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1. Introduction

“But Bitcoin is an example of ambiguity, and the efficient market theory does not capture

what is going on in the market for this cryptocurrency.”

— Robert Shiller!

“Bitcoin valuation is ’exceptionally ambiguous’ ”.

— Robert Shiller?

1.1. Contextualisation

These quotes from Robert Shiller could hardly be more accurate in describing the aim of the
present study, in which we attempt to answer the broad question of how ambiguity determines
abnormal returns in virtual currencies, such as Bitcoin. Virtual currencies represent both the
emergence of a new form of currency and a new payment technology to purchase goods and
services. Among virtual currencies, Bitcoin has undoubtedly emerged as the most prominent
new form of currency and a new payment technology to purchase goods and services (Dwyer,
2015; White et al., 2020). Due to its importance to the financial institutions, its susceptibility
to large-scale price manipulations, and investors’ increasing tendency of its choice over other
established theory-backed assets (Trimborn and Hérdle, 2017), ambiguity plays a major role

in quantifying the magnitude of abnormal returns. This paper fills a gap in the literature by

thttps://www.nytimes.com/2017/12/15 /business/bitcoin-investing.html
Zhttps:/ /www.cnbe.com/2017/12/19 /robert-shiller-bitcoin-valuation-is-exceptionally-ambiguous. html



rigorously studying the impact of ambiguity in Bitcoin returns in the spirit of Brenner and
Izhakian’s (2018).3

As the leading cryptocurrency, Bitcoin continues to draw high attention from investors,
entrepreneurs, regulators and the general public. Many of the recent public discussions relating
to Bitcoin have been triggered by the substantial changes in their prices (Garcia-Monleén, et
al., 2021), claims that the market for Bitcoin is a bubble without any fundamental value, and
also concerns about evasion of regulatory and legal oversight (Akyildirim, 2020; Alexander
and Heck, 2020). A large strand of literature attempts to understand market phenomena
through the lens of the traditional neoclassical finance theories (Borri, 2019; Corbet et al,
20201; ). Specifically, Urquhart (2016) shows that Bitcoin returns do not follow the random
walk model, based on which he concludes that the Bitcoin market exhibits a significant degree
of inefficiency, particularly in the early years of its existence. In the time and frequency
domains, Corbet et al. (2018) analyze the relationship between the return of three different
cryptocurrencies and a variety of other financial assets, showing lack of relationships between
crypto- and other assets. Liu and Tsyvinski (2020) investigate whether cryptocurrency pricing
bears any similarity to stocks: however, none of the risk factors explaining movements in stock
prices applies to cryptocurrencies in their sample. Moreover, movements in exchange rates,
commodity prices, or macroeconomic factors of traditional significance for other assets play

little to no role for most cryptocurrencies.

3Camerer and Weber, 1992 in an early effort provided evidence, theoretical explanations, and applications
of research on ambiguity and subjective expected utility. Recent efforts include a design of a survey module
by Cavatorta and Schroeder, 2019 to experimentally validate ambiguity preference that has wider applications
for economics and finance.



All that apart, Bitcoin is an example of uncertainty and ambiguity, and the neoclassical
theory fails to explain the behavior in the market for this cryptocurrency.* There has not
been enough daily information coming in to rationally justify Bitcoin’s huge price fluctuation.
This type of uncertainty may arise for two reasons: (1) the technology is rather complicated
and opaque to unsophisticated traders, and (2) the fundamental value of cryptocurrencies
is unclear. As we highlighted above, even if it is strictly positive, it is likely to be derived
from intangible factors and, as such, is rather uncertain. Therefore, we wish to extend our
understanding of this cryptocurrency market from a behavioral finance perspective. This
paper examines the role of the perspective of unquantifiable risk, or ambiguity in Bitcoin
returns.

The notion of uncertainty has been investigated in the literature since the seminal works
of Keynes (1921) and Knight (1921) from two perspectives: risk and ambiguity. While risk is
a situation in which the beliefs of a decision maker (DM) are captured by a unique probability
measure, ambiguity is a situation in which a DM’s beliefs are not pinned down by a unique
probability measure because of a lack of information(Snow 2010; Cavatorta and Schroder
2018). When investors choose between different assets, their knowledge of future returns is
critical. When they are fully confident about the return of the investment, we can consider it

a safe asset.

4A recurrent issue in financial theories is to study how agents make decisions on investments under risk.
This is different from the concept of ambiguity, which is the subject of our study. While risk refers to situations
where the perceived likelihoods of events can be represented by a unique probability distribution, ambiguity
refers to situations where an agent’s subjective knowledge about likelihoods of contingent events is consistent
with multiple probability distributions. Importantly, the agent does not know what the precise distribution
is.



In another recent study, Driouchi et al. (2018) investigate the behavior of US index put
option holders during the pre-crisis and credit crunch period 2006—-2008. They find evidence
of ambiguity in the US index options market during 2006-2008 and measure the effect of
ambiguity on realized index volatility that is implied directly from observed option prices.
Based on portfolio data from a large financial institution in France, Bianchi and Tallon (2018)
show that ambiguity averse investors are relatively more exposed to the French stock market
than to the international stock market. This result implies that ambiguity aversion plays a
significant role in explaining home bias in equity markets. Most research on ambiguity focuses
on traditional financial assets while a few studies explore the role of ambiguity in the upcoming
digital currency such as Bitcoin.

In this paper, we refer to ambiguity as uncertainty over the probability of potential fu-
ture outcomes, while risk refers to uncertainty over those outcomes following Knight (1921).
Specifically, we estimate ambiguity using five-minute Bitcoin returns based on the model of
Brenner and Izhakian (2018). Our findings show that ambiguity plays an important role in
Bitcoin returns; that is, investors take into account ambiguity when they price ambiguity. Our
evidence further implies that investors show an increasing aversion to ambiguity.

We conduct a battery of robustness tests to verify our findings. For example, we use the
forward-looking implied volatility from the S&P 500 index i.e. VIX in our regression model as
VIX is used as a proxy for ambiguity in prior studies (e.g., Williams, 2015). We also control for

higher moments including skewness and kurtosis. Further, we test for unstructureed attitude



towards risk without imposing a specific functional form (e.g., constant relative risk aversion
or constant absolute risk ) over attitude towards risk.

In the spirit of Baker and Wulger (2006), we further examine the performance of Bitcoin
returns conditional on ambiguity. Liu and Tsyvinski (2020) show that cryptocurrency returns
cannot be explained by the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner
(1965), the Fama—French (1993) three-factor model (FF3FM), the Carhart (1997) momentum-
extended FF3FM, and the Fama—French (2015) five-factor model (FF5FM). We first confirm
their findings and further show that investors earn the abnormal returns of Bitcoins only when

ambiguity is low but not when ambiguity is high.

