

1 *Review*

2 **Omega-3 polyunsaturated fatty acids (PUFAs) and the 3 intestinal epithelium – A review**

4 **Luke A. Durkin^{1*}, Caroline E. Childs^{1,2} and Philip C. Calder^{1,2,3}**

5 ¹ School of Human Development and Health, Faculty of Medicine, University of Southampton,
6 Southampton, United Kingdom; l.durkin@soton.ac.uk; c.e.childs@soton.ac.uk; pcc@soton.ac.uk

7 ² Institute of Life Sciences, University of Southampton, Southampton, United Kingdom

8 ³ NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation
9 Trust and University of Southampton, Southampton, United Kingdom

10

11 * Correspondence: l.durkin@soton.ac.uk

12 Received: date; Accepted: date; Published: date

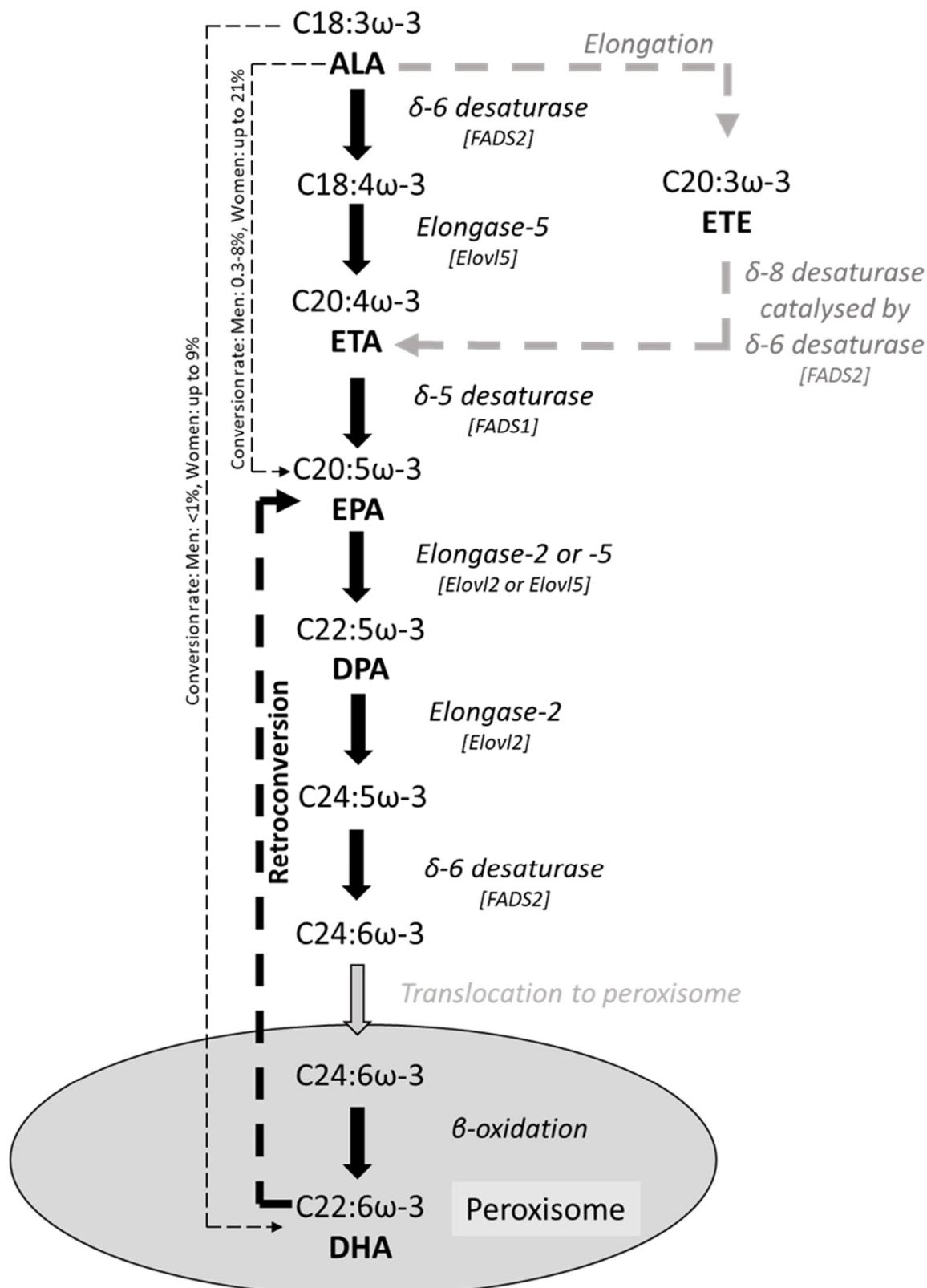
13 **Abstract:**

14 Epithelial cells (enterocytes) form part of the intestinal barrier, the largest human interface between
15 the internal and external environments, and responsible for maintaining regulated intestinal
16 absorption and immunological control. Under inflammatory conditions, the intestinal barrier and
17 its component enterocytes become inflamed, leading to changes in barrier histology, permeability,
18 and mediator production. Omega-3 (ω -3) polyunsaturated fatty acids (PUFAs) can influence the
19 inflammatory state of a range of cell types, including endothelial cells, monocytes, and
20 macrophages. This review aims to assess the current literature detailing the effects of ω -3 PUFAs on
21 epithelial cells. Marine-derived ω -3 PUFAs, eicosapentaenoic acid and docosahexaenoic acid, as
22 well as plant-derived alpha-linolenic acid, are incorporated into intestinal epithelial cell membranes,
23 prevent changes to epithelial permeability, inhibit the production of pro-inflammatory cytokines
24 and eicosanoids and induce the production of anti-inflammatory eicosanoids and docosanoids.
25 Altered inflammatory markers have been attributed to changes in activity and/or expression of
26 proteins involved in inflammatory signalling including NF- κ B, PPAR- γ , PPAR- α , GPR120 and
27 COX-2. Effective doses for each ω -3 PUFA are difficult to determine due to inconsistencies in dose
28 and time of exposure between different *in vitro* models and between *in vivo* and *in vitro* models.
29 Further research is needed to determine the anti-inflammatory potential of less-studied ω -3 PUFAs,
30 including docosapentaenoic acid and stearidonic acid.

31 **Keywords:** ω -3 PUFA; fish oil, inflammation, cytokine, chemokine, lipid mediator, eicosanoid,
32 permeability, enterocyte, epithelium

33

34 **1. Introduction**


35 In humans the gut (intestinal) barrier is the largest interface separating the internal and external
36 environments. The main cells forming the barrier are epithelial cells, although other cell types are
37 also present. Intestinal epithelial cells (enterocytes) have a vital role in uptake of nutrients and water,
38 in protecting internal systems from noxious environmental stressors and in regulating responses to
39 both harmful and harmless external stimuli. Epithelial cells must respond to commensal and
40 pathogenic bacteria, co-exist and interact with intestinal immune cells, and deal with nutrients and
41 other substances from the diet [1]. The function and integrity of the epithelial barrier are governed
42 by the tightly regulated axis between the epithelial cells, the microbiota, mucus and anti-microbial
43 peptides, and immune cells. Disruption of intestinal epithelium function leads to increased

44 permeability and loss of immunological control, which is believed to contribute to a number of
45 pathological states and diseases, including inflammatory bowel diseases (Crohn's disease and
