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ABSTRACT: Aerial robotic technology has potential for use in a wide variety of civil 6 

engineering applications. Such technology potentially offers low-cost methods to replace 7 

expensive structural health monitoring activities such as visual inspection. Aerial robots also 8 

have potential uses in civil construction and for regional surveys. This paper presents the results 9 

of a review on the applications of aerial robotic technology in civil engineering. Such civil 10 

engineering applications can be classified into three broad areas: (i) monitoring and inspection 11 

of civil infrastructure; (ii) site management, robotic construction, and maintenance and (iii) 12 

post-disaster response surveys and rapid damage assessments. The motivations for uptake of 13 

aerial robotics in the civil engineering industry generally fall into the following categories: (i) 14 

cost savings, (ii) improved measurement capability and (iii) safety improvements. The 15 

categories of aerial robotic use in civil engineering are then classified as either ‘established’ or 16 

‘emerging’ uses. 17 

 18 
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 21 

INTRODUCTION 22 

To better evaluate infrastructure performance, civil engineers require improved systems to 23 

monitor the infrastructure condition. This paper reviews the possible ways that aerial robotic 24 

technologies (often in the form of Unmanned Aerial Vehicles (UAVs)) can assist with 25 

collecting important data which can be used to better evaluate the performance of civil 26 
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infrastructure (either single assets or a network of assets) during their construction and service 27 

lives. UAVs are used in various military surveillance and reconnaissance applications (e.g., 28 

Kardasz et al., 2016). Recently, the technology has become available for business and 29 

recreational uses (Finn and Wright, 2012). UAVs are highly manoeuvrable, and their flexibility 30 

means they can provide visual access, in the form of photos or real-time videos, access difficult 31 

to reach areas quickly and at a relatively low cost. Many uses for UAVs are emerging in 32 

everyday life, for example the delivery of lightweight items to customers (e.g., Burgess, 2016; 33 

Hern, 2016; Shakhatreh et al. 2019). 3D models produced from aerial imagery can help to 34 

inspect infrastructure and assess situations (e.g., Lattanzi and Miller, 2015; Siebert and Teizer, 35 

2014). The review of Shakhatreh et al. (2019) gives a detailed review of the market 36 

opportunities for UAV technology and they indicate that 45% of the total market for UAV 37 

technology relates to ‘construction and infrastructure inspection’ activities. The recent 38 

developments in sensor technology means that other types of data collection, i.e. thermal 39 

images, are possible despite UAVs limited payload (DeBell et al. 2015). UAVs are often 40 

regarded as a low-cost option as both the initial purchase costs and the operational costs 41 

compared to that of the equivalent labour hours are low (e.g., Park et al. 2012; Reagan et al. 42 

2017) and decreasing (Greenwood et al. 2019).  43 

In response to the dawn of the so called ‘age of robots’ (Hauert, 2016; Laschi et al. 44 

2018), considerable research into the potential and emerging uses of robotics in many technical 45 

spaces including civil engineering has been reported. Therefore, it is timely to study how civil 46 

engineering may benefit from these technological advances. Many reviews including those of 47 

Liu et al. (2014), De Bell et al. (2015), Kardasz et al. (2016); Latanzi and Miller (2017), 48 

Recchiuto and Sgorbissa (2018), Albeanio et al. (2019), Greenwood et al. (2019) and 49 

Shakhatreh et al. (2019) give detailed reviews of the types of UAV platforms on the market: 50 

this aspect of the topic is beyond the scope of this review. The term ‘Robophobia’ (discussed 51 
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in detail in Smith, 2018) is used in the context of people fearing robots replacing them in key 52 

functions (job losses). However, the societal and economic implications of increased uptake of 53 

robotic technologies in the civil engineering sector is beyond the scope of this review.  54 

Some key review papers from the past decade are summarised in Table 1. The review 55 

papers summarised in Table 1 have varying scopes in their coverage from the entire civil 56 

society domain in the case of Shakhatreh et al. (2019) to the narrower focus of Snook (2018) 57 

on safety and productivity in the context of infrastructure. This review is focussed on 58 

applications related to civil infrastructure and aims (in part) to classify different applications 59 

as ‘emerging’ or ‘established’. Based on a literature review (see Freeman (2018) for a 60 

preliminary version) the use of aerial robotics in civil engineering can be broadly classified 61 

into three main areas (Table 2). Frederiksen et al. (2019) suggest motivations for the uptake of 62 

aerial robotic systems in infrastructure applications include: cost reduction; safety and 63 

environmental concerns (e.g., UAV’s require less energy to operate than manned aircraft).  64 

MONITORING OF CIVIL INFRASTRUCTURE  65 

Alternatives to visual inspection 66 

Monitoring existing infrastructure assets is vital to determining the safety of its continued use 67 

(cf. Reagan et al., 2017) and to allow for improved management of infrastructure networks 68 

especially during extreme events (e.g., Kaya et al. 2017). Infrastructure inspections must be 69 

carried out regularly and the most widely used method is for an inspector to visually assess the 70 

structure i.e. visual inspection (e.g., Ellenberg et al., 2015; Bennetts et al. 2016, 2020; Canning 71 

and Kashani, 2016; Omar and Nehdi, 2017). Visual inspection data can be unreliable as results 72 

are reliant on the inspector’s own judgement and experience (e.g., McRobbie et al., 2015; 73 