1.2.  Contribution

We contribute to the literature in several ways. First, we make a behavioural attempt at
identifying the potential impact of ambiguity on asset pricing and the risk-return relationship.
This is useful, because the use of Bitcoin, in a wider portfolio management strategy, has been
shown to provide hedging benefits (Kajtazi and Moro, 2018; Atsalakis et al. 2019; Ma et al.,
2020; Thampanya et al., 2020); yet Bitcoin markets are typically characterized by crashes
(Fry and Cheah, 2016), excessive volatility (Katsiampa, 2017), and positive returns when the
fundamental value is shown to be zero (Cheah and Fry, 2015). It is well known that traditional
asset pricing models have difficulties in explaining the Bitcoin returns. Our study extends our
understanding of the cryptocurrency market from a behavioral finance perspective, and we

find that ambiguity plays an important role in explaining the abnormal returns of Bitcoin.



Second, our study is related to general studies which have focused mainly on the theoretical
aspects of attitudes toward (aversion to) ambiguity, rather than on the actual measurement
of ambiguity. Only a few studies used market data to measure ambiguity; for example, Ulrich
(2013) uses entropy of inflation and Williams (2015) uses the Volatility Index (VIX). Following
Brenner and Izhakian (2018), we explore the importance of ambiguity in the cryptocurrency
market using Bitcoin data.

Our study has important implications for sustainability. By studying the unique ambiguous
feature of Bitcoin, we aim to at least partially take into account “the dynamics” of this highly
volatile currency. This way, we aim to empower investors — small or big, to be able to make
informed decisions regarding their choices. Moreover, our proposal has practical importance
too. Not only individual investors but various funds—such as Crypto Fund AG—have risk
exposure to Bitcoin. This paper helps to shed light on their investment decisions on Bitcoin.
If investors can indeed earn the risk premium after adjusting for systematic risk, then it is
helpful to allocate their wealth to Bitcoin. However, if the risk premium is conditional on
ambiguity as shown in our results, caution should be exercised by investors in “real-time”
trading because the risk premium becomes insignificant during periods of high ambiguity.

Our work also has important implications for policy makers. While Bitcoin markets are
largely unregulated under current market conditions, policy makers can use our study to guide
regulations if they plan to implement these in the future. For example, policy makers can use
our method to estimate the ambiguity of Bitcoin which can help to identify potential market

bubbles. They can also use the ambiguity of Bitcoin to cool-off trading in the Bitcoin markets.



The remainder of the paper proceeds as follows. Section 2 discusses the construction of the
ambiguity measure. Section 3 describes the data while section 4 reports the main empirical

results and performs various robustness tests. Section 5 concludes the paper.

2. The ambiguity measure

As we noted before, ambiguity refers to situations where an agent’s subjective knowledge
about likelihoods of contingent events is consistent with multiple probability distributions,
there has been an evolution in the way we measure ambiguity, focusin in particular, on the
way we embed information. For the purpose of our paper, we follow Izhakian (2018) and

define ambiguity as

52 = / Elp(r)|Varlp(r)]dr, 1)

where 7 is the Bitcoin return, ¢(r) is the marginal probability, F]| is the expectation, and
Var[] is the variance. While risk can be measured by the volatility of returns, U%[r] captures
the fact that ambiguity can be measured by the volatility of probabilities (Rothschild and
Stiglitz, 1970). By construction, U?[r] is independent of risk, attitudes towards risk and/or
attitude towards ambiguity and takes into account the variance of all the moments of the
outcome distribution (Brenner and Izhakian, 2018).

In line with Andersen et al. (2001), we use five-minutes intervals price to compute returns
to minimize microstructure effects. For each day we use five-minute returns to compute the

normalized (by the number of intraday observations) daily mean (x) and variance of the return



(o), respectively. Following Scholes and Williams (1977), we estimate ¢ by taking into account

the adjustment for nonsynchronous trading. Specifically, o is computed as

o} = Z(n,t — E[ri])? + Z(”’t — Elria))(ris—1 — Elriza)), 2)

where there are N; five-minute returns, r;, in day ¢.

Following Brenner and Izhakian (2018), we assume that the intraday returns are normally
distributed. We then compute for each day the cumulative probability of favorable returns
(gain), P(r > ry) = 1 — ®(ry; pu,0), where any return greater than the risk-free rate is
considered favorable.

We represent each daily return distribution by a histogram. Specifically, we divide the
range of daily returns, from -6% to +6%, into 60 intervals (bins), each of width 0.2%. For
each day, we compute the probability of the return being in each bin. In addition, we compute
the probability of the return being lower than -6% and higher than +6%. We then compute

the mean and the variance of the probabilities for each of the 62 bins separately. Finally, we

estimate the degree of ambiguity of each month using the following discrete form

Or] = ﬁ X {E[(I)(ro;u,U)}Var[fb(ro;u,a)}

60
+ Z E[®(ri;p,0) — ©(rii; p, 0)] x Var [®(ri; p, o) — ©(ri—1; p, 0)]
i=1

+ E[1—®(reo; p,0)|Var[l — ®(reo; p1, )] }, (3)



where rg = —0.06 and w = r; — ;1 = 0.002. The ambiguity in day ¢ is the rolling mean of

Eq. (3) over 30 days.

3. Data

We collect daily Bitcoin data including closing price, high price, low price (all prices are
in dollars), and volume (between 13/09/2011 and 30/11/2019) from bitcoincharts.com. We
download the daily excess market returns (M KTRF), size factor (SM B), book-to-market
factor (HML), profitability factor (RMW), investment factor (CMA), momentum factor
(UMD), and treasury bill rate (RF) from Kenneth French’s website.” We download the
daily g-factors including the size factor (MFE), investment factor (I/A), return-on-equity fac-
tor (ROE), and expected growth factor (EG) from global-q.org.® We download the CBOE
(Chicago Board Options Exchange) Volatility Index from Wharton Research Data Services.
We use the CBOE S&P 500 Volatility Index (VIX). The Bitcoin return is the difference
between closing price at day t and day ¢t — 1 divided by closing price at day ¢t — 1. We obtain
five-minute bitcoin data from Bitcoincharts.

The ambiguity measure of Bitcoin is based on the five-minute intra-day returns. Panel A
of Table 1 reports the summary statistics. The average of five-minute returns is 0.5%, the
standard deviation is 4.2%, and the Sharpe ratio is 24.2% in terms of daily returns. Brenner
and Izhakian (2018) highlight that the high frequency realized returns can be a poor proxy

for long run expected return due to the large standard errors.

Shttp://mba.tuck.dartmouth.edu/pages/faculty /ken.french /.
Shttp://global-q.org/index.html. Hou et al. (2015) and Hou et al. (2019, 2020) provide detailed discussions on
factor constructions.



Panel B of Table 1 continues to report the summary statistics in daily frequencies. The
daily Bitcoin return in excess of risk-free rate is 0.4%. Our risk measure, the standard deviation
of the prior 30 daily returns (o), has a mean of 3.8%. Another risk measure, the absolute
deviation (¢ = E[ | r — E[r] | ]) which is the average absolute daily deviation of returns
from the rolling prior 30 average daily return, has a mean of 2.7%. The average of favorable
returns is 0.540 similar to the favorable returns of US equity index as in Brenner and Izhakian
(2018). The average degree of ambiguity (U) is 1.173. Figure 1 plots the time-series of
realized Bitcoin ambiguity and excess returns from February 2012 to November 2019. As can
be seen, some high ambiguity periods are related to low Bitcoin returns and price crashes
including the periods of August 2012, April 2013, January 2015, and February 2018, similar
to the findings of Brenner and Izhakian (2018). Brenner and Izhakian (2018) argue that this
is because investors have concerns over high price (low rates of return) period due to “the
correction” (a price drop after a price soar). This correction leads to high ambiguity, i.e., the
variance of probability of a price drop. Panel C of Table 1 reports the correlation between key

variables. The favorable probability is positively related to returns, consistent with Brenner

and Izhakian (2018).

