

UNIVERSITY OF SOUTHAMPTON

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Ocean and Earth Sciences

Evolutionary drivers of biological adaptations to polar and deep seas

by

Dr Sven Thatje

Thesis for the degree of DSc (Higher Doctorate)

August 2019

CONTENTS

Synopsis of achievements **page 2**

Selected publications on which DSc submission is based **page 9**

Curriculum Vitae, Dr Sven Thatje **page 22**

Synopsis of achievements

Evolutionary drivers of biological adaptations to polar and deep seas

Sven Thatje

Ocean and Earth Science, University of Southampton,
National Oceanography Centre, Southampton
European Way, SO14 3ZH Southampton, United Kingdom
E-mail: sthatje@icloud.com

1) Scale-dependent climatic drivers of Southern Ocean biodiversity

My research has led to a greatly improved understanding of the evolution of diversity of marine benthic organisms in the Southern Ocean and in response to climate oscillation over Milankovitch cycle of the late-Cenozoic, as well as the response of Antarctic marine invertebrates to current global warming [1-7]. This research has been of paradigm-changing nature, and by improving our understanding of how environmental constraints on organisms' life histories affect the resilience of species through time [1-4,8,9]. I have discovered and studied macrobenthic communities around Antarctica, including high latitudes of the sub-Antarctic, ranging from chemosynthetic environments such as whale fall and hydrothermal vent to extensive benthic communities of the Southern Ocean deep sea and continental shelves [10-16], including aspects of geographical and temporal changes [13-15,17,18]. My work contributed to the large-scale descriptions and understanding of unique community structures of the Antarctic benthos and expanded on the knowledge of these communities with respect to geographic range, production and productivity, and organismal diversity, with particular emphasis on peracarid and decapod crustaceans [7,13-15,17]. Further, my inventory of Southern Ocean benthic invertebrates [19,20] revealed that decapod crustaceans [20-22] and in particular reptant decapods are much more diverse, common, and widespread than previously described [20,23]. Within the reptant decapods, I have demonstrated that the globally diverse family of predatory lithodid crabs [20,23-25] is now established as diverse and widespread over large geographic areas off the continental shelves of Antarctica [7,23,25-27].

I utilise the early ontogeny of invertebrates as a model to assessing macro-ecological drivers (across physico-chemical and biological gradients), within past, present, and future climate scenarios [2,4,28]. This approach has allowed me to understand better the conditions whereby marine life endured the most severe environmental conditions prevailing during glacial periods and how life history constraints, such as on reproductive investment and dispersal stages [2,4], have affected the evolution of diversity of benthic organisms in response to climate oscillation over Milankovitch timescale covering the late Cenozoic [2-4,8,9]. My interdisciplinary research has also revealed that the conditions found at the Last Glacial Maximum have been by far more severe for polar life than previously believed [2,3], undoubtedly driving large scale oceanographic shifts in areas of Southern Ocean primary productivity and an associated latitudinal shift of marine life (or local concentration in open ocean polynya) during those periods [2-4]. I revealed that coastal polynyas characteristic of today's Southern Ocean did not exist during the Last Glacial Maximum. Consequently, much of the marine vertebrate, as well as invertebrate fauna, must have migrated to the ice edge and advection zone of the Southern Ocean's multiannual sea ice cover that covered most of the Southern Ocean in to today's sub-Antarctic latitudes [3,29]. Furthermore, the Antarctic continental shelf and slope were unfavourable environments for benthic communities during glacial periods, because of a variety of geophysical processes surrounding mass wasting and turbidity flows disturbing the seafloor beyond the edge of the grounding line of the continental ice sheets, which, in addition, expanded to the outer continental shelf at glacial maxima of the late-Cenozoic [2]. My research has shown that benthic community survival was only possible in the adjacent deep sea or in ice-free shelters on the continental shelf, which may have occurred as the result of the diachronism in maximum ice extent [2,4,8,9]. Indeed, population genetic study indicates a bottleneck event in the diversity of shallow water caridean shrimp populations associated with the last glacial maximum, leading to habitat contraction and explaining a reduced diversity of populations in those times [8]; species distribution models do also show that even deep-sea taxa have been affected by the multiannual sea-ice cover embracing the entire of the Southern Ocean; the multi-annual sea-ice cover which led to a complete shut-down of primary production and thus food availability, most likely driving many taxa to the advection zone associated with the ice edge [9].

Driven by climate oscillations of the Milankovitch cycle, the ability of marine invertebrates to withstand these fluctuations must have been much reliant on their capability for dispersal, for example in order to migrate between glacial shelters on the continental shelf, which

in turn must have affected the diversity of Antarctic benthos as we know it today [2,4]. Differences in early life-history patterns appear to be key to the resilience potential of species in response to shelf ice fluctuations across the continental shelves in glacial periods, and there appears to be a direct relationship between the rate of speciation and the ability of taxa to disperse [2,4].

Compared to elsewhere in the sea, Southern Ocean invertebrates show a high level of brooding species across many phyla [30-34], however, broadcasting species also exist and tend to dominate reproductive traits of marine invertebrates at Sub-Antarctic latitudes [35-40]. Cold polar temperatures, as well as strong seasonality in food availability, have driven the evolution of ecophysiological adaptations in brooding species peculiar of this environment [4,31,32,41,42]. Low fecundity, seasonal or aseasonal reproduction, large offspring and slow growth do generally characterise these species [31-34]. Evolutionary temperature adaptation is also seen in broadcasting taxa with planktotrophic or planktonic/demersal and lecithotrophic developments. Indeed, temperature is the main driver of per offspring investment (POI) and my research has shown that temperature shifts, as found along latitudinal clines and with depth, drive the allocation of higher POI with decreasing temperature [43-47]. Such clines in reproductive traits are even evident within subtle latitudinal temperature changes of the Southern Ocean [48], and some decapod crustaceans in these waters show a POI that allows for exceptionally long lecithotrophy in larvae and juveniles sometimes exceeding a year in duration [49,50]. An increase in POI in decapod crustaceans goes hand in hand with an abbreviation of the life cycle, with fewer but morphologically more advanced larval stages [35,36,38,39,50-52]. Taken together, evolutionary temperature adaptation provides important insight in the evolution of endotrophy and fully food independent larval development [53,54]. This is also evidenced by phylogenetically supported studies of POI in lithodid crabs at global scale, where temperature is the significant driver of POI [47,49].

Lessons learned from my research on the resilience potential of life in cold-stenothermal environments also contribute significantly to our ability to predict the future of polar invertebrates to rapid climate change, in particular along the Western Antarctic Peninsula [1,2,5-7,55]. My research was first to highlight the potential for species intrusions in to the Southern Ocean from adjacent sub-Antarctic waters [5,6,55]. My research was also first to demonstrate that, as a result of surface water warming in response to climate warming along the Western Antarctic Peninsula, deep-sea species of the continental slope are capable of emerging into shallow continental shelf waters [1,7]. This research demonstrated that the emergence of

predatory lithodid (king) crab into these continental shelf waters will be of catastrophic effect for the paleozoic-type shelf fauna that evolved in the absence of major benthic predators since at least the end of Antarctic cooling some 16 Ma ago [1,7,27,56]. The introduction of seafloor predators such as decapod crabs into the warming seas of Antarctica, either through latitudinal or bathymetric range extensions or by anthropogenic means of transport such as ballast water transport will significantly restructure seafloor communities and be of detriment to these species, in addition to the already detrimental effects of global warming [1,5-7,27,28,55]. I have shown that the biogeography of Southern Ocean invertebrates is driven by subtle differences in temperature within the cold-stenothermal environment [57]. In this context, the long-term effects of warming on the ecology of a marine bivalve over a 40-year period have been described [58], highlighting that Antarctic marine invertebrates possess slightly variable levels of resilience to thermal stress among species and populations and within their cold-stenothermal adaptation [59]. Despite these subtle differences in thermal resilience however, climate warming remains a challenge to all of them.

2) The role of hydrostatic pressure in governing aquatic biodiversity

Over the course of the past decade, I have revolutionised our understanding of how marine organisms thrive under hyperbaric conditions. I have established scientific methodologies [60-66] and analytical protocols [66-70] to assess experimentally the ecological and physiological responses of marine invertebrates to environmental stressors namely temperature and hydrostatic pressure [64,71,72]. Within a few years of this research, and resulting from experimental work carried out both on land and at sea, I developed an understanding of how the deep ocean may have been colonized by shallow-water organisms, in particular following large-scale extinction events of the geological past [73]. My research challenges previous ideas of an evolutionarily slow process in the transition of life from shallow to deep seas; indeed, this research suggests that migration of species to greater depths may be rapid (perhaps a matter of generations) and in response to the intensity of natural/anthropogenic perturbations. This research corroborates suggested process of past shifts in depth range in response to climatic drivers [2,8,73], including the emergence of deep-sea organisms into shallow-water, which at high latitudes of polar seas is facilitated by polar isothermy [2,7,8]. My research also provides a novel mechanistic insight into the physiological processes of temperature-pressure acclimation and tolerance [71,72,74]. Further, it also provides an evolutionary perspective for shifts in depth range in ectotherms away from isothermal water bodies, particularly at temperate latitudes. Such knowledge is key to

understanding better physiological bottlenecks in the radiation and speciation of organisms throughout the oceans [7,8,73,75].

The physiological and combined hydrostatic pressure and temperature window that is tolerated by marine ectotherms depends on a species' ancestral experience over its evolutionary past. To identify the different thermal pathways in evolutionary pressure and temperature adaptations, my research has focused on key species with well-established phylogenies that allow for identifying past climate bottlenecks in their radiation history [67,68,75,76]. Whether a species is of cold- or warm-water origin has been shown to play a fundamental role in the ability of extant species to tolerating pressure [60,66-68,75,77]. Striking similarities in physiological responses have been found in deep-sea and related shallow-water faunas at various levels of organismal organisation, ranging from respiratory physiology, thermal tolerance to heat-shock protein responses, pointing at close evolutionary histories [60,67,68,78]. Cold-water adaptation has been found in species of cold-water origin, the common whelk *Buccinum undatum*, in which a combination of low temperatures and high hydrostatic pressures demonstrates the greatest physiological tolerance [77,79]. Unique in this research was the establishment of full thermal and pressure tolerance windows in several species under investigation [62,71,78-80]. A remarkable feature is that all species under investigation, whether of cold or warm water origin, were shown to tolerate pressures much greater than those found over their natural bathymetric range [62,71,73,77,80]. This physiological scope is key to the hypothesis that many marine ectotherms are readily adapted, at least in terms of physiological scope, to change their depth distribution in response to ecosystem perturbations.

Hydrostatic pressure tolerance can be assessed at various levels of organisation of an organism. I have demonstrated that the hydrostatic pressure scope of an organism is narrowed by specific dynamic action (SDA), such as feeding or escape response [64,65]. This is crucial, as ectotherms do present much greater pressure and thermal tolerances in a standard (resting) metabolic rate [62,64] when excluding any SDA, which is key to the animals' ecology and therefore long-term sustenance. Maximum heart rate is a good indicator of approaching a hyperbaric threshold, alongside reaching a maximum in respiration rate or a collapse of the same [61,65,66]. Standard (resting) metabolic rate is generally affected by temperature, whereas behaviour responds much earlier to an increase in pressure [64]. Loss of equilibrium – when an organism falls on its side – is also a good indicator of pressure tolerance as well as preceding limits in respiratory capacity [62,71,72].

To assess the stress response to pressure and temperature at cellular level, I used stress-70 proteins [67-70,81] as well as genetic markers for the respiratory and neurological systems [70,82]. It has been shown that related deep-sea and shallow-water shrimp respond to temperature stress at different levels of magnitude with regard to heat-shock protein (HSP70) response, indicating a high level of plasticity in response to thermal stress [67,68,83]. In shallow-water species acclimated to different temperatures, the thermal resilience improves with acclimation history, and a heat-shock response can still be elicited at temperatures above those experienced in nature [84]. By exploring the molecular basis of pressure tolerance I was able to show that the shrimp *Palaemon varians* shows significant increases in the transcription of genes coding for a *N*-methyl-D-aspartate (NMDA) receptor-regulated protein, an ADP ribosylation factor, β -actin, two heat shock protein 70kDa isoforms (HSP70), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in response to elevated pressure [69,70]. These data indicate that the sub-lethal effects of barotrauma are associated with transcriptional disturbances within the nervous tissue of crustaceans, and cellular macromolecular damage [69,70,82]. Such transcriptional changes lead to the onset of symptoms similar to that described as High Pressure Neurological Syndrome in mammals, and may act as a limit to shallow water organisms' prolonged survival at depth [70]. I demonstrated a decrease in hydrostatic pressure tolerance as ontogeny advances, as demonstrated in the larval development of lithodid crab [85], which is critical when assessing the ability of marine invertebrates to disperse.

By establishing a synthesis describing physiological mechanism, I could show that NMDA receptor regulation underlies physiological intolerance to both low temperature and high hydrostatic pressure [74], where pressure can diminish the efficacy of receptor blockade and augment NMDA receptor synaptic responses, leading to hyper-excitability and potentially to neurotoxicity. Where naturally occurring or anthropogenically-mediated metal toxicants, such as copper and cadmium, come into play, low temperature has been shown to reduce toxicity (survival rates) in both metals [86,87]. By contrast, elevated pressure increased copper toxicity but did not affect cadmium toxicity [87]. These findings are important when assessing species' resilience to environmental effects on toxicity [88].