Bennetts et al. 2018; Bolourian and Hammad et al. 2020; Popescu et al. 2019; Reagan et al., 74 

2017; Vaghefi et al., 2012). Visual observation of cracks on the surface of structures is often 75 

considered a failure condition (or at least a warning of potential failure) (e.g., Kashani et al. 76 
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2019), and are difficult to detect with the naked eye during inspections (e.g., McRobbie et al., 77 

2015; Reagan et al., 2017). Usually, photographs are not taken of the entire structure during 78 

physical inspections, and hence monitoring changes of bridge condition is difficult (McRobbie 79 

et al., 2015, Bennetts et al., 2021). Additionally, human inspectors generally require machinery 80 

or scaffolding to inspect areas where access is limited (e.g., Popescu et al. 2019) and/or 81 

hazardous (e.g., high-voltage railway cables (e.g., Teng et al., 2017), which imposes a health 82 

and safety risk, auxiliary costs and commonly disrupts traffic (e.g., Omar and Nehdi, 2017; 83 

Reagan et al., 2017; Snook, 2018). By implementing aerial robotic technologies for structural 84 

inspections, many of the issues highlighted can be resolved. As a result, major infrastructure 85 

can be inspected more frequently. However, the challenge to locate ‘hidden defects’ (e.g., 86 

Collins et al. 2019) will remain and robotic technology will need to access all the parts of a 87 

structure that human inspectors currently are able to.  88 

Inspections using Photographs and Videos  89 

Aerial robotic technology may enable civil engineers to better retain and compare photographic 90 

records of the surface of structures or landforms (Hellmuth et al. 2018; Stewart et al. 2018) 91 

over time, making monitoring changes and specific defects easier (McRobbie et al., 2015). 92 

McRobbie et al. (2015) noted that this approach may be more reliable as inspections can be 93 

done in comfortable conditions and obtaining a second opinion is more feasible. Lattanzi and 94 

Miller (2014) and Lattanzi et al. (2016) developed a computer vision approach for detecting 95 

cracks in concrete structural elements from photography which was calibrated using laboratory 96 

experiments. For a detailed review on the use of computer vision in civil infrastructure 97 

assessment see Spencer et al. (2019). Robotic technologies are emerging as an alternative to 98 

visual inspections (Ham et al. (2016), Lattanzi and Miller (2017)). Ellenberg et al. (2015) 99 

investigated infrastructure inspection and found that far more quantitative measurements could 100 

be obtained using UAVs, i.e. ‘damage detection’ (Webb et al. 2015). Kang and Cha (2018a, 101 
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2018b) presented an autonomous UAV Structural Health Monitoring (SHM) system, tested in 102 

laboratory conditions, coupled with deep learning techniques for crack detection in concrete. 103 

UAVs have also been used to determine the conditions of geotechnical structures, slope 104 

stability assessments, monitoring bank erosion and lateral scour conditions (Hellmuth et al. 105 

2018; Stewart et al, 2018; Thoeni et al. 2018). 106 

Use of UAVs may eradicate the need to interrupt traffic flow when examining highway 107 

bridge structures, as there is no need for scaffolding or lane closures during the inspection (e.g., 108 

Omar and Nehdi, 2017; Reagan et al., 2017). However, Vaghefi et al. (2012) indicated that 109 

even though UAV data collection does not interfere with traffic, the preparation for inspection 110 

can require contact with the structure (i.e. the bridge), and hence traffic is often interrupted 111 

anyway. Furthermore, there might be some restrictions on UAV use in urban areas (e.g., 112 

Frederiksen et al. 2019).  113 

Inspections using 3D Reconstructions and Scanning  114 

Many authors have explored the idea of completing structural inspections from 3D 115 

reconstructions (although only some have undertaken practical experiments) (Ellenberg et al. 116 

2015; Guerrero and Bestaoui, 2013; Park et al. 2012; Lattanzi and Miller, 2015; Omar and 117 

Nehdi, 2017; Reagan et al., 2017). Lattanzi and Miller (2015) compared the creation of a 3D 118 

model for structural inspections through ‘Image Mosaicking (IM)’ and ‘Dense Structure from 119 

Motion (DSfM)’ techniques. Lattanzi and Miller (2015) found that both IM and DSfM could 120 

generate models sufficient for structural inspections. Therefore, they recommended IM for 121 

simple and DSfM for more complex structures (Lattanzi and Miller, 2015). Digital Image 122 

Correlation (DIC) has also been used to inspect concrete bridges using images obtained from 123 

UAVs (Reagan et al. 2017). DIC allows inspectors to measure displacements and geometry 124 

profiles to the same accuracy as a dial calliper used in traditional inspections (Reagan et al. 125 

2017). Ghahremani et al. (2018) present a laboratory tested methodology which can allow finite 126 



 

6 
 

element (FE) models to be updated with sensed 3D point cloud data: with good agreement 127 

shown between the DIC results and the updated FE analysis. Bolourian and Hammad (2020) 128 

have reported use of UAV mounted light detection and ranging (LiDAR) scanning equipment 129 

to inspect bridge defects. The proposed ‘path-planning’ method used can be adapted for other 130 

sensing technologies (Bolourian and Hammad 2020). 3D reconstruction and scanning 131 

techniques can help with the building of ‘Digital Twins’ of structures (e.g., Chacon et al. 2018; 132 

Kaewunruen and Xu, 2018). The measured data can be fused into the digital twin and be 133 

updated frequently (cf., Ghahremani et al. 2018). Use of digital twins has the potential to make 134 

evaluation of structural condition quicker, more accurate, safer, and more reliable.  135 

Inspections using Thermal Imaging 136 

Thermal imaging is increasingly used in civil engineering applications (e.g., Thusyanthan et 137 

al. 2017). Developments in thermal camera technology mean that they are now sufficiently 138 

lightweight to be mounted on UAVs (DeBell et al., 2015). Thermal imaging can be employed 139 

to detect subsurface issues in concrete bridge decks (e.g., Clark et al., 2003; Omar and Nehdi, 140 

2017; Vaghefi et al., 2012). Material defects can cause deterioration, accelerated by the ageing 141 

of the structure and the environmental conditions (cf. Omar and Nehdi, 2017). Using thermal 142 

imaging techniques, subsurface delamination can be easily detected as the delamination 143 

interrupts the flow of heat through the concrete and creates an anomaly in the thermal image 144 

(e.g., Clark et al., 2003; Omar and Nehdi, 2017; Vaghefi et al., 2012). The reliability of the 145 

method may be compromised as material emissivity is influenced by surface roughness and 146 

moisture content, making constant emissivity across a surface unlikely (cf. Clark et al., 2003; 147 

Omar and Nehdi, 2017; Vaghefi et al., 2012).  148 

Popescu et al. (2019) studied six bridges in Sweden comparing 3D models created with 149 

data from terrestrial laser scanning (TLS) (i.e. LiDAR), close range photogrammetry (CRP) 150 

(outlining the details of the camera and settings e.g., shutter speeds used) and infrared sensing 151 
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(IS). The comparison between TLS, CRP and IS showed that as built bridge dimensions were 152 

measured to a reasonable accuracy, but the authors note that detecting deep defects with the 153 

aforementioned methods remains difficult. 154 

Motivations for increased use of aerial robotic technology 155 

The motivations for increased use of aerial robotic technology include: (i) cost savings, (ii) 156 

improved measurement capability and (iii) safety improvements. There are potential cost 157 

savings as less fixed infrastructure (e.g., wires and cables) are needed for monitoring 158 

deployments. Measurement flexibility may improve as human inspections can occur remotely 159 

and not in-situ which also leads to improved (safer) working environments for operators. 160 

However, the operators of robotic technology will still need to judge where damage is likely to 161 

occur on a structure. Therefore, such solutions may still suffer from the same problems of 162 

traditional visual inspection i.e. rate and extent of any located damage will still need to be 163 

interpreted by a human inspector (albeit remotely). Robotic data capture solutions may improve 164 

how data is captured but their use does not necessarily change or improve the engineering 165 

decisions that result from the collected data. 166 

SITE MANAGEMENT, ROBOTIC CONSTRUCTION AND MAINTENANCE 167 

Aerial robots can be used to monitor people entering and exiting secure facilities more 168 

effectively than static cameras, which can be costly and must be manually installed (Wen and 169 

Kang, 2014). Using aerial robotic technology to assist safety managers in monitoring health 170 

and safety conditions on site has been reported (e.g., Gheisari and Esmaeili, 2016; Irizarry and 171 

Costa, 2016) as well as to help visualise construction progress (e.g., Siebert and Teizer, 2014). 172 

Health and Safety Management 173 

Workplace health and safety managers need to manage risks onsite, which is currently done 174 

via visual inspection on site (Irizarry et al. 2012). Such inspections are subject to the experience 175 
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and opinion of the manager, making it potentially an unreliable process (e.g., Irizarry et al. 176 

2012) (as for visual inspection of bridge structures (e.g., Bennetts et al. 2018)). UAVs can 177 

provide a live video-feed of a jobsite, allowing inspections to be undertaken quickly and 178 

efficiently whilst also enabling a record to be kept (Irizarry et al. 2012). Video feeds can also 179 

be broadcast to multiple devices for authorised personnel to view (e.g., Wen and Kang, 2014). 180 

Gheisari and Esmaeilli (2016) surveyed safety managers to determine where they thought 181 

UAVs would be best employed. The study highlighted that UAVs were considered most 182 

helpful for monitoring employees working near boomed vehicles or cranes, close to edges or 183 

openings without protective barriers and to assist those operating in equipment blind spots 184 

(Gheisari and Esmaeilli 2016).  185 

Planning and Progress Assessments 186 

Site progress reports are generally collected manually either weekly or daily may lack 187 

objectivity or contain errors (Hui et al. 2015). Surveyors may sometimes have to work in 188 

dangerous environments, for example, a mine site (Siebert and Teizer, 2014). UAVs can 189 

provide images of the entire site and enables accurate measurements to be taken rather than 190 

assumptions made from brief inspections (e.g., Siebert and Teizer, 2014; Kaamin et al. 2017).  191 

Producing 3D models is also a commonly discussed method of increasing the reliability 192 

and accuracy of progress assessments (e.g., Kaamin et al. 2017; Siebert and Teizer, 2014). 193 

Comparing ‘as-planned’ Building Information Models (BIM) with ‘as-built’ models can help 194 

Project Managers determine if specific milestones have or have not been reached, and to what 195 

magnitude of difference, at each location (Alizadehsalehi et al. 2020; Siebert and Teizer, 2014); 196 

to show progression and when materials or additional resources will be required (potentially 197 

improving cost-efficiency) (Han et al. 2018; Siebert and Teizer, 2014). Siebert and Teizer 198 

(2014) compared UAV and Robotic Total Station (RTS) data for three earth piles using 199 

elevation maps generated using points taken from both devices (UAV giving a much larger 200 



 

9 
 

number of measurement points than RTS). The surveyed volumes for the three earth piles 201 

ranged from 8 to 16% (Siebert and Teizer, 2014) indicating that the UAV could achieve a result 202 

comparable to that using more traditional methods. Aerial robots can supply many overlapping 203 

images, however, the vast volume of data collected means that currently the processing time 204 

remains a practical challenge which may be partly tackled by various filtering methods (Han 205 

et al. 2018). 206 

Robotic construction and repair 207 

Petersen et al. (2019) conducted a comprehensive review of collective robotic construction 208 

(CRC), incorporating structural and architectural design, construction procedure, scalability, 209 

and adaptability. They concluded that some fundamental challenges should be addressed to 210 

implement CRC in construction industry: (i) ‘robust autonomy’; (ii) ‘perception’; (iii) ‘reliable 211 

mechanisms’; and (iv) ‘system integration’ (Petersen et al. 2019). Buchanan and Gardner 212 

(2019) conducted a broad review of metal 3D printing or additive manufacturing (AM) for 213 

robotic construction. They argued that powder bed fusion (PBF) and directed energy deposition 214 

(DED) methods are the most viable techniques for metal 3D printing as they allow more 215 

accurate construction although at a relatively high cost, build time and limitations on maximum 216 

size (Buchanan and Gardner, 2019). Hunt et al. (2014) and Dams et al. (2020) presented 217 

preliminary studies on the use of aerial 3D printing as a potential pre-cursor to robotic 218 

construction using UAVs. Hunt et al. (2014) discussed the design and classification of 3D 219 

printing of expanding polyurethane foam (EPF) in the context of using a UAV to create a 220 

structure or repair an existing structure. Chaltiel et al. (2018) and Stephanie et al. (2018) discuss 221 

using flying robots for mud shell fabrication using ‘Bioshotcrete’.  222 

The motivations for further uptake of aerial robotic technology in the construction 223 

sector include mainly improvements in safety. This is due to the better monitoring of people 224 
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on building sites and avoiding the need for people to work at dangerous heights (or spaces) 225 

with the uptake of robots for construction of some components. 226 

POST DISASTER RESPONSE SURVEYS AND RAPID DAMAGE ASSESSMENT 227 

The uptake of UAVs by the military was partly due to ability to eliminate the risk associated 228 

with sending pilots into dangerous zones (cf. Hyunkyung et al. 2016). The same applies with 229 

humanitarian aid for disaster response efforts. In addition to reducing safety hazards, UAVs 230 

also accommodate the need for quick response, access to difficult areas and extensive 231 

information of the scene (at relatively low cost) (e.g., Daniel et al. 2009). UAVs can also 232 

monitor the progression of fires and floods (Casbeer et al. 2006; DeBell et al. 2015). Teams of 233 

UAVs are referred to ‘Swarm systems’ (e.g., Hauert et al. 2009; Carrillo-Zapata et al. 2020). 234 

Robots operating in teams or as single units can provide real-time information, mapping 235 

support and media footage as well as perform infrastructure assessments, act as ad hoc 236 

communication networks, and identify victims of natural disasters who may be stranded or 237 

injured, direct them to safe locations or deliver medical supplies (Erdelj et al. 2017; Moloo, 238 

2016; Recchiuto and Sgorbissa, 2019).  239 

Post-Disaster Response Assessments 240 

Ezequiel et al. (2014) discussed how UAVs can be used post-disaster to assess for example, 241 

the scale of governmental assistance needed; structural damages and damages to crops and 242 

vegetation (often a vital industry in less developed nations) and management of water 243 

resources. Rapid response after a disaster is critical, hence efficiency is key (Erdejl et al. 2017). 244 

UAVs can quickly obtain aerial imagery, which can be used to up-date hazard maps and 245 

develop dense surface and elevation models (Erdejl et al. 2017; Yamamoto et al. 2014). Post-246 

disaster, dangerous obstacles can hinder human teams on the ground which can be avoided (as 247 

least partly) with the use of UAVs (Greenwood et al. 2019). UAVs can identify access routes 248 



 

11 
 

and the worst affected regions meaning rescue efforts can be coordinated more effectively 249 

(Adams and Freidland, 2011; Erdejl et al. 2017). UAVs can also be used for rapid inspection 250 

of individual structures and bridges. For example, if a bridge or building is damaged during 251 

earthquake or fire after earthquake, it is not safe to be assessed by human inspectors in the field. 252 

SHM using UAV imagery can accelerate the inspection and reconstruction phases (Adams and 253 

Friedland, 2011; Erdejl et al. 2017; Yamamoto et al. 2014) as necessary data can be provided 254 

more quickly and safely. Pratt et al. (2008) investigated the Berkman Plaza collapse in 255 

Jacksonville in 2007 using a tethered UAV. Murphy et al. (2008) implemented a UAV to help 256 

navigate an Unmanned Sea-surface Vehicle (USV) as the communications link between the 257 

USV and controller.  258 

If an area is deemed too dangerous to enter, UAVs can be very beneficial. This was the 259 

case in Fukushima, Japan (which experienced an earthquake followed by a tsunami in March 260 

2011 (Norio et al. 2011)). The disaster disrupted a nuclear facility and the area had to be 261 

evacuated, making reconnaissance of the area incredibly difficult (Adams and Friedland, 2011; 262 

Norio et al. 2011). However, UAV surveillance of the facility was possible, and with additional 263 

sensors, the UAV could also collect information on the radiation being emitted without 264 

endangering humans (as outlined in Adams and Friedland, 2011). 265 

Monitoring Flood and Fire Risks 266 

UAVs can provide efficient and low-cost data collection for flood impact assessments to assign 267 

resources and aid (DeBell et al. 2015). UAVs have been used to aid firefighters in monitoring 268 

perimeters and assessing buildings (e.g., Casbeer et al. 2006; Merino et al. 2006; Stewart, 269 

2017). Casbeer et al. (2006) presented a method using a team of UAVs to track the extent of a 270 

forest fire to provide close to real-time information to authorities. Similarly, Merino et al. 271 

(2006) presented a method for using a cooperative team of UAVs for detecting and confirming 272 

a fire location using visual and infrared images. Stewart (2017) discussed the Los Angeles Fire 273 
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Department’s method of fighting the Skirball fire in December 2017: one UAV tracked the fire 274 

path with visual images and a second UAV carried a thermal camera to help direct the 275 

firefighting effort (UAVs were used to survey damaged properties after the fire). UAV imagery 276 

also helped to assess the structural condition of the Grenfell tower in London before allowing 277 

firefighters into the building (Margaritoff, 2017). 278 

The motivations for further uptake of aerial robotic technology for post-disaster 279 

response surveys as and post disaster rapid damage assessments include mainly ‘improved 280 

measurement capability’ and ‘safety improvements’. UAVs can access dangerous areas post 281 

disaster where it may be dangerous for human inspectors to venture (e.g., flooded areas, places 282 

of potential radiation leakage, buildings that are on fire) as well as provide measurements and 283 

data that cannot be obtained with more conventional means e.g., manned aircraft or satellites. 284 

CONSTRAINTS ON WIDER IMPLEMENTATION 285 

Despite the many advantages that UAVs can offer to civil engineering, there are still many 286 

difficulties that must be overcome (summarised in Table 3). 287 

Legislation and Regulations  288 

The legislation surrounding UAV usage is another barrier to their implementation for civil 289 

engineering applications. The legislative environment must be considered, e.g., within the UK, 290 

a pilot must keep the UAV in their visible line of sight and additional permissions must be 291 

requested for beyond line-of-sight operations (see CAA, 2015). Frederiksen et al. (2019) 292 

identified that in Denmark drones cannot fly closer than 150m to large public roads and centres 293 

of population without special permission. The strict legislation surrounding UAV use led 294 

McRobbie et al. (2015) to conclude that UAVs are not yet able to replace visual inspections. 295 

However, it could be posited that if UAV use were more widespread then organisations 296 
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employing UAVs for civil use would be more equipped to both comply and shape such 297 

regulations. 298 

Privacy is a major concern when employing UAVs (e.g., Finn and Wright, 2012; 299 

Herrmann, 2016; Luppicini and So 2016; Menouar et al. 2017; Erdelij et al. 2017; Frederiksen 300 

et al. 2019) and permission must be granted by the landowner or civil authority and any onsite 301 

employees before flights can take place (Herrmann, 2016; Frederiksen et al. 2019). Luppicini 302 

and So (2016) noted that civil uses of UAV technology are relatively new, and regulations and 303 

laws to protect against these issues have not yet been sufficiently developed and further 304 

research must be conducted to understand and mitigate the risks UAVs pose to privacy rights. 305 

There is a lack of international standardisation making UAV use in overseas projects 306 

complicated: in general, most countries restrict UAV operations over built-up areas and airports 307 

and require flight permissions to be acquired (e.g., DeBell et al. 2015). Both the UK Civil 308 

Aviation Authority (CAA) and the USA Federal Aviation Authority (FAA) also limit the height 309 

of UAV flights (cf. CAA, 2015; Mohammed et al. 2014). Many jurisdictions are willing to 310 

grant additional permissions to first responders (to disaster events) to rapidly assess the scale 311 

of the disaster (while noting that sensitive information should be immediately censored) (Erdejl 312 

et al. 2017). 313 

Weather Conditions 314 

Construction work and post disaster surveys are carried out in a wide variety of weather 315 

conditions and therefore it is essential that aerial robots used on construction sites remain 316 

usable during different seasons (Irizarry et al. 2012). UAV performance can be affected by 317 

weather, especially wind speeds and temperature (e.g., Siebert and Tezier, 2014; Ellenberg et 318 

al. 2015; DeBell et al. 2015; Omar and Nehdi, 2017; Greenwood et al. 2019). Bernard et al. 319 

(2011) commented that the wind gusts (35km/h) experienced by the UAV caused stress on the 320 

rotors if the pilot tried to compensate (noting also that if the motion was not compensated for 321 
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this did not occur). Siebert and Teizer (2014) found that the wind caused the UAV to experience 322 

turbulences, resulting in some blurred images which had to be manually removed. UAVs are 323 

often required to hover during SHM work and wind can reduce the quality of the collected data 324 

(e.g., Ellenberg et al. 2015; Guerrero and Bestaoui, 2013). Pratt et al. (2008) found that with 325 

an air temperature of 2°C, the UAV experienced communication issues and loss of control.  326 

Payload, Flight Endurance and Operation 327 

Commercial UAVs are often small and lightweight, with limited payload (Burgess, 2016; 328 

DeBell et al. 2015; Hern, 2017). Therefore, battery capacity is low, and the UAVs can often 329 

only fly for short times (about 15-30min) (e.g., Kardasz, et al. 2016; Omar and Nehdi, 2017; 330 

Menouar et al. 2017). Given the mobility, this flight time was considered adequate for data 331 

acquisition, or if more time was required, performing multiple trips was not a major 332 

inconvenience (cf. Gheisari and Esmaeili, 2016; Murphy et al. 2008; Siebert and Teizer, 2014). 333 

However, if UAVs were to be used in robotic construction, they need to have a nozzle to pour 334 

concrete or any other materials, which might exceed the vehicle’s payload. Kang and Cha 335 

(2018b) also point out that in some areas the lack of Global Positioning System (GPS) may 336 

hinder UAV operation which may be mitigated by ultrasonic beacons. Bolourian and Hammad 337 

(2020) also point out that loss of GPS signal may be expected when UAVs flight under a bridge. 338 

In such instances, ground-based image capture systems may be needed (e.g., Popescu et al. 339 

2019). 340 

Service Altitude 341 

UAV altitude requirements affects construction site management (e.g., Siebert and Teizer, 342 

2014;) and disaster response (e.g., Pratt et al. 2008). Service altitudes may result in a necessary 343 

compromise between collecting higher resolution photos, or efficient data collection (Omar 344 

and Nehdi, 2017). Higher quality images are easier to obtain at lower altitudes, but this requires 345 
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longer flight times (e.g., Siebert and Teizer, 2014). Reducing flight time with path planning to 346 

reduce total path length is an effective way to manage UAV endurance (e.g., Bolourian and 347 

Hammad 2020). Additionally, obstacle avoidance technology may be required, and images 348 

may be blurred if the UAV travels quickly (Adams and Friedland, 2011). Casbeer et al. (2006) 349 

investigated UAVs for fire surveillance e explaining that UAVs operating at low altitudes 350 

would be at elevated risk from the effects of the fire. However, in other situations, if there is 351 

low cloud cover, then the UAV may have to be flown at a lower altitude unless radar images 352 

are being obtained (Adams and Friedland, 2011). 353 

Lens Distortion 354 

To produce 3D reconstructions of structures, the curvature of the lens can lead to distortions 355 

which affect the quality of the models produced (Ellenberg et al. 2015; Lattanzi and Miller, 356 

2015; Omar and Nehdi, 2017). These distortions can be reduced by ensuring the images were 357 

captured with the camera perpendicular to the image (Omar and Nehdi, 2017); with better 358 

choice of lens (Lattanzi and Miller, 2015) or by improved calibration processes to correct for 359 

lens distortion (Xu and Brownjohn, 2018). Other approaches include implementing an 360 

algorithm during the post processing of the photographs to remove the distortion (Ellenberg et 361 

al. 2015; Park et al. 2012).  362 

Data volume and Analysis 363 

As with much civil infrastructure monitoring the volume of data collected is a challenge and 364 

UAV based measurement platforms are no exception (e.g., Ham et al. 2016; Frederiksen et al. 365 

2019). Targeted monitoring with a clear purpose and a realistic understanding of what 366 

monitoring can deliver is needed to avoid ‘data overload’. This can lead to much data going 367 

unprocessed and unanalysed (monitoring for the sake of monitoring). The developing trends 368 

related to the use of Artificial Intelligence (AI) applications in the civil engineering space (e.g., 369 
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Lu et al. 2012; Spencer et al. 2019) requires data to train such systems. Recent developments 370 

in deep learning algorithms such as SHMnet (Zhang et al. 2019) and the convolutional neural 371 

network (CNN) method (Cha et al. 2017) used Kang and Cha (2018b) for use in SHM may in 372 

the future mean that the challenge of data volume can be minimised. 373 

SUMMARY 374 

Aerial robotics has been the subject of considerable research for civil engineering application 375 

in recent years. To summarise: aerial robotic usage has potential in three broad areas of civil 376 

engineering: (i) Monitoring and inspection of civil infrastructure; (ii) Site management, robotic 377 

construction and maintenance; (iii) Post-disaster response surveys and rapid damage 378 

assessment. Table 4 shows the above three categories subdivided into the ‘established’ and 379 

‘emerging’ uses. When aerial platforms are used in a primarily surveillance capacity i.e. for 380 

tracking people and plant movements on construction sites, rapidly assessing extent of regional 381 

damage after disasters. 382 

 Aerial robots may improve efficiency (time and cost) of the aforementioned application 383 

categories (Table 4) as well as providing additional safety benefits for infrastructure inspectors 384 

and first responders in disaster-struck areas. However, the ethical concerns and legislation 385 

restricting their use, as well as the inability of UAVs to perform effectively in adverse weather, 386 

remain impediments to the expansion of their use in civil engineering applications. Future 387 

developments with swarm robotic systems and fully autonomous UAV systems may negate 388 

some of the need for licensed pilots. Further improvements with battery life and power systems 389 

may also lead to further uptake for complex monitoring tasks e.g., hovering at key locations 390 

near a bridge asset.  391 

Based on the results of this review aerial robots are predominantly used by civil 392 

engineers for structural monitoring and construction management and is reasonably well 393 
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established but the ability to reliably achieve ‘damage detection’ (see Webb et al. 2015) and 394 

change of condition remains a challenge, which is the case for all monitoring systems. 395 
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Table 1: Summary of past review articles related to aerial robotics 
 

Reference Identified use domains/categories Overall Review 
focus 

Adams and 
Friedland 
(2011) 

‘Data Acquisition for Post-disaster Assessments’ 
‘Data Acquisition for Rapid Response’ 
‘Data Acquisition for Management and Monitoring’ 

Disaster 
management 

Liu et al. 
(2014) 

‘Seismic risk assessment’ 
‘Transportation’ 
‘Disaster Response’ 
‘Construction management’ 
‘Surveying and mapping’ 
‘Flood monitoring and assessment’ 

General civil 
engineering 
applications 

Mohammed 
et al. (2014) 

‘Geospatial and Surveying Activities’ 
‘Civil Security Control’ 
‘Traffic and Crowd Management’ 
‘Natural Disaster Control and Monitoring’ 
‘Agriculture and Environmental Management’ 
‘Urban Security Increasing the city’s attractiveness’ 
‘Big Data Processing’ 
‘Coordination between heterogeneous systems’ 

Smart cities 

Ham et al. 
(2016) 

‘Construction and building performance monitoring’  
‘Civil infrastructure condition assessment’  

Civil Infrastructure 
Systems 

Erdelj et al. 
(2017) 

‘Monitoring, forecasting, and early warnings’ 
‘Disaster information fusion and sharing’ 
‘Situational awareness and logistics and evacuation 
support’ 
‘Standalone communication system’ 
‘SAR missions’ 
‘Damage Assessment’ 

Disaster 
Management 

Lattanzi and 
Miller 
(2017) 

‘bridge and tunnel inspection’ 
‘storage tank inspection’ 
‘postdisaster inspection and assessment’ 
‘miscellaneous applications’ 

Robotic 
Infrastructure 
Inspection 

Menour et 
al. (2017) 

‘Flying Accident Report Agent’ 
‘Flying Roadside Unit’ 
‘Flying Police Eye’ 
Intelligent Transport Systems (ITS) Applications 

Transport Systems 
for Smart Cities 

Snook 
(2018) 

‘Bridge and road surveys’ 
‘Inspecting plant at height’ 

Condition surveys of 
infrastructure and 
plant 

Zhou and 
Gheisari 
(2018) 

 ‘building inspection’  
‘damage assessment’  
‘site surveying and mapping’  
‘safety inspection’  
‘progress monitoring’  
‘others’  

Construction 

Albeanio et 
al. (2019) 

‘Structural and infrastructure inspection’ 
‘Transportation’ 
‘Cultural heritage conservation’ 

AEC1 domain 
 



 

2 
 

‘City and urban planning’ 
‘Progress monitoring’ 
‘Post-disaster assessment’ 
‘Construction safety’ 

Frederiksen 
et al. (2019) 

Inspecting: 
‘roads and railroads’ 
‘electricity supply’ 
‘heating supply’ 

Infrastructure 
Inspection 

Greenwood 
et al. (2019) 

‘Monitoring of Infrastructure System Components’ 
‘Construction Safety and Progress Monitoring’ 
‘Geological and Geotechnical Engineering’ 
‘Post-Disaster Reconnaissance’ 

Civil Infrastructure 

Shakhatreh 
et al. (2019) 

‘Search and Rescue (SAR)’ 
‘Remote Sensing’ 
‘Construction & Infrastructure Inspection’ 
‘Precision Agriculture’ 
‘Delivery of Goods’ 
‘Real-time Monitoring of Road Traffic’ 
‘Surveillance Applications of UAVs’ 
‘Providing Wireless Coverage’ 

Civil applications 
(as opposed to 
military) 

Giordan et 
al. (2020) 

‘The use of UAV on landslides’ 
‘UAV for debris flow mapping and analysis’ 
‘The use of UAV for rock mass classification and 
structural analysis’ 
‘Main applications of UAV in hydrology’ 
‘The use of UAV for glacier monitoring 
and glacial2 outburst flood risk mitigation’ 
‘The smart management of building sites in a post-
seismic scenario using UAV photogrammetry’ 
 

Engineering 
Geology 

1 AEC = Architecture, Engineering and Construction 
2 written as ‘zglacial’ in the original source 

 



 

 

Table 2: Areas for use of Aerial Robotics in civil engineering 

Application Category Key References 

Monitoring and 

inspection of civil 

infrastructure 

Coifman et al., (2006); Rathinam et al., (2008); Vaghefi et 

al., (2012); Guerrero and Bestaoui, (2013); Lattanzi and 

Miller, (2015); DeBell et al., (2015); Ellenberg et al., (2015); 

Ham et al. (2016); Omar and Nehdi, (2017); Reagan, (2017); 

Reagan et al., (2017); Teng et al., (2017); Hellmuth et al., 

(2018); Khaloo et al., (2018a, 2018b); Stewart et al., (2018); 

Duque et al., (2018); Kang and Cha (2018a, 2018b) ; 

Frederiksen et al., (2019); Tomiczek et al., (2019) ; 

Bolourian and Hammad (2020). 

 

Site management, 

robotic construction and 

maintenance 

Irizarry et al., (2012); Hunt et al., (2014); Siebert and 

Tiezer, (2014); Wen and Kang, (2014); Gheisari and 

Esmaeili, (2016); Irizarry and Costa, (2016); Kaamin et al., 

(2017); Smith (2018); Chaltiel et al., (2018); Stephanie et 

al. (2018); Han et al., (2018); Alizadehsalehi et al., (2020); 

Chermprayong et al., (2019); Peterson et al., (2019); Dams 

et al., (2020). 

Post-disaster response 

surveys and rapid 

damage assessments 

Casbeer et al., (2006); Merino et al., (2006); Wu and Zhou, 

(2006); Murphy et al., (2008); Pratt et al., (2008); Daniel et 

al., (2009); Adams and Friedland, (2011); Bernard et al., 

(2011); Ezequiel et al., (2014); Yamamoto et al., (2014); 

Erdejl et al., (2017); Recciuto and Sgorbissa, (2018). 

 

 



 

1 
 

Table 3: Summary of barriers to UAV uptake in civil engineering 

Barrier Example References 

Legislation and Regulations Herrmann (2016); Luppicini and So (2016) 

Weather conditions DeBell et al. (2015) ; Ellenberg et al. (2015); 

Pratt et al. (2008) 

Flight endurance issues such as: limited 

battery life; payload or lack of GPS signal 

during operation 

Gheisari and Esmaeili, (2016); Siebert and 

Teizer (2014); Kang and Cha (2018b); 

Frederiksen et al. (2019); Bolourian and 

Hammad (2020) 

Limits on service altitude Adams and Friedland (2011); Omar and 

Nehdi (2017) 

Lens distortion Park et al. (2012); Lattazi and Miller (2015) 

Large volumes of data to process and analyse Ham et al. (2016); Frederiksen et al. (2019) 
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Table 4: Categorisation of aerial robotic application areas in civil engineering 

Category 
Number 

Application 
Category 

Application Sub-
Categories 

Comments on current and future 
uptake  

I Monitoring and 
inspection of civil 

infrastructure 

IA Inspection of 
civil infrastructure 

Emerging – Aerial robots can take 
photographs of structures to assist 
with developing digital models. It 
is unclear if a detailed visual 
inspection of an infrastructure asset 
(e.g. a bridge) could be carried out 
only with robotic technology. 
Ideally the robotic technology 
should be able to fly or access all 
parts of the asset. 

IB Monitoring of 
civil infrastructure 

Emerging – In many cases ‘damage 
detection’ the aim of the study. 
Webb et al. (2015) explains that 
‘damage detection’ is arguably the 
most useful category of Structural 
Health Monitoring but remains the 
most challenging to successfully 
achieve in practice. Detection of 
the rate of change is difficult with 
current visual inspection regimes 
(Bennetts et al. 2020). 

II Site management 
and robotic 

construction and 
maintenance 

IIA Site 
Management 

Established – tracking people and 
plant movements now possible 

IIB Robotic 
construction and 

maintenance 

Emerging – applications still 
limited by payload and flight 
endurance. 

III Post-disaster 
response surveys 
and rapid damage 

assessments 

IIIA Post-disaster 
surveys 

Established – ability to safely 
assess extent of regional damage 
now possible assuming favourable 
weather conditions and ability to 
launch UAV systems sufficiently 
close to disaster hit areas 

IIIB Post-disaster 
rapid damage 
assessment 

Emerging – detecting damage will 
generally be from images captured 
by the UAV system. The ability for 
the UAV to access sufficient parts 
of the damaged asset and sample a 
sufficient quantity of damaged 
assets is crucial as to the success of 
such mission. These efforts could 
be hampered (as for Category 3A) 
by weather and endurance. 
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