4. Empirical results

4.1.  FEstimating expected values

In our empirical tests, we use the estimated expectations of the following four variables,
namely, the volatility (o), the average absolute deviation of returns from the expected return

(1), the probability of favorable returns (P), and the degree of ambiguity (U). Following
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Andersen et al. (2003) and Brenner and Izhakian (2018), we estimate the expected volatility
based on realized volatility using the coefficients estimated by the time-series autoregressive

moving average ARMA (p, q) model with the minimal corrected Akaike information criterion

(AICC):

ln\/ft = \DO + € + \Ifllnwyt,l -+ 916,5,1, (4)

where v, is realized volatility in day t. We use the natural logarithm of volatility (In./z;) to
avoid negative expected volatility estimates as v; is skewed following Brenner and Izhakian
(2018). The expected volatility (vfZ,) is then estimated as the fitted value from Eq. (4), i.e.,
vE, = te”/\/\th*V”[“t], where Var[u] is the variance of error term. For each day, we use a
rolling window regression with the prior 365 days to estimate Eq. (4). Similarly, we estimate
the expected absolute deviation, ¥, using its monthly realized values, to obtain its expectation
of ¥¥.

We also estimate expected ambiguity using ARMA (p, q) similar to the method used to

estimate the expected volatility. Specifically, we estimate the expected ambiguity based on

realized ambiguity using the coefficients estimated by the time-series model:

InNG; = Vg + ¢ + V1InGy_q + Or1641, (5)

where U; is realized ambiguity in day t. The expected ambiguity (Uﬂl) is then estimated

as the fitted value from Eq. (5), i.e., Uf, = eXnlitVartul yhere Var|uy is the variance of

11



error term. Further, we estimate expected probability of unfavorable returns using ARMA (p,
q). Specifically, we estimate the expected ambiguity based on realized ambiguity using the

coefficients estimated by the time-series model:

InQy = Vo + & + VilnQy_1 + 0161, (6)

where Q; = 1 b 2 and P, is realized probability of favorable returns in day t. The expected prob-

eQﬁQ\t-ﬁ—OASVar[ut]
1_e2nQy+0.5Var(uy]’

ability (Pf,) is then estimated as the fitted value from Eq. (6), i.e., Qf, =
where Var|u] is the variance of error term.

Panel A of Table 2 reports summary statistics of estimated values of volatility, absolute
deviation, the probability of favorable returns, and ambiguity. Each value is obtained from
the fitted value from the ARMA model discussed above. Compared with the realized values
in Panel B of Table 1, we find that the variation of expected values are generally smaller than

the corresponding realized values. This is similar to Brenner and Izhakian (2018).

4.2. Main empirical tests

We now turn to test the impact of ambiguity on returns using the following empirical design.
The expected probability is between 0.368 and 0.768. We divide this range into 37 equal bins
of 0.01 each,indexed by i.” For example, the first bin is from 0.38 to 0.39. The few values
lower that 0.38 are indexed as ¢ = 1, while the few values higher than 0.75 are index as i = 37.

We construct a dummy variable for each probability bin. Specifically, the dummy variable

"Brenner and Izhakian (2018) also use bins of 0.01 each.
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(D;) is equal to one if the expected probability of favorable returns in a day ¢ belongs to bin

1, and zero otherwise. The empirical model is described by:

Tep1 —Tfep1 = Q@+ VtE‘f'n ) (Ug)E X ﬁtE
37
+ ) i (Dig x PP x (U1 x 9F) + & (7)
=2

where PF is the midpoint of probability bin 4. It is worth noting that the attitude toward
ambiguity varies when the expected probability of favorable returns changes, while the attitude
towards risk remains constant.

The coefficients from Eq. (7) can be written as n(P¥) = 7)+1;, which represents investors’
attitude towards ambiguity conditional on the expected probability of favorable returns (PF)
falling into bin i. A negative value of n(P¥) means that investors show ambiguity-loving
behavior which leads to a negative ambiguity premium, while a positive value means that in-
vestors show ambiguity-averse behavior which leads to a positive ambiguity premium. Further,
a high 7; falling into the bins of low probabilities of favorable returns implies an increasing
pursuit of ambiguity, while a high 7); falling into the bins of high probabilities of favorable
returns implies an increasing aversion to ambiguity.

We run both ordinary least square (OLS) and weighted least square (WLS) regressions to
test Eq. (7). Specifically, in the WLS regressions, the weights are inversely proportional to
;E following French,

VzE +0;

the sum of the estimated risk and the estimated ambiguity, i.e.,

Schwert, and Stambaugh (1987) and Brenner and Izhakian (2018).
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Table 3 reports the OLS and WLS regressions results. In the first specification, expected
volatility, as a measure of risk, is the only independent variable. It has a positive coefficient,
consistent with the well-known facts that high risk is related to high returns. We then intro-
duce expected ambiguity in the subsequent regressions. We first focus exclusively on expected
ambiguity. We find that it is insignificant, consistent with Brenner and Izhakian (2018).
Next, we investigate the effect of expected ambiguity on returns conditional on attitude to-
ward ambiguity as specified by Eq. (7). The ambiguity coefficient in high probability bins
of favorable returns (e.g., 734) is significant, indicating that Bitcoin investors have increasing

aversion towards ambiguity.

4.3.  Robustness: Alternative volatility measures

In this subsection, we use alternative volatility measures rather than the expected volatility in
our regressions. Cheah, Luo, Zhang, and Sung (2020) show that the forward-looking implied
volatility (VIX) from S&P index options can predict Bitcoin returns. Cao, Wang, and Zhang
(2005) and Garlappi, Uppal, and Wang (2007) suggest the role of the volatility of mean in
ambiguity. Following these work, we use the VIX index and the volatility of mean. Consistent
with our previous tests, we use the expected average volatility, VOLM?¥, which is estimated
from an ARMA (p,q) model of the realized standard deviation of the prior 30 daily average
returns. Average returns are the rolling average over the prior 30 days. Specifically, we

examine the role of ambiguity based on the following two equations:
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9
gt = Tre = a+ - VIX - (O)F x 07 +> i+ (Dig x PP x (B)F x 0F) + 2. (8)
1=2

9
Tiv1 —Trep = a+75 - VOLME +n- ()" x9F + Zm Dy x PP x (B} x 07) +&.. (9)

=2

Table 4 reports the results under alternative volatility measures. The effect of ambiguity
on returns is robust to the alternative risk measures. Specifically, the ambiguity coefficient
in high probability bins of favorable returns (e.g., 734) remains significant, which provides

support for increasing aversion towards ambiguity of Bitcoin investors.