46 ulcerative colitis), coeliac disease and irritable bowel syndrome [2]. Communication between
47 epithelial cells, the gut microbiota, and intestinal immune cells is through both direct cell-cell contact
48 and through the production of chemical mediators, including both small metabolites such as short-
49 chain fatty acids (SCFAs) and larger immune mediators such as cytokines and chemokines [3, 4].

50 The gut epithelium interacts with a range of nutrients and other components from the diet,
51 which can both affect barrier function and be absorbed across the barrier into the bloodstream. The
52 influence of diet-derived substances on gut epithelial function including barrier integrity is likely to
53 be important. Excessive inflammation or oxidative stress can disrupt barrier function. Vitamins
54 (including vitamins C, D₃, and E) [5, 6], phytochemicals (including polyphenols and flavonoids) [7],
55 SCFAs [8], and polyunsaturated fatty acids (PUFAs) [9] are known to have anti-oxidant and anti-
56 inflammatory effects on a range of cell types. Omega-3 (ω -3) PUFAs have been widely studied in the
57 context of inflammation [9-12], with anti-inflammatory effects being described and benefits related
58 to these being reported in several disease states, including cardiovascular disease [13], rheumatoid
59 arthritis [14], and inflammatory bowel diseases [15]. The two main bioactive ω -3 PUFAs are
60 eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), although roles for
61 docosapentaenoic acid (DPA; 22:5n-3) are now emerging. These fatty acids can be consumed directly
62 in high amounts by eating oily fish, such as salmon, mackerel and sardines, or by taking fish oil
63 supplements. Additionally, the plant-derived ω -3 PUFA, alpha-linolenic acid (ALA; 18:3n-3), found
64 abundantly in flaxseeds and walnuts, and in rapeseed (sometimes called canola) and soybean oils,
65 can be consumed as a precursor for EPA and DHA synthesis in humans as shown in Figure 1,
66 although humans have a relatively low conversion rate of ALA to EPA and on to DHA [16].

67 The mechanisms by which EPA and DHA exert anti-inflammatory effects have been described
68 elsewhere in detail [10-12] and include partial replacement of arachidonic acid (AA; 20:4 ω -6) in
69 cellular phospholipids, inhibition of several inflammatory signalling pathways, and activation of
70 peroxisome proliferator-activated receptor (PPAR)- γ and G-protein coupled receptor (GPR) 120,
71 which subsequently inhibit the action of the pro-inflammatory transcription factor nuclear factor
72 kappa-light-chain-enhancer of activated B cells (NF- κ B) [17]. These anti-inflammatory effects of ω -3
73 PUFAs have been mostly studied in classic inflammatory cells like monocytes, macrophages and
74 neutrophils and also in endothelial cells and result in decreased cellular activation and reduced
75 production of inflammatory cytokines, chemokines and lipid mediators and increased production of
76 pro-resolving lipid mediators [9-12]. Several enzymes, known to produce mediators of inflammation
77 such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), are also known to be
78 modulated by ω -3 PUFAs. Despite this extensive research, effects of ω -3 PUFAs on intestinal
79 epithelial cells are less well recognised, even though controlling inflammation at the level of the
80 intestinal epithelium is clearly important. This review aims to bring together the relevant literature
81 assessing the role of ω -3 PUFAs, including ALA, EPA, DPA and DHA, on the function of intestinal
82 epithelial cells with an emphasis on inflammation.

