The University of Southampton
University of Southampton Institutional Repository

Images and videos of analogue centrifuge models exploring marginal flexure during rifting in Afar, East Africa

Images and videos of analogue centrifuge models exploring marginal flexure during rifting in Afar, East Africa
Images and videos of analogue centrifuge models exploring marginal flexure during rifting in Afar, East Africa
This data set includes images and videos depicting the evolution of deformation and topography of 17 analogue experiments c passive margin development, to better understand the ongoing tectonics along the western margin of Afar, East Africa. The tectonic background that forms the basis for the experimental design is found in Zwaan et al. 2019 and 2020a-b, and references therein. The experiments, in an enhanced gravity field in a large-capacity centrifuge, examined the influence of brittle layer thickness, strength contrast, syn-rift sedimentation and oblique extension on a brittle-viscous system with a strong and weak viscous domain. All experiments were performed at the Tectonic Modelling Laboratory of of the Istituto di Geoscience e Georisorse - Consiglio Nazionale delle Ricerche (CNR-IGG) and of the Earth Sciences Department of the University of Florence (CNR/UF). The brittle layer (sand) thickness ranged between 6 and 20 mm, the underlying viscous layer, split in a competent and weak domain (both viscous mixtures), was always 10 mm thick. Asymmetric extension was applied by removing a 1.5 mm thick spacer at the side of the model at every time step, allowing the analogue materials to spread when enhanced gravity was applied during a centrifuge run. Differential stretching of the viscous material creates flexure and faulting in the overlying brittle layer. Total extension amounted to 10.5 mm over 7 intervals for Series 1 models that aimed at understanding generic passive margin development in a generic orthogonal extension setting, whereas up to 16.5 mm of extension was applied for the additional Series 2 models aiming at reproducing the tectonic phases in Afar. In models involving sedimentation, sand was filled in at time steps 2, 4 and 6 (i.e. after 3, 6 and 9 mm of extension). Detailed descriptions of the experiments, monitoring techniques and tectonic interpretation of the model results are presented in Zwaan et al. (2020c) to which these data are supplementary.
GFZ Data Services
Zwaan, Frank
25329ca2-014b-4cb9-9ef3-3b8a4259c675
Corti, Giacomo
dce88b12-5b7a-43b1-8a58-5bd1bc13634c
Keir, Derek
5616f81f-bf1b-4678-a167-3160b5647c65
Sani, Federico
6c59b4c4-ecca-4ecc-ba2c-66efa5e5e3df
Zwaan, Frank
25329ca2-014b-4cb9-9ef3-3b8a4259c675
Corti, Giacomo
dce88b12-5b7a-43b1-8a58-5bd1bc13634c
Keir, Derek
5616f81f-bf1b-4678-a167-3160b5647c65
Sani, Federico
6c59b4c4-ecca-4ecc-ba2c-66efa5e5e3df

(2020) Images and videos of analogue centrifuge models exploring marginal flexure during rifting in Afar, East Africa. GFZ Data Services doi:10.5880/fidgeo.2020.020 [Dataset]

Record type: Dataset

Abstract

This data set includes images and videos depicting the evolution of deformation and topography of 17 analogue experiments c passive margin development, to better understand the ongoing tectonics along the western margin of Afar, East Africa. The tectonic background that forms the basis for the experimental design is found in Zwaan et al. 2019 and 2020a-b, and references therein. The experiments, in an enhanced gravity field in a large-capacity centrifuge, examined the influence of brittle layer thickness, strength contrast, syn-rift sedimentation and oblique extension on a brittle-viscous system with a strong and weak viscous domain. All experiments were performed at the Tectonic Modelling Laboratory of of the Istituto di Geoscience e Georisorse - Consiglio Nazionale delle Ricerche (CNR-IGG) and of the Earth Sciences Department of the University of Florence (CNR/UF). The brittle layer (sand) thickness ranged between 6 and 20 mm, the underlying viscous layer, split in a competent and weak domain (both viscous mixtures), was always 10 mm thick. Asymmetric extension was applied by removing a 1.5 mm thick spacer at the side of the model at every time step, allowing the analogue materials to spread when enhanced gravity was applied during a centrifuge run. Differential stretching of the viscous material creates flexure and faulting in the overlying brittle layer. Total extension amounted to 10.5 mm over 7 intervals for Series 1 models that aimed at understanding generic passive margin development in a generic orthogonal extension setting, whereas up to 16.5 mm of extension was applied for the additional Series 2 models aiming at reproducing the tectonic phases in Afar. In models involving sedimentation, sand was filled in at time steps 2, 4 and 6 (i.e. after 3, 6 and 9 mm of extension). Detailed descriptions of the experiments, monitoring techniques and tectonic interpretation of the model results are presented in Zwaan et al. (2020c) to which these data are supplementary.

This record has no associated files available for download.

More information

Published date: 1 January 2020

Identifiers

Local EPrints ID: 446324
URI: http://eprints.soton.ac.uk/id/eprint/446324
PURE UUID: 2e1a75c3-f42d-4758-a067-730d204648c4
ORCID for Derek Keir: ORCID iD orcid.org/0000-0001-8787-8446

Catalogue record

Date deposited: 04 Feb 2021 17:30
Last modified: 06 May 2023 01:46

Export record

Altmetrics

Contributors

Contributor: Frank Zwaan
Contributor: Giacomo Corti
Contributor: Derek Keir ORCID iD
Contributor: Federico Sani

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×