4.3.1.  Higher-order moments

In this section, we conduct further robustness tests by taking into account higher order mo-
ments; namely, skewness, kurtosis, and volatility of volatility. Prior studies show that higher
moments play an important role in asset prices. Kelly and Jiang (2014) and Bollerslev et al.
(2015) show that skewness is related to tail and crash risk. Jondeau et al. (2019) find that
average skewness can predict stock market returns. Cheah et al. (2020) examine the role of
skewness and kurtosis in Bitcoin return predictability. Brandt and Kang (2004) and Brenner
and Izhakian (2018) argue that ambiguity can be related to volatility of volatility. Following
these studies, we run the following equation to take into account skewness (Skew), kurtosis

(Kurt), and volatility of volatility (VOLV)
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ren =T = a+y v - (O )07+ mi- (Dig x PP x (U7)" x 97
=2

+ By - Skew? + By - Kurtf + 3 - VOLVE + ¢, (10)

Consistent with our prior tests, we use the expected values which are estimated from
ARMA (p,q) models. Table 5 reports the results, showing the effect of ambiguity on returns
after controlling for expected skewness (Skew®), kurtosis (Kurt?), and volatility of volatility
(VOLVF). Consistent with prior results, we again find that Bitcoin investors have increasing

aversion towards ambiguity.

4.4. Robustness: Unstructured risk attitudes

Following Brenner and Izhakian (2018), in this subsection we test a further discrete model
where attitudes towards ambiguity depending on wealth and risk attitudes contain a finite
number of values. Specifically, we divide the wealth range (the logarithm of gross Bitcoin
return in excess of risk-free rate) into nine equal bins of 0.5 each, indexed by . For example,
the first bin is from 0.5 to 5. The few values lower that 0.5 are indexed as ¢ = 1, while the
few values higher than 5 are indexed as ¢ = 9. The number of wealth bins is consistent with
the number of expect probability bins as in Eq. (7).

We then generate a dummy variable for each wealth bin. If the wealth in a give day ¢
belongs to bin j, the dummy variable C}; is equal to one and zero otherwise. Specifically, we

run the following equation to take into account wealth,
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— —

J Z (1)
where w; is the midpoint of wealth bin j. It is worth noting that risk attitudes in the model can
comove with the wealth. v 4 v; captures Bitcoin investors’ attitudes toward risk conditional
on the wealth w falling into wealth bin j. If the sum is negative, it indicates that investors
exhibit risk-loving behaviors which implies a negative risk premium. Conversely, if the sum is
positive, it indicates that investors exhibit risk-verse behaviors which implies a positive risk
premium.

Table 6 reports the results. We find that v+, is positive. Thus, investors exhibit risk-verse
behaviors and result in a positive risk premium. Further, Bitcoin investors still have increasing
aversion towards ambiguity according to the ambiguity coefficient in high probability bins of

favorable returns.

4.5.  Performance of Bitcoin returns conditional on ambiguity

Liu and Tsyvinski (2020) show that cryptocurrency returns cannot be explained by the cap-
ital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), the Fama-French
(1993) three-factor model (FF3FM), the Carhart (1997) momentum-extended FF3FM, and
the Fama-French (2015) five-factor model (FF5FM). In the spirit of Baker and Wulger (2006),
we examine the performance of Bitcoin returns conditional on ambiguity. Hibbert and Stan

(2020) examine the pricing of ambiguity in the cross-sectional stock returns of various port-
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folios. Following these studies, we examine whether ambiguity helps us to understand the
performance of Bitcoin returns.

We measure the performance of Bitcoin returns based on several asset pricing models
including the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), the
Fama-French (1993) three-factor model (FF3FM), the Carhart (1997) momentum-extended
FF3FM, the Fama-French (2015) five-factor model (FF5FM), and the Hou et al. (2020)

five-factor model (q5FM). Specifically, we run the following time-series regressions:

Riy — Ry = o + Bimfurrs + i (12)
Riy— Rer = o+ Bimfurrs + Bisfsupe + Binfumre + €igs (13)
Riy — Rpy = o + Bimfurre + Bisfsus + Bipfamre + Biwfwure + i (14)

Riy — Ry = o+ BimSfurre + Bisfsupi + Binfrumre + Bivfrmw ¢ + Bicfomar + €i,(15)

Riy — Ry = i+ Bimfuxrs + Bimefuer + Bivoe fross + Biiafias + Biegfect + €iy, (16)

where R;; is the day-t return of portfolio ¢, Ry, is the risk-free rate for day t, fygr: is
the day-t value of the market factor, fsyp, is the day-t value of the Fama-French (FF) size
factor, fuar: is the day-t value of the FF book-to-market factor, fwar, is the day-t value of
the momentum factor, frayw . is the day-t value of the FF profitability factor, feaa. is the
day-t value of the FF investment factor, fiypg, is the day-t value of the HMXZ (i.e., Hou et

al., 2020) size factor, froa,. is the day-t value of the HMXZ profitability factor, and fya, is
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the day-t value of the HMXZ investment factor, and fgg; is the day-¢ value of the HMXZ
expected growth factor.

Panel A of Table 7 reports the performance of the Bitcoin returns under various asset
pricing models over the whole sample period. Consistent with Liu and Tsyvinski (2020),
we find that the abnormal return (a) of Bitcoin is significantly positive under the CAPM,
the FF3M, the momentum-extended FF3FM, the FFAFM, and the g5FM. For example, the
abnormal return of Bitcoin under the FF5FM is 0.004 (¢ = 4.26). Further, the risk loadings
(i.e., the coefficients of risk factors, ) are all insignificant, indicating that well-known equity
risk factors have difficulties in explaining the Bitcoin returns. This is similar to the findings of
Cheah et al. (2020) which show that equity risk factors have no predictive power on Bitcoin
returns.

Panels B and C of Table 7 report the performance of the Bitcoin returns under various asset
pricing models over high and low ambiguity periods. High ambiguity periods are those above
the median of ambiguity while low ambiguity period are those below the median of ambiguity:.
As can be seen, Bitcoin investors earn insignificant abnormal returns during high ambiguity
periods. The premium is only present during low ambiguity periods no matter which asset
pricing mode is tested. For example, the abnormal return of Bitcoin under the FF5FM during
high ambiguity periods is 0.002 (¢ = 1.02) while it is 0.006 (¢ = 7.37) during low ambiguity
periods. Comparing the performance over the full periods with that during low ambiguity
periods, we find that the abnormal return is even more pronounced. Overall, our results

indicate that ambiguity plays an important role in understating the Bitcoin performance.
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5. Conclusion

Investors invariably face a choice between known risks over unknown risks and therefore, an
ambiguity-averse investor would rather choose an alternative where the probability distribu-
tion of an investment outcome is known over one where the probabilities that are unknown.
This paper studies, to the best of our knowledge the first time, the important role of ambiguity
in Bitcoin returns, an investment portfolio that has caught investors’ attention like none other
in recent times. Because virtual currencies like Bitcoin, do not conform to conventional asset
pricing theory and hence their returns cannot be theoretically predicted, at least partially,
alternative tools are needed to characterize observed abnormalities in their returns. We bring
in the classical case of ambiguity, contextualised through a design of improved methodologi-
cal underpinning that employs value of information, to understand the extent the degree of
ambiguity aversion contributes to the variable magnitudes of abnormal returns.

