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Abstract—In a wind farm, the interactions among the wind
turbines through wakes can significantly reduce the power
output of the wind farm. These together with the complex
wind conditions make the power optimization problem of the
wind farm very challenging. To address this problem, this paper
proposes a hierarchical data–driven power optimization scheme,
which does not need a wake interaction model that can be rather
difficult to develop due to the complex aerodynamics between
the turbines. The proposed scheme consists of two steps: firstly
the power optimization problem of the wind farm is divided into
several optimization sub-problems to deal with the complex wind
conditions based on the wind farm power efficiencies in different
wind directions. Secondly, a data–driven stochastic projected
simplex algorithm is developed to solve the power optimization
sub-problems. The proposed algorithm can increase the power
output of the wind farm by using measurement data only and
has the ability to find the optimal solutions. Finally, simulation
results show that the proposed scheme can efficiently improve
the power output of the wind farm in different wind conditions
compared with some benchmark methods.

Index Terms—Wind farm, wake interaction, power optimiza-
tion, data–driven, stochastic projected simplex method.

I. INTRODUCTION

IN recent years, wind power, as an environmental friendly
renewable energy source [1], is under fast development due

to the need for greener electricity system and the increasing
electricity demands [2]. However in a wind farm, wakes
generated by upstream wind turbines can significantly degrade
the power output of the downstream wind turbines due to
reduced wind speed inside the wake [3]. As a result, the greedy
policy that is widely applied in practice, where each turbine is
devoted to maximizing its own power output [4], often leads
to the suboptimal power output of wind farm because such
policy neglects the wake interactions among the turbines [5],
[6]. This has been investigated experimentally [7]–[9] and the
results indicate that there could be up to 33% power loss for
wind farm under some worst case scenarios. To mitigate the
wake interactions among the turbines and optimize the power
output of wind farm, the cooperative control of wind farm has
attracted the great interest of researchers [3]. The proposed
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control strategies for wind farm can be classified into two
categories, the model-based methods and data-driven methods.

Model-based methods usually have the following three
steps. At first, the power generation model of wind farm
is built, which mainly includes modeling the wake of wind
turbine, wake interactions among the turbines, and power gen-
eration system of wind turbine. Then, the power optimization
problem of wind farm is formulated. The control strategy
of wind farm is finally developed. Traditionally, based on
the analytical power generation models of wind farm, some
optimization methods are applied to solve the wind farm power
optimization problem, e.g. the heuristic algorithm [10] and
steepest descent method [11]. However, these methods may
not efficiently improve the power output of wind farm as
they highly depend on the analytical models of wind farm
used in optimization. These models are usually built based
on simplified wake models, which could not accurately reflect
the actual aerodynamics of the wake [12], especially for some
wind farms sited in coteau or highland area. To overcome
the limitation, the control strategies based on Computational
Fluid Dynamics (CFD) models are proposed, e.g. the conjugate
gradient method [13] with large eddy simulation [14]. The
use of CFD simulations requires significant computational
resources which is usually not available in practice even
if it improves the model accuracy [15]. Consequently, the
model-based methods have various difficulties in the power
optimization of wind farm.

To overcome the dependence on the power generation model
of wind farm, the data-driven methods have received great
attentions. The methods aim to maximize the output power of
wind farm with only the control inputs and some measurement
data. A number of methods have been proposed, e.g. game
theoretic learning algorithms including safe experimentation
dynamics (SED) and payoff-based distributed learning [6],
Bayesian ascent algorithm [12], simultaneous perturbation ap-
proach [16], discrete adaptive filtering algorithms [17], random
search method [18], et al. Most of the above results consider
simple wind conditions, such as static and slowly changing
wind. However, the wind condition in a actual farm is often
quite complex, which can change randomly and quickly. It
means that the optimal joint control action of the wind farm
likely varies quickly over time and the power optimization
problem of the wind farm is a very challenging dynamic
optimization problem. The above data-driven methods have
significant difficulties as they need to quickly relearn the
actions and even fail to achieve so.
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This paper presents a hierarchical data-driven power op-
timization scheme to efficiently improve the power output
of wind farm in complex wind conditions. Based on the
power efficiencies of wind farm with greedy policy, the whole
range of wind direction is divided into a finite number of
sub-intervals, in which the power efficiencies of wind farm
under different wind directions are similar and thus it can be
assumed that only a wake interaction pattern exists. The power
optimization problem of wind farm is then formulated to be
the sum of a series of optimization sub-problems defined in the
sub-intervals. To solve the sub-problems, we develop a data-
driven stochastic projected simplex (SPS) power optimization
algorithm. The SPS algorithm fully exploits the advantages of
the Nelder-Mead method (derivative-free, fast convergence),
Gradient Projection method (constraints handling) and modi-
fied adaptive random search (global optima), which can solve
the constrained nonlinear optimization problem without using
gradient information.