83

Figure 1. Metabolic conversion pathway from the essential ω -3 PUFA, ALA, to longer chain ω -3 PUFAs, EPA, DPA and DHA. Conversion data are from [18].

84

85
86

87

88

89 **2. Models for studying the intestinal epithelium**

90 Directly assessing the function of the human gut epithelium *in vivo* is a challenge, as assessing
91 intestinal barrier morphology, integrity and function by biopsy or endoscopy is both time consuming
92 and invasive. Alternative indirect *in vivo* assessments of epithelial barrier function include
93 permeability assays using large or small inert sugars as markers for intestinal absorption, and
94 measuring bacterial products, such as lipopolysaccharide (LPS; also known as endotoxin), or markers
95 of enterocyte functionality, such as citrulline and intestinal fatty acid binding protein, within serum
96 or plasma [19]. These less invasive approaches give insight into overall gut barrier functionality, but
97 they cannot identify the location or cause of any differences observed, and therefore the use of
98 complementary *in vivo* and *in vitro* techniques allows for more insight into the mechanisms of
99 intestinal epithelium function in health and disease and for the study of the effect of stressors and
100 modulators.

101 Cellular models of the intestinal epithelium provide a useful tool to investigate the potential
102 roles of nutrients, such as ω -3 PUFAs, *in vitro*. Although the complexity of the intestinal barrier is
103 difficult to replicate *in vitro*, multiple models are available to study intestinal epithelial cells. Human
104 colorectal tumour derived cell lines, such as Caco-2, T84, and HT-29, as well as rodent derived cell
105 lines, such as IEC-6 and IEC-18, provide replicable and high-throughput models of the intestinal
106 epithelium [20, 21], whilst organ-on-a-chip cultures have begun to replicate more *in vivo*-like
107 epithelial properties and behaviours [22]. These models allow for *in vitro* assessment of a multitude
108 of outcomes, including changes to membrane composition, permeability, transport processes,
109 inflammatory mediator production, receptors and signalling pathways, the cell cycle and apoptosis.

110 **3. ω -3 PUFAs and intestinal epithelial fatty acid composition**

111 One central mechanism linked to the regulatory properties of ω -3 PUFAs is alteration and
112 modulation of the membrane fatty acid composition [9-12]. This has been demonstrated in many cell
113 types, including in intestinal epithelial cells (see Table 1). EPA supplementation of cultured Caco-2
114 cells increased their membrane content of EPA [23], and 96-hour supplementation with EPA and
115 DHA increased the respective amounts of those fatty acids in Caco-2 cells [24]. Further investigation
116 of the incorporation of EPA, as well as of DHA and ALA, in Caco-2 and T84 cells, indicated that EPA
117 accumulates in the phospholipid fraction, unlike DHA and ALA which accumulate in the neutral
118 lipid pool [25]. This suggests differential metabolism and handling of ω -3 PUFAs in these cells and
119 further, that EPA and DHA could have different functional effects in these cells. However, in separate
120 studies, ALA, EPA, and DHA all accumulated in T84 cell phospholipids [26], whilst EPA and DHA
121 increased ω -3 PUFA content in T84 cell lipid rafts [27], after 48 hours supplementation. It is not clear
122 why different studies have suggested different fates of ω -PUFAs in these cells, but this might relate
123 to methodological differences between the studies.

124 In addition to simply incorporating the ω -3 PUFA provided in the culture medium,
125 bioconversion of exogenous ω -3 PUFAs can also occur in epithelial cells. This has been shown in both
126 Caco-2 and T84 cells supplemented with 30 μ M of each respective fatty acid for 7 days (summarised
127 in Table 2). Supplementation of T84 cells with ALA significantly increased ALA and eicosatrienoic
128 (ETE; 20:3 ω -3) contents compared to untreated control cells [25]. ALA and ETE contents were also
129 increased in ALA supplemented Caco-2 cells compared to controls [25]. The appearance of ETE
130 suggests elongation of ALA may be preferred in these cells rather than ALA desaturation catalysed
131 by the FADS2 gene product which is shown in Figure 1. Additionally, EPA was significantly
132 increased in ALA treated Caco-2 cells, suggesting these cells have an intact pathway of conversion of
133 ALA to EPA. This may use the pathway shown in Figure 1 or, if ETE is involved, then ETE can be
134 converted to eicosatetraenoic acid (ETA; 20:4 ω -3) by delta-8 desaturation most likely catalysed by an
135 alternative activity of the FADS2 gene product delta-6 desaturase (Figure 1). EPA supplementation
136 significantly increased EPA content in both Caco-2 and T84 cells compared to untreated control

