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Abstract— This paper enhances the Discrete Singular Convolution (DSC) method for free vibration 

analysis of non-uniform thin beams with variability in their geometrical and material properties such 

as thickness, specific volume (inverse of density) and Young’s modulus. The DSC method solves the 

differential equation of motion of a structure with a high accuracy using a small number of 

discretization points. The method utilizes Polynomial Chaos Expansion (PCE) to express these 

variabilities simulating uncertainty in a closed form. Non-uniformity is locally provided by changing 

the cross-section and Young’s modulus of the beam along its length. In this context, firstly, natural 

frequencies of deterministic uniform and non-uniform beams are predicted via the DSC. These results 

are compared with finite element calculations and analytical solutions (if avaliable) for the purpose of 

verification. Next, the uncertainty of the beam due to geometrical and material variabilities is 

modelled in a global manner by PCE to predict probability distributed functions of the natural 

frequencies. Monte Carlo simulations are then performed for validation purpose. Results show that the 

proposed algorithm of the DSC with PCE is very accurate and also efficient, regarding computation 

cost, in handling non-uniform beams having material and geometrical variabilities. Therefore it 

promises that it can be reliably applied to more complex structures having uncertain parameters.

Keywords— Non-uniform beam, discrete singular convolution, uncertainty, Polynomial Chaos 

Expansion

Page 2 of 41

http://mc.manuscriptcentral.com/jvc

Journal of Vibration and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1. Introduction

In engineering, structures generally have different geometrical shapes and sometimes they 

are non-uniform along the structure for engineering reasons. Non-uniformity is generally 

provided to reinforce the regions with different stress distributions, especially for beams 

which are one of the most commonly used engineering structures. It is generally 

accomplished by changing either the mechanical or geometrical properties in a local manner 

along the structure. These types of structures are called as Functionally Graded Materials 

(FGMs) in literature (Akgöz and Civalek, 2013; Alshorbagy et al., 2011; Sankar, 2001). 

However, the same structures or components manufactured by the same mass production line 

may exhibit different dynamic characteristics for an unpredicted reason. These variabilities 

are generally labelled as uncertainty. Uncertainty and variability are unavoidable, due to 

various reasons such as material heterogeneity, production tolerances, manufacturing defects, 

environmental factors, etc. A good example for variability is a work of Kompella and 

Bernhard (1993). Structure-borne sound at the driver position in 57 samples of Isuzu pick-up 

trucks, were produced in the same production line, clearly showed variability. Many 

experiments and practical cases in industry showed that for a realistic design, uncertainty 

needs to be taken into account starting in the product design stage. Besides, it is also observed 

that higher frequencies are much more sensitive to these variabilities. This requirement leads 

to the development of some simulation methods for quantifying these variabilities. Methods 

used in uncertainty analysis may be categorized as probabilistic and non-probabilistic 

methods. Non-probabilistic methods are used in cases where the statistical properties of 

uncertain parameters are not known, but the limits of them are known. In such methods, only 

the limits of the uncertain response variable are obtained. When statistics of uncertain 

parameters are known or properly assumed, probabilistic methods such as Monte Carlo 

simulation (Evans and Swartz, 2000; Rubinstein and Kroese, 2016), first and second order 
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reliability methods (Hohenbichler and Rackwitz, 1989; Keane and Price, 1997), numerical 

integration based methods (Evans, 1972; Rahman and Xu, 2004; Seo and Kwak, 2002) and 

spectral methods (Ghanem and Spanos, 2003; Lucor et al., 2004; Sepahvand, 2017; 

Sepahvand et al., 2007, 2010) can be appropriate methodologies to be selected. Among them, 

Monte Carlo simulations are the most widely used technique. However, it requires significant 

numerous experiments/simulation sets in order to determine response statistics, which makes 

it inefficient. Recently, spectral methods like Karhunen-Loeve (KL) (Ghanem and Spanos, 

2003) or Polynomial Chaos Expansion (PCE) (Lucor et al., 2004; Sepahvand, 2017; 

Sepahvand et al., 2007, 2010), are preferable amongst the researchers since the variability is 

defined in a set of closed form equations. 

Beams are one of the most basic and thus most attracted structural element in the research 

studies for the test and validation purpose of newly developed methods (Bailey, 1978; 

Elishakoff and Johnson, 2005; Korayem et al., 2012; Korayem and Homayooni, 2017; Wei, 

2001b, 2001c; Wei et al., 2002a). For example, Bailey (1978) developed a direct analytical 

solution, Elishakoff and Johnson (2005) introduced a closed form solution procedure and all 

of them tested their techniques on non-uniform beams. Tan et. al. (2016, 2018) demonstrated 

approaches for the free vibrations of cracked and non-cracked non-uniform beams. 