I demonstrated that the depth distribution of marine ectotherms is predominantly limited by their ability to maintain aerobic metabolism [64-66,89]. Though the hypoxia threshold appears to determine depth tolerance, hydrostatic pressure does still play an important role in this process [63,89]. When depth is included in a conceptual model of determining the Fundamental Ecological Niches (FEN) of marine invertebrates and fishes, it has been demonstrated for the

first time that temperate as well as tropical faunas experience FEN expansion – with regard to depth – with ocean warming, although polar fauna experience the greatest FEN contraction. The ability of marine ectotherms to respond to ocean warming by e.g. moving to greater water depths is of increasing concern. In this context, I showed that, indeed, at least some marine caridean shrimps, e.g. of the genus *Palaemon*, are capable of rapidly making use of their physiological scope and quickly complete acclimation – within only a week – to deep-sea conditions [71,72]. The model genus *Palaemon*, which is related to hydrothermal vent bresiliid shrimp, provides important insights into the evolutionary pathways of colonising the deep sea. The capacity to tolerate deep-sea pressures in this context has also been shown for mollusc species [60,77,80] and other decapod crustacean [66].

Both temperature and hydrostatic pressure have been shown to govern the evolutionary history of marine ectotherms by providing bottlenecks, as well as physiological avenues, to their radiation and speciation over geological periods of time [8,75,76]. In this context, I demonstrated that the step from shallow to deep living is of energetic cost to the organism. Indeed, reproductive expenditures in embryo development have been shown to increase under hydrostatic pressure, and this increased metabolic cost seen in shallow-water organism exposed to deep-sea pressures does indicate the need for metabolic adaptation in the transition to deep-sea life [90], at least when transitioning to abyssal depths. It should be noted however, that it is temperature not pressure that has been shown to be significant as a selective force behind an increase in per offspring investment (POI) in lithodid crabs [47,49]; POI does increase with ocean depth and within a framework supported by the phylogenetic history of decapod crustacean family (Lithodidae) [75,76].

The hyperbaric physiology research carried out to date already points at a phenomenon of global scale that has been widely ignored: the potential necessity for organisms to respond to surface water warming or other forms of natural or anthropogenic ecosystem disturbance by moving to greater depth. Potential habitat contractions across depths in response to environmental drivers, such as surface water warming or ocean acidification, have previously been recognized. The assessment of the ability of organisms to respond to these has been championed by my research. I advocate that understanding the ‘winners and losers’ of tomorrow’s race for habitat at greater depth [72,73,77,89], will be of equal importance to the once groundbreaking and long established understanding of latitudinal shifts in the distribution of organisms in response to global warming.

Selected publications on which DSc submission is based

[publications listed in order of appearance in DSc Synopsis]

(statement indicating nature and contribution to each publication by applicant)

(*) reference to ten most significant publications

1) *Scale-dependent climatic drivers of Southern Ocean biodiversity*

[1] (*) **Thatje, S.**, K. Anger, J.A. Calcagno, G.A. Lovrich, H.O. Pörtner, W.E. Arntz (2005). Challenging the cold: crabs reconquer the Antarctic. *Ecology*, 86 (3): 619-625.
(ST conceived idea, analysed data, and wrote article).

[2] (*) **Thatje, S.**, C.D. Hillenbrand, R. Larter (2005). On the origin of Antarctic marine benthic community structure. *Trends in Ecology & Evolution*, 20 (10): 534-540.
(ST conceived idea, wrote article in collaboration with co-authors).

[3] (*) **Thatje, S.**, C.D. Hillenbrand, A. Mackensen, R. Larter (2008). Life hung by a thread: endurance of Antarctic fauna in glacial periods. *Ecology*, 89(3): 682-692.
(ST conceived idea, wrote article in collaboration with co-authors).

[4] **Thatje, S.** (2012). Effects of capability for dispersal on the evolution of diversity in Antarctic benthos. *Integrative and Comparative Biology*. 52 (4): 470-482. DOI: 10.1093/icb/ics105
(ST conceived idea and wrote article).

[5] (*) Aronson, R.B., **S. Thatje**, A. Clarke, L.S. Peck, D.B. Blake, C.D. Wilga, B.A. Seibel (2007). Climate change and invasibility of the Antarctic benthos. *Annual Review of Ecology, Evolution, and Systematics*, 38: 129-154. DOI:10.1146/annurev.ecolsys.38.091206.095525
(ARB and ST conceived the study and wrote article in collaboration with co-authors).

[6] Aronson, R.B., **S. Thatje**, J.B. McClintock, K.A. Hughes (2011). Anthropogenic Impacts on Marine Ecosystems in Antarctica. Book Series: Year in Evolutionary Biology. *Annals of the New York Academy of Sciences* 1223: 82–107. DOI: 10.1111/j.1749-6632.2010.05926.x
(ARB and ST conceived the study and wrote article in collaboration with co-authors).

[7] (*) Aronson, R.B., K.E. Smith, S.C. Vos, J.B. McClintock, M.O. Amsler, P.O. Moksnes, D.S. Ellis, J.W. Kaeli, H. Singh, J.W. Bailey, J.C. Schiferl, R. van Woesik, M.A. Martin, B.V. Steffel, M.E. Deal, S.M. Lazarus, J.N. Havenhand, R. Swalethorp, S. Kjellerup, **S. Thatje**

(2015). No barrier to shoreward expansion of bathyal king crabs on the Antarctic Shelf. *Proceedings of the National Academy of Sciences*. doi:10.1073/pnas.1513962112
(ST conceived idea, which was then developed further with ARB; ST contributed to data analysis, and co-wrote article).

[8] Raupach, M.J., **S. Thatje**, J. Dambach, P. Rehm, B. Misof, F. Leese (2010). Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species in the Southern Ocean. *Marine Biology*: 157: 1783-1797. DOI:10.1007/s00227-010-1451-3
(ST and MJP conceived idea; ST co-wrote article).

[9] Dambach, J., **S. Thatje**, D. Rödder, B. Zeenatul, M.J. Raupach (2012). Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic decapod crustaceans. *PLoS ONE* 7 (9): e46283. DOI: 10.1371/journal.pone.0046283
(PhD work JD; ST developed idea with JD and MJR, and co-wrote article).

[10] Arntz, W.E., **S. Thatje**, D. Gerdes, J.M. Gili, J. Gutt, U. Jacob, A. Montiel, C. Orejas, N. Teixidó (2005). The Antarctic-Magellan connection: Macrobenthos ecology on the shelf and upper slope, a progress report. *Scientia Marina* 69 (Supplement 2): 237-269.
(ST contributed to idea, data, and co-wrote article).

[11] Arntz, W.E., **S. Thatje**, K. Linse, C. Avila, M. Ballesteros, D.K.A. Barnes, T. Cope, F.J. Cristóbo Rodríguez, C. De Broyer, J. Gutt, E. Isla, P. López-González, A. Montiel, T. Munilla, A.A. Ramos Esplá, M. Raupach, M. Rauschert, E. Rodríguez, N. Teixidó (2006). Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. *Polar Biology*, 29: 83-96.
(WEA, KL and ST developed idea, carried out data sampling and analyses, ST co-wrote article).

[12] Rogers, A.D., Tyler, P.A., Connelly, D.P., Copley, J.T., James, R., Larter, R.D., Linse, K., Mills, R.A., Naveira-Garabato, A., Pancost, R.D., Pearce, D.A., Polunin, N., German, C.R., Shank, T., Alker, B., Aquilina, A., Bennett, S.A., Clarke, A., Dinley, J., Graham, A.G.C., Green, D., Hawkes, J., Hepburn, L., Hilario, A., Huvenne, V.A.I., Marsh, L., Ramirez-Llodra, E., Reid, W., Roterman, C.N., Sweeting, C., **Thatje, S.**, Zwirglmaier, K. (2012). The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography. *PLoS Biology* 10 (1): DOI: e1001234
(ST participated in fieldwork; contributed to analyses, co-wrote article).

[13] Rehm, P., **S. Thatje**, W.E. Arntz, A. Brandt, O. Heilmayer (2006). Distribution and composition of macrozoobenthic communities along a Victoria-Land transect (Ross Sea, Antarctica). *Polar Biology*, 29: 782-790. doi:10.1007/s00300-006-0155-8

(PhD work PR; idea developed by all; ST contributed to data analysis, and co-wrote article).

[14] Rehm, P., **S. Thatje**, A. Brandt, U. Mühlenhardt-Siegel (2007). Distribution and composition of the peracarid crustacean fauna in the Ross Sea (Antarctica) with special emphasis on the Cumacea. *Polar Biology*, 30: 871-881. doi:10.1007/s00300-006-0247-x
(PhD work PR; ST, AB and PR developed idea; ST co-wrote article).

[15] Rehm, P., R.A. Hooke, **S. Thatje** (2011). Macrofaunal communities on the continental shelf off Victoria Land (Ross Sea, Antarctica). *Antarctic Science*, 23 (5): 449-455. doi:10.1017/S00954102011000290.
(undergraduate thesis RAH; ST and PR developed idea; ST co-analysed data, and co-wrote article).

[16] Smith, K.E., **S. Thatje**, H. Singh, M.O. Amsler, S.C. Vos, J.B. McClintock, A. Brown, D. Ellis, C.J. Brothers, J. Anderson, R.B. Aronson (2014). Discovery of a recent natural whale fall on the continental slope off Anvers Island, western Antarctic Peninsula. *Deep-Sea Research Part I: Oceanographic Research Papers*, 90: 76-80. doi:10.1016/j.dsr.2014.04.013
(ST co-wrote manuscript and developed idea and data analysis with KES).

[17] **Thatje, S.**, E. Mutschke (1999). Distribution of abundance, biomass, production and productivity of macrozoobenthos in the sub-Antarctic Magellan Province (South America). *Polar Biology*, 22 (1): 31–37.
(ST conceived idea, analysed data, and wrote article).

[18] Glover, A.G, A.J. Gooday, D.M. Bailey, D.S.M. Billett, P. Chevaldonné, A. Colaço, J. Copley, D. Cuvelier, D. Desbruyères, V. Kalogeropoulou, M. Klages, N. Lampadariou, C. Lejeusne, N.C. Mestre, G.L.J. Paterson, T. Perez, H. Ruhl, J. Sarrazin, T. Soltwedel, E.H. Soto, **S. Thatje**, A. Tselepides, S. Van Gaever, A. Vanreusel (2010). Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. *Advances in Marine Biology*, 58: 1-95. doi:10.1016/S0065-2881(10)58001-5
(ST contributed to data and co-wrote article)

[19] De Broyer, C., B. Danis, & 64 taxonomic editors, including **S. Thatje** (2011). How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. *Deep-Sea Research, Part II*, 58: 5–17. doi:10.1016/j.dsr2.2010.10.007
(ST co-wrote article).

[20] **Thatje, S.**, W.E. Arntz (2004). Antarctic reptant decapods: more than a myth? *Polar Biology*, 27: 195-201.
(ST conceived idea and wrote article).

[21] **Thatje, S.** (2003). *Campylonotus arntzianus*, a new species of the Campylonotidae (Crustacea: Decapoda: Caridea) from the Scotia Sea (Antarctica). *Polar Biology*, 26: 242–248. (ST analysed data and wrote article).

[22] **Thatje, S.**, L. Marsh, C.N. Roterman, M.N. Mavrogordato, K. Linse (2015). Adaptations to hydrothermal vent life in *Kiwa tyleri*, a new species of yeti crab from the East Scotia Ridge, Antarctica. *PLoS ONE*, doi:10.1371/journal.pone.0127621 (ST conceived idea, analysed data and wrote article).

[23] Spiridonov, V., M. Türkay, W.E. Arntz, **S. Thatje** (2006). A new species of the genus *Paralomis* (Crustacea: Decapoda: Lithodidae) from the Spiess seamount near Bouvet Island (Southern Ocean), with notes on habitat and ecology. *Polar Biology*, 29: 137–146. (ST conceived idea, co-analysed data and co-wrote article).

[24] Hall, S., **S. Thatje** (2009). Four new species of the family Lithodidae (Crustacea: Decapoda) from the collections of the National Museum of Natural History, Smithsonian Institution. *Zootaxa*, 2302: 31–47. (PhD work SH, SH and ST conceived idea, ST co-wrote article).

[25] **Thatje, S.**, A.N. Lörz (2005). First record of lithodid crabs from Antarctic waters off the Balleny Islands. *Polar Biology*, 28: 334-337. (ST conceived idea, analysed data, and wrote the article).

[26] **Thatje, S.**, S. Hall, C. Hauton, C. Held, P.A. Tyler (2008). Encounter of lithodid crab *Paralomis birsteini* on the continental slope off Antarctica, sampled by ROV. *Polar Biology*, 31: 1143-1148. DOI10.1007/s00300-008-0457-5 (ST conceived idea, co-analysed data, and wrote article).