With the scheme, a finite number of power optimization al-
gorithms are run in parallel and each of them only corresponds
to one sub-problem. The advantages of this scheme are listed
as follows: (1) The proposed algorithm can quickly improve
the power output of wind farm when solving optimization sub-
problems; (2) The proposed algorithm can find the optimal
solutions of the optimization sub-problems; (3) With the
change of wind direction from one sub-interval to another
sub-interval, the switch of two proposed algorithms will be
performed. This will utilize the already learned knowledge
and thus improve the convergence speed of the algorithms,
avoiding repetitiously solving the sub-problems from scratch.
Precisely because of these merits, the proposed scheme can
work well even in complex wind conditions.

The remainder of the paper is organized as follows. Section
II describes the power generation model of wind farm. Section
III formulates the power optimization problem of wind farm
for complex wind conditions. The power optimization scheme
is proposed in Section IV. And Section V compares the
performance of different schemes for the power optimization
of wind farm with simulation results. Finally, conclusion and
possible directions for future research are given in Section VI.

II. WIND FARM MODEL

In this section, the power generation model of wind farm is
introduced.

The wind farm with n wind turbines is considered in this
study and let N = {1, 2, · · · , n} be the set of all turbines.
Suppose that the yaw control of all turbines has been designed
and can guarantee their blade disk planes be perpendicular to
the wind direction. The control action of wind turbine i ∈ N
is then chosen as its axial induction factor (AIF) ui, which can
be adjusted by the blade pitch and generator torque. The AIF
is a measure of the wind velocity reduction over rotor plane
and provides a relatively simple expression for the cooperative
control of wind farm [5]. The admissible set of the ui is given
by the set Ui = {ui |ui,min ≤ ui ≤ ui,max}, where ui,min

and ui,max are respectively the lower bound and upper bound
of ui. The joint AIF of all turbines is represented by the tuple

i
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V

Fig. 1. Single turbine wake example [17].

u = (u1, · · · , un), whose admissible set is denoted as U =
U1 × · · · × Un, where × is the Cartesian product.

When one wind turbine extracts energy from the wind, it
will cause changes of the downstream wind flow. The altered
flow is called the wake of wind turbine, through which the
upwind turbine will affect the wind speed and output power
of downwind turbines and thus decrease the power output
of wind farm. The wake has many complex characteristics,
e.g. recovery, meandering, and dependence on environment
parameters [5]. The recovery is that the wake velocity grad-
ually recovers to the freestream velocity. The meandering is
a large-scale stochastic phenomenon of wake that the wake
structure will show horizontal and vertical oscillations over
time rather than maintaining a certain fixed shape. The wake is
also parameter-dependent since the external variables (such as
temperature and wind condition) can affect the behavior of the
wake. Therefore, the math description of the wake interactions
among the turbines is one key modelling challenge in wind
farm control [5]. The Park model [19] is the one of the most
popular wake models and has wide application in wind farm
control [16], [17]. It is also applied in this paper to resemble
the interactions between the turbines.

Consider the situation in Fig. 1 for turbine i to illustrate the
wake effect. In Fig. 1, V∞ is the free stream wind speed, Di

denotes the diameter of turbine i, x is the distance from turbine
i along the wind direction, and r is the distance orthogonal to
the wind direction. Between the top and bottom dotted lines is
the wake area generated by turbine i. Denote Vi (x, r, ui, V∞)
as the wake velocity profile at point (x, r) generated by turbine
i with the AIF ui. Then,

Vi (x, r, ui, V∞) = V∞ (1− δVi (x, r, ui)) , (1)

where δVi (x, r, ui) represents the fractional deficit of the
velocity at the point (x, r). According to Park model [19],
the δVi (x, r, ui) is expressed as

δVi (x, r, ui) =

{
2ui

(
Di

Di+2κx

)2

, for any r ≤ Di+2κx
2 ,

0, for any r > Di+2κx
2 ,

(2)
where κ is the roughness coefficient that measures the slope
of the wake expansion.

The aggregate wind velocity Vi

(
{uj}j∈Ni

, V∞, θ
)

at an
arbitrary wind turbine i ∈ N can be expressed as

Vi

(
{uj}j∈Ni

, V∞, θ
)
= V∞

(
1− δVi

(
{uj}j∈Ni

, θ
))

(3)

where Ni is the set of upstream turbines that are coupled with
the turbine i via the wakes, θ is wind direction. Based on the
Park model, the aggregated velocity deficit δVi

(
{uj}j∈Ni

, θ
)
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Fig. 2. Two-turbine wake interaction examples in different wind directions.

at turbine i can be formulated as

δVi

(
{uj}j∈Ni

, θ
)
= 2

√ ∑
j∈Ni

(
uj

(
Dj

Dj+2κ(xi(θ)−xj(θ))

)2Aoverlap
j→i (θ)

Ai

)2

,

(4)
where xi is the distance of turbine i from a common vertex
along the θ, Ai is the area of the disk generated by the blade
of turbine i, Aoverlap

j→i is the part area of the Ai that overlaps
with the wake generated by turbine j and is associated with
θ. The wake interaction examples with two wind turbines are
given in Fig. 2, where turbine i is denoted as Wi. From Fig.
2(a) to Fig. 2(d), the turbine distance xi−xj and the Aoverlap

j→i

gradually vary with clockwise changes of the θ, which leads
to different wake interaction patterns among the turbines.

The power generated by turbine i ∈ N can be characterized
by

Pi

(
ui; {uj}j∈Ni

, V∞, θ
)
= 1

2ρAiCp,i (ui)Vi

(
{uj}j∈Ni

, V∞, θ
)3

,

(5)
where ρ is the density of air and Cp,i (ui) is the power
coefficient defined as

Cp,i (ui) = 4ui(1− ui)
2
. (6)

The total power output of wind farm is simply the sum of the
power generated by all turbines, namely

P (u;V∞, θ) =
∑n

i=1
Pi

(
ui; {uj}j∈Ni

, V∞, θ
)
. (7)

Remark 1: The goals of wake model and wake interaction
model are respectively to effectively identify the velocity
deficit δVi (x, r, ui) in (1) and the aggregated velocity deficit
δVi

(
{uj}j∈Ni

, θ
)

in (3). However, it is difficult to achieve
the goals accurately due to the complexity of wake. In this
paper, the Park model will only be used for simulating the
wake, whose uncertainties do not influence the performance
evaluation of the proposed scheme in the power optimization
problem of wind farm because it is not used in the control
design. This model is widely used in many references to
evaluate the effectiveness of wind farm power optimization
scheme, including [6], [16], [17], et al.

III. WIND FARM POWER OPTIMIZATION PROBLEM FOR
COMPLEX WIND CONDITIONS

In this section, the power optimization problem of wind
farm is formulated. It is further expressed as the sum of several

optimization sub-problems based on the power efficiencies of
wind farm to deal with the complex wind conditions.

The optimization goal of wind farm in this paper is to
improve its total power output (7). More specifically, the
optimal joint AIF should be obtained by solving the follow-
ing optimization problem without using the wake interaction
model:

uopt ∈ argmax
u∈U

P (u;V∞, θ) . (8)

The above (8) is a nonlinear optimization problem with
linear constraint. The wake interaction pattern varies over
time due to the time-varying characteristic of wind direction.
It leads to that the optimal joint control action of the (8)
does not stay fixed. The developed optimization scheme is
required to track the variation of wind direction to achieve the
optimization goal of wind farm.

Remark 2: From (5) and (6), it can be noticed that the
ui = 1/3 for wind turbine i ∈ N is the optimal control
action in terms of maximizing its power output and is thus
called greedy policy. However, as mentioned earlier, the greedy
policy might not be optimal in maximizing the total output
power of wind farm due to the wake interactions among the
turbines in (4).

The power efficiency function [3] [12] of wind farm can be
defined as

η (u; θ) , (1/n )
∑n

i=1
ηi

(
ui; {uj}j∈Ni

, θ
)
, (9)

where ηi

(
ui; {uj}j∈Ni

, θ
)
=Pi/P

∗
i denotes the power effi-

ciency of turbine i, P ∗
i =(1/2 ) ρAiCp,maxV

3
∞ is the power

output of turbine i without wake interaction, Cp,max is the
maximum power coefficient and calculated by (6) with ui =
1/3 . Based on (3) and (5), it can be derived that

ηi

(
ui; {uj}j∈Ni

, θ
)
=
Cp,i (ui)

(
1− δVi

(
{uj}j∈Ni

, θ
))3

Cp,max
.

(10)
It is assumed that all wind turbines are identical. Then
P ∗
i =P

∗
j . Let P *=P ∗

j . From (9),

η (u; θ) =
1

nP *

∑n

i=1
Pi. (11)

Remark 3: The formulas (9) and (10) indicate that the η (u; θ)
is unrelated to the freestream wind speed V∞. The (11) shows
that the η (u; θ) can be regarded as the normalization of the
power output of wind farm below the rated wind speed, whose
base value is the power output nP * of wind farm without wake
interactions. This means that the maximization of η (u; θ) can
ensure the maximization of the power output of wind farm.

Although greedy policy itself does not consider the wake
effect, the power generation efficiency of wind farm under
greedy policy can reflect the coupling strength among the
turbines as the wake effect is an inherent characteristic of
wind farm. The smaller the η (u; θ) is, the stronger the wake
interactions between the turbines are. If the changes of wind
direction in an interval only lead to a small changes of
the power generation efficiency of wind farm, the coupling
strength among the turbines is similar and only one wake
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interaction pattern needs to be considered for the interval.
Then based on this, the entire interval of wind direction in
this paper is divided into a certain number of sub-intervals in
the following content.

According to the historical power generation data of actual
wind farm with greedy policy, the values of power efficiency
η (u; θ) under all wind directions can be calculated by (11).
Based on the values of η (u; θ), the whole range of θ can
be divided into a finite m number of sub-intervals, denoted by
Θ1,Θ2, · · · ,Θm and shown in Fig. 3(a). Θj = [θj,min, θj,max)
is the jth sub-interval of θ, in which θj,min and θj,max are
respectively the lower bound and upper bound of Θj , j =
1, 2, · · · ,m. When θ1, θ2 ∈ Θj ,

|η (u; θ1)− η (u; θ2)| ≤ ς, (12)

where ς ∈ [0, 1) is a small number. The selected ς must
guarantee that the η (u; θ) makes minor changes that can
be ignored for the fluctuations of θ in Θj . Thus it can be
considered that there is only one wake interaction pattern
for each divided sub-interval. Note that this division mainly
depends on the layout and terrain of wind farm.

The power optimization sub-problem of wind farm for Θj

is defined as

uopt,j ∈ argmax
u∈U

P j (u;V∞, θ) , (13)

where P j denotes the power output of wind farm under
θ ∈ Θj , j = 1, 2, · · · ,m. The sub-problem (13) can be
approximately regarded as the static optimization problem,
where the wake interaction pattern among the turbines is
almost invariable such that the optimal joint AIF uopt,j under
θ ∈ Θj can be assumed as constant vector. Define

αj (θ) =

{
1, if θ ∈ Θj ,
0, else, (14)

α (θ)= {aj (θ) , j = 1, 2, · · · ,m}. Then the power optimiza-
tion problem (8) of wind farm can be rewritten as

uopt ∈ argmax
u∈U

∑m

j=1
αj (θ)P

j (u;V∞, θ). (15)

In (15), the (8) is formulated as the sum of m sub-problems
associated with the sub-intervals of wind direction. Different
sub-problems have different wake interaction patterns, which
makes them have different optimal joint AIFs.

IV. WIND FARM POWER OPTIMIZATION SCHEME BASED
ON STOCHASTIC PROJECTED SIMPLEX METHOD

In this section, the power optimization scheme of wind farm
is proposed, which consists of a finite number of data-driven
power optimization algorithms. Each algorithm is developed
by using stochastic projected simplex method.

A. Power Optimization Scheme of Wind Farm

The power optimization scheme presented for wind farm is
given in Fig. 3. As shown in Fig. 3(a), a finite m number of
optimal algorithms are carried out to find the optimal joint
AIFs of wind farm. Each of the algorithms only optimizes
one sub-problem defined in (13), which is started when the
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Fig. 3. power optimization scheme of wind farm.
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Fig. 4. Communication network and flowchart of the wind farm power
optimization scheme.

corresponding sub-interval is visited by wind direction and
stopped when wind direction leaves from the sub-interval.
For example, in Fig. 3(b), the algorithm Algj is applied
to obtain the uopt,j in θt ∈ Θj , where the t denotes tth
interaction between the control scheme and wind farm to get
measurements and the θt is the measured wind direction in
tth interaction. With the switch of θ from Θj to Θl, the
algorithm Algl is conducted. Meanwhile, the Algj is stopped
and its operational data is saved. When the Θj is revisited by
θ, the Algj is reactivated and continues searching for uopt,j
based on the previous experience. Obviously, the proposed
scheme makes full use of the learned knowledge, which can
accelerate the convergence speed of algorithms. It is beneficial
to quickly improve the power output of wind farm and increase
the adaptability of the scheme for complex wind conditions.

The proposed power optimization framework is centralized,
as shown in Fig. 4(a). The power optimization scheme is
stored in centralized control unit, learning the optimal policy
by many interactions with wind farm. One interaction consists
of two steps. Step 1: The power optimization scheme decides
an control action (joint AIF u (θt)) according to the receiving
the measurement data (V∞, θt, and Pt) from actual wind farm
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and sends this action to the wind farm; Step 2: The wind
farm carries out the receiving control action and then feeds
the corresponding response data and wind conditions back
to the centralized control unit. Fig. 4(b) shows the flowchart
of the power optimization scheme. When the θt is sent to
the centralized control unit, the α (θt) is calculated by (14).
Only one unit in α (θt) is equal to one for θt, which decides
the optimization sub-problem to be solved. Without loss of
generality, it is assumed that αj (θt)=1 and αl (θt)=0, l ̸= j.
A control action u (θt) is given for θt by the Algj .

B. Power Optimization Algorithm of Wind Farm
We now introduce our data-driven SPS algorithm to solve

the power optimization sub-problems of wind farm.
The q+1 vertices of simplex are defined as the q+1 joint

AIFs of all turbines, namely

U=
{
u0, u1, · · · , uq

}
(16)

where U is vertex set of the simplex, ul ∈ U , l=0, 1, · · · , q.
The proposed SPS algorithm is described as follows.

Initialization: Evaluate power efficiency η at the points in
the vertex set U0 of the initial simplex. Choose constants

−1 < δic < 0 < δro, 0 < δr < δe ≤ 1, 0 < ε1, ε2 < 1.

For k = 0, 1, 2, · · ·
1) Order: Order the q + 1 vertices of Uk so that

η0k = η
(
u0k

)
≥ η1k = η

(
u1k

)
≥ · · · ≥ ηqk = η (uqk) , (17)

where Uk is the vertex set of the simplex at iteration k,
ulk is the lth vertex of the Uk, ηlk is the power generation
efficiency of wind farm with ulk, l = 0, · · · , q. From (17),
u0k is the best vertex and uqk is the worst in Uk .

2) Reflection: Reflect the worst vertex uqk over the centroid
uc = (1/q )

∑q−1
l=0 u

l
k of the remaining q vertices:

uro =
∏

U
(uc + δro (uc − uqk)) , (18)

ur = uc + δr (uro − uc) , (19)

where
∏

U (•) is the Euclidean projection onto the U , δro

and δr are the reflection parameters, ur is the reflection
point. Then evaluate ηr=η (ur). If η0k ≥ ηr > ηqk, then
replace uqk by the ur and terminate the iteration:

Uk+1 =
{
u0k, u

1
k, · · · , u

q−1
k , ur

}
. (20)

3) Expansion: If ηr > η0k, then calculate the expansion
point ue by

ue = uc + δe (uro − uc) (21)

and evaluate ηe=η (ue), where δe is the expansion pa-
rameter. If ηe ≥ ηr, replace uqk by the ue, and terminate
the iteration:

Uk+1 =
{
u0k, u

1
k, · · · , u

q−1
k , ue

}
; (22)

Otherwise, replace uqk by the ur, and terminate the
iteration:

Uk+1 =
{
u0k, u

1
k, · · · , u

q−1
k , ur

}
. (23)

4) Contraction: If ηr ≤ ηqk, then perform an contraction

uic = uc + δic (uc − uqk) (24)

and evaluate ηic=η
(
uic

)
, where δic is the contraction

parameter, uic is the contraction point. If ηic > ηqk,
replace uqk by the uic, and terminate the iteration:

Uk+1 =
{
u0k, u

1
k, · · · , u

q−1
k , uic

}
; (25)

Otherwise, perform a modified adaptive random search
(MARS).

5) MARS:
Step 1. Decide to perform global search (GS) or local
search (LS) with probability ε1 and 1-ε1, respectively.
Go to Step 2a if GS is selected. Otherwise run Step 2b.
Step 2a. Choose a sampled point us, in which the ith
component is randomly selected from Ui with probability
ε2 and is ith component of the u0k with probability 1−ε2,
i = 1, 2, · · · , n.
Step 2b. Choose a uniformly sampled point us on the
neighborhood ψ

(
u0k

)
of the u0k, where

ψ
(
u0k

)
=

{
u ∈ U :

∥∥u− u0k
∥∥ ≤ min

{∥∥u0k − ulk
∥∥} , l ̸= 0

}
.

(26)
Step 3. Evaluate ηs=η (us).
Step 4. If ηs ≥ ηqk, or us = u0k and ηs < η0k, replace uqk
by the us and terminate the iteration:

Uk+1 =
{
u0k, u

1
k, · · · , u

q−1
k , us

}
; (27)

Otherwise, return to Step 1.
The u ∈ U in (13) is a bound constraint. Hence, the

∏
U (u)

can be expressed componentwise as[∏
U
(u)

]
i
=

 ui,min, if ui ≤ ui,min,
ui, if ui,min < ui < ui,max,

ui,max, if ui,max ≤ ui.
(28)

In each iteration of the SPS algorithm, the order operation is
firstly performed. The best and the worst vertices are found,
which have highest and lowest power efficiency among the
vertices in Uk, respectively. Next, the reflection operation will
be conducted in admissible set U and a reflection point related
with the worst vertex will be calculated through the centroid.
According to the power generation efficiency of wind farm at
the reflection point, the algorithm will do some operations, e.g.
expansion, or contraction, or MARS to form a new simplex
Uk+1. It can be observed that in each iteration, the worst vertex
unk will be replaced by the new vertex that has better or same
performance. In SPS algorithm, the δro and δr define how far
a reflected point should be from the centroid. The δe decides
how far to expand when the direction from the centroid to the
reflected point is right. The δic defines how far a contracted
point should be from the centroid along the direction from
the centroid to the worst point when the performance of the
reflected point is poorer than the worst point. The MARS
makes a balance between GS and LS with probability ε1. The
GS explores the action space with probability ε2 and learned
knowledge u0k. The LS finishes local exploration by exploiting
u0k. The flowchart of the SPS algorithm is shown in Fig. 5.
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Fig. 5. Flowchart of the SPS algorithm. The power efficiency of each
point will be evaluated by sending the point to wind farm and receiving
corresponding power output and wind condition data.

Theorem 1. Consider the application of the SPS algorithm
to any power optimization sub-problems of wind farm:

(1) All the q + 1 power efficiency sequences
{
ηlk
}

, l =
0, · · · , q are increasing and convergent, and their limits satisfy

η0∗ ≥ · · · ≥ ηq∗;

(2) The optimal solution of the sub-problem can be found
with probability 1 for any ε1 > 0 and ε2 > 0. Meanwhile,

η0∗ = max
u∈U

η.

Proof. See the Appendix.
In addition to the monotone convergence and global opti-

mality in Theorem 1, the proposed algorithm has following
appealing properties:

• Fast convergence: The SPS algorithm has fast conver-
gence speed. It is developed based on the Nelder-Mead
method (NM) [20], which is one of the most popular
derivative free nonlinear optimization methods due to its
simplicity and fast convergence [21]. This property will
be beneficial to improve quickly the power output of wind
farm and reduce the fatigue damage of wind turbines.

• Constraints handling: The SPS algorithm complies with
the linear constraints. It benefits from Gradient Projection
(GP) method [22], projecting the iteration points violating
constraints to the boundary of feasible region U directly
such that the iteration points satisfy the control constraints
of all turbines.

• Small performance fluctuation: The Adaptive Random
Search (ARS) is developed in [23] to guarantee NM
method find a global optimal solution. Its global search
has a big probability to sample an action that has greatly
poor performance due to random exploration in the whole

D

D

X m

Y m

N

S

EW

Fig. 6. Layout of 16-turbine wind farm.

action space U . This is also very likely for the local
search of the ARS since the search may be finished in
the neighborhood of unk (the worst vertex in Uk). In this
paper, the ARS has been modified as the MARS. The
global search and local search in MARS have performed
exploration by fully exploiting u0k (the best vertex in
Uk), degrading the probability to select terrible action
and guaranteeing global search capability. As a result,
the MARS cannot cause a number of large amplitude
oscillations of wind farm power generation performance.

To solve the power optimization problem (8), the m SPS
algorithms need to be carried out in parallel by Fig. 3(a), which
compose the power optimization scheme of wind farm called
as SPS policy.

Remark 4: It is possible that (12) in one sub-interval is
slightly violated when different control policies are used. In
this case, the proposed SPS algorithm can still find the optimal
solution although it may need extra iterations.

V. SIMULATION RESULTS

In this section, two simulation examples are presented to
verify the performance of the SPS policy in different wind
conditions.

The wind farm with 16 turbines shown in Fig. 6 is
considered in this simulation. All turbines are of the same
size and have a diameter of 80m, whose spacing is 560m.
The roughness coefficient is κ = 0.04. The air density
is ρ = 1.225kg/m3. These parameters are the ones of
Danish Horns Rev1 offshore wind farm [6]. The upstream
wind speed is set as V∞=8m/s. A common AIF set Ui =
{ui |0.1 ≤ ui ≤ 0.33} is employed to turbine i ∈ N , which is
sufficient to verify the performance of different policies [17].
The power generation model based on Park model is used to
describe the wind farm.

The vertices of initial simplex have an effect on the per-
formance of the SPS algorithm. Moreover, this algorithm
explores the action space by MARS to find the global optimal
solution. These mean that there are differences among the
results of any two optimizations (or trials) in given wind
conditions due to the stochastic nature of the algorithm and
thus only one optimization cannot evaluate the performance
of SPS policy accurately. Then for given wind conditions, a
number of wind farm power optimizations would be performed
independently under SPS policy. The performance of the
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TABLE I
THE AVERAGE NUMBER OF INTERACTIONS REQUIRED BY POLICIES IN

ALL VISITS TO CONVERGE TO THE 98% OF THE OPTIMAL VALUE

SED policy ORSSRS policy SPS policy

θ = 0◦ 99 171 18
θ = 45◦ 71 113 11

policy is finally evaluated by average performance index in
these optimizations, namely

ηt
′=(1/L )

∑L

l=1
ηl,t, (29)

and
η̄′t=

(
1

L

)∑L

l=1

(
1

t

∑t

τ=1
ηl,τ

)
, (30)

where L is the optimization numbers, l denotes the lth
optimization, ηl,t is the power efficiency of wind farm at the
tth interaction of the lth optimization.

The convergence speed of SPS algorithm can be influenced
by its parameters. In this paper, the values of q and δic

are set as 16 and −0.5 respectively following the guideline
of the original NM Method [20], ε2 is chosen as 0.05, the
same as [6] for comparison purpose. For the remaining four
parameters, the 81 parameter combinations of δro=1, 2, 3,
δr=0.1, 0.3, 0.5, δe=0.6, 0.8, 1.0, and ε1 = 0.3, 0.5, 0.7 are
generated based on their feasible regions. To find the best
parameter choice, a Monte Carlo simulation is run for each
parameter combination. The combination with the highest
running average power efficiency η̄′t is finally selected, which
is δro=2, δr=0.5, δe=0.8, ε1 = 0.5.

A. Simple Wind Conditions Example

This example assumes that the wind direction changes
slowly with an angle set of {0◦, 45◦}. At first, wind direc-
tion points horizontally from west to east, namely θ=0◦. Its
first change happens when wind direction turns to point to
southeast at time t = 500. Then the switch between 45 degree
and 0 degree is performed for eight times.

In θ = 0◦, the wind farm can be divided into 4 independent
rows since there is no wake interactions between the rows.
Thus the optimization problem boils down to searching for
the optimal solution of a 4-turbine wind farm. Similarly, the
wind farm can be divided into 7 independent diagonal arrays
in θ = 45◦, in which the biggest one has 4 turbines. Then in
this case, the optimal policy of wind farm can be obtained by
exhaustive search. The greedy policy u = (1/3, · · · , 1/3) is
commonly applied in practice. The popular SED policy [6] is
usually used as a benchmark in the literatures to assess the
performance of the different control policies of wind farm,
where the new control variable is the baseline action with
high probability or a random action with small probability. The
baseline action is updated when new control variable generates
better power performance. The Random Search (RS) methods
are promising tools for wind farm power optimization [18],
which can optimize the power output of the wind farm without
using gradient information. The performance of multiple RS
methods is investigated in [18] for wind farm power optimiza-
tion problem. The results show that the Optimized Relative

(a) Trajectories of power efficiency.

(b) Trajectories of running average power efficiency.

Fig. 7. Simulation results in simple wind conditions.

Step Size Random Search (ORSSRS) policy produces higher
total power production compared with other RS methods. For
comparison purpose, the power optimizations based on optimal
policy, greedy policy, SED policy, and ORSSRS policy are
performed. Note that the original versions of SED policy
in [6] and ORSSRS policy in [18] cannot work in time-
varying wind conditions. To overcome this, these two policies
are reinitialized with greedy policy for the change of wind
conditions.

For given wind conditions, a total of 50 power optimizations
using SPS policy are conducted independently. The same
number of optimizations for SED policy and ORSSRS policy
are run due to their stochastic nature. Fig. 7 shows the
simulation results, including the trajectories of wind farm
power efficiency ηt

′ in Fig. 7(a) and the trajectories of wind
farm running average power efficiency η̄′t in Fig. 7(b).

In Fig. 7(a), the power efficiency of wind farm with SPS
policy at θ=0◦ and θ=45◦ nearly reaches the optimums,
improving approximately 16% and 5% compared with greedy
policy, respectively. Meanwhile, it can be noticed that the SPS
policy selects control actions based on the learned knowledge
when the same wind direction occurs again, which makes
it quickly increase the power efficiency of wind farm in
time–varying wind conditions. For example, the SPS policy
at t = 1000 chooses the control action for 0 degree wind
direction based on the learned knowledge at t ∈ [0, 500). At
t = 1500, it selects the control action for 45 degree wind
direction by using learned knowledge at t ∈ [500, 1000). The
SED and ORSSRS policies have to relearn control actions for
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Fig. 8. Complex wind conditions.

the changes of wind conditions due to the forgetfulness of
previous knowledge, which results in a much slower response
and thus lower power efficiency. From Fig. 7(a), it can be
observed that the 0 and 45 degree wind directions are visited
for five times, respectively. To quantitatively analyze the
average convergence speed of the policies, Table I gives the
average number of interactions required by the policies for
the wind directions in all visits to converge to the 98% of the
optimal values. As can been seen, the proposed SPS policy
converges much faster. Fig. 7(b) shows that the SPS policy
guarantees wind farm higher running average power efficiency
than greedy policy, SED policy, and ORSSRS policy, which
means that more power production is generated by SPS policy.
Therefore, the proposed policy can efficiently improve the
power output of wind farm and increase its energy capture
in simple wind conditions.

B. Complex Wind Conditions Example

In this example, the used wind conditions are shown in Fig.
8, which are a time scale of about 3.3 minutes. They are gener-
ated based on 10-minute statistics from Anholt offshore wind
farm, which are published by Ørsted and can be accessible in
[24]. Note that each data in [24] is copied twice to obtain the
3.3-minute wind data. The wind direction ranges from 0 degree
to 360 degree. The greedy policy is applied to the wind farm
in Fig. 6 and the corresponding power data can be obtained in
θ ∈ [0◦, 360◦), which are assumed as the historical power
generation data from actual wind farm including the wake
interactions among the turbines. Then the power efficiencies
of the wind farm can be calculated by using (11). The constant
ς is set as 0.02. According to (12), the whole wind direction
range is divided into the 144 sub-intervals. Without loss of
generality, the divided result of θ ∈ [0◦, 45◦] is shown in
Fig. 9. Therefore, the power optimization problem of the wind
farm can be divided into 144 sub-problems and the 144 SPS
algorithms would be conducted to solve the sub-problems,
comprising SPS policy.

With the growth of turbine numbers in a wind farm, the
search space and time of optimal solution increase exponen-
tially. For example, the search spaces of optimal solutions
for the 3-turbines, 4-turbines, and 5-turbines wind farms
are as large as 243, 244, and 245, respectively, when the
discretized action set of the form [0.1 : 0.01 : 0.33] is selected
for each turbine. The search time of optimal solutions for

Fig. 9. Generation efficiencies of the wind farm under greedy policy and the
sub-interval number of wind direction.

Fig. 10. Trajectories of running average power efficiency of the wind farm
in complex wind conditions.

the above three wind farms by exhaustive search is about
1s, 41s, and 1320s with a PC of Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz, 32.GB RAM, and NVIDIA GeForce
RTX 2070. This means that the significant computational
resources are required when the turbine numbers are more
than 5. On the other hand, it would be difficult to reduce the
dimension of wind farm power optimization problem except a
few wind directions due to complex wake interactions among
the turbines. For example, when θ = 6◦, the dimension of
the power optimization problem of the wind farm shown
in Fig. 6 is as high as 16. As a result, the optimal policy
of the wind farm is computationally prohibitive in complex
wind conditions. Similarly, a total of 50 optimizations are
respectively finished for SPS, SED and ORSSRS policies. Fig.
10 gives the trajectories of running average power efficiency
of the wind farm.

From Fig. 10, the SPS policy shows superior performance
than other three policies except in the early stages due to the
evaluations for initial simplex vertices in all sub-problems. The
ORSSRS policy and greedy policy show similar performance.
Although the running average power efficiency of the wind
farm with SPS policy is lower at the initial phase, its average
improvement rates are respectively 1.1%, 1.6%, and 1.1% at
t ∈ (150000, 300000] compared with greedy policy, SED
policy, and ORSSRS policy. It can be concluded that the
proposed SPS policy can adapt to complex wind conditions
and efficiently improve the power generation performance of
the wind farm.
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VI. CONCLUSION

In this paper, a hierarchical data-driven power optimization
scheme is proposed for wind farm to mitigate the effect of
wake interactions which can significantly reduce the power
output of the wind farm and are challenging to model due to
the complexities of wake. With this scheme, a number of SPS
algorithms are carried out in parallel, which makes full use
of learned knowledge and improves the convergence ability of
the scheme to complex wind conditions. The SPS algorithm
enjoys the advantages of NM method, GP method and MARS,
needing no wake interaction model, dealing with the bound
constraints of the control variables of all turbines and having
ability to find globally optimal solution. Simulation tests are
performed in different wind conditions to demonstrate the
power generation performance of the proposed scheme. The
results show that the presented scheme efficiently improves
the power output of wind farm. Note that the simulation is
conducted on a simplified wind farm model for illustration
purpose. Future research includes considering the influence
of measurement noise on the SPS algorithm performance and
performing simulation test on more realistic wind farm model
and experimental test on actual wind farm. In addition, the
centralized control may not be suitable for very large–scale
wind farm optimization due to communication, scalability and
reliability issues, et al. Therefore, the distributed power opti-
mization of large–scale wind farm in complex wind conditions
is another key area of our future research.
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APPENDIX
PROOF OF THEOREM 1

Obviously, the ηlk ≤ ηlk+1, k = 0, 1, 2, · · · for l =
0, 1, · · · , q. It means that the

{
ηlk
}

is the monotonically
increasing sequence. Meanwhile, the ηlk ≤ 1 holds for k =
0, 1, 2, · · · due to the wake interactions among the turbines.
Therefore according to the monotone bounded theorem, the{
ηlk
}

is convergent, l = 0, 1, · · · , q. Denote ηl∗ as the limit of{
ηlk
}

, l = 0, 1, · · · , q. Since η0k ≥ η1k ≥ · · · ≥ ηqk holds for
k = 0, 1, 2, · · · , η0∗ ≥ · · · ≥ ηq∗.

Without loss of generality, it is assumed that all the previous
steps fail and the MARS is used to find the improved solution.
The event that the global search is decided and the sampled
point us constitutes an optimal solution of the sub-problem
occurs with at least probability

ε1

(
ε2
|U1|

)(
ε2
|U2|

)
· · ·

(
ε2
|Un|

)
,

where |Ui| denotes the cardinality of the action set of turbine i.
Therefore, an optimal solution will eventually be selected with
probability 1 for any ε1 > 0 and ε2 > 0. Once the optimal
solution of the sub-problem is selected in the Kth iteration, the
u0K+1 is the optimal solution and η0K+1 = max

u∈U
η. η0k = η0K+1

at k > K+1. It means that η0k → η0K+1 as k → +∞, namely
η0∗ = max

u∈U
η.
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