Nazemizadeh and Bakhtiari-Nejad (2015) investigated the quality factor of composite 

micro/nano beams employing the nonlocal Euler-Bernoulli beam theory. Similarly, Wei 

(2001b, 2001c; 2002a) also tested his numerical approach, Discrete Singular Convolution 

(DSC), on uniform bars and beams in his early studies. 

The DSC method (Wei, 1999) promises great potential especially in handling high 

frequency structural dynamic problems. Because it has inherent global method accuracy and 

local method flexibility together with requiring a small number of discretization points to 

define the geometrical domain. The method is based on the theory of distributions and 
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wavelets. The DSC method solves the governing differential equation of motion of a structure 

with a high accuracy using a small number of discretization points. Wei and his co-workers 

applied the DSC method to several different vibration problems (Wei, 2001a, 2001b, 2001c; 

Wei et al., 2001, 2002a, 2002b; Zhao et al., 2005). Seçgin and Sarıgül (2008) adapted the 

DSC method to analyse vibration problems of laminated composite plates. Similarly, Civalek 

et. al. (Baltacıoğlu et al., 2010, 2011; Civalek, 2007, 2013; Gürses et al., 2009) have made 

great contribution to the development of the DSC, especially for the analysis of laminated 

plates and nano-structures (Civalek, 2017; Gürses et al., 2012; Mercan and Civalek, 2016). 

Beside that, Shokrollahi et. at. (2014) investigated the natural frequencies of non-uniform bars 

having different combinations of cross-sections via the DSC. Civalek et. al. (2008a, 2008b, 

2009; Ersoy et al., 2009, 2010) applied the DSC to more complex non-uniform structures, i.e., 

shell and membranes. Seçgin (2013; 2012; 2018) also combined the DSC with some 

uncertainty analysis methods. He performed Monte Carlo simulation by using the DSC for a 

thin isotropic plate and laminated composite plates in Refs. (Seçgin, 2013; Seçgin et al., 

2012), respectively, in order to estimate the statistical bounds of vibration via an extreme 

value model. In another study, Seçgin and Kara (2018) developed a closed form solution 

methodology for the analysis of uncertain thin beams. In that study, they showed that the DSC 

presents a unique advantage since the characteristic matrix obtained via the DSC is 

independent from physical and mechanical properties of the considered structure. Besides, the 

DSC method is very efficient for the higher frequencies where the uncertainty dominates, 

since the method uses a relatively small number of discretization points.

As far as to the authors’ knowledge, there are limited number of studies on uncertain and 

non-uniform structures in literature (2004; 2003). Impollonia and his/her colleagues (2004; 

2003) analysed static response of uncertain tapered cantilever beams via a novel response 

surface approach. Besides, there is no attempt yet to show the performance of the combined 
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DSC and PCE for both uncertain and non-uniform structures. Therefore, this study performs 

such an attempt to test the methodology and applies the DSC method for more sophisticated 

structures. 

In this study, the Discrete Singular Convolution (DSC) and Polynomial Chaos Expansion 

PCE are combined in order to analyse uncertain non-uniform beams. Non-uniformity is 

locally provided by a changing cross-section and Young’s modulus of the beam along its 

length. However, the uncertainty is globally simulated by providing normally distributed 

variabilities in geometrical and material properties such as thickness, specific volume and 

Young’s modulus. Here, the non-uniform beam is modelled via the DSC whereas uncertainty 

is defined by PCE in a closed form. In this context, the implementation procedure of the DSC 

and PCE is given in detail. Numerical analyses start with the prediction of the natural 

frequencies of deterministic uniform and non-uniform beams via the DSC. The results are 

verified by finite element calculations and analytical solutions (if possible). Then, the 

uncertainty of the beam due to geometrical and material variabilities is considered, and 

probability distribution functions of natural frequencies are determined by the DSC-PCE 

combination. Monte Carlo simulations are then performed for validation purpose. It is shown 

that the DSC-PCE combination is very accurate as well as being efficient regarding 

computation cost.

2. Mathematical Considerations

2.1. Stochastic partial differential equation of non-uniform thin beams

The homogeneous differential equation of motion for bending vibrations of an undamped 

thin beam (shown in Fig. 1) with variable thickness and Young’s modulus along space is 

expressed as follows (Rao, 2011): 
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Figure 1. A beam structure with its geometrical parameters 

Here, x is the space variable,  is uniform mass density, w is the bending displacement in the 

z direction, E(x), ,  and  are the space dependent Young’s modulus,  h x  A x  yI x

thickness, cross-sectional area and area moment of inertia about the y axis, respectively. 