[27] Smith, K.E., R.B. Aronson, B.V. Steffel, M.O. Amsler, **S. Thatje**, H. Singh, J. Anderson, C.J. Brothers, A. Brown, D.S. Ellis, J.N. Havenhand, W.R. James, P.O. Moksnes, A.W. Randolph, T. Sayre-McCord, J.B. McClintock (2017). Climate change and the threat of novel marine predators in Antarctica. *Ecosphere* 8(11): e02017. doi: 10.1002/ecs2.2017 (KES, RBA and ST conceived idea; all authors contributed to writing).

[28] **Thatje, S.** (2005). The future fate of the Antarctic marine biota? *Trends in Ecology and Evolution*, 20 (8): 418-419. (ST conceived idea and wrote article).

[29] Yager, P.L., R.M. Sherrell, A.C. Alderkamp, O. Schofield, H. Ducklow, K.R. Arrigo, S. Bertilsson, K.E. Lowry, P.O. Moksnes, K. Ndungu, A.F. Post, E. Randall-Goodwin, L. Riemann, S. Severmann, **S. Thatje**, G.L. Van Ducken, S. Wilson (2012). The Amundsen Sea

polynya international research expedition (ASPIRE). *Oceanography*, 25(3): 40–53. doi.org/10.5670/oceanog.2012.73
(ST co-wrote article).

[30] **Thatje, S.**, E. Steventon, O. Heilmayer (2018). Energetic changes throughout early ontogeny of the brooding Antarctic sea star *Rhopiella hirsuta* (Koehler, 1920). *Polar Biology*, 41: 1297–1306. doi: 10.1007/s00300-018-2285
(Undergraduate thesis work ES, all authors analysed data; ST wrote article).

[31] Higgs, N.D., A.J. Reed, R. Hooke, D.J. Honey, O. Heilmayer, **S. Thatje** (2009). Growth and reproduction in the brooding Antarctic bivalve, *Adacnarca nitens* (Phylobridae) from the Ross Sea. *Marine Biology*, 156: 1073–1081. doi:10.1007/s00227-009-1154-9
(ST conceived and developed idea, co-analysed data, and co-wrote article).

[32] Heilmayer, O., **S. Thatje**, C. McClelland, K. Conlan, T. Brey (2008). Changes in biomass and elemental composition during early ontogeny of the Antarctic isopod crustacean *Ceratoserolis trilobitoides*. *Polar Biology*, 31: 1325–1331. doi:10.1007/s00300-008-0470-8
(ST and HO conceived idea, analysed data and wrote article).

[33] Reed, A.J., **S. Thatje**, K. Linse (2013). An unusual hermaphrodite reproductive trait in the Antarctic brooding bivalve *Lissarca miliaris* (Philobryidae) from the Scotia Sea (Southern Ocean). *Polar Biology*, 36: 1–11. DOI:10.1007/s00300-012-1233-0
(PhD work AJR; ST conceived and developed idea with AJR, co-wrote article).

[34] Reed, A.J., J.P. Morris, K. Linse, **S. Thatje** (2014). Reproductive morphology of the deep-sea protobranch bivalves *Yoldiella ecaudata*, *Yoldiella sabrina*, and *Yoldiella valettei* (Yoldiidae) from the Southern Ocean. *Polar Biology*, 37: 1383–1392. doi:10.1007/s00300-014-1528-4
(PhD work AJR; ST conceived and developed idea with AJR, co-wrote article).

[35] **Thatje, S.**, R. Bacardit (2000). Larval development of *Austropandalus grayi* (Cunningham, 1871) (Decapoda: Caridea: Pandalidae) from the southwestern Atlantic Ocean. *Crustaceana*, 73 (5): 609–628.
(ST and RB conceived idea, ST wrote article).

[36] **Thatje, S.**, R. Bacardit (2000). Larval stages of *Chorismus tuberculatus* (Decapoda: Caridea: Hippolytidae) from the south-western Atlantic Ocean. *Journal of the Marine Biological Association of the United Kingdom* 80: 465–471.
(ST and RB conceived idea, ST wrote article).

[37] Tapella, F., G.A. Lovrich, M.C. Romero, **S. Thatje** (2002). Reproductive biology of the crab *Munida subrugosa* (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. *Journal of the Marine Biological Association of the United Kingdom*, 82 (4): 589–595.
(ST contributed to data and co-wrote article).

[38] **Thatje, S.**, G.A. Lovrich (2003). Decapodid and early juvenile development in the protandrous shrimp *Campylonotus vagans* Bate, 1888 (Crustacea: Decapoda), with notes on larval morphology. *Journal of the Marine Biological Association of the United Kingdom*, 83 (1): 103–109.
(ST and GAL conceived idea, ST analysed data and wrote co-article).

[39] **Thatje, S.**, R. Bacardit, W.E. Arntz (2005). Larvae of the deep-sea Nematocarcinidae (Crustacea: Decapoda: Caridea) from the Southern Ocean. *Polar Biology*, 28: 290-302.
(ST and RB conceived idea, ST analysed data, ST wrote the article).

[40] Pérez-Barros, P., **S. Thatje**, J.A. Calcagno, G.A. Lovrich (2007). Larval development of the subantarctic squat lobster *Munida subrugosa* (Decapoda: Galatheidae), reared in the laboratory. *Journal of Experimental Marine Biology and Ecology* 352: 35–41.
doi:10.1016/j.jembe.2007.06.035
(ST co-wrote article).

[41] Reed, A.J., J.P. Morris, K. Linse, **S. Thatje** (2013). Plasticity in shell morphology and growth among deep-sea protobranch bivalves of the genus *Yoldiella* (Yoldiidae) from contrasting Southern Ocean regions. *Deep-Sea Research Part I: Oceanographic Research Papers*, 81: 14-24. DOI: 10.1016/j.dsr.2013.07.006
(PhD work AJR; ST conceived and developed idea with AJR, co-wrote article).

[42] Reed, A.J., K. Linse, **S. Thatje** (2014). Differential adaptations between cold-stenothermal environments in the bivalve *Lissarca cf. miliaris* (Philobryidae) from the Scotia Sea islands and Antarctic Peninsula. *Journal of Sea Research*, 88: 11-20. DOI: 10.1016/j.seares.2013.12.008
(PhD work AJR; ST conceived and developed idea with AJR, co-wrote article).

[43] Fischer, S., **S. Thatje** (2008). Temperature-induced oviposition in the brachyuran crab *Cancer setosus* along a latitudinal cline: aquaria experiments and analysis of field data. *Journal of Experimental Marine Biology and Ecology*, 357: 157-164. doi:10.1016/j.jembe.2008.01.007
(PhD work SF; ST conceived idea and co-wrote article).

[44] Fischer, S., **S. Thatje**, M. Graeve, K. Paschke, G. Kattner (2009). Bioenergetics of early life history stages of the brachyuran crab *Cancer setosus* in response to changes in temperature. *Journal of Experimental Marine Biology and Ecology*, 374: 160–166.
doi:10.1016/j.jembe2009.04.019

(PhD work SF; ST conceived idea and co-wrote article).

[45] Fischer, S., **S. Thatje**, T. Brey (2009). Early egg traits in *Cancer setosus* (Decapoda, Brachyura): effects of temperature and female size. *Marine Ecology Progress Series*, 377: 193-202. doi:10.3354/meps07845

(PhD work SF; ST conceived idea, co-analysed data, and co-wrote article).

[46] Weiss, M., **S. Thatje**, O. Heilmayer (2010). Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab *Cancer setosus* across latitude. *Helgoland Marine Research*. 64(2): 125–133. doi:10.1007/s10152-009-0173-8

(PhD work MW; ST conceived idea, co-analysed data, and co-wrote article).

[47] **Thatje S.**, S. Hall (2016). The effect of temperature on the evolution of per offspring investment in a globally distributed family of marine invertebrates (Crustacea: Decapoda: Lithodidae). *Marine Biology*, 163: 48. doi: 10.1007/s00227-015-2776-8

(ST developed idea, both authors analysed data, ST wrote manuscript).

[48] Lovrich, G.A., M.C. Romero, F. Tapella, **S. Thatje** (2005). Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). *Scientia Marina* 69 (Supplement 2): 183-193.

(GAL and ST developed idea; ST contributed to data, and co-wrote article).

[49] **Thatje, S.**, N.C. Mestre (2010). Energetic changes throughout lecithotrophic larval development in the deep-sea lithodid crab *Paralomis spinosissima* from the Southern Ocean. *Journal of Experimental Marine Biology and Ecology*, 386: 119-124. DOI:10.1016/j.jembe.2010.02.015

(ST conceived idea, analysed data with NCM, and wrote article).

[50] **Thatje, S.**, K.E. Smith, L. Marsh. P.A. Tyler (2015). Evidence for abbreviated and lecithotrophic larval development in the yeti crab *Kiwa tyleri* from hydrothermal vents of the East Scotia Ridge, Southern Ocean. *Sexuality and Early Development in Aquatic Organisms*, 1: 109–116. doi:10.3354/sedao00011

(ST developed the idea, co-analysed data, and wrote article).

[51] Reid, W., J. Watts, S. Clarke, M. Belchier, **S. Thatje** (2007). Egg development, hatching rhythm and moult patterns in reared *Paralomis spinosissima* (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean). *Polar Biology*, 30: 1213–1218. doi:10.1007/s00300-007-0279-x

(ST developed the idea, co-analysed data, and co-wrote article).

[52] Watts, J., **S. Thatje**, S. Clarke, M. Belchier (2006). A description of larval and early juvenile development in *Paralomis spinosissima* (Decapoda: Anomura: Paguroidea:

Lithodidae) from South Georgia waters (Southern Ocean). *Polar Biology*, 29: 1028–1038. doi:10.1007/s00300-006-0146-1
(ST developed the idea, co-wrote article).

[53] Oliphant, A., **S. Thatje** (2013). Per offspring investment implications for crustacean larval development: evolutionary insights into endotrophy and abbreviated development. *Marine Ecology Progress Series*, 493: 207-217. doi:10.3354/meps10496
(PhD thesis work AO; AO and ST conceived idea; co-analysed data, and co-wrote article).

[54] Oliphant, A., M.C. Ichino, **S. Thatje** (2014). The influence of Per Offspring Investment (POI) and starvation on larval developmental plasticity within the palaemonid shrimp, *Palaemonetes varians*. *Marine Biology*. doi:10.1007/s00227-014-2486-7
(PhD thesis work AO; AO and ST conceived idea; ST co-wrote article).

[55] Aronson, R.B., M. Frederich, R. Price, **S. Thatje** (2015). Prospects for the return of shell-crushing crabs to Antarctica. *Journal of Biogeography*, 42: 1–7. doi:10.1111/jbi.12414
(ST conceived idea, ST co-wrote article).

[56] Smith, K.E., R.B. Aronson, **S. Thatje**, G.A. Lovrich, M.O. Amsler, B.V. Steffel, J.B. McClintock (2017). Biology of the king crab *Paralomis birsteini* on the continental slope off the western Antarctic Peninsula. *Polar Biology*, 40: 2313-2322. doi: 10.1007/s00300-017-2145-9
(ST and KES conceived idea, and analysed data; all authors wrote article).

[57] Hall, S., **S. Thatje** (2011). Temperature driven biogeography of the family Lithodidae (Decapoda: Crustacea) in the Southern Ocean. *Polar Biology*, 34: 363-370. DOI: 10.1007/s00300-010-0890-0
(PhD work SH; ST conceived idea, contributed to data analysis, and co-wrote article).

[58] Reed, A.J., **S. Thatje**, K. Linse (2012). Shifting baselines in Antarctic ecosystems: ecophysiological response to warming in *Lissarca miliaris* at Signy Island, Antarctica. *PLoS ONE*, 7(12): e53477. doi:10.1371/journal.pone.0053477
(PhD work AJR; ST conceived idea and co-wrote article).

[59] Reed, A.J., **S. Thatje** (2015). Long-term acclimation and potential scope for thermal resilience in Southern Ocean bivalves. *Marine Biology*, 162: 2217–2224. doi:10.1007/s00227-015-2752-3
(PhD work AJR; ST conceived idea and co-wrote manuscript).

2) The role of hydrostatic pressure in governing aquatic biodiversity

[60] (*) Mestre, N., **S. Thatje**, P.A. Tyler (2009). The ocean is not deep enough: pressure tolerances during early ontogeny of the blue mussel *Mytilus edulis*. *Proceedings of the Royal Society B – Biological Sciences*, 276: 717-726. DOI10.1098.rspb.2008.1376
(PhD work NM; ST conceived idea, contributed to data, co-wrote article).

[61] Robinson, N.J., **S. Thatje**, C. Osseforth (2009). Heartbeat sensors under pressure: a new method for assessing hyperbaric physiology. *High Pressure Research*, 29: 422-430. doi:10.1080/08957950903076398
(MSci thesis work CO, NJR; ST conceived idea, contributed to data, and co-wrote article).

[62] Oliphant, A., **S. Thatje**, A. Brown, M. Morini, J. Ravaux, B. Shillito (2011). Pressure tolerance of the shallow-water caridean shrimp, *Palaemonetes varians*, across its thermal tolerance window. *The Journal of Experimental Biology*: 214 (7): 1109-1117. DOI: 10.1242/jeb.048058
(student research project AO; ST conceived idea and experimental design with BS, JR; contributed to data, co-wrote article).