Following the approach set out by Brenner and Izhakian (2018) and Baker and Wulger
(2006), we find that Bitcoin investors have increasing aversion towards ambiguity, and such
a characterisation helps in quantifying the extent of the abnormal returns of Bitcoin. We
examine the performance of Bitcoin returns conditional on ambiguity. Towards this we use
several asset pricing models and distinguish the performance of Bitcoin returns between high
and low ambiguity periods. An important finding from this exercise is that Bitcoin investors
earn very low abnormal returns during periods of high ambiguity in contrast to the period
of low ambiguity irrespective of the asset price models we employ. Our results are robust to

alternative measures of volatility in Bitcoin prices, higher order moments (such as skewness)
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that determine asset prices, and design of a further discrete model where attitude towards

ambiguity depends on wealth and risk attitudes.
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Table 1 Descriptive statistics

This table reports descriptive statistics and correlations for the following variables of Bitcoin:

RET: daily Bitcoin returns;

o: daily volatility;

¥: daily absolute deviation;

P: daily probability;

O: daily ambiguity.
Panel A reports the intra-day summary statistics. The mean return, p°™, is the daily average five-minute returns.
The return standard deviation, ¢°™, is the daily standard deviation of five-minute returns. Panel B reports the daily
summary statistics. The return, RET, is the daily returns of Bitcoin. The volatility, o, is the standard deviation
of the prior 30 daily returns. The absolute deviation, 9, is the average absolute daily deviation of returns from the
rolling prior 30 average daily returns. The mean probability, P, is the average daily probability of favorable returns
over a month. A return is considered favorable if it is greater than the risk-free rate, where returns are assumed to be
normally distributed. Probabilities are based on the daily mean and variance of returns computed from the five-minute
returns. Ambiguity, U, is the square root of variance of the daily probabilities of returns over the prior 30 days. Panel
B reports the correlations of the estimated expected values.

Panel A: Intra-day descriptive statistics

=
5m 5m om

1% 4 o5
Mean 0.005 0.042 0.242
Stdev 0.062 0.069 4.005
Median 0.003 0.030 0.120
Skewness 13.278 23.627 41.265
Kurtosis 455.503 848.383 1909.015
Panel B: Daily descriptive statistics
RET o 9 P (8}
Mean 0.004 0.038 0.027 0.543 1.173
Stdev 0.045 0.024 0.017 0.069 0.701
Medium 0.002 0.033 0.023 0.539 0.996
Skewness 0.047 2.237 2.203 0.405 0.877
Kurtosis 17.120 10.846 10.513 2.839 2.958
Panel C: Correlation
RET o 0 P (8}
o 0.031 1.000
Y 0.031 0.978 1.000
P 0.191 0.197 0.202 1.000
(§) -0.060 0.738 0.764 -0.210 1.000
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Table 2 Descriptive statistics of expected values

This table reports descriptive statistics and correlations for the following variables of Bitcoin:

o daily expected volatility;

¥F: daily expected absolute deviation;
PE: daily expected probability;
UF: daily expected ambiguity.

Panel A reports the summary statistics. For each day, the expected values are estimated based only on their realized
values over the prior 365 days and using the ARMA (p, q) model with the minimal AICC. The expected volatility, o, is
the standard deviation of the prior 30 daily returns. The expected absolute deviation 9% is estimated from the average
absolute daily deviation of returns from the rolling prior 30 average daily returns. The expected ambiguity, O, is
estimated from the realized ambiguity, where ambiguity OF, is the square root of variance of the daily probabilities of
returns over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed
from five-minute returns. The expected probability of favorable returns, PE| is estimated from the rolling averages
of the daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater
than the risk-free rate, where returns are assumed to be normally distributed. Panel B reports the correlations of the
estimated expected values.

Descriptive statistics

o 9P PE (O
Mean 0.002 0.001 0.542 1.998
Stdev 0.003 0.002 0.070 2.208
Medium 0.001 0.001 0.535 1.087
Skewness 4.888 4.275 0.506 1.635
Kurtosis 31.899 26.391 2.903 5.212
Correlation
o 9P pPE (o
9F 0.956 1.000
PE 0.258 0.248 1.000
(O 0.580 0.654 -0.188 1.000
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Table 3 Main OLS and WLS regression tests

The table reports the results of the tests of the main model. Panels A and B report the results obtained using OLS
and WLS regressions in the following equation:

9
ret =T = aty v - (07)° ><19tE+Z7h"(Di7t x PP x ()" x 07) + .
i=2

The estimated expected value of each variable at time ¢ is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. The expected volatility, o, is the standard
deviation of the prior 30 daily returns. The expected absolute deviation ¥ is estimated from the average absolute
daily deviation of returns from the rolling prior 30 average daily returns. The expected ambiguity, UF, is estimated
from the realized ambiguity, where ambiguity U, is the square root of variance of the daily probabilities of returns
over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed from
five-minute returns. The expected probability of favorable returns, PP, is estimated from the rolling averages of the
daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater than the
risk-free rate, where returns are assumed to be normally distributed. The dummy variable (D;) is equal to one if the
expected probability of favorable returns in a day ¢ belongs to bin ¢, and zero otherwise. In Panel B, the weights are
inversely proportional to the sum of the estimated risk and the estimated ambiguity. The numbers in parentheses are
t-statistics.

Panel A: OLS Panel B: WLS

«@ 0.002 0.003 0.002 0.003 0.004 0.003
(2.15) (2.28) (1.95) (3.16) (3.66) (3.04)
% 0.420 0.535 0.460 0.246
(1.53) (0.56) (1.32) (0.22)

0 0.000 -0.000

(0.47) (-0.08)
n -0.091 -0.082
(-0.77) (-0.44)
72 0.554 0.590
(1.32) (0.90)
73 0.077 0.049
(0.22) (0.09)
N 0.188 0.182
(0.60) (0.37)
5 0.409 0.375
(1.40) (0.82)
N6 0.146 0.142
(0.51) (0.32)
n7 0.173 0.113
(0.63) (0.26)
i 0.210 0.162
(0.75) (0.37)
9 0.200 0.155
(0.76) (0.38)
10 0.318 0.287
(1.25) (0.72)
11 0.056 0.025
(0.23) (0.07)
(0.69) (0.40)
713 0.192 0.182
(0.80) (0.48)
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Table 3 (Continued)

Panel A: OLS Panel B: WLS
(0.50) (0.25)
15 0.180 0.156
(0.78) (0.43)
16 0.048 0.017
(0.21) (0.05)
17 0.218 0.220
(0.97) (0.62)
718 0.184 0.175
(0.85) (0.52)
19 0.190 0.183
(0.89) (0.55)
720 0.131 0.121
(0.63) (0.37)
721 0.161 0.148
(0.78) (0.46)
722 0.090 0.086
(0.43) (0.26)
723 0.092 0.087
(0.46) (0.28)
724 0.118 0.118
(0.59) (0.38)
725 0.659 0.582
(3.18) (1.83)
126 0.399 0.424
(1.96) (1.34)
27 0.036 0.004
(0.17) (0.01)
128 —0.147 —0.136
(-0.74) (-0.45)
129 —0.156 —0.162
(-0.79) (-0.54)
730 -0.031 0.026
(-0.16) (0.09)
731 0.199 0.210
(1.03) (0.71)
(1.67) (1.13)
733 0.056 0.085
(0.30) (0.30)
N34 1.594 1.657
(6.33) (4.80)
735 0.000 0.096
(0.00) (0.30)
736 -0.067 -0.003
(-0.23) (-0.01)
n37 -0.403 -0.287
(-1.43) (-0.81)
Adj-R? 0.0005 -0.0003 0.0726 0.0006 -0.0000 0.0335
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Table 4 VIX and expected average volatility regression tests