137 Table 1: Effects of ω -3 PUFAs on fatty acid composition in intestinal cell models or tissue.

Reference	Model used	Condition	ω -3 PUFA(s) used	Concentration or dose used	Duration	Change in fatty acid composition
Cell line models						
Rosella et al. [23]	Caco-2 cells	Non-stimulated	EPA	100 μ g/ml	24 hours	\uparrow Membrane EPA content \uparrow Cellular EPA content \uparrow Cellular DPA content
Renaville et al. [28]	T84/Caco-2 cells	Non-stimulated	EPA	30 or 300 μ M	3 hours or 3 hours and 7 days	\downarrow Cellular <i>trans</i> -vaccenic acid content \downarrow Cellular <i>cis</i> -9, <i>trans</i> -11-conjugated linoleic acid \downarrow Cellular oleic acid content
Willemesen et al. [26]	T84 cells	IL-4-induced inflammation	ALA	10 or 100 μ M	96 hours	\uparrow Phospholipid ALA content
			EPA			\uparrow Phospholipid EPA content
			DHA			\uparrow Phospholipid DHA content
Li et al. [27]	T84 cells	TNF- α and IFN- γ -induced inflammation	EPA	25-75 μ M	48 hours	\uparrow Lipid raft EPA content
			DHA			\uparrow Lipid raft DHA content
Xiao et al. [24]	Caco-2 cells	Heat stress	EPA	50 μ M	96 hours	\uparrow Membrane EPA content
			DHA			\uparrow Membrane DHA content \uparrow Cellular ALA content \uparrow Cellular ETE content
			ALA			
Beguin et al. [25]	T84 cells	Non-stimulated	EPA	30 μ M	7 days	\uparrow Cellular EPA content \uparrow Cellular DPA content
			DHA			\uparrow Cellular DHA content \downarrow Cellular DPA content

	Caco-2 cells	Non-stimulated	ALA	↑ Cellular ALA content ↑ Cellular ETE content ↑ Cellular EPA content		
			EPA	↑ Cellular EPA content ↑ Cellular DPA content		
			DHA	↑ Cellular DHA content ↑ Cellular EPA content		
Rodent models						
Nieto et al. [33]	Rats	TNBS colitis	Fish oil	EPA: 4.16% of dietary fatty acids DHA: 3.01% of dietary fatty acids	7 or 14 days	↑ Colonic tissue EPA content ↑ Colonic tissue DHA content
Bosco et al. [35]	<i>Rag2^{-/-}</i> immunodeficient mice	Adoptive transfer of naïve T-cells-induced colitis	Fish oil	EPA: 3.37 g/100 g diet DHA: 2.10 g/100 g diet	8 weeks	↑ Colonic free EPA (7.2-fold) ↑ Colonic free DHA (2.2-fold) ↓ Colonic free arachidonic acid
Brahmbhatt et al. [32]	Male Sprague-Dawley rats	Intestinal reperfusion and ischaemia	Fish oil	EPA: 3.00% of dietary fatty acids DHA: 1.98% of dietary fatty acids	21 days	↑ Small intestine tissue EPA content ↑ Small intestine tissue DHA content
Reifen et al. [34]	Male Wistar rats	TNBS or DSS-induced colitis	Fish oil	Fish oil: 5% by weight of total diet (EPA: 11.7% of total fatty acids DHA: 15.7% of total fatty acids)	21 days	↑ Colonic tissue EPA content ↑ Colonic tissue DHA content
Xiao et al. [31]	Male Wistar rats	Heatstroke	EPA DHA	1 g/kg body weight per day by gavage	21 days	↑ Ileal phospholipid EPA content ↑ Ileal phospholipid DHA content

Human studies

Hillier et al. [30]	Human	Inflammatory bowel disease	Fish oil	Fish oil: 18 g/day (3.3 g EPA + 2.2 g DHA/day)	12 weeks	↑ Colonic mucosa EPA content ↑ Colonic mucosa DHA content ↓ Colonic mucosa AA content
Hawthorne et al. [29]	Human	Inflammatory bowel disease	Fish oil	Fish oil: 20 ml/day (4 g EPA + 1.2 g DHA/day)	1 year	↑ Rectal mucosa EPA content

138 Abbreviations used: ALA, α -linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; DSS, dextran sodium sulphate; EPA,
 139 eicosapentaenoic acid; ETE, eicosatrienoic acid; IFN, interferon; IL, interleukin; PUFA, polyunsaturated fatty acid; TNBS, 2,4,6-trinitrobenzenesulfonic acid;
 140 TNF, tumour necrosis factor

141

142 Table 2: Fatty acid content changes in gut epithelial cell lines (T84 and Caco-2) after 7 days of supplementation with ALA, EPA or DHA. Fatty acid content
 143 is given as mean picomoles of fatty acid per microgram of protein \pm standard error, () indicate fold change compared to control. *Significant differences
 144 between treatment and control. Data are from [25].