[63] Brown, A., **S. Thatje** (2011). Respiratory response of the deep-sea amphipod *Stephonyx biscayensis* indicates bathymetric range limitation by temperature and hydrostatic pressure. *PLoS ONE*, 6 (12): e28562. DOI: 10.1371/journal.pone.0028562
(MSci thesis AB; ST conceived idea, co-analysed data, and co-wrote article).

[64] **Thatje, S.**, L.M. Casburn, J.A. Calcagno (2010). Behavioural and respiratory response of the shallow-water hermit crab *Pagurus cuanensis* to hydrostatic pressure and temperature. *Journal of Experimental Marine Biology and Ecology*, 390: 22-30. DOI:10.1016/j.jembe.2010.04.028
(MSci thesis work LMC; ST conceived idea with JAC, contributed to data, ST wrote article).

[65] **Thatje, S.**, N. Robinson (2011). Specific dynamic action affects the hydrostatic pressure tolerance of the shallow water spider crab *Maja brachydactyla*. *Naturwissenschaften*, 98: 299-313. DOI: 10.1007/s00114-011-0768-1
(MSci thesis work NR; ST conceived idea and experimental design, contributed to data, and wrote article).

[66] (*) Brown, A., **S. Thatje**, J.P. Morris, A. Oliphant, E.A. Morgan, C. Hauton, D. Jones, D.W. Pond (2017). Metabolic costs imposed by hydrostatic pressure constrain bathymetric

range in the lithodid crab *Lithodes maja*. Journal of Experimental Biology, 220: 3916-3926. doi: 10.1242/jeb.158543

(PhD thesis AB; ST conceived idea; ST contributed to data analysis and writing).

[67] Cottin, D., B. Shillito, T. Chertemps, **S. Thatje**, N. Léger, J. Ravaux (2010). Comparison of heat-shock responses between the hydrothermal vent shrimp *Rimicaris exoculata* and the related coastal shrimp *Palaemonetes varians*. Journal of Experimental Marine Biology and Ecology, 393: 9-16. DOI:10.1016/j.jembe.2010.06.008

(PhD work DC; ST conceived study with DB, BS, JR, and co-wrote article).

[68] Cottin, D., A. Brown, A. Oliphant, N. Mestre, J. Ravaux, B. Shillito, **S. Thatje** (2012). Sustained hydrostatic pressure tolerance of the shallow water shrimp *Palaemonetes varians* at different temperatures: Insights into the colonisation of the deep sea. Comparative Biochemistry and Physiology A, 162: 357-363. DOI: 10.1016/j.cbpa.2012.04.005

(PhD work DC; ST conceived idea and in discussion with co-authors, and co-wrote article).

[69] Morris, J.P., **S. Thatje**, D. Cottin, A. Oliphant, A. Brown, B. Shillito, J. Ravaux, C. Hauton (2015). Insights into the potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, *Palaemonetes varians*. Royal Society Open Science, 2: 150472. doi:10.1098/rsos.150472

(PhD work JPM; ST, CH, JPM conceived idea; ST co-wrote article).

[70] Morris, J.P., **S. Thatje**, J. Ravaux, B. Shillito, D. Fernando, C. Hauton (2015). Acute combined pressure and temperature exposures on a shallow-water crustacean: novel insights into the stress response and high pressure neurological syndrome. Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology, 181: 9-17. doi:10.1016/j.cbpa.2014.10.028

(PhD work JPM, ST and CH conceived idea; ST co-wrote article).

[71] New, P., A. Brown, A. Oliphant, P. Burchell, A. Smith, **S. Thatje** (2014). The effects of pressure and temperature acclimation on the temperature and pressure tolerance of the shallow-water shrimp *Palaemonetes varians*. Marine Biology, 161: 697-709. doi:10.1007/s00227-013-2371-9

(undergraduate theses PN, PB, AS; ST developed idea with AB, AO; ST co-wrote article).

[72] Pallaretti, L., A. Brown, **S. Thatje** (2018). Variability in hydrostatic pressure tolerance between *Palaemon* species: implications for insights into the colonisation of the deep sea. Journal of Experimental Marine Biology and Ecology, 503: 66-71. doi: 10.1016/j.jembe.2018.02.011

(Degree thesis LP; ST and AB conceived idea; all authors wrote article).

[73] (*) Brown, A., **S. Thatje** (2013). Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. *Biological Reviews*, 89: 406-426. doi:10.1111/brv.12061.
(PhD work AB; both authors developed idea, presented data, and wrote article).

[74] Brown, A., **S. Thatje** (2018). NMDA receptor regulation underlies physiological intolerance to both low temperature and high hydrostatic pressure. *Frontiers in Marine Science*, 5:93. doi: 10.3389/fmars.2018.00093
(AB conceived idea, ST co-wrote article).

[75] Hall, S., **S. Thatje** (2018). Global evolution through cold and deep waters: the molecular phylogeny of the Lithodidae (Crustacea: Decapoda). *The Science of Nature*, 105, 19. doi: 10.1007/s00114-018-1544-2
(PhD work SH; SH and ST wrote the article).

[76] (*) Hall, S., **S. Thatje** (2009). Global bottlenecks in the distribution of marine Crustacea: temperature constraints in the family Lithodidae. *Journal of Biogeography*: 36: 2125-2135. DOI:10.1111/j.1365-2699.2009.02153.x
(PhD work SH; idea jointly developed; ST co-wrote article).

[77] Smith, K.E., **S. Thatje** (2012). The secret to successful deep-sea invasion: does low temperature hold the key? *PLoS ONE*, 7 (12): e51219. DOI: 10.1371/journal.pone.0051219
(PhD work KS; authors developed idea and ST co-wrote article).

[78] Smith, F., A. Brown, N.C. Mestre, A.J. Reed, **S. Thatje** (2013). Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. *Deep-Sea Research Part II: Topical Studies in Oceanography*, 92: 234-239. DOI: 10.1016/j.dsr2.2012.12.003i
(MSci thesis work by FS; ST conceived idea and co-wrote article).

[79] Smith, K.E., **S. Thatje**, C. Hauton (2013). Thermal tolerance during early ontogeny in the common whelk *Buccinum undatum* (L. 1785); bioenergetics, nurse egg partitioning and developmental success. *Journal of Sea Research*, 79: 32–39. doi:10.1016/j.seares.2013.01.008
(PhD work by KES; ST and KES jointly developed idea and all authors wrote article).

[80] Mestre, N.C., A. Brown, **S. Thatje** (2013). Temperature and pressure tolerance of larvae of *Crepidula fornicata* (L. 1758) suggests thermal limitation of bathymetric range. *Marine Biology*, 160 (4): 743-750. DOI: 10.1007/s00227-012-2128-x
(Authors jointly developed idea, analysed data and wrote article).

[81] Morris, J., **S. Thatje**, C. Hauton (2013). The use of stress-70 proteins in physiology: a critical re-appraisal. *Molecular Ecology*, 22 (6): 1494-1502. DOI: 10.1111/mec.12216

(PhD work JM; ST conceived idea, which was then developed with JM, CH; ST co-wrote article).

[82] Morris, J.P., **S. Thatje**, J. Ravaux, B. Shillito, C. Hauton (2015). Effects of acute hydrostatic pressure stress on marine invertebrates: insights into the hierarchy and kinetics of the stress response. *Journal of Experimental Biology*, 218 (16), 2594–2602. doi:10.1242/jeb.125914

(PhD work JPM; all authors developed idea; ST co-wrote article).

[83] Mestre, N.C., D. Cottin, R. Bettencourt, A. Colaço, S.P.C. Correira, B. Shillito, **S. Thatje**, J. Ravaux (2015). Is the deep-sea crab *Chaceon affinis* able to induce a thermal stress response? *Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology*, 181: 54–61. doi: 10.1016/j.cbpa.2014.11.015

(ST, BS, JR and MNC developed idea; ST co-wrote article).

[84] Ravaux, J., N. Leger, N. Rabet, M. Morini, M. Zbinden, **S. Thatje**, B. Shillito (2012). Adaptation to thermally variable environments: Capacity for acclimation of thermal limit and heat shock response in the shrimp *Palaemonetes varians*. *Journal of Comparative Physiology B*, 182: 899-907. DOI: 10.1007/s00360-012-0666-7

(ST developed idea with JR and BS, and co-wrote article).

[85] (*) Munro, C., J.P. Morris, A. Brown, C. Hauton, **S. Thatje** (2015). The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab *Lithodes maja*. *Proceedings of the Royal Society B – Biological Sciences*. doi:RSPB-2015-0577

(All authors developed idea; ST co-wrote article).

[86] Mevenkamp, L., A. Brown, A. Kordas, **S. Thatje**, C. Hauton, A. Vanreusel (2017). Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode *Halomonhystera disjuncta* to acute copper exposure. *Aquatic Toxicology*, 192: 178-183. doi: 10.1016/j.aquatox.2017.09.016

(ST, LW and AB conceived idea; all authors contributed to writing).

[87] Brown, A., **S. Thatje**, C. Hauton (2017). The effects of temperature and hydrostatic pressure on metal toxicity: Insights into toxicity in the deep sea. *Environmental Science & Technology*, 51. doi: 10.1021/acs.est.7b02988

(All authors developed idea; ST co-wrote article).

[88] Hauton, C., A. Brown, **S. Thatje**, N. Mestre, M.J. Bebianno, I. Martens, R. Bettencourt, M. Canals, A. Sanchez-Vidal, B. Shillito, J. Ravaux, M. Zbinden, S. Duperron, L. Mevenkamp, A. Vanreusel, C. Gambi, A. Dell'Anno, R. Danovaro, V. Gunn, P. Weaver (2017). The challenges

of identifying potential toxic impacts of deep-sea mining – a synthesis with recommendations for quantifying risk. *Frontiers in Marine Science*, 4: 368. doi: 10.3389/fmars.2017.00368
(CH, AB, ST conceived idea; ST co-wrote article).

[89] Brown, A., **S. Thatje** (2015). The effects of changing climate on faunal depth distributions determine winners and losers. *Global Change Biology*, 21: 173–180. doi:10.1111/gcb.12680
(PhD work AB; ST co-wrote article).

[90] Smith, K.E., A. Brown, **S. Thatje** (2015). The metabolic cost of developing under hydrostatic pressure: experimental evidence supports macroecological pattern. *Marine Ecology Progress Series*, 524: 71–82. doi:10.3354/meps11172
(ST conceived idea; contributed to data, co-wrote article).

CURRICULUM VITAE

Sven Thatje, Dipl. Biol., Dr. rer. nat.

Contact Details

Address: University of Southampton
National Oceanography Centre, Southampton
Ocean and Earth Science
European Way
Southampton, SO14 3ZH, UK

Telephone: +44 – (0) 23 8059 6449

Mobile: +44 – (0)7595 994132

E-mail: sthatje@icloud.com

Research Statement

I am a marine ecologist studying the evolutionary history of life in the sea, with special focus on the ecological and physiological adaptations of invertebrates to extreme ambient conditions prevailing in polar and deep-sea environments. I prioritize a highly multidisciplinary approach to my research, and aspire to unify the natural sciences, ranging from physiology, molecular biology, paleoecology, geology and geophysics within the encompassing field of ecology. I remain particularly interested in macroecological concepts, such as temperature-driven traits in reproduction as a result of latitudinal shifts in temperature and food availability. As part of such studies, I strive to understand better how the environment fosters maternal offspring provisioning and larval developmental plasticity, explaining traits found at intra- and inter-specific levels. Such knowledge is key to understand the mechanisms behind macroecological patterns of reproduction and diversity, observed with both depth and latitude. Furthermore, such knowledge allows predictions to be made for the future of marine biodiversity and biogeography in a rapidly changing world.

Professional career

October 2014 – to date	Associate Professor in <i>Marine Evolutionary Ecology</i> .
March 2011 – Sept 2014	Senior Lecturer in <i>Marine Evolutionary Ecology</i> .
August 2005 – March 2011	Lecturer, National Oceanography Centre, Southampton, School of Ocean and Earth Science, University of Southampton, United Kingdom.
Oct 2004 – Sept 2008	Coordinator of a project within the 6. European Framework Programme (INCO-STREP, “Climate variability and El Niño Southern Oscillation: implications for coastal natural Resources and management, CENSOR ”, total budget 3 Million EURO).
May 2003 – July 2005	Post-Doctoral Researcher at Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Departments: Comparative Ecosystem Research & Ecophysiology & Ecotoxicology; in collaboration with British Antarctic Survey, Cambridge, UK
Jan 2001 – May 2003	PhD-student, University of Bremen and Alfred Wegener Institute for Polar and Marine Research, Bremerhaven. PhD thesis: “Reproductive trade-offs in benthic decapod crustaceans of high southern latitudes: tolerance of cold and food limitation”, Disputation (Dr.rer.nat.): June 10, academic result “ <i>summa cum laude</i> ” (highest possible award).
March 2000	‘Dipl. Biol.’ (Master Sci.), University of Kiel, title of thesis: “Distribution and development of benthic macrofauna communities of the inner German Bight”.
1995 – 2000	Studies in Zoology, Marine Biology, Physical Oceanography, Marine Chemistry, University of Kiel, Germany.
1994 – 1995	Social Service, Hospital Preetz.
June 1994	Matriculation, Internatsgymnasium Schloß Plön (Germany).

Citation Index

Google Scholar lists **4,715** citations; h-index **37**; i10-index: **106** (accessed 08/08/19).