The table reports the results obtained using OLS in the following equations:

9
Feg1 — i1 =+ VIX +1- (017 x 97 +Z17¢ - (Diy x PP x (U})" x 19{3) + &
i=2

9
rer1 —Tree1 = a5 VOLME 40+ (6" x 97+ ns - (Die x PP x (U7)F x 0F) + e
i=2

The estimated expected value of each variable at time ¢ is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. VIX is the value of VIX index. The expected
average volatility, VOLM? | is estimated from the realized standard deviation of the prior 30 daily average returns
and average returns are the rolling average over the prior 30 days. The expected absolute deviation 9% is estimated
from the average absolute daily deviation of returns from the rolling prior 30 average daily returns. The expected
ambiguity, OF, is estimated from the realized ambiguity, where ambiguity UOF, is the square root of variance of the
daily probabilities of returns over the prior 30 days. Probabilities of returns are based on the daily mean and variance
of returns computed from five-minute returns. The expected probability of favorable returns, P, is estimated from the
rolling averages of the daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if
it is greater than the risk-free rate, where returns are assumed to be normally distributed. The dummy variable (D)
is equal to one if the expected probability of favorable returns in a day ¢ belongs to bin i, and zero otherwise. The
numbers in parentheses are t-statistics.

Panel A: VIX Panel B: VOLMF
OLS WLS OLS WLS

a 0.010 0.011 0.011 0.011 0.002 0.002 0.003 0.003
(2.59) (2.77) (3.14) (3.14) (2.02) (1.95) (3.06) (3.05)

VIX -0.043 -0.053 -0.048 -0.050

(-1.76) (-2.14) (-2.17) (-2.23)
VOLMPE 0.495 0.406 0.505 -0.031
(1.56) (0.38) (1.24) (-0.02)
72 0.556 0.592 0.554 0.591
(1.32) (0.91) (1.32) (0.90)
3 0.074 0.048 0.077 0.049
(0.21) (0.09) (0.22) (0.09)
M 0.183 0.177 0.188 0.182
(0.59) (0.36) (0.60) (0.37)
s 0.416 0.385 0.410 0.377
(1.43) (0.84) (1.40) (0.82)
N6 0.151 0.145 0.147 0.145
(0.53) (0.33) (0.52) (0.33)
7 0.172 0.111 0.174 0.115
(0.62) (0.26) (0.63) (0.27)
ns 0.215 0.164 0.212 0.166
(0.77) (0.38) (0.76) (0.38)
o 0.194 0.148 0.203 0.159
(0.74) (0.36) (0.77) (0.39)
710 0.309 0.276 0.320 0.290
(1.22) (0.69) (1.26) (0.73)
M1 0.050 0.017 0.059 0.029
(0.20) (0.04) (0.24) (0.07)
N2 0.156 0.142 0.170 0.158
(0.64) (0.37) (0.70) (0.41)
Mis 0.177 0.165 0.195 0.186
(0.74) (0.44) (0.81) (0.50)
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Table 4 (Continued)

Panel A: VIX Panel B: VOLMF
OLS WLS OLS WLS
N4 0.098 0.070 0.118 0.093
(0.42) (0.19) (0.50) (0.25)
e 0.167 0.141 0.182 0.158
(0.72) (0.39) (0.79) (0.44)
N6 0.034 0.003 0.049 0.020
(0.15) (0.01) (0.22) (0.06)
mr 0.203 0.203 0.220 0.224
(0.90) (0.58) (0.98) (0.64)
e 0.170 0.157 0.188 0.181
(0.79) (0.46) (0.87) (0.53)
Mo 0.177 0.166 0.193 0.188
(0.83) (0.50) (0.91) (0.56)
720 0.121 0.106 0.135 0.127
(0.58) (0.33) (0.65) (0.39)
21 0.151 0.133 0.166 0.155
(0.74) (0.42) (0.81) (0.48)
N22 0.083 0.070 0.097 0.095
(0.40) (0.22) (0.46) (0.29)
o3 0.085 0.074 0.096 0.095
(0.43) (0.24) (0.48) (0.30)
N4 0.112 0.104 0.123 0.126
(0.57) (0.34) (0.62) (0.41)
25 0.652 0.566 0.665 0.590
(3.18) (1.79) (3.22) (1.85)
26 0.394 0.409 0.402 0.433
(1.95) (1.30) (1.97) (1.36)
N7 0.024 -0.018 0.044 0.013
(0.11) (-0.06) (0.20) (0.04)
s -0.141 -0.145 -0.136 -0.122
(-0.73) (-0.49) (-0.69) (-0.40)
20 -0.147 -0.169 -0.144 -0.147
(-0.78) (-0.57) (-0.74) (-0.49)
730 -0.025 0.017 -0.020 0.039
(-0.13) (0.06) (-0.10) (0.13)
n31 0.206 0.204 0.210 0.223
(1.10) (0.70) (1.10) (0.76)
32 0.327 0.321 0.326 0.339
(1.82) (1.15) (1.76) (1.19)
N33 0.077 0.088 0.072 0.104
(0.44) (0.32) (0.39) (0.37)
N34 1.637 1.667 1.618 1.687
(7.19) (5.17) (6.58) (4.97)
M35 0.029 0.095 0.025 0.124
(0.14) (0.32) (0.11) (0.39)
N36 -0.027 0.000 -0.031 0.032
(-0.10) (0.00) (-0.11) (0.09)
N37 -0.360 -0.276 -0.369 -0.254
(-1.40) (-0.85) (-1.37) (-0.75)
Adj-R? 0.0008 0.0743 0.0017 0.0352 0.0006 0.0726 0.0005 0.0335
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Table 5 Tests after controlling for higher moments

The table reports the results of the tests of the main model after controlling for higher moments. Panels A and B
report the results obtained using OLS and WLS regressions in the following equation:

Tep1 —Trer = a+y-vd +n- (077 x0F
9
+ > i (Dig x PP x (B)F x 0F) + B - Skew! + B - Kurtf + B3 - VOLV,” +&,.

=2

The estimated expected value of each variable at time t is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. The expected volatility, ¢, is the standard
deviation of the prior 30 daily returns. The expected absolute deviation ¥ is estimated from the average absolute
daily deviation of returns from the rolling prior 30 average daily return. The expected ambiguity, OF, is estimated
from the realized ambiguity, where ambiguity U, is the square root of variance of the daily probabilities of returns
over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed from
five-minute returns. The expected probability of favorable returns, P, is estimated from the rolling averages of the
daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater than
the risk-free rate, where returns are assumed to be normally distributed. The dummy variable (D;) is equal to one if
the expected probability of favorable returns in a day ¢ belongs to bin i, and zero otherwise. The expected skewness,
Skew?”, is estimated from the realized skewness of the prior 30 daily returns. The expected skewness, Kurt?, is
estimated from the realized kurtosis of the prior 30 daily returns. The expected volatility of volatility, VOLV® is
estimated from the realized volatility of volatility of the prior 30 daily returns. In Panel B, the weights are inversely
proportional to the sum of the estimated risk and the estimated ambiguity. The numbers in parentheses are t-statistics.