Cell line	Control (no added ω -3 PUFA)		ALA treatment		EPA treatment		DHA treatment	
	T84	Caco-2	T84	Caco-2	T84	Caco-2	T84	Caco-2
ALA	4.5 \pm 1.2	30.1 \pm 6.9	144.5 \pm 0.6* (32.1)	414.9 \pm 40.1* (13.8)	1.4 \pm 0.6 (-0.3)	31.5 \pm 4.7 (1.0)	2.3 \pm 1.1 (-0.5)	41.3 \pm 4.2 (1.4)
ETE	0.7 \pm 0.4	7.0 \pm 0.8	3.9 \pm 0.3* (5.6)	83.1 \pm 9.3* (11.9)	0.3 \pm 0.3 (-0.4)	7.5 \pm 0.8 (1.1)	Not detected	7.5 \pm 0.8 (1.1)
EPA	9.5 \pm 1.6	15.4 \pm 1.9	8.9 \pm 10.2 (-0.9)	20.7 \pm 2.3* (1.3)	130.8 \pm 11.1* (13.8)	257.6 \pm 37.2* (16.7)	17.0 \pm 5.9 (1.8)	32.3 \pm 4.4* (2.1)
n-3 DPA	5.7 \pm 1.2	19.9 \pm 2.0	4.5 \pm 1.3 (-0.8)	21.6 \pm 2.1 (1.1)	10.6 \pm 1.4* (1.9)	157.4 \pm 23.2* (7.9)	1.1 \pm 0.5* (-0.2)	24.9 \pm 3.3 (1.3)
DHA	11.8 \pm 1.8	37.2 \pm 4.1	9.8 \pm 0.7 (-0.8)	40.8 \pm 3.9 (1.1)	7.4 \pm 0.7 (-0.6)	33.9 \pm 4.9 (-0.9)	114.5* \pm 32.4 (9.7)	478.3 \pm 58.7* (12.9)
Total ω -3 PUFAs	32.3 \pm 6.3	72.5 \pm 8.1	171.6 \pm 13.0* (5.3)	581.2 \pm 8.3* (8.0)	150.7 \pm 14.2* (4.7)	448.9 \pm 65.3* (6.2)	135.0 \pm 39.9* (4.2)	535.5 \pm 66.4* (7.4)

145 Abbreviations used: ALA, α -linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; ETE, eicosatrienoic acid

146 cells [25]. EPA supplementation also significantly increased DPA content compared to controls,
147 although the increase was much greater in Caco-2 cells compared to T84 cells [25, 28]. Increase in EPA
148 and DPA content was also associated with decreased cellular content of *trans*-vaccenic acid, *cis*-9,
149 *trans*-11-conjugated linoleic acid, and oleic acid in both T84 and Caco-2 cell lines [28]. Arachidonic
150 acid (AA) decreased in EPA-treated Caco-2 and T84 cells [25], although this was not statistically
151 significant, whilst DHA treatment decreased AA only in the T84 cell line [25]. DHA supplementation
152 greatly increased DHA content in both Caco-2 and T84 cells [25]. In Caco-2 cells DHA significantly
153 increased EPA content [25], indicating the presence of a so-called retroconversion step. However, this
154 was not seen in T84 cells where DHA supplementation decreased DPA content [25].

155 Changes to epithelial cell fatty acid composition after ω -3 PUFA treatment have also been
156 reported *in vivo* (Table 1). Due to the complexity of obtaining intestinal biopsies, *in vivo* evidence
157 from human studies on changes to fatty acid composition of epithelial cells is limited. Hawthorne et
158 al. showed that in patients with ulcerative colitis and after 1 year of fish oil supplementation, rectal
159 mucosa EPA content increased, but mucosal DHA content was not significantly affected [29].
160 However, basal levels of DHA were higher in rectal mucosa compared to EPA (1.4% vs 0.4% total
161 fatty acids, respectively) and approximately 4-times more EPA was consumed compared to DHA,
162 across the trial period. In a separate human study, 12 week fish oil supplementation in patients with
163 inflammatory bowel disease increased colonic mucosal concentrations of EPA and DHA, which
164 coincided with a decrease in colonic mucosal AA content [30].

165 Rodent models have been used to assess changes in mucosal and epithelial fatty acid
166 compositions after dietary provision of ω -3 PUFAs (Table 1). Male Wistar rats with diets
167 supplemented with EPA or DHA for 21 days showed increased epithelial cell phospholipid
168 concentrations of each respective PUFA [31]. Male Sprague-Dawley rats consuming a diet containing
169 EPA and DHA, over a similar 3 week supplementation period, also had significantly increased EPA
170 and DHA content in small intestine tissue [32]. Additionally, rats fed a diet containing fish oil with
171 moderate concentrations of EPA and DHA in a 2,4,6-trinitrobenzene sulphonate (TNBS) colitis
172 model, showed significant increases in EPA and DHA content in colonic tissue [33]. Fish oil
173 supplementation, making up 5% of the diet of male Wistar rats for 3 weeks, was again shown to
174 significantly increase EPA and DHA content in colonic tissue after TNBS or dextran sodium sulphate
175 (DSS)-induced colitis treatment [34]. Rag2^{-/-} immunodeficient mice supplemented for 8 weeks with
176 fish oil had increased free concentrations of EPA and DHA (EPA>DHA) and decreased free
177 concentrations of AA in colonic tissue [35]. Thus, it is clear that when exposure to EPA and DHA is
178 increased (in cell culture or in the diet of experimental animals or humans) intestinal epithelial cells
179 incorporate those fatty acids. Often this incorporation has been reported to be at the expense of the
180 ω -6 PUFA, AA.