Research Gate: RG Score **41.93** (accessed 08/08/19)

Publications (peer-reviewed)

Review Articles

Hauton, C., A. Brown, **S. Thatje**, N. Mestre, M.J. Bebianno, I. Martens, R. Bettencourt, M. Canals, A. Sanchez-Vidal, B. Shillito, J. Ravaux, M. Zbinden, S. Duperron, L. Mevenkamp, A. Vanreusel, C. Gambi, A. Dell'Anno, R. Danovaro, V. Gunn, P. Weaver (2017). The challenges of identifying potential toxic impacts of deep-sea mining – a synthesis with recommendations for quantifying risk. *Frontiers in Marine Science*, 4: 368. doi:10.3389/fmars.2017.00368

Fischer, S., **S. Thatje** (2016). Temperature effects on life-history traits cause challenges to the management of brachyuran crab fisheries in the Humboldt Current: a review. *Fisheries Research*, 183: 461–468. doi:10.1016/j.fishres.2016.07.008

Brown, A., **S. Thatje** (2013). Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. *Biological Reviews*, 89: 406–426. doi:10.1111/brv.12061

Aronson, R.B., **S. Thatje**, J.B. McClintock, K.A. Hughes (2011). Anthropogenic Impacts on Marine Ecosystems in Antarctica. Book Series: Year in Evolutionary Biology. *Annals of the New York Academy of Sciences* 1223: 82–107. doi:10.1111/j.1749-6632.2010.05926.x

Glover, A.G, A.J. Gooday, D.M. Bailey, D.S.M. Billett, P. Chevaldonné, A. Colaço, J. Copley, D. Cuvelier, D. Desbruyères, V. Kalogeropoulou, M. Klages, N. Lampadariou, C. Lejeusne, N.C. Mestre, G.L.J. Paterson, T. Perez, H. Ruhl, J. Sarrazin, T. Soltwedel, E.H. Soto, **S. Thatje**, A. Tselepidis, S. Van Gaever, A. Vanreusel (2010). Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. *Advances in Marine Biology*, 58: 1–95. doi:10.1016/S0065-2881(10)58001-5

Larkin, K.E., Ruhl, H.A., Bagley, P., Benn, A., Bett, B.J., Billett, D.S.M., Boetius, A., Chevaldonné, P., Colaço, A., Copley, J., Danovaro, R., Escobar-Briones, E., Glover, A., Gooday, A.J., Hughes, J.A., Kalogeropoulou, V., Kitazato, H., Kelly-Gerrey, B.A., Klages,

M., Lampadariou, N., Lejeusne, C., Perez, T., Priede, I.G., Rogers, A., Sarradin, P.M., Sarrazin, J., Soltwedel, T., Soto, E.H., **Thatje, S.**, Tselepides, A., van den Hove, S., Tyler, P.A., Vanreusel, A., Wenzhöfer, F. (2010). Benthic biology time-series in the deep sea: indicators of change. In: Hall, J., Harrison, D.E. and Stammer, D. (eds.). *Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Vol. 2*. Noordwijk, The Netherlands, European Space Agency. (ESA Special Publication WPP-306): 18pp.

Aronson, R.B., **S. Thatje**, A. Clarke, L.S. Peck, D.B. Blake, C.D. Wilga, B.A. Seibel (2007). Climate change and invasibility of the Antarctic benthos. *Annual Review of Ecology, Evolution, and Systematics*, 38: 129-154. doi:10.1146/annurev.ecolsys.38.091206.095525

Thatje, S., W.E. Arntz (2004). Antarctic reptant decapods: more than a myth? *Polar Biology*, 27: 195–201

Thatje, S. (2003). Review of the Thalassinidea (Crustacea: Decapoda) from Chile and Argentina. *Anales del Instituto de la Patagonia, Serie Ciencias Naturales (Chile)*, 31: 115–122

Original Articles

Mestre, N.C., M. Auguste, L. de Sá, T.G. Fonseca, C. Cardoso, A. Brown, N. Charlemagne, C. Hauton, J. Machon, J. Ravaux, B. Shillito, **S. Thatje**, M. Zbinden, M. J. Bebianno (2019). Comparative sub-lethal effects of copper in deep-sea and shallow-water shrimps. *Marine Environmental Research*, doi:10.1016/j.marenvres.2019.104771 (in press)

Hellberg, M. E., R.B. Aronson, K.E. Smith, M.I. Duhon, S.T. Ahyong, G.A. Lovrich, **S. Thatje**, J.B. McClintock (2019). Population expansion of an Antarctic king crab? *Frontiers of Biogeography*, doi:10.21425/F5FBG4316

Brown, A., **S. Thatje** (2019). Growth in the northern stone crab *Lithodes maja* Linnaeus, 1758 (Decapoda: Anomura: Lithodidae), a potential fishery target, in the laboratory. *Journal of Crustacean Biology*, doi:10.1093/jcobiol/ruz052

Thatje, S., A. Brown, C.D. Hillenbrand (2019). Prospects for metazoan life in sub-glacial Antarctic lakes: the most extreme life on Earth? *International Journal of Astrobiology*, 18: 416–419. doi:10.1017/S1473550418000356

Brown, A., **S. Thatje**, A. Martinez, D. Pond, A. Oliphant (2019). The effect of high hydrostatic pressure acclimation on acute temperature tolerance and phospholipid fatty acid

composition in the shallow-water shrimp *Palaemon varians*. *Journal of Experimental Marine Biology and Ecology*, 514-515: 103–109. doi:10.1016/j.jembe.2019.03.011

Thatje, S., C.G. Dunbar, K.E. Smith (2019). Temperature-driven inter-annual variability in reproductive investment in the common whelk *Buccinum undatum*. *Journal of Sea Research*, 148-149: 17–22. doi:10.1016/j.seares.2019.03.003

Brown, A., **Thatje, S.**, A. Oliphant, C. Munro, K.E. Smith (2018). Temperature adaptation in larval development of lithodine crabs from deep-water lineages. *Journal of Sea Research*, 142: 167–173. doi:10.1016/j.seares.2018.09.017

Thatje, S., L. Marsh (2018). From hot waters of polar seas: the mysterious life of the male yeti crab. *Ecology*, 99 (12): 2868–2870. doi:10.1002/ecy.2468

Brown, A., **S. Thatje**, A. Oliphant, C. Munro, K.E. Smith (2018). Temperature effects on larval development in the lithodid crab *Lithodes maja*. *Journal of Sea Research*, 139: 73-84. doi: 10.1016/j.seares.2018.06.000

Peruzzi, L., M. Gerdol, A. Oliphant, D. Wilcockson, A. Pallavicini, L. Hawkins, **S Thatje**, C. Hauton (2018). The consequences of daily cyclic hypoxia on the European grass shrimp *Palaemon varians*: from short-term responses to long-term effects. *Functional Ecology*, doi:10.1111/1365-2435.13150

Brown, A., **S. Thatje** (2018). NMDA receptor regulation is involved in the limitation of physiological intolerance to both low temperature and high hydrostatic pressure. *Frontiers in Marine Science*, 5:93. doi:10.3389/fmars.2018.00093

Pallareti, L., A. Brown, **S. Thatje** (2018). Variability in hydrostatic pressure tolerance between *Palaemon* species: implications for insights into the colonisation of the deep sea. *Journal of Experimental Marine Biology and Ecology*, 503: 66–71. doi:10.1016/j.jembe.2018.02.011

Thatje, S., E. Steventon, O. Heilmayer (2018). Energetic changes throughout early ontogeny of the brooding Antarctic sea star *Rhopiella hirsuta* (Koehler, 1920). *Polar Biology*, 41: 1297–1306. doi:10.1007/s00300-018-2285

Hall, S., **S. Thatje** (2018). Global evolution through cold and deep waters: the molecular phylogeny of the Lithodidae (Crustacea: Decapoda). *The Science of Nature*, 105: 19. doi:10.1007/s00114-018-1544-2

Smith, K.E., R.B. Aronson, B.V. Steffel, M.O. Amsler, **S. Thatje**, H. Singh, J. Anderson, C.J. Brothers, A. Brown, D.S. Ellis, J.N. Havenhand, W.R. James, P.O. Moksnes, A.W. Randolph, T. Sayre-McCord, J.B. McClintock (2017). Climate change and the threat of novel marine predators in Antarctica. *Ecosphere* 8(11): e02017. doi:10.1002/ecs2.2017

Smith, K.E., R.B. Aronson, **S. Thatje**, G.A. Lovrich, M.O. Amsler, B.V. Steffel, J.B. McClintock (2017). Biology of the king crab *Paralomis birsteini* on the continental slope off the western Antarctic Peninsula. *Polar Biology*, 40: 2313–2322. doi:10.1007/s00300-017-2145-9

Höhn, D.P., C.H. Lucas, **S. Thatje** (2017). Respiratory response to temperature of three populations of *Aurelia aurita* polyps in northern Europe. *PLoS ONE* 12(5): e0177913.

Brown, A., **S. Thatje**, J.P. Morris, A. Oliphant, E.A. Morgan, C. Hauton, D. Jones, D.W. Pond (2017). Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab *Lithodes maja*. *Journal of Experimental Biology*, 220: 3916–3926. doi:10.1242/jeb.158543

Mevenkamp, L., A. Brown, A. Kordas, **S. Thatje**, C. Hauton, A. Vanreusel (2017). Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode *Halomonhystera disjuncta* to acute copper exposure. *Aquatic Toxicology*, 192: 178–183. doi:10.1016/j.aquatox.2017.09.016

Brown, A., **S. Thatje**, C. Hauton (2017). The effects of temperature and hydrostatic pressure on metal toxicity: Insights into toxicity in the deep sea. *Environmental Science & Technology*, 51. doi:10.1021/acs.est.7b02988

Brandner, M.M., E. Stübner, A.J. Reed, T. Gabrielsen, **S. Thatje** (2017). Seasonality of bivalve larvae in a high Arctic fjord. *Polar Biology*, 40: 263–276. doi:10.1007/s00300-016-1950-x

Lebrato, M., A.J. Andersson, J.B. Ries, J.B. McClintock, M. Lamare, W. Koeve, H. Egilsdottir, A. Oschlies, M.D. Iglesias-Rodriguez, R.B. Aronson, **S. Thatje**, M. Amsler, S. Vos, A. Gates, H. Ruhl, D.O.B. Jones (2016). Benthic calcifiers coexist with seawater-carbonate undersaturation at a global scale. *Global Biogeochemical Cycles*, doi: 10.1002/2015GB005260

Thatje S., S. Hall (2016). The effect of temperature on the evolution of per offspring investment in a globally distributed family of marine invertebrates (Crustacea: Decapoda: Lithodidae). *Marine Biology*, 163: 48. doi:10.1007/s00227-015-2776-8

Amsler, M.O., J.T. Eastman, K.E. Smith, J.B. McClintock, H. Singh, **S. Thatje**, R.B. Aronson (2016). Zonation of demersal fishes off Anvers Island, western Antarctic Peninsula. *Antarctic Science*, 28(1): 44–50. doi:10.1017/S0954102015000462

Morris, J.P., **S. Thatje**, D. Cottin, A. Oliphant, A. Brown, B. Shillito, J. Ravaux, C. Hauton (2015). Insights into the potential for climate-driven bathymetric range shifts: sustained

temperature and pressure exposures on a marine ectotherm, *Palaemonetes varians*. Royal Society Open Science, 2: 150472. doi:10.1098/rsos.150472

Reed, A.J., **S. Thatje** (2015). Long-term acclimation and potential scope for thermal resilience in Southern Ocean bivalves. *Marine Biology*, 162: 2217–2224. doi:10.1007/s00227-015-2752-3

Aronson, R.B., K.E. Smith, S.C. Vos, J.B. McClintock, M.O. Amsler, P.O. Moksnes, D.S. Ellis, J.W. Kaeli, H. Singh, J.W. Bailey, J.C. Schiferl, R. van Woesik, M.A. Martin, B.V. Steffel, M.E. Deal, S.M. Lazarus, J.N. Havenhand, R. Swalethorp, S. Kjellerup, **S. Thatje** (2015). No barrier to shoreward expansion of bathyal king crabs on the Antarctic Shelf. *Proceedings of the National Academy of Sciences*. doi:10.1073/pnas.1513962112

Morris, J.P., **S. Thatje**, J. Ravaux, B. Shillito, C. Hauton (2015). Effects of acute hydrostatic pressure stress on marine invertebrates: insights into the hierarchy and kinetics of the stress response. *Journal of Experimental Biology*, 218 (16), 2594–2602. doi:10.1242/jeb.125914

Smith, K.E., A.J. Reed, S. Thatje (2015). Intracapsular development and dispersal polymorphism in the predatory gastropod *Ocenebra erinaceus* (Linnaeus 1758). *Helgoland Marine Research*, 69 (3): 249–258. doi:10.1007/s10152-015-0433-8

Munro, C., J.P. Morris, A. Brown, C. Hauton, **S. Thatje** (2015). The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab *Lithodes maja*. *Proceedings of the Royal Society B – Biological Sciences*. doi:RSPB-2015-0577

Thatje, S., L. Marsh, C.N. Roterman, M.N. Mavrogordato, K. Linse (2015). Adaptations to hydrothermal vent life in *Kiwa tyleri*, a new species of yeti crab from the East Scotia Ridge, Antarctica. *PLoS ONE*, doi:10.1371/journal.pone.0127621