Assume that the beam has constant width b, the thickness and Young’s modulus have the 

form of  and  where  and E are the thickness and Young’s    0 hh x h f x    EE x Ef x 0h

modulus at x=0,  and  represent the space dependency of thickness and the  hf x  Ef x

Young’s modulus, respectively. In this context, the separable solution of Eq. (1) can be 

rewritten for harmonic free vibration response  with stochastic    , , , exp( j )nw x t W x t  

parameters  (W is time independent stochastic vibration amplitude,  is the  1 2 3, ,     n

natural frequency, , ,  are the uncertain parameters affecting Young’s modulus, 1 2 3

thickness and density, respectively and ) as follows,j 1 

(2)
                  

                   

4 1 1 32 2 2
1 0 2 3

22 1 1 1 2 22

1 , , 2 3 ,
12

6 6 3 , , 0.

E h E h E h h

E h E h h E h E h h n

E h r x f f W x f f f f f W x

f f f f f f f f f f W x W x

      

        
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Here  is defined as the specific volume. The superscripts in parenthesis    3 3, 1 ,r x x  

shows the order of differentiation with respect to space x, and  is the eigenvalue of the 2
n n 

structure.

2.2. Discrete Singular Convolution 

In the DSC algorithm, the computational domain of a 1D system is generally divided into 

three different parts; structural, left and right ghost (auxiliary) domains as shown in Fig. 2. In 

the computational domain, a function  and its nth order derivative can be approximated ( )f x

via a discretized singular kernels of delta type (Wei, 2001c):

 ,       (3)       
M

n n
i k i k

k M
f x C f x 



  0,1,2,...,i M

Figure 2. DSC discretization domain for 1-D structures (a) a 1D structure with length L, 

b) Computational domain for the structure (Seçgin and Sarigül, 2008)

Here, i represents the index of discretization points in the structural domain and M stands for 

the number of ghost points. The function  is determined at uniformly distributed ( )f x

discretization points. The term  is the DSC kernel and can be expressed for regularized  n
kC

Shannon delta kernel as (Wei, 2001c):

, (4)    
    2 2sin

exp 2
i

n
kn

k k
k x x

x xdC x x
dx x x







           
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where  is Nyquist frequency, ,  represents the distance between the    r   

discretization points and r is regularization coefficient which can be selected by trial and error 

to confirm accuracy, and superscript n stands for the order of the derivative. One can follow 

the following steps in order to model a beam structure via the DSC: 

1. The beam is discretized by using M+1 number of structural and M number of ghost 

points as shown in Fig. 2.

2. Eq. (3) is written for each structural point.

3. Kernel coefficients  are computed from Eq. (4) n
kC

4. Proper boundary condition implementation procedure is performed to get rid of the 

displacement in the ghost domains. Note that, this procedure is given in detail in Ref. 

(Kara and Seçgin, 2019; Seçgin and Sarigül, 2008, 2009) for clamped, simply 

supported and free boundary conditions. 

5. Next, Eq. (3) can be written in a matrix form as an eigenvalue problem,

 .     (5)              2
1 2 3 , 0nE h r         D X I W X

Here,  is the dynamic stiffness matrix,  represents the vector for    D X  0 1, ,..., T
MX X XX

the discretized structural points and  is the corresponding bending  0 1, ,..., T
MW W WW

displacement vector for the structural points. It should be noted that, the dynamic stiffness 

matrix is independent from the amplitude of physical and mechanical properties (E, h0 and r). 

Thus, in the DSC, once the matrix is calculated, one may then calculate the dynamic response 

and/or eigenvalues for different materials and thicknesses. To show the content of the 

dynamic stiffness matrix, the ith row of the matrix which belongs to (i-1)th structural point is 

given here as:
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 .     (6)
               

             
1 1

1

1 1 32 2
1 ( 1)

22 1 1 1 2 22

1 1 3
12 6

1 6 6 3
12

i i

i

E h E h E h hM x X x X

E h E h h E h E h h
x X

f f f f f f f

f f f f f f f f f f

 



   



  

     
 

4D X D D

D

Here,  is the ith row of the characteristic DSC matrix of differentiation order of n. Note   nD

that, space dependent functions and their derivatives are calculated at x=Xi-1. 