181 4. ω -3 PUFAs and intestinal epithelial morphology

182 Improvements in gut epithelial function attributed to ω -3 PUFAs are exemplified by improved
183 histological outcomes seen in several *in vivo* models. Although improvements have been seen in
184 many studies, there are also reports in which ω -3 PUFA supplementation has little or no effect on gut
185 morphology (summarised in Table 3).

186 Transgenic mice capable of endogenously synthesising ω -3 PUFAs had increased concentrations
187 of EPA, DPA, and DHA in intestinal epithelial cells, and when exposed to DSS to induce colitis, had
188 improved histological outcomes, including increased colon length, decreased severity and thickness
189 of inflammatory infiltrate, and decreased epithelial damage [36]. In this transgenic model ω -3 PUFAs
190 are generated endogenously, but many more studies have used exogenous ω -3 PUFAs as a potential
191 preventative or therapeutic strategy in a range of inflammatory conditions of the gut.

192

Table 3: Effects of ω -3 PUFAs on intestinal histology in rodent models.

Reference	Model used	Condition	ω -3 PUFA(s) used	Dose used	Duration	Histological changes
Vilaseca et al. [48]	Male Sprague-Dawley rats	Chronic TNBS colitis	Cod liver digest (providing EPA and DHA)	EPA: 5.95 mg/g diet DHA 6.91 mg/g diet	50 days	Decreased macroscopic damage (after day 20) Absence of inflammation and ulcerations (day 50)
Empey et al. [44]	Male Sprague-Dawley rats	Acetic acid-induced colitis	EPA-enriched fish oil	EPA-enriched fish oil: 10% by weight of total diet	6 weeks	Improved histology and less macroscopic injury
Shoda et al. [51]	Rats	TNBS colitis	Fish oil ALA-rich perilla oil	Fish oil: 2% by weight of total diet Perilla oil: 2% by weight of total diet	Not given	Reduced ulcer severity (correlated with decreased plasma LTB ₄) Decreased colonic weight (correlated with decreased plasma LTB ₄ ; ALA > fish oil)
Yuceyar et al. [50]	Male Wistar albino rats	TNBS colitis	Fish oil	EPA: 14.4 mg/g diet DHA: 11.6 mg/g diet	6 weeks (diet) 14 days (daily enema)	Improved pathology (decreased number of lesions) No effect on macroscopic parameters No effect on pathology
Caplan et al. [37]	Neonatal Sprague-Dawley rats	Necrotising enterocolitis	DHA	23 mg/100 ml formula	96 hours	Improved histological necrotising enterocolitis outcomes
Andoh et al. [49]	Male Sprague-Dawley rats	TNBS colitis	ω -3 PUFA-rich liquid diet (providing ALA)	150 mg/100 kcal	12 days (followed by 2 days starvation)	Reduced inflammatory damage score
Hudert et al. [36]	Transgenic fat-1 mice	DSS colitis	-	Mice have higher colonic EPA, DPA and DHA than controls	-	Increased colon length Decreased severity and thickness of inflammatory infiltrate Decreased epithelial damage
Lu et al. [38]	Neonatal Sprague-Dawley rats	Necrotising enterocolitis	DHA	0.5% of total fatty acids in formula	72 hours	Improved histology
Hassan et al. [52]	Male Sprague-Dawley rats	TNBS colitis	ALA	28.8% of total fatty acids in formula	14 days	Decreased macroscopic lesions Less neutrophil infiltration No effect on mucosal wall thickness No effect on overall inflammatory score