Amsler, M.O., K.E. Smith, J.B. McClintock, H. Singh, **S. Thatje**, S.C. Vos, C.J. Brothers, A. Brown, D. Ellis, J. Anderson, R.B. Aronson (2015). *In situ* observations of a possible skate nursery off the western Antarctic Peninsula. *Journal of Fish Biology*, 86: 1867–1872. doi:10.1111/jfb.12679

Thatje, S., K.E. Smith, L. Marsh, P.A. Tyler (2015). Evidence for abbreviated and lecithotrophic larval development in the yeti crab *Kiwa tyleri* from hydrothermal vents of the East Scotia Ridge, Southern Ocean. *Sexuality and Early Development in Aquatic Organisms*, 1: 109–116. doi:10.3354/sedao00011

Smith, K.E., A. Brown, **S. Thatje** (2015). The metabolic cost of developing under hydrostatic pressure: experimental evidence supports macroecological pattern. *Marine Ecology Progress Series*, 524: 71–82. doi:10.3354/meps11172

Marsh, L., J.T. Copley, P.A. Tyler, **S. Thatje** (2015). In hot and cold water: differential life-history adaptations are key to success in contrasting thermal deep-sea environments. *Journal of Animal Ecology*, 84 (4), 898-913. doi:10.1111/1365-2656.12337

Mestre, N.C., D. Cottin, R. Bettencourt, A. Colaço, S.P.C. Correira, B. Shillito, **S. Thatje**, J. Ravaux (2015). Is the deep-sea crab *Chaceon affinis* able to induce a thermal stress response? *Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology*, 181: 54–61. doi: 10.1016/j.cbpa.2014.11.015

Morris, J.P., **S. Thatje**, J. Ravaux, B. Shillito, D. Fernando, C. Hauton (2015). Acute combined pressure and temperature exposures on a shallow-water crustacean: novel insights into the stress response and high pressure neurological syndrome. *Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology*, 181: 9–17. doi:10.1016/j.cbpa.2014.10.028

Aronson, R.B., M. Frederich, R. Price, **S. Thatje** (2015). Prospects for the return of shell-crushing crabs to Antarctica. *Journal of Biogeography*, 42: 1–7. doi:10.1111/jbi.12414

Brown, A., **S. Thatje** (2015). The effects of changing climate on faunal depth distributions determine winners and losers. *Global Change Biology*, 21: 173–180. doi:10.1111/gcb.12680

Reed, A.J., J.P. Morris, K. Linse, **S. Thatje** (2014). Reproductive morphology of the deep-sea protobranch bivalves *Yoldiella ecaudata*, *Yoldiella sabrina*, and *Yoldiella valettei* (Yoldiidae) from the Southern Ocean. *Polar Biology*, 37: 1383–1392. doi:10.1007/s00300-014-1528-4

Oliphant, A., M.C. Ichino, **S. Thatje** (2014). The influence of Per Offspring Investment (POI) and starvation on larval developmental plasticity within the palaemonid shrimp, *Palaemonetes varians*. *Marine Biology*, 161: 2069–2077. doi:10.1007/s00227-014-2486-7

Smith, K.E., **S. Thatje**, H. Singh, M.O. Amsler, S.C. Vos, J.B. McClintock, A. Brown, D. Ellis, C.J. Brothers, J. Anderson, R.B. Aronson (2014). Discovery of a recent natural whale fall on the continental slope off Anvers Island, western Antarctic Peninsula. *Deep-Sea Research Part I: Oceanographic Research Papers*, 90: 76–80. doi:10.1016/j.dsr.2014.04.013

Oliphant, A., **S. Thatje** (2014). Energetic adaptations to larval export within the brackish living palaemonine shrimp, *Palaemonetes varians*. *Marine Ecology Progress Series*, 505: 177–191. doi:10.3354/meps10767

New, P., A. Brown, A. Oliphant, P. Burchell, A. Smith, **S. Thatje** (2014). The effects of pressure and temperature acclimation on the temperature and pressure tolerance of the shallow-water shrimp *Palaemonetes varians*. *Marine Biology*, 161: 697–709. doi:10.1007/s00227-013-2371-9

Reed, A.J., K. Linse, **S. Thatje** (2014). Differential adaptations between cold-stenothermal environments in the bivalve *Lissarca* cf. *miliaris* (Philobryidae) from the Scotia Sea islands and Antarctic Peninsula. *Journal of Sea Research*, 88: 11–20. doi:10.1016/j.seares.2013.12.008

Oliphant, A., **S. Thatje** (2013). Per offspring investment implications for crustacean larval development: evolutionary insights into endotrophy and abbreviated development. *Marine Ecology Progress Series*, 493: 207-217. doi:10.3354/meps10496

Smith, K.E., **S. Thatje** (2013). The subtle intracapsular survival of the fittest: maternal investment, sibling conflict or environmental effects? *Ecology*, 94: 2263-2274. doi:10.1890/12-1701.1

Oliphant, A., C. Hauton, **S. Thatje** (2013). The implications of temperature-mediated plasticity in larval instar number for development in a marine invertebrate, the shrimp *Palaemonetes varians*. *PLoS ONE*, 8 (9): e75785. doi:10.1371/journal.pone.0075785

Reed, A.J., J.P. Morris, K. Linse, **S. Thatje** (2013). Plasticity in shell morphology and growth among deep-sea protobranch bivalves of the genus *Yoldiella* (Yoldiidae) from contrasting Southern Ocean regions. *Deep-Sea Research Part I: Oceanographic Research Papers*, 81: 14-24. doi:10.1016/j.dsr.2013.07.006

Smith, F., A. Brown, N.C. Mestre, A.J. Reed, **S. Thatje** (2013). Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. *Deep-Sea Research Part II: Topical Studies in Oceanography*, 92: 234-239. doi:10.1016/j.dsr2.2012.12.003i

Smith, K.E., **S. Thatje**, C. Hauton (2013). Effects of temperature on early ontogeny in the common whelk *Buccinum undatum* (L. 1785); bioenergetics, nurse egg partitioning and developmental success. *Journal of Sea Research*, 79: 32-39. doi:10.1016/j.seares.2013.01.008

Laguionie-Marchais, C., D.S.M. Billett, G.L.D. Paterson, H.A. Ruhl, E.H. Soto, K.L. Jr. Smith, **S. Thatje** (2013). Inter-annual dynamics of abyssal polychaete communities in the North East Pacific and North East Atlantic – A family-level study. *Deep-Sea Research Part I: Oceanographic Research Papers*, 75: 175-186. doi:10.1016/j.dsr.2012.12.007

Mestre, N.C., A. Brown, **S. Thatje** (2013). Temperature and pressure tolerance of larvae of *Crepidula fornicata* (L. 1758) suggests thermal limitation of bathymetric range. *Marine Biology*, 160 (4): 743-750. doi:10.1007/s00227-012-2128-x

Morris, J., **S. Thatje**, C. Hauton (2013). The use of stress-70 proteins in physiology: a critical re-appraisal. *Molecular Ecology*, 22 (6): 1494-1502. DOI: 10.1111/mec.12216

Smith, K.E., **S. Thatje** (2013). Intracapsular development in the common whelk *Buccinum undatum* (Linnaeus 1758) – capsule content, developmental stages and timing. *Helgoland Marine Research*, 67: 109-120. DOI: 10.1007/s10152-012-0308-1

Eastman, J.T., M.O. Amsler, R.B. Aronson, **S. Thatje**, J.B. McClintock, S.C. Vos, J.W. Kaeli, H. Singh, M. La Mesa (2013). Photographic survey of benthos provides insights into the Antarctic fish fauna from the Marguerite Bay slope and the Amundsen Sea. *Antarctic Science*, 25(1): 31-43. doi: 10.1017/S0954102012000697

Reed, A.J., **S. Thatje**, K. Linse (2013). An unusual hermaphrodite reproductive trait in the Antarctic brooding bivalve *Lissarca miliaris* (Philobryidae) from the Scotia Sea (Southern Ocean). *Polar Biology*, 36: 1-11. doi:10.1007/s00300-012-1233-0

Reed, A.J., **S. Thatje**, K. Linse (2012). Shifting baselines in Antarctic ecosystems: ecophysiological response to warming in *Lissarca miliaris* at Signy Island, Antarctica. *PLoS ONE*, 7(12): e53477. doi:10.1371/journal.pone.0053477

Smith, K.E., **S. Thatje** (2012). The secret to successful deep-sea invasion: does low temperature hold the key? *PLoS ONE*, 7 (12): e51219. doi:10.1371/journal.pone.0051219

Calcagno, J.A., J. Curelovich, V.M. Fernandez, **S. Thatje**, G.A. Lovrich (2012). Effects of physical disturbance on a sub-Antarctic middle intertidal bivalve assemblage. *Marine Biology Research*, 8: 937-953. doi:10.1080/17451000.2012.702911

Yager, P.L., R.M. Sherrell, A.C. Alderkamp, O. Schofield, H. Ducklow, K.R. Arrigo, S. Bertilsson, K.E. Lowry, P.O. Moknes, K. Ndungu, A.F. Post, E. Randall-Goodwin, L. Riemann, S. Severmann, **S. Thatje**, G.L. Van Ducken, S. Wilson (2012). The Amundsen Sea polynya international research expedition (ASPIRE). *Oceanography*, 25(3): 40-53. doi.org/10.5670/oceanog.2012.73

Dambach, J., **S. Thatje**, D. Rödder, B. Zeenatul, M.J. Raupach (2012). Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic decapod crustaceans. *PLoS ONE* 7 (9): e46283. DOI: 10.1371/journal.pone.0046283

Thatje, S. (2012). Effects of capability for dispersal on the evolution of diversity in Antarctic benthos. *Integrative and Comparative Biology*. 52 (4): 470-482. DOI: 10.1093/icb/ics105

Ravaux, J., N. Leger, N. Rabet, M. Morini, M. Zbinden, **S. Thatje**, B. Shillito (2012). Adaptation to thermally variable environments: Capacity for acclimation of thermal limit and heat shock response in the shrimp *Palaemonetes varians*. *Journal of Comparative Physiology B*, 182: 899-907. doi:10.1007/s00360-012-0666-7

Cottin, D., A. Brown, A. Oliphant, N. Mestre, J. Ravaux, B. Shillito, **S. Thatje** (2012). Sustained hydrostatic pressure tolerance of the shallow water shrimp *Palaemonetes varians*

at different temperatures: Insights into the colonisation of the deep sea. Comparative Biochemistry and Physiology A, 162: 357-363. doi:10.1016/j.cbpa.2012.04.005

Rogers, A.D., Tyler, P.A., Connelly, D.P., Copley, J.T., James, R., Larter, R.D., Linse, K., Mills, R.A., Naveira-Garabato, A., Pancost, R.D., Pearce, D.A., Polunin, N., German, C.R., Shank, T., Alker, B., Aquilina, A., Bennett, S.A., Clarke, A., Dinley, J., Graham, A.G.C., Green, D., Hawkes, J., Hepburn, L., Hilario, A., Huvenne, V.A.I., Marsh, L., Ramirez-Llodra, E., Reid, W., Roterman, C.N., Sweeting, C., **Thatje, S.**, Zwirglmaier, K. (2012). The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography. PLoS Biology 10 (1): e1001234

Brown, A., **S. Thatje** (2011). Respiratory response of the deep-sea amphipod *Stephonyx biscayensis* indicates bathymetric range limitation by temperature and hydrostatic pressure. PLoS ONE, 6 (12): e28562. doi:10.1371/journal.pone.0028562

Rehm, P., R.A. Hooke, **S. Thatje** (2011). Macrofaunal communities on the continental shelf off Victoria Land (Ross Sea, Antarctica). Antarctic Science, 23 (5): 449-455. doi:10.1017/S00954102011000290.

Thatje, S., N. Robinson (2011). Specific dynamic action affects the hydrostatic pressure tolerance of the shallow water spider crab *Maja brachydactyla*. Naturwissenschaften, 98: 299-313. doi:10.1007/s00114-011-0768-1

Oliphant, A., **S. Thatje**, A. Brown, M. Morini, J. Ravaux, B. Shillito (2011). Pressure tolerance of the shallow-water caridean shrimp, *Palaemonetes varians*, across its thermal tolerance window. The Journal of Experimental Biology: 214 (7): 1109-1117. doi:10.1242/jeb.048058

Hall, S., **S. Thatje** (2011). Temperature driven biogeography of the family Lithodidae (Decapoda: Crustacea) in the Southern Ocean. Polar Biology, 34: 363-370. doi:10.1007/s00300-010-0890-0

De Broyer, C., B. Danis, & 64 taxonomic editors including **S. Thatje** (2011). How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Research, Part II, 58: 5-17. doi:10.1016/j.dsr2.2010.10.007

Hall, S., **S. Thatje** (2010). King crabs up-close: ontogenetic changes in ornamentation in the family Lithodidae (Decapoda: Anomura), with a focus on the genus *Paralomis*. Zoosystema, 32(3): 515-544.

Thatje, S., C. Rios (2010). Subantarctic limpet populations today and human impact about 1,400 years ago. Anales Instituto de la Patagonia (Chile), 38: 97-102.

Cottin, D., B. Shillito, T. Chertemps, **S. Thatje**, N. Léger, J. Ravaux (2010). Comparison of heat-shock responses between the hydrothermal vent shrimp *Rimicaris exoculata* and the related coastal shrimp *Palaemonetes varians*. *Journal of Experimental Marine Biology and Ecology*, 393: 9-16. doi:10.1016/j.jembe.2010.06.008

Brown, A., O. Heilmayer, **S. Thatje** (2010). Metabolic rate and growth in the temperate bivalve *Mercenaria mercenaria* at a biogeographic limit, from the English Channel. *Journal of the Marine Biological Association of the United Kingdom*, 90(5): 1019-1023. doi:10.1017/S0025315409991470

Thatje, S., L.M. Casburn, J.A. Calcagno (2010). Behavioural and respiratory response of the shallow-water hermit crab *Pagurus cuanensis* to hydrostatic pressure and temperature. *Journal of Experimental Marine Biology and Ecology*, 390: 22-30. doi:10.1016/j.jembe.2010.04.028

Raupach, M.J., **S. Thatje**, J. Dambach, P. Rehm, B. Misof, F. Leese (2010). Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species in the Southern Ocean. *Marine Biology*: 157: 1783-1797. doi:10.1007/s00227-010-1451-3

Thatje, S., N.C. Mestre (2010). Energetic changes throughout lecithotrophic larval development in the deep-sea lithodid crab *Paralomis spinosissima* from the Southern Ocean. *Journal of Experimental Marine Biology and Ecology*, 386: 119-124. doi:10.1016/j.jembe.2010.02.015

Weiss, M., **S. Thatje**, O. Heilmayer (2010). Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab *Cancer setosus* across latitude. *Helgoland Marine Research*. 64(2): 125-133. doi:10.1007/s10152-009-0173-8

Palero, F., S. Hall, P. Clark, D. Johnston, J. Mackenzie-Dodds, **S. Thatje** (2010). DNA extraction from formalin-fixed tissue: new light from the Deep Sea. *Scientia Marina*, 74(3): 465-470. doi:10.3989/scimar.2010.74n3465

Thatje S., A. Brown (2009). The ecology of benthic macrofauna assemblages of the Straits of Magellan and the Beagle Channel. *Anales Instituto de la Patagonia (Chile)*, 37(2): 17-27. doi:10.4067/S0718-686X2009000200002

Hall, S., **S. Thatje** (2009). Four new species of the family Lithodidae (Crustacea: Decapoda) from the collections of the National Museum of Natural History, Smithsonian Institution. *Zootaxa*, 2302: 31-47.

Robinson, N.J., **S. Thatje**, C. Osseforth (2009). Heartbeat sensors under pressure: a new method for assessing hyperbaric physiology. *High Pressure Research*, 29: 422-430. doi:10.1080/08957950903076398

Weiss, M., O. Heilmayer, T. Brey, **S. Thatje** (2009). Influence of temperature on the larval development and elemental composition of the cancrid crab *Cancer setosus* Molina, 1782 from Pacific South America. *Journal of Experimental Marine Biology and Ecology*, 376: 48-54. doi:10.1016/j.jembe.2009.06.002

Hall, S., **S. Thatje** (2009). Global bottlenecks in the distribution of marine Crustacea: temperature constraints in the family Lithodidae. *Journal of Biogeography*: 36: 2125-2135. doi:10.1111/j.1365-2699.2009.02153.x

Fischer, S., **S. Thatje**, M. Graeve, K. Paschke, G. Kattner (2009). Bioenergetics of early life history stages of the brachyuran crab *Cancer setosus* in response to changes in temperature. *Journal of Experimental Marine Biology and Ecology*, 374: 160-166. doi:10.1016/j.jembe2009.04.019

Higgs, N.D., A.J. Reed, R. Hooke, D.J. Honey, O. Heilmayer, **S. Thatje** (2009). Growth and reproduction in the brooding Antarctic bivalve, *Adacnarca nitens* (Phylobridae) from the Ross Sea. *Marine Biology*, 156: 1073-1081. doi:10.1007/s00227-009-1154-9

Fischer, S., **S. Thatje**, T. Brey (2009). Early egg traits in *Cancer setosus* (Decapoda, Brachyura): effects of temperature and female size. *Marine Ecology Progress Series*, 377: 193-202. doi:10.3354/meps07845

Weiss, M., **S. Thatje**, K. Anger, T. Brey, O. Heilmayer, M. Keller (2009). Influence of temperature on the larval development of the edible crab, *Cancer pagurus* L. *Journal of the Marine Biological Association of the United Kingdom*, 89 (4): 753-759. doi:10.1017/S0025315408003263

Mestre, N., **S. Thatje**, P.A. Tyler (2009). The ocean is not deep enough: pressure tolerances during early ontogeny of the blue mussel *Mytilus edulis*. *Proceedings of the Royal Society B – Biological Sciences*, 276: 717-726. doi:10.1098.rspb.2008.1376

Heilmayer, O., **S. Thatje**, C. McClelland, K. Conlan, T. Brey (2008). Changes in biomass and elemental composition during early ontogeny of the Antarctic isopod crustacean *Ceratoserolis trilobitoides*. *Polar Biology*, 31: 1325-1331. doi:10.1007/s00300-008-0470-8

Thatje, S., S. Hall, C. Hauton, C. Held, P.A. Tyler (2008). Encounter of lithodid crab *Paralomis birsteini* on the continental slope off Antarctica, sampled by ROV. *Polar Biology*, 31: 1143-1148. DOI10.1007/s00300-008-0457-5

Fischer, S., **S. Thatje** (2008). Temperature-induced oviposition in the brachyuran crab *Cancer setosus* along a latitudinal cline: aquaria experiments and analysis of field data. *Journal of Experimental Marine Biology and Ecology*, 357: 157-164. doi:10.1016/j.jembe.2008.01.007

Thatje, S., C.D. Hillenbrand, A. Mackensen, R. Larter (2008). Life hung by a thread: endurance of Antarctic fauna in glacial periods. *Ecology*, 89(3): 682-692.

Thatje, S., O. Heilmayer, J. Laudien (2008). Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and management. *Helgoland Marine Research*, 62 (Suppl. 1): 5-14. doi:10.1007/s10152-008-0104-0

Moreno, R.A., **S. Thatje**, E.I. Badano, R.D. Sepulveda, N. Rozbaczylo, F.D. Carrasco (2008). Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997-98. *Helgoland Marine Research*, 62 (Suppl. 1): 45-55. doi:10.1007/s10152-007-0095-2

Oliva, M.E., I. Barrios, **S. Thatje**, J. Laudien (2008). Changes in prevalence and intensity of infection of *Profilicollis altmani* (Perry, 1942) cystacanth (Acanthocephala) parasitizing the mole crab *Emerita analoga* (Stimpson, 1857): an El Niño cascade effect? *Helgoland Marine Research*, 62 (Suppl. 1): 57-62. doi:10.1007/s10152-007-0082-7

Pérez-Barros, P., **S. Thatje**, J.A. Calcagno, G.A. Lovrich (2007). Larval development of the subantarctic squat lobster *Munida subrugosa* (Decapoda: Galatheidae), reared in the laboratory. *Journal of Experimental Marine Biology and Ecology* 352: 35-41. doi:10.1016/j.jembe.2007.06.035

Lovrich, G.A., **S. Thatje**, J.A. Calcagno, K. Anger (2007). Las centollas colonizan la Antártida. *Ciencia Hoy*, 17 (99): 22-33 (ISSN 1666-5171).

Reid, W., J. Watts, S. Clarke, M. Belchier, **S. Thatje** (2007). Egg development, hatching rhythm and moult patterns in reared *Paralomis spinosissima* (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean). *Polar Biology*, 30: 1213-1218. doi:10.1007/s00300-007-0279-x

Laudien, J., M. Rojo, M. Oliva, W.E. Arntz, **S. Thatje** (2007). Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current

upwelling system). *Helgoland Marine Research*, 61: 103-116. doi:10.1007/s10152-007-0057-8

Rehm, P., **S. Thatje**, A. Brandt, U. Mühlenhardt-Siegel (2007). Distribution and composition of the peracarid crustacean fauna in the Ross Sea (Antarctica) with special emphasis on the Cumacea. *Polar Biology*, 30: 871-881. doi:10.1007/s00300-006-0247-x

Thatje, S., J. Laudien, O. Heilmayer, C.E. Nauen (2007). Understanding El Niño – The importance of Grey Literature in coastal ecosystem research and management. *Marine Policy*, 31: 85-93. doi:10.1016/j.marpol.2006.04.007

Moreno, R.A., N. Rozbaczko, R.D. Sepúlveda, M.I. Marinkovic, W.E. Arntz, **S. Thatje** (2007). On some ecological aspects of the lugworm *Abarenicola affinis chiliensis* Wells, 1963 (Polychaeta: Scolecida: Arenicolidae) from shallow soft bottoms of northern Chile. *Helgoland Marine Research*, 61: 1-7. doi:10.1007/s10152-006-0047-2

Lovrich, G.A., **S. Thatje** (2006). Reproductive and larval biology of the sub-Antarctic hermit crab *Pagurus comptus* reared in the laboratory. *Journal of the Marine Biological Association of the United Kingdom*, 86: 743-749.

Watts, J., **S. Thatje**, S. Clarke, M. Belchier (2006). A description of larval and early juvenile development in *Paralomis spinosissima* (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean). *Polar Biology*, 29: 1028-1038. doi:10.1007/s00300-006-0146-1

Rehm, P., **S. Thatje**, W.E. Arntz, A. Brandt, O. Heilmayer (2006). Distribution and composition of macrozoobenthic communities along a Victoria-Land transect (Ross Sea, Antarctica). *Polar Biology*, 29: 782-790. doi:10.1007/s00300-006-0155-8

Thatje, S. (2006). Return of the King Crab in Antarctica. *Journal of the Marine Biological Association of the United Kingdom - Global Marine Environment*, 3: 14-15.

Saborowski, R., **S. Thatje**, J.A. Calcagno, G.A. Lovrich, K. Anger (2006). Digestive enzymes in the ontogenetic stages of the southern king crab, *Lithodes santolla*. *Marine Biology*, 149: 865-873.

Raupach, M.J., **S. Thatje** (2006). Two new records of the rare parasite *Zonophryxus quinquedens* Barnard, 1913 (Crustacea, Isopoda, Dajidae): ecological and phylogenetic implications. *Polar Biology*, 29: 439-443.

Spiridonov, V., M. Türkay, W.E. Arntz, **S. Thatje** (2006). A new species of the genus *Paralomis* (Crustacea: Decapoda: Lithodidae) from the Spiess seamount near Bouvet Island (Southern Ocean), with notes on habitat and ecology. *Polar Biology*, 29: 137-146.

Arntz, W.E., **S. Thatje**, K. Linse, C. Avila, M. Ballesteros, D.K.A. Barnes, T. Cope, F.J. Cristóbo Rodríguez, C. De Broyer, J. Gutt, E. Isla, P. López-González, A. Montiel, T. Munilla, A.A. Ramos Esplá, M. Raupach, M. Rauschert, E. Rodríguez, N. Teixidó (2006). Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. *Polar Biology*, 29: 83-96.

Arntz, W.E., **S. Thatje**, D. Gerdes, J.M. Gili, J. Gutt, U. Jacob, A. Montiel, C. Orejas, N. Teixidó (2005). The Antarctic-Magellan connection: Macrobenthos ecology on the shelf and upper slope, a progress report. *Scientia Marina* 69 (Supplement 2): 237-269.

Lovrich, G.A., M.C. Romero, F. Tapella, **S. Thatje** (2005). Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). *Scientia Marina* 69 (Supplement 2): 183-193.

Thatje, S., C.D. Hillenbrand, R. Larter (2005). On the origin of Antarctic marine benthic community structure. *Trends in Ecology & Evolution*, 20 (10): 534-540.

Calcagno, J.A., G.A. Lovrich, **S. Thatje**, U. Nettelmann, K. Anger (2005). First year growth in the lithodids *Lithodes santolla* and *Paralomis granulosa* reared at different temperatures. *Journal of Sea Research*, 54: 221-230.

Thatje, S. (2005). The future fate of the Antarctic marine biota? *Trends in Ecology and Evolution*, 20 (8): 418-419.

Thatje, S., K. Anger, W.E. Arntz (2005). Leben am Limit – Die Evolutionsgeschichte antarktischer Zehnfusskrebse. *Biologie in unserer Zeit*, 35 (2): 100-107 (in German).

Thatje, S., A.N. Lörz (2005). First record of lithodid crabs from Antarctic waters off the Balleny Islands. *Polar Biology*, 28: 334-337.

Thatje, S., R. Bacardit, W.E. Arntz (2005). Larvae of the deep-sea Nematocarcinidae (Crustacea: Decapoda: Caridea) from the Southern Ocean. *Polar Biology*, 28: 290-302.

Thatje, S., K. Anger, J.A. Calcagno, G.A. Lovrich, H.O. Pörtner, W.E. Arntz (2005). Challenging the cold: crabs reconquer the Antarctic. *Ecology*, 86 (3): 619-625.

Anger, K., G.A. Lovrich, **S. Thatje**, J.A. Calcagno (2004). Larval and early juvenile development of *Lithodes santolla* (Molina, 1782) (Decapoda: Anomura: Lithodidae) reared

at different temperatures in the laboratory. *Journal of Experimental Marine Biology and Ecology*, 306: 217-230.