 

2.3. Polynomial Chaos Expansion (PCE) 

In Polynomial Chaos Expansion (PCE), any uncertain variable Y can be expressed as the sum 

of orthogonal polynomials (Ghanem and Spanos, 2003):

(7)
       

 

1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 1 2 1 2 3

0 0 1 2 3
1 1 1 1 1 1

0

, , , ...
i i i

i i i i i i i i i i i i
i i i i i i

i i
i

Y y y y y

y

         



  

     





    



  



ξ

ξ

Here,  is the vector containing stochastic parameters, yi is deterministic  1 2, ,...,
ni

  ξ

coefficients of orthogonal polynomial basis of . Since polynomial terms are orthogonal  .i

to each other;

 . (8)2

0, for  

, for  i j
i

i j

i j
 



   

Here,  represents the mean value. In numerical calculations, it is meaningful to cease 

infinite series the sum of the polynomial in Eq. (7) by a finite value of terms NPC (Sepahvand 

et al., 2010):

 . (9)
 ! 1

! !PC

m p
N

m p


 

Here, p shows the order of polynomial, m shows number of uncertain parameter ( ) to define i

uncertain variable (Y). In PCE, unknown deterministic coefficients of the polynomials can be 
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determined by using a Galerkin projection which may be described as calculating the average 

of the considered equation and basis polynomial function multiplication (Sepahvand et al., 

2010): 

. (10)     
1

1 12

1 ... , ...
m

i k m m
i

y Y d d    
  

   ξ

Note that,  is the probability function of the random space ( ) of uncertain    d d     

parameter ( ) and k is an integer starting from zero. Several types of polynomial basis 

functions ( ) such as Laguerre polynomial, Jacobi polynomial, Legendre polynomial, etc. i

can be used in PCE, but Hermite polynomials are the most suitable one for the normal 

distribution (Ghanem and Spanos, 2003): 

. (11)   
1 2

1 11 exp exp
2 ... 2

n

i
i T T

i
i i i

H
  

             
ξ ξ ξ ξ ξ

In PCE, using a first order polynomial is sufficient for representation of a normal distribution 

with Hermite polynomials with a single uncertain parameter, so PCE then reduces to 

Karhunen-Love (KL) expansion ( ).1PCN 

 

In this study, stochastic parameters given in Section 2.1 can be redefined as 

. It is assumed that all uncertain variables depend on a single uncertain  ,1 ,2 ,, ,...,i i i i n   

variable ( ) with a normal distribution. Therefore uncertain variables can be ,1i i i   

rewritten as follows:

, (12)   
1

1 1 0 1 1
0

i i
i

E E H E E


     

, (13)   
1

2 2 2 2
2 2 0 1 2

0
j j

j
h h H h h 



   
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 . (14)   
1

3 3 0 1 3
0

k k
k

r r H r r 


   

Note that, ,  and  are the mean values of the Young’s modulus and thickness at x=0, 0E 0h 0r

and specific volume, respectively. ,  and  are the standard deviations of those 1E 1h 1r

uncertain parameters. Eqs. (12)-(14) can be written in the vector form as: 

 , (15)   1 0 1
1

1
E E E


 

   
 

, (16)   2 2 2
2 0 1

2

1
h h h


 

   
 

 . (17)   1 0 1
3

1
r r r


 

   
 

Polynomial basis terms of the corresponding eigenvalues are written by using the tensor 

product of Eqs. (15)-(17); 

 . (18) 1 2 3
31 2

11 1
, ,k   

 
    

       
     

Here,  denotes the tensor product. Since the dimension of the vector  is ,   1 2 3, ,k    8 1

the uncertain eigenvalues are described by the summation starting from 0 to  as 7N 

follows,   

                     .        (19)
 , 1 2 3

0

,0 ,1 1 ,3 2 ,4 3 ,4 1 2 ,5 1 3 ,6 2 3 ,7 1 2 3

, ,
N

n n k k
k

n n n n n n n n



     

                   




       



Substituting Eqs. (12)-(14) and Eq. (19) into Eq. (5) leads to:

 . (20)          2 2
0 1 1 0 1 2 0 1 3 1 2 3, , , 0nE E h h r r             D X I W X
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Multiplying Eq. (20) with the uth term of the orthogonal basis of  and applying the k

Galerkin projection yields the final form of DSC-PCE based eigenvalue equation of a non-

uniform and uncertain thin beam:

 (21)
       

 
  

2 2
0 1 1 0 1 2 0 1 3 1 2 3

2
, 1 2 3

, ,
, 0

, ,
u

n u u

E E h h r r      

    

   
   
  

D X
W X

I

One can now calculate  by changing u starting from zero up to  in Eq. (21) by using ,n u N

any eigenvalue solver. 