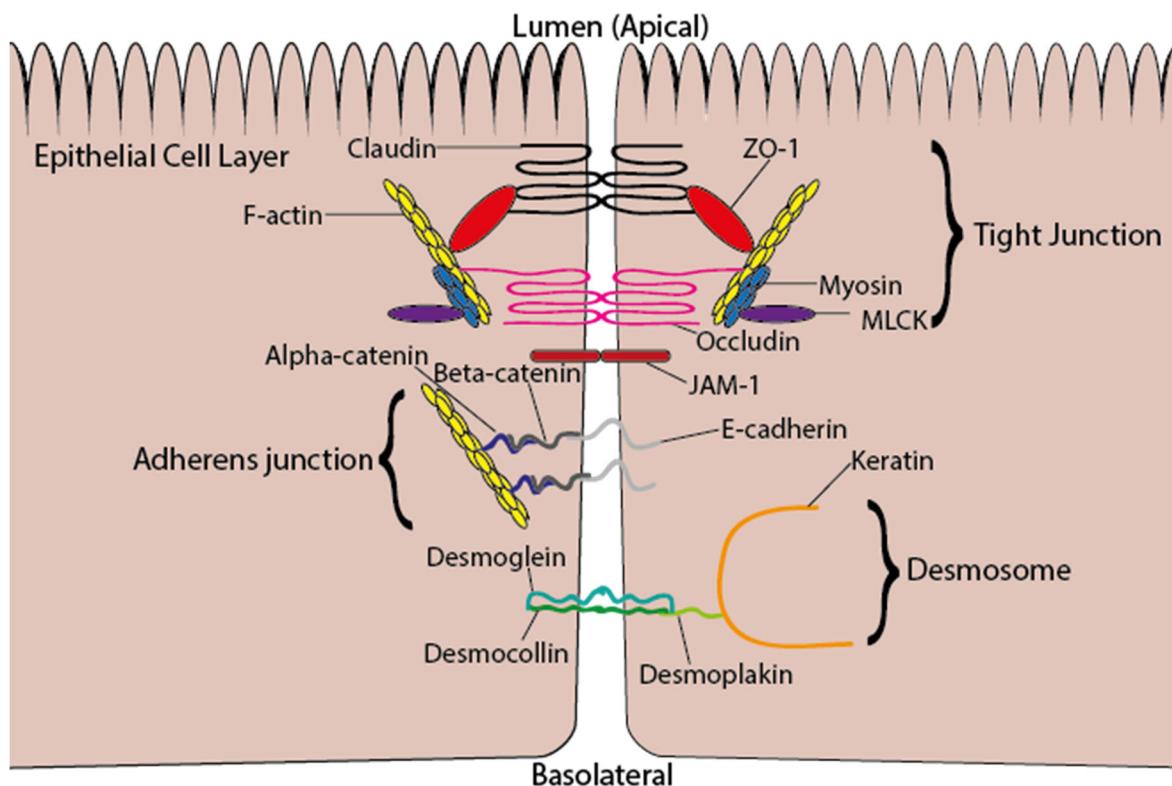
Bosco et al. [35]	Rag2 ^{-/-} immunodeficient mice	Adoptive transfer of naïve T-cells-induced colitis	Fish oil	EPA: 3.37 g/100 g diet DHA: 2.10 g/100 g diet	8 weeks	No effect on macroscopic parameters of colitis
Li et al. [41]	Male rats	Haemorrhagic shock	Fish oil	Fish oil: 0.2 g/kg body weight	Single intravenous treatment	Less mucosal damage Improved tight junction morphology
Reifen et al. [34]	Male Wistar rats	TNBS or DSS colitis	Sage oil (providing ALA)	Oils: 5% by weight of total diet	21 days	No effect on DSS or TNBS colitis-induced histological changes Increased mucosal inflammation (DSS colitis only)
			Fish oil			Decreased colon length (DSS colitis only) No effect on TNBS colitis-induced histological changes
Zhao et al. [39]	Mice	IL-10 deficiency	DHA	35.5 mg/kg body weight per day intragastrically	14 days	Improved histological inflammation score
Chien et al. [45]	Male Wistar rats	Chronic ethanol exposure	Fish oil	7.1 or 16.2 g/kg diet	8 weeks	No effect on epithelial histological damage
Yao et al. [47]	Male Sprague-Dawley rats	TNBS colitis	ω-3 PUFAs (source not specified but presumed to be fish oil)	20 mg/kg body weight per day intragastrically	60 days	Decreased disease activity index score Decreased colonic macroscopic damage index score (decreased ulceration) Decreased tissue damage index score (reduced thickening and leukocyte infiltration)
Charpentier et al. [46]	Young male Sprague-Dawley rats	TNBS colitis	ω-3 PUFAs (source not specified but presumed to be fish oil)	6.1 g/kg of diet	28 days	No effect on colonic weight to length ratio
Haddi et al. [43]	Female BALB/c mice	β-lactoglobulin-induced inflammation	Fish oil	0.6, 1 or 1.5 ml/kg body weight per day by gavage	15 days	Increased villus height Improved intestinal architecture Improved histological score
Tang et al. [42]	Female Sprague-Dawley rats	Peritoneal dialysis	ω-3 PUFAs (source not specified)	0.5 or 1.5 g/kg body wt per day intragastrically	28 days	Increased ileal villus length Increased crypt depth/ileal villus length ratio

Zheng et al. [40]	Male C57 mice	DSS colitis	DPA	300 mg/kg body weight per day by gavage	28 days	Attenuated body weight decrease Decreased disease activity index score Improved gross morphology and pathological inflammatory score Attenuated inflammatory infiltration Attenuated colon shortening
-------------------	---------------	-------------	-----	---	---------	---

193 Abbreviations used: ALA, α -linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; DSS, dextran sodium sulphate; EPA,
194 eicosapentaenoic acid; LT, leukotriene; PUFA, polyunsaturated fatty acid; TNBS, 2,4,6-trinitrobenzenesulfonic acid

195 Single dose DHA treatment has been shown to reduce the incidence of necrotising enterocolitis
196 in neonatal Sprague-Dawley rats as indicated by lower numbers of villous necroses [37, 38].
197 Moreover, prolonged DHA exposure (14 days) in the IL-10-deficiency-induced murine colitis model
198 reduced colonic inflammation and inflammatory scores and inflammatory cell infiltration into the
199 intestinal mucosa, and partially restored goblet and glandular architecture [39]. In a model of DSS-
200 induced colitis, DPA also had a protective effect on disease severity and gut morphology, including
201 attenuated colon shortening, decreased inflammatory infiltration into colonic tissue, and attenuated
202 body weight loss, as well as overall decreases in pathology and gross morphological injury scores
203 [40].