Panel A: OLS Panel B: WLS
a 0.002 0.004 0.011 0.003 0.004 -0.050
(1.72) (1.80) (0.27) (2.51) (2.35) (-1.13)
v -1.121 -1.072 -1.256 -1.541 -1.370 -2.138
(-1.53) (-1.38) (-1.01) (-2.54) (-2.16) (-2.27)
Skew® 0.001 0.000
(0.69) (0.39)
Kurt? -0.000 -0.000
(-1.04) (-0.97)
VOLVE -0.009 0.052
(-0.22) (1.19)
n -0.056 -0.061 -0.057 -0.028 -0.032 -0.028
(-0.49) (-0.53) (-0.49) (-0.16) (-0.18) (-0.16)
2 0.325 0.324 0.324 0.214 0.214 0.216
(0.78) (0.78) (0.78) (0.33) (0.33) (0.34)
73 0.029 0.028 0.028 -0.022 -0.022 -0.018
(0.08) (0.08) (0.08) (-0.04) (-0.04) (-0.03)
N4 0.195 0.193 0.193 0.149 0.148 0.156
(0.65) (0.64) (0.64) (0.32) (0.32) (0.34)
s 0.262 0.258 0.257 0.154 0.150 0.160
(0.91) (0.90) (0.89) (0.35) (0.34) (0.37)
N6 0.095 0.088 0.090 0.028 0.022 0.031
(0.34) (0.32) (0.32) (0.06) (0.05) (0.07)
07 0.021 0.016 0.018 -0.082 -0.086 -0.081
(0.08) (0.06) (0.07) (-0.20) (-0.21) (-0.20)
g 0.164 0.158 0.158 0.078 0.071 0.086
(0.60) (0.58) (0.58) (0.19) (0.17) (0.21)
o 0.155 0.150 0.152 0.053 0.048 0.063
(0.61) (0.59) (0.59) (0.14) (0.12) (0.16)
Mo 0.181 0.176 0.177 0.099 0.093 0.112
(0.73) (0.71) (0.71) (0.26) (0.25) (0.30)
1 -0.039 -0.046 -0.045 -0.109 -0.116 -0.093

(-0.16) (-0.19) (31218) (-0.30) (-0.32) (-0.25)




Table 5 (Continued)

mr

19
720
21
722
723
124
725
726
27
728
729
7130
731
132
7133
734
n3s
7136
ns7

Adj-R?

0.113
(0.48)
0.098
(0.42)
0.061
(0.27)
0.053
(0.22)
0.016
(0.07)
0.138
(0.63)
0.087
(0.41)
0.114
(0.55)
0.052
(0.25)
0.061
(0.30)
0.041
(0.20)
0.085
(0.43)
-0.034
(-0.17)
0.552
(2.72)
0.311
(1.56)
-0.095
(-0.45)
-0.198
(-1.03)
-0.214
(-1.13)
-0.046
(-0.23)
0.111
(0.58)
0.213
(1.15)
-0.010
(-0.05)
0.891
(4.31)
0.011
(0.05)
-0.476
(-1.50)
-0.406
(-1.44)
0.0080

Panel A: OLS
0.108
(0.45)
0.091
(0.39)
0.055
(0.24)
0.043
(0.18)
0.006
(0.03)
0.129
(0.58)
0.078
(0.37)
0.105
(0.51)
0.042
(0.21)
0.051
(0.25)
0.028
(0.14)
0.070
(0.36)
-0.048
(-0.25)
0.540
(2.66)
0.293
(1.48)
-0.113
(-0.53)
-0.220
(-1.14)
-0.238
(-1.26)
-0.064
(-0.32)
0.089
(0.47)
0.187
(1.01)
-0.039
(-0.21)
0.857
(4.14)
-0.036
(-0.15)
-0.535
(-1.68)
-0.449
(-1.59)
0.0079

0.109
(0.46)
0.093
(0.40)
0.057
(0.25)
0.048
(0.20)
0.011
(0.05)
0.134
(0.61)
0.082
(0.39)
0.108
(0.52)
0.046
(0.23)
0.056
(0.28)
0.035
(0.18)
0.079
(0.40)
-0.040
(-0.20)
0.546
(2.69)
0.305
(1.53)
-0.102
(-0.48)
-0.205
(-1.07)
-0.222
(-1.18)
-0.054
(-0.26)
0.103
(0.54)
0.204
(1.11)
-0.018
(-0.10)
0.884
(4.27)
0.004
(0.02)
-0.482
(-1.50)
-0.417
(-1.49)
0.0079

0.054
(0.15)
0.035
(0.10)
0.002
(0.01)
-0.030
(-0.09)
-0.047
(-0.14)
0.097
(0.29)
0.033
(0.10)
0.065
(0.21)
0.005
(0.02)
0.005
(0.02)
-0.013
(-0.04)
0.038
(0.13)
-0.063
(-0.21)
0.444
(1.46)
0.294
(0.98)
-0.173
(-0.56)
-0.233
(-0.81)
-0.260
(-0.93)
-0.010
(-0.03)
0.086
(0.30)
0.182
(0.67)
-0.036
(-0.14)
0.913
(3.11)
0.096
(0.31)
-0.531
(-1.40)
-0.320
(-0.93)
0.0085

Panel B: WLS
0.049
(0.13)
0.027
(0.08)
-0.004
(-0.01)
-0.040
(-0.11)
-0.056
(-0.17)
0.088
(0.26)
0.024
(0.07)
0.057
(0.18)
-0.004
(-0.01)
-0.005
(-0.02)
-0.025
(-0.08)
0.024
(0.08)
-0.078
(-0.26)
0.431
(1.42)
0.277
(0.93)
-0.191
(-0.62)
-0.255
(-0.89)
-0.284
(-1.01)
-0.029
(-0.10)
0.064
(0.23)
0.157
(0.57)
-0.064
(-0.24)
0.880
(2.99)
0.049
(0.16)
-0.591
(-1.55)
-0.370
(-1.07)
0.0085

0.071
(0.20)
0.051
(0.14)
0.016
(0.05)
-0.015
(-0.04)
-0.032
(-0.09)
0.106
(0.32)
0.043
(0.13)
0.079
(0.25)
0.016
(0.05)
0.015
(0.05)
-0.008
(-0.03)
0.044
(0.15)
-0.058
(-0.19)
0.458
(1.51)
0.293
(0.98)
-0.161
(-0.52)
-0.237
(-0.83)
-0.266
(-0.95)
-0.002
(-0.01)
0.088
(0.31)
0.177
(0.65)
-0.048
(-0.18)
0.876
(2.98)
0.046
(0.15)
-0.613
(-1.60)
-0.319
(-0.92)
0.0085
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Table 6

Unstructured risk attitude
The table reports the results of the tests of the risk attitude model. Panels A and B report the results obtained using
OLS and WLS regressions in the following equation:

9 9
Fer1l —Tfer1 :Oé+’y~VtE+Z’Yj . (Cj,t X wj X ,/tE) +17-(U?)E ><19f+z77i'(Divt x PF x (U?)E xﬁf) + €¢.
i=2

Jj=2

The estimated expected value of each variable at time t is the out-of-sample fitted value of the ARMA(p, q) model
with the minimal AICC over its realized values over the prior 365 days. The expected volatility, o, is the standard
deviation of the prior 30 daily returns. The expected absolute deviation 9F is estimated from the average absolute
daily deviation of returns from the rolling prior 30 average daily return. The expected ambiguity, OF, is estimated
from the realized ambiguity, where ambiguity UF, is the square root of variance of the daily probabilities of returns
over the prior 30 days. Probabilities of returns are based on the daily mean and variance of returns computed from
five-minute returns. The expected probability of favorable returns, P, is estimated from the rolling averages of the
daily probabilities of favorable returns over the prior 30 days. A return is considered favorable if it is greater than the
risk-free rate, where returns are assumed to be normally distributed. The dummy variable (C;) is equal to one if the
wealth w in that day falls in the range of j of wealth and zero otherwise. The dummy variable (D;) is equal to one if
the expected probability of favorable returns in a day ¢ belongs to bin ¢, and zero otherwise. In Panel B, the weights
are inversely proportional to the sum of the estimated risk and the estimated ambiguity. The numbers in parentheses
are t-statistics.

Panel A: OLS Panel B: WLS
« 0.004 0.004
(2.71) (3.63)
~ 3.668 6.602
(1.41) (2.56)
Y2 -2.918 -5.638
(-1.46) (-2.85)
v3 -1.877 -3.149
(-1.29) (-2.14)
Va4 -2.887 -4.623
(-2.32) (-3.59)
Y5 -1.441 -2.325
(-1.47) (-2.33)
Y6 -1.212 -2.086
(-1.58) (-2.74)
Y7 -3.152 -4.165
(-3.32) (-4.39)
¥ -0.097 -0.586
(-0.12) (-0.65)
Yo -0.793 -1.468
(-1.36) (-2.43)
Y10 -1.061 -1.634
(-2.11) (-3.27)
n -0.088 -0.077
(-0.75) (-0.41)
72 0.559 0.604
(1.33) (0.93)
73 0.073 0.040
(0.21) (0.07)
- 0.185 0.174
(0.60) (0.36)
5 0.421 0.373
(1.44) (0.82)
N6 0.152 0.125
(0.53) (0.28)
n7 0.186 0.111
(0.67) (0.26)
78 0.224 0.150
(0.80) (0.35)
N9 0.228 0.167




Table 6 (Continued)

Panel A: OLS Panel B: WLS
710 0.352 0.305
(1.38) (0.77)
11 0.093 0.050
(0.38) (0.13)
(0.91) (0.54)
713 0.236 0.222
(0.98) (0.59)
714 0.154 0.122
(0.65) (0.33)
715 0.216 0.184
(0.93) (0.51)
716 0.090 0.052
(0.39) (0.14)
N7 0.252 0.252
(1.12) (0.72)
718 0.221 0.210
(1.02) (0.62)
(1.00) (0.59)
720 0.156 0.140
(0.74) (0.43)
Mn21 0.183 0.161
(0.89) (0.50)
722 0.120 0.119
(0.57) (0.37)
(0.56) (0.33)
724 0.138 0.143
(0.69) (0.46)
725 0.698 0.615
(3.34) (1.93)
126 0.414 0.446
(2.02) (1.41)
127 0.045 -0.004
(0.21) (-0.01)
728 -0.132 -0.152
(-0.66) (-0.50)
129 —0.137 —0.174
(-0.69) (-0.58)
730 -0.015 -0.010
(-0.08) (-0.03)
(1.11) (0.61)
132 0.344 0.348
(1.81) (1.21)
733 0.076 0.066
(0.40) (0.23)
134 1.265 1.062
(3.51) (2.60)
(0.25) (0.45)
136 -0.005 0.046
(-0.02) (0.12)
137 0.545 0.707
(1.33) (1.53)
Adj-R? 0.0768 0.0410
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Table 7 Abnormal returns

This table reports the performance of Bitcoin returns under various asset pricing models. fuxr,: is the day-t value of the market factor, fsup,: is
the day-t value of the Fama—French size factor, fmur,: is the day-t value of the Fama—French book-to-market factor, fwar,: is the day-t value of the
momentum factor, fryw,: is the day-t value of the Fama—French profitability factor, fcma,: is the day-t value of the Fama—French investment factor,
fue,t is the day-t value of the HXZ (i.e., Hou, Mo, Xue, and Zhang, 2020) size factor, froa,: is the day-t value of the HXZ profitability factor, and

fia,¢ is the day-t value of the HXZ investment factor, and frc: is the day-t value of the HXZ expected growth factor. The numbers in parentheses are
t-statistics.

Panel A: Full period Panel B: High ambiguity Panel C: Low ambiguity
« 0.004 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.002 0.001 0.006 0.006 0.006 0.006  0.006
(4.20) (4.22) (4.21) (4.26) (4.20) (0.89) (0.92) (0.92) (1.02) (0.97) (7.34) (7.38) (7.38) (7.34) (7.38)
furr,:  0.036 0.040 0.042 0.000 0.060 0.069 0.070  -0.033 -0.011  -0.031  -0.035 -0.009
(0.35)  (0.39) (0.40)  (0.00) (0.37)  (0.42) (0.43) (-0.18) (-0.11) (-0.28) (-0.31) (-0.08)
fsmp ¢ -0.005  0.003  -0.038 -0.118  -0.100  -0.222 0.164 0.156 0.189
(-0.03) (0.02) (-0.21) (-0.38) (-0.32) (-0.69) (0.94) (0.88) (1.07)
frmr e 0.097 0.118 0.209 0.087 0.149 0.389 0.106 0.089 0.028
(0.54)  (0.59)  (0.93) (0.28)  (0.42)  (1.00) (0.62) (0.47) (0.13)
fwwmr,t 0.033 0.091 -0.029
(0.23) (0.36) (-0.22)
JrRuw ¢ -0.145 -0.379 0.113
(-0.50) (-0.74) (0.41)
Jomaz -0.310 -0.815 0.162
(-0.85) (-1.24) (0.48)
fuE -0.006 -0.176 0.224
(-0.03) (-0.55) (1.28)
froE -0.072 0.011 -0.234
(-0.25) (0.02) (-0.88)
fraz 0.047 -0.524 0.670
(0.14) (-0.91) (2.19)
fEGt 0.000 -0.435 0.488
(0.00) (-0.77) (1.51)

Adj-R? -0.0003 -0.0009 -0.0012 -0.0013 -0.0017 -0.0006 -0.0019 -0.0025 -0.0017 -0.0025 -0.0007 -0.0013 -0.0020 -0.0024 0.0006
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Fig. 1. Time series of Bitcoin amb

This figure plots the time series patterns of realized Bitcoin ambiguity and excess returns from February 2012

to November 2019.
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