3. Numerical studies

In this section, free vibration analyses of a non-uniform and uncertain thin beam with simply-

supported boundary conditions are performed. Material and geometrical properties of the 

beam are given in Table 1. The study starts with a deterministic analysis for uniform and non-

uniform beams. Then, stochastic analyses are performed for the non-uniform beam with 

variable material and geometrical properties by using the PCE based DSC method. Both 

studies include a verification and convergence investigation. Numerical analyses are 

performed by a computer with Intel Core i5-3230M 4x2.6 GHz, 8 GB Ram, 64 Bit Win 10.

 

Table 1. Material and geometrical properties of the beam

Property (Unit) Value
Young’ modulus (Pa) 3.25E+10
Density (kgm-3) 2500
Thickness at x=0 (m) 0.25
Width (m) 0.3
Length (m) 15
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3.1. Deterministic analysis 

Here, firstly a uniform beam is considered. The first ten natural frequencies are obtained via 

the DSC method for different numbers of structural points and via the finite element method 

(FEM) for different numbers of one dimensional beam elements. The results are compared 

with analytical solutions in Table 2 and an optimum number of structural points for the DSC 

and number of elements for FEM are determined for further analyses. In this regard, relative 

differences of the DSC and FEM from analytical solutions are also presented in the table. The 

thickness is selected as 0.25 m in these calculations. Note that the maximum number of the 

DSC points and finite elements are decided here to achieve the same analytical results in a 3-

digit-floating accuracy. 

Table 2. Natural frequencies of the simply supported uniform beam (rad/s)

Analy. DSC DSC DSC FEM FEM FEM FEMMode 
Seq. (Rao, 2011) N=11 N=21 N=31 N=20 N=60 N=120 N=230

1 11.414 11.411 11.414 11.414 11.414 11.414 11.414 11.414
2 45.656 45.667 45.656 45.656 45.656 45.656 45.656 45.656
3 102.726 102.828 102.726 102.726 102.730 102.726 102.726 102.726
4 182.624 183.501 182.624 182.624 182.644 182.624 182.624 182.624
5 285.350 290.841 285.350 285.350 285.424 285.351 285.350 285.350
6 410.904 434.686 410.904 410.904 411.124 410.907 410.905 410.904
7 559.287 627.888 559.287 559.287 559.835 559.294 559.287 559.287
8 730.497 858.099 730.497 730.497 731.707 730.512 730.498 730.497
9 924.535 1059.665 924.538 924.535 926.960 924.566 924.537 924.535
10 1141.401  1141.427 1141.401 1145.906 1141.460 1141.405 1141.401

 Error %
1 - -2.78E-02 -3.55E-05 -4.39E-07 4.22E-05 4.92E-07 2.80E-06 8.27E-06
2 - 2.35E-02 2.16E-06 2.71E-08 6.75E-04 8.35E-06 5.94E-07 1.01E-06
3 - 9.94E-02 -4.05E-07 -5.27E-09 3.40E-03 4.22E-05 2.70E-06 5.67E-07
4 - 4.80E-01 1.20E-07 1.62E-09 1.07E-02 1.33E-04 8.36E-06 8.20E-07
5 - 1.92E+00 -2.74E-08 -6.42E-10 2.60E-02 3.26E-04 2.04E-05 1.61E-06
6 - 5.79E+00 2.57E-07 2.98E-10 5.34E-02 6.75E-04 4.22E-05 3.14E-06
7 - 1.23E+01 3.01E-06 -1.51E-10 9.81E-02 1.25E-03 7.83E-05 5.82E-06
8 - 1.75E+01 3.26E-05 8.31E-11 1.66E-01 2.13E-03 1.33E-04 9.90E-06
9 - 1.46E+01 2.97E-04 -4.72E-11 2.62E-01 3.40E-03 2.14E-04 1.59E-05
10 -  2.24E-03 2.80E-11 3.95E-01 5.18E-03 3.26E-04 2.42E-05
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It is seen from Table 2 that the DSC accurately predicts the same analytical results, while 

FEM achieves the same accuracy with 230 elements. For this discretization points and 

number of elements, maximum relative differences are -4.39E-07 and 2.42E-05 for the DSC 

and FEM, respectively. Therefore, M+1=31 for the DSC and N=230 for the FEM are selected 

in the further analyses. 

Next, analysis of a non-uniform beam (the beam with variable geometry and material 

properties along its length) is performed. Again ten natural frequencies were determined for i) 

the beam with non-uniform thickness, ii) the beam with non-uniform Young’s modulus and 

iii) the beam with non-uniform thickness and Young’s modulus. In the analyses, two different 

forms of the spatial variations are assumed for the thickness i.e,  and    2
0 0 1hh f x h x 

 (non-uniformity parameter of thickness constant  is selected as    0 0 1hh f x h x  

) and for Young’s modulus i.e,  0.0109       1 0.02cos 2 0.01sin 4EEf x E x l x l   

and . Spatial variations of non-uniformities are plotted in Fig. 3 and    21 0.02EEf x E x l 

the natural frequency computations are tabulated in Table 3 together with the relative 

difference %. 
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Figure 3. The spatial variations of non-homogeneities a) thickness, b) Young modulus
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Table 3. Natural frequencies of the simply supported non-uniform beam (rad/s)

Form of 
thickness 

and 
Young’s 
modulus

   2
0 1h x h x 

 E x E

  0h x h

  
 

 
1 0.02cos 2

0.01sin 4

x l
E x E

x l





 
    

   2
0 1h x h x 

 
 

 
1 0.02cos 2

0.01sin 4

x l
E x E

x l





 
    

   0 1h x h x 

 
 

 
1 0.02cos 2

0.01sin 4

x l
E x E

x l





 
    

   2
0 1h x h x 

   21 0.02E x E x l 

   0 1h x h x 

   21 0.02E x E x l 

DSC FEM DSC FEM DSC FEMMode 
Seq. M+1=31 N=230

Rel. 
Diff. 
% M+1=31 N=230

Rel. 
Diff. 
% M+1=31 N=230

Rel. 
Diff. 
%

DSC
M+1=31

FEM
N=230

Rel. 
Diff. 
%

DSC
M+1=31

FEM
N=230

Rel. 
Diff. 
%

DSC
M+1=31

FEM
N=230

Rel. 
Diff. 
%

1 9.573 9.535 0.399 10.861 11.356 -4.354 9.143 9.489 -3.642 10.024 10.402 -3.633 9.458 9.433 0.262 10.399 10.346 0.516
2 38.669 38.353 0.823 45.631 45.652 -0.047 38.444 38.320 0.323 41.867 41.844 0.055 38.285 37.959 0.859 41.581 41.438 0.345
3 86.644 86.254 0.453 102.727 102.719 0.008 86.774 86.259 0.597 94.406 94.175 0.245 85.774 85.367 0.477 93.386 93.219 0.179
4 153.716 153.292 0.277 182.618 182.611 0.004 153.786 153.283 0.328 167.607 167.395 0.126 152.158 151.713 0.293 165.883 165.705 0.107
5 239.916 239.474 0.184 285.337 285.329 0.003 239.960 239.453 0.212 261.745 261.536 0.080 237.470 237.007 0.195 259.082 258.899 0.070
6 345.253 344.805 0.130 410.883 410.873 0.002 345.277 344.768 0.148 376.803 376.596 0.055 341.722 341.250 0.138 372.986 372.802 0.049
7 469.733 469.283 0.096 559.254 559.244 0.002 469.736 469.230 0.108 512.780 512.576 0.040 464.917 464.444 0.102 507.597 507.413 0.036
8 613.357 612.911 0.073 730.452 730.441 0.001 613.339 612.838 0.082 669.677 669.476 0.030 607.059 606.589 0.077 662.915 662.734 0.027
9 776.127 775.688 0.057 924.475 924.464 0.001 776.085 775.593 0.063 847.492 847.296 0.023 768.149 767.686 0.060 838.941 838.763 0.021
10 958.043 957.614 0.045 1141.325 1141.313 0.001 957.977 957.496 0.050 1046.226 1046.035 0.018 948.187 947.735 0.048 1035.674 1035.502 0.017
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As inferred from Table 3, for different non-uniform structures, the DSC and FEM results are 

not exactly the same but are very consistent with each other. Average computational time is 

2.87 s and 0.36 s for FEM and the DSC, respectively. Besides, the consistency of the methods 

reduces for the more complex forms of Young’s modulus and thickness. Considering both the 

relative difference and the computational time, the DSC even with a very small number of 

discretization points may represent non-uniform structures well and thus reliably used in 

further complex structures.

3.2. Stochastic analysis

In this part of the study, the effects of the geometrical and material variabilities on the natural 

frequencies are investigated using the DSC and PC expansion (DSC-PCE). In this manner, the 

beam thickness, Young’s Modulus and specific volume vary globally with a normal 

distribution, i.e. they are uncertain variables but their distributions are known. In the analyses, 

the standard deviations of the uncertain variables are 5% of their mean values given in Table 

1. Seven uncertainty cases are considered for the uniform and non-uniform beams as shown in 

Table 4. The analysis starts by solving Eq. (21) eight times for the determination of each 

coefficient given in Eq. (19). Then, the distribution functions of the natural frequencies are 

determined using these coefficients with 10000 samples noting that . In Fig. 4, n n 

probability distribution functions of the non-dimensional natural frequency ratio, 

), are compared with those obtained by Monte Carlo (MC) simulations   E uniform
i i i  

performed on the DSC models. Here  denotes the mean value of the ith mode. Since  E i

each of the probability distribution functions of the non-dimensional natural frequency ratio is 

the same for all i=1,2, …10, the probability distribution functions are represented here by a 

single figure. Note that, 10000 samples of uncertain variables are also used in MC 

simulations.
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Table 4. Uncertainty cases

Non-
uniformity

Form of the thickness, 
  h x

Form of Young’s 
modulus,  E x

Uncertain 
parameters: ,  1E 

,  2h   3r 

Uniform 0h E Case 1

 2
0 1h x E Case 2

0h
 

 
1 0.02cos 2

0.01sin 4

x l
E

x l





 
   

Case 3

 2
0 1h x

 
 

1 0.02cos 2

0.01sin 4

x l
E

x l





 
   

Case 4

 0 1h x
 

 
1 0.02cos 2

0.01sin 4

x l
E

x l





 
   

Case 5

 2
0 1h x  21 0.02E x l Case 6

Non-uniform

 0 1h x  21 0.02E x l Case 7
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Figure 4. Probability distribution functions of non-dimensional natural frequency ratios 

for uncertain a) Case 1, b) Case 2, c) Case 3, d) Case 4, e) Case 5, f) Case 6, g) Case 7 

(solid line: PCE, dash line: Monte Carlo)

Page 20 of 41

http://mc.manuscriptcentral.com/jvc

Journal of Vibration and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

It is seen from Fig. 4 that the predictions of the DSC-PCE are quite consistent with those of 

MC simulations for all cases. Besides, average computation time for the DSC-PCE is 3.72 s 

whereas it is 8.52 for Monte Carlo simulation. The results show that DSC-PCE method is 

very accurate and efficient and therefore can be reliably used for uncertainty analysis of non-

uniform structures.

4. Conclusions

In this study, a combination of Discrete Singular Convolution (DSC) and Polynomial 

Chaos Expansion (PCE) is introduced for non-uniform beams having geometrical and 

material variabilities. The DSC method is applied to model the non-uniform beam having 

local changes in the Young’s Modulus and thickness along its length. The PCE is utilized to 

handle variabilities simulating uncertainty in a global manner. The DSC-PCE method is 

verified for uniform and non-uniform beams using the finite element method and Monte Carlo 

simulations. It is shown that the DSC method is very straightforward in modelling non-

uniformity along the spatial domain, and it is very accurate even with a relatively small 

number of discretization points compared to the finite element method. It is also shown that 

the combined DSC-PCE methodology is very efficient in computational cost and it quantifies 

quite well the uncertainty due to the geometrical and material parameters. The study promises 

that the present methodology is worth further development in order to apply it to more 

complex systems, especially for mid and high frequency analysis. 
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Table 1. Material and geometrical properties of the beam

Property (Unit) Value
Young’ modulus (Pa) 3.25E+10
Density (kgm-3) 2500
Thickness at x=0 (m) 0.25
Width (m) 0.3
Length (m) 15
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Table 2. Natural frequencies of the simply supported uniform beam (rad/s)

Analy. DSC DSC DSC FEM FEM FEM FEMMode 
Seq. (Rao, 2011) N=11 N=21 N=31 N=20 N=60 N=120 N=230

1 11.414 11.411 11.414 11.414 11.414 11.414 11.414 11.414
2 45.656 45.667 45.656 45.656 45.656 45.656 45.656 45.656
3 102.726 102.828 102.726 102.726 102.730 102.726 102.726 102.726
4 182.624 183.501 182.624 182.624 182.644 182.624 182.624 182.624
5 285.350 290.841 285.350 285.350 285.424 285.351 285.350 285.350
6 410.904 434.686 410.904 410.904 411.124 410.907 410.905 410.904
7 559.287 627.888 559.287 559.287 559.835 559.294 559.287 559.287
8 730.497 858.099 730.497 730.497 731.707 730.512 730.498 730.497
9 924.535 1059.665 924.538 924.535 926.960 924.566 924.537 924.535
10 1141.401  1141.427 1141.401 1145.906 1141.460 1141.405 1141.401

 Error %
1 - -2.78E-02 -3.55E-05 -4.39E-07 4.22E-05 4.92E-07 2.80E-06 8.27E-06
2 - 2.35E-02 2.16E-06 2.71E-08 6.75E-04 8.35E-06 5.94E-07 1.01E-06
3 - 9.94E-02 -4.05E-07 -5.27E-09 3.40E-03 4.22E-05 2.70E-06 5.67E-07
4 - 4.80E-01 1.20E-07 1.62E-09 1.07E-02 1.33E-04 8.36E-06 8.20E-07
5 - 1.92E+00 -2.74E-08 -6.42E-10 2.60E-02 3.26E-04 2.04E-05 1.61E-06
6 - 5.79E+00 2.57E-07 2.98E-10 5.34E-02 6.75E-04 4.22E-05 3.14E-06
7 - 1.23E+01 3.01E-06 -1.51E-10 9.81E-02 1.25E-03 7.83E-05 5.82E-06
8 - 1.75E+01 3.26E-05 8.31E-11 1.66E-01 2.13E-03 1.33E-04 9.90E-06
9 - 1.46E+01 2.97E-04 -4.72E-11 2.62E-01 3.40E-03 2.14E-04 1.59E-05
10 -  2.24E-03 2.80E-11 3.95E-01 5.18E-03 3.26E-04 2.42E-05
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Table 3. Natural frequencies of the simply supported non-uniform beam (rad/s)

Form of 
thickness 

and 
Young’s 
modulus

   2
0 1h x h x 

 E x E

  0h x h

  
 

 
1 0.02cos 2

0.01sin 4

x l
E x E

x l





 
    

   2
0 1h x h x 

 
 

 
1 0.02cos 2

0.01sin 4

x l
E x E

x l





 
    

   0 1h x h x 

 
 

 
1 0.02cos 2

0.01sin 4

x l
E x E

x l





 
    

   2
0 1h x h x 

   21 0.02E x E x l 

   0 1h x h x 

   21 0.02E x E x l 

DSC FEM DSC FEM DSC FEMMode 
Seq. M+1=31 N=230

Rel. 
Diff. 
% M+1=31 N=230

Rel. 
Diff. 
% M+1=31 N=230

Rel. 
Diff. 
%

DSC
M+1=31

FEM
N=230

Rel. 
Diff. 
%

DSC
M+1=31

FEM
N=230

Rel. 
Diff. 
%

DSC
M+1=31

FEM
N=230

Rel. 
Diff. 
%

1 9.573 9.535 0.399 10.861 11.356 -4.354 9.143 9.489 -3.642 10.024 10.402 -3.633 9.458 9.433 0.262 10.399 10.346 0.516
2 38.669 38.353 0.823 45.631 45.652 -0.047 38.444 38.320 0.323 41.867 41.844 0.055 38.285 37.959 0.859 41.581 41.438 0.345
3 86.644 86.254 0.453 102.727 102.719 0.008 86.774 86.259 0.597 94.406 94.175 0.245 85.774 85.367 0.477 93.386 93.219 0.179
4 153.716 153.292 0.277 182.618 182.611 0.004 153.786 153.283 0.328 167.607 167.395 0.126 152.158 151.713 0.293 165.883 165.705 0.107
5 239.916 239.474 0.184 285.337 285.329 0.003 239.960 239.453 0.212 261.745 261.536 0.080 237.470 237.007 0.195 259.082 258.899 0.070
6 345.253 344.805 0.130 410.883 410.873 0.002 345.277 344.768 0.148 376.803 376.596 0.055 341.722 341.250 0.138 372.986 372.802 0.049
7 469.733 469.283 0.096 559.254 559.244 0.002 469.736 469.230 0.108 512.780 512.576 0.040 464.917 464.444 0.102 507.597 507.413 0.036
8 613.357 612.911 0.073 730.452 730.441 0.001 613.339 612.838 0.082 669.677 669.476 0.030 607.059 606.589 0.077 662.915 662.734 0.027
9 776.127 775.688 0.057 924.475 924.464 0.001 776.085 775.593 0.063 847.492 847.296 0.023 768.149 767.686 0.060 838.941 838.763 0.021
10 958.043 957.614 0.045 1141.325 1141.313 0.001 957.977 957.496 0.050 1046.226 1046.035 0.018 948.187 947.735 0.048 1035.674 1035.502 0.017

Page 31 of 41

http://mc.manuscriptcentral.com/jvc

Journal of Vibration and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 4. Uncertainty cases

Non-
uniformity

Form of the thickness, 
  h x

Form of Young’s 
modulus,  E x

Uncertain 
parameters: ,  1E 

,  2h   3r 

Uniform 0h E Case 1

 2
0 1h x E Case 2

0h
 

 
1 0.02cos 2

0.01sin 4

x l
E

x l





 
   

Case 3

 2
0 1h x

 
 

1 0.02cos 2

0.01sin 4

x l
E

x l





 
   

Case 4
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Figure 1. A beam structure with its geometrical parameters 
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