204 Fish oil, containing both EPA and DHA, has also exhibited protective effects on gut histology in
205 other models, including reducing mucosal damage and preventing tight junction protein
206 redistribution in a rat haemorrhagic shock model [41], as well as increasing villous length and crypt
207 depth/villous length ratio in a female Sprague-Dawley rat model of peritoneal dialysis [42]. Fish oil
208 also significantly increased villous height and improved histological architecture scores in β -
209 lactoglobulin treated female BALB/c mice, as well as preventing changes to short current circuit and
210 tissue conductance in jejunal tissue [43]. EPA-enriched fish oil, given over a 6 week period, also
211 reduced macroscopic inflammation parameters in an acetic acid-induced colitis model [44]. However,
212 in chronic ethanol exposed male Wistar rats, fish oil had no effect on histological epithelial damage
213 [45].


214 In young male Sprague-Dawley rats, ω -3 PUFAs given over 28 days had no effect on TNBS
215 colitis-induced alterations to colon length to weight ratio [46]. This is in accordance with the lack of
216 effect seen in a TNBS induced colitis model using male Wistar rats supplemented with fish oil [34].
217 Conversely, in an adult Sprague-Dawley rat model of TNBS colitis, ω -3 PUFA supplementation over
218 60 days, decreased macroscopic parameters of inflammation, including reducing ulcerations, tissue
219 thickening, and inflammatory cell infiltration [47]. Male Sprague-Dawley rats consuming a cod liver
220 digest (rich in ω -3 PUFAs) over 50 days showed decreased macroscopic damage scores and absence
221 of colonic inflammation and ulcerations in chronic TNBS-induced colitis [48]. Short-term (12 days)
222 consumption of a ω -3 PUFA-rich diet also reduced histological inflammation initiated by TNBS [49].
223 Yuceyar et al. described that the mode of delivery of fish oil can influence its effectiveness in
224 preventing histological changes in TNBS colitis. Fish oil given in the diet, over a 6 week period, was
225 able to attenuate lesion quantity and improved pathological scores in TNBS-induced colitis, whilst
226 the same dose given by daily enema, over a 2 week period, had no effect on macroscopic parameters
227 of inflammation and overall pathology score [50].

228 In contrast to the many findings of benefit of ω -3 PUFAs described above, Reifen et al. reported
229 that fish oil treatment increased mucosal inflammatory scores in a DSS-induced colitis model using
230 male Wistar rats, while ALA-rich sage oil had no effect on in vivo parameters of inflammation in
231 either TNBS or DSS-induced colitis [34]. However, Shoda et al. showed protective effects of both fish
232 oil and ALA-rich perilla oil in a model of TNBS-induced colitis. Both treatments altered colitis-
233 induced histological changes, with fish oil reducing ulcer severity and perilla oil reducing the
234 increase in colonic weight [51]. In a Sprague-Dawley rat model of TNBS colitis, ALA reduced
235 macroscopic lesions and neutrophil infiltration, but had no effect on colitis-induced changes to wall
236 thickness and overall inflammatory score [52]. Thus, although there is substantial literature on
237 benefits of ω -3 PUFAs in various models of gut inflammation, there are some contrary findings which
238 might be due to differences between models, age groups, ω -3 PUFA dose, and delivery method of ω -
239 3 PUFAs.

240 5. ω -3 PUFAs and intestinal permeability

241 Regulated permeability is one of the vital functions of the intestinal epithelium. The structure
242 and function of intercellular junctions, including tight junctions, are integral to maintaining the
243 uptake of nutrients and preventing the translocation of commensal bacteria and their products across
244 the epithelial barrier. Tight junctions consist of extracellular spanning proteins, occludin and claudin,
245 which interact with adjacent cells at cell-cell contact sites, and anchoring protein, zonula occludens

(ZO)-1, which attaches occludin and claudin to the actin cytoskeleton [53], as shown in Figure 2. Adherens junctions are intercellular adhesion structures, responsible for maintaining tissue integrity and control of epithelial cell motility and proliferation [54]. Desmosomes are adhesion sites between adjacent cells, which provide linkage to the intermediate filament cytoskeleton and provide resistance against mechanical stress [55]. Junction adhesion molecule (JAM)-1 is associated with barrier function and tight junction assembly [56]. Disruption of intercellular junctions occurs in response to increased presence of inflammatory cytokines, pathogenic bacteria, or bacterial lipopolysaccharides [53], which induce regulatory proteins, such as myosin light chain kinase (MLCK), leading to tight junction protein degradation or endocytosis [57]. Intercellular junction dysfunction can also be attributed to certain pathological conditions, including inflammatory bowel disease, obesity, and non-alcoholic fatty liver disease [53]. Nutrients from the diet, including amino acids, vitamins A and D, and polyphenols, are known to modulate intercellular junctions, in particular tight junctions [58].

Figure 2. Intercellular junctions between epithelial cells consisting of tight junctions, adherens junctions, and desmosomes. Abbreviations used: ZO-1, zonula occludens-1; MLCK, myosin light chain kinase; JAM-1, junction adhesion molecule-1.

The effects of ω -3 PUFAs on permeability in *in vitro* and *in vivo* models are summarised in Table 4. Usami et al. reