) (0.41)

fCMA,t -0.310 -0.815 0.162

(-0.85) (-1.24) (0.48)

fME,t -0.006 -0.176 0.224

(-0.03) (-0.55) (1.28)

fROE,t -0.072 0.011 -0.234

(-0.25) (0.02) (-0.88)

fIA,t 0.047 -0.524 0.670

(0.14) (-0.91) (2.19)

fEG,t 0.000 -0.435 0.488

(0.00) (-0.77) (1.51)

Adj-R2 -0.0003 -0.0009 -0.0012 -0.0013 -0.0017 -0.0006 -0.0019 -0.0025 -0.0017 -0.0025 -0.0007 -0.0013 -0.0020 -0.0024 0.0006
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Fig. 1. Time series of Bitcoin ambiguity and excess return

This figure plots the time series patterns of realized Bitcoin ambiguity and excess returns from February 2012

to November 2019.
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