Romero, M.C., G.A. Lovrich, F. Tapella, **S. Thatje** (2004). Feeding ecology of the crab *Munida subrugosa* (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. *Journal of the Marine Biological Association of the United Kingdom*, 84: 359-365.

Thatje, S., G.A. Lovrich, G. Torres, W. Hagen, K. Anger (2004). Changes in biomass, lipid, fatty acid and elemental composition during abbreviated larval development of the subantarctic shrimp *Campylonotus vagans*. *Journal of Experimental Marine Biology and Ecology*, 301: 159-174.

Thatje, S., G.A. Lovrich, K. Anger (2004). Egg production, hatching rates, and abbreviated larval development of *Campylonotus vagans* Bate, 1888 (Crustacea: Decapoda: Caridea) in subantarctic waters. *Journal of Experimental Marine Biology and Ecology*, 301: 15-27.

Calcagno, J.A., G.A. Lovrich, K. Anger, **S. Thatje**, A. Kaffenberger (2004). Larval development in the Subantarctic king crabs *Lithodes santolla* (Molina) and *Paralomis granulosa* (Jaquinot) reared in the laboratory. *Helgoland Marine Research*, 58: 11-14.

Thatje, S., S. Schnack-Schiel, W.E. Arntz (2003). Developmental trade-offs in Subantarctic meroplankton communities and the enigma of low decapod diversity in high southern latitudes. *Marine Ecology Progress Series*, 260: 195-207.

Calcagno, J.A., **S. Thatje**, K. Anger, G.A. Lovrich, A. Kaffenberger (2003). Changes in biomass and chemical composition during lecithotrophic larval development of the Southern stone crab, *Paralomis granulosa* (Jaquinot). *Marine Ecology Progress Series*, 257: 189-196.

Kattner, G., M. Graeve, J.A. Calcagno, G.A. Lovrich, **S. Thatje**, K. Anger (2003). Lipid, fatty acid and protein utilization during lecithotrophic larval development of *Lithodes santolla* (Molina) and *Paralomis granulosa* (Jaquinot). *Journal of Experimental Marine Biology and Ecology*, 292: 61-74.

Thatje, S., V. Fuentes (2003). First record of anomuran and brachyuran larvae (Crustacea: Decapoda) from Antarctic waters. *Polar Biology*, 26: 279-282.

Thatje, S. (2003). *Campylonotus arntzianus*, a new species of the Campylonotidae (Crustacea: Decapoda: Caridea) from the Scotia Sea (Antarctica). *Polar Biology*, 26: 242-248.

Thatje, S., G.A. Lovrich (2003). Decapodid and early juvenile development in the protandrous shrimp *Campylonotus vagans* Bate, 1888 (Crustacea: Decapoda), with notes on larval morphology. *Journal of the Marine Biological Association of the United Kingdom*, 83 (1): 103-109.

Thatje, S., J.A. Calcagno, G.A. Lovrich, F.J. Sartoris, K. Anger (2003). Extended hatching periods in the Subantarctic lithodid crabs *Lithodes santolla* and *Paralomis granulosa* (Crustacea: Decapoda). *Helgoland Marine Research*, 57: 110-113.

Anger, K., **S. Thatje**, G.A. Lovrich, J.A. Calcagno, (2003). Larval and early juvenile development of *Paralomis granulosa* reared at different temperatures: tolerance of cold and food limitation in a lithodid crab from high latitudes. *Marine Ecology Progress Series*, 253: 243-251.

Guzmán, G.L., **S. Thatje** (2003). *Biffarius pacificus*, a new species of the Callianassidae (Crustacea: Decapoda: Thalassinidea) from northern Chile. *Scientia Marina*, 67 (3): 293-298.

Lovrich, G.A., **S. Thatje**, J.A. Calcagno, K. Anger, A. Kaffenberger (2003). Changes in biomass and chemical composition during lecithotrophic larval development of the Southern king crab *Lithodes santolla* (Molina). *Journal of Experimental Marine Biology and Ecology*, 288: 65-79.

Arntz, W.E., **S. Thatje** (2002). Latitudinal gradients in ecological parameters of decapod crustaceans. Workshop, Ecosystem West Greenland. Jarre, A (ed.), A stepping stone towards an integrated marine research programme. Greenland Institute of Natural Resources, Nuuk, 29.11.-03.12.2001. *Inussuk, Arctic Research Journal*, 1: 34-35.

Tapella, F., G.A. Lovrich, M.C. Romero, **S. Thatje** (2002). Reproductive biology of the crab *Munida subrugosa* (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. *Journal of the Marine Biological Association of the United Kingdom*, 82 (4): 589-595.

Thatje, S., R. Bacardit, M.C. Romero, F. Tapella, G.A. Lovrich (2001). Description and key to the zoeal stages of the Campylonotidae (Decapoda, Caridea) from the Magellan Region. *Journal of Crustacean Biology* 21 (2): 492-505.

Thatje, S., R. Bacardit (2001). Two zoeal stages of *Betaeus truncatus* (Dana, 1852) (Decapoda: Caridea: Alpheidae) from Argentine coastal waters. *Anales del Instituto de la Patagonia, Serie Ciencias Naturales (Chile)*, 29: 95-104.

Thatje, S., R. Bacardit (2000). Larval development of *Austropandalus grayi* (Cunningham, 1871) (Decapoda: Caridea: Pandalidae) from the southwestern Atlantic Ocean. *Crustaceana*, 73 (5): 609-628.

Thatje, S. (2000). *Notiavax santarita*, a new species of the Callianassidae (Decapoda, Thalassinidea) from the Beagle Channel, southernmost America. *Crustaceana* 73 (3): 289-299.

Thatje, S., D. Gerdes (2000). *Upogebia australis*, a new species of the Upogebiidae (Crustacea, Decapoda, Thalassinidea) from the Beagle Channel (Magellan Region). *Zoosystematics and Evolution* 76 (2): 231-236.

Thatje, S., R. Bacardit (2000). Larval stages of *Chorismus tuberculatus* (Decapoda: Caridea: Hippolytidae) from the south-western Atlantic Ocean. *Journal of the Marine Biological Association of the United Kingdom* 80: 465-471.

Thatje, S., R. Bacardit (2000). Morphological variability in larval stages of *Nauticaris magellanica* (A. Milne Edwards, 1891) (Decapoda: Caridea: Hippolytidae) from South American waters. *Bulletin of Marine Science*, 66 (2): 375-398.

Thatje, S., E. Mutschke (1999). Distribution of abundance, biomass, production and productivity of macrozoobenthos in the sub-Antarctic Magellan Province (South America). *Polar Biology*, 22 (1): 31-37.

Thatje, S., D. Gerdes, E. Rachor (1999). A seafloor crater in the German Bight and its effects on the benthos. *Helgoland Marine Research*, 53 (1): 36-44.

Thatje, S., D. Gerdes (1997). The benthic macrofauna of the inner German Bight: present and past. *Archive of Fishery and Marine Research*, 45 (2): 93-112.

Commentaries

Brown, A., **S. Thatje** (2012). Interactive comment on “Deep-sea scavenging amphipod assemblages from the submarine canyons of the Iberian Peninsula” by G.A. Duffy et al. *Biogeosciences Discussions*, 9: C1-C3.

Thatje, S. (2006). Icy life in space and time. *Trends in Ecology & Evolution*, 21 (1): 12-13 (book review).

Editorials

Thatje, S. (2018). The Arnold Berliner Award 2018. *The Science of Nature*, 105: 21. doi: 10.1007/s00114-018-1549-x

Thatje, S. (2017). Lost and found: The Science lost in World War II. *The Science of Nature*, 104: 88. doi: 10.1007/s00114-017-1512-2

Thatje, S. (2017). The Arnold Berliner Award 2017. *The Science of Nature*, 104: 62. doi:10.1007/s00114-017-1485-1

Thatje, S. (2016). The Arnold Berliner Award 2016. *The Science of Nature*, 103:54. doi: 10.1007/s00114-016-1382-z

Thatje, S. (2016). Reaching out for scientific legacy: how to define authorship in academic publishing. *The Science of Nature*, 103:10. doi: 10.1007/s00114-016-1335-6

Thatje, S. (2016). The use of the short communication article format. *The Science of Nature*, 103:5. doi:10.1007/s00114-015-1330-3

Thatje, S. (2015). The Arnold Berliner Award 2015. *The Science of Nature*, 102: doi:10.1007/s00114-015-1273-8.

Thatje, S. (2015). *The Science of Nature* - a new era, a new name for *Naturwissenschaften*. *The Science of Nature*, 102:1252. doi:10.1007/s00114-014-1255-2

Thatje, S. (2014). Moving forward: change of journal title and continuous article publishing. *Naturwissenschaften*, 101: 1007–1008. doi:10.1007/s00114-014-1229-4

Thatje, S. (2014). The Arnold Berliner Award 2014. *Naturwissenschaften*, 101: 457–458. doi:10.1007/s00114-014-1180-4

Thatje, S. (2013). Dr Arnold Berliner (1862-1942); physicist and founding editor of *Naturwissenschaften*. *Naturwissenschaften*, 100: 1105-1107. doi:10.1007/s00114-013-1124-4

Thatje, S. (2013). The Arnold Berliner Award 2013. *Naturwissenschaften*, 100: 485-486. DOI: 10.1007/s00114-013-1066-x

Thatje, S. (2013). Celebrating 100 years: Happy Birthday, *Naturwissenschaften*! *Naturwissenschaften*, 100: 1. doi:10.1007/s00114-012-1000-7

Thatje, S. (2012). Introducing the *Arnold Berliner Award*. *Naturwissenschaften*, 99 (9): 675-676. doi:10.1007/s00114-012-0958-5

Thatje, S. (2012). Naturwissenschaften: recent advances, changes and challenges. *Naturwissenschaften*, 99: 1-2. doi:10.1007/s00114-011-0876-y

Thatje, S. (2011). What have we achieved? A reflection on the Census of Marine Life (COML). *Naturwissenschaften*, 98: 97-98. doi:10.1007/s00114-010-0755-y

Thatje, S. (2010). The multiple faces of journal peer review. *Naturwissenschaften*, 97: 237-239. doi:10.1007/s00114-010-0652-4

Thatje, S., R.B. Aronson (2009). No future for the Antarctic Treaty? *Frontiers in Ecology and the Environment*, 7(4): 175.

Thatje, S. (2009). The Science of Nature. *Naturwissenschaften*, 96: 421-422. doi:10.1007/s00114-009-0528-7

Thatje, S. (2008). Organismal biology joins climate research: the example of ENSO. *Helgoland Marine Research*, 62 (Suppl. 1): 1-3. doi:10.1007/s10152-007-0098-z

Arntz, W.E., G. Lovrich, **S. Thatje** (2005). The Magellan – Antarctic connection: links and frontiers at southern high latitudes. *IBMANT II Symposium and Workshop*. Foreword. *Scientia Marina*, 69 (Supplement 2): 3-5.

Books (chapters)/special volumes

Thatje. S. (2014); Braquiuros. In: *Los invertebrados marinos* (in Spanish). Editor: J.A. Calcagno. Publisher: Fundación de Historia Natural Félix de Azara, Argentina, pp. 201-208.

Griffiths, H.J., R.J. Whittle, S.J. Roberts, M. Belchier, K. Linse, **S. Thatje** (2014). Decapoda: crabs & lobsters. In: De Broyer, C. *et al.* *The CAML/ SCAR MarBIN Biogeographic Atlas of the Southern Ocean*. Scientific Committee on Antarctic Research, Cambridge, pp. 185-189.

Thatje, S. (ed.) (2008). Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and management. *Helgoland Marine Research*, 62 (Suppl. 1): 1-110 (ISSN 1438-387X).

Nauen, C.E., V. Christensen, P. Failler, S. Opitz, **S. Thatje** (2006). Recovering fisheries from crisis or collapse: how to shorten impact time of international research cooperation. 13 pages. In: *Proceedings of the Thirteenth Biennial Conference of the International Institute of Fisheries Economics & Trade*, July 11-14, 2006, Portsmouth, UK: Rebuilding Fisheries in an Uncertain Environment. Compiled by Ann L. Shriver. International Institute of Fisheries Economics & Trade, Corvallis, Oregon, USA, 2006. CD ROM. ISBN 0-9763432-3-1

Arntz, W.E., G.A. Lovrich, **S. Thatje** (eds.) (2005). The Magellan – Antarctic connection: links and frontiers at high southern latitudes. *Scientia Marina*, 69 (Suppl. 2): 1-365 (ISSN 0214-8358).

Thatje, S., J.A. Calcagno, W.E. Arntz (eds.) (2005). Evolution of Antarctic Fauna – Extended Abstracts of the IBMANT/ANDEEP Symposium and Workshop in 2003. *Berichte zur Polar- und Meeresforschung* (Reports on Polar and Marine Research), 507: 1-200 (ISSN 1618-3193).

Thatje, S. (2004). Reproductive trade-offs in benthic decapod crustaceans of high southern latitudes: tolerance of cold and food limitation. *Berichte zur Polar- und Meeresforschung* (Reports on Polar and Marine Research), 483: 1-183 (ISSN 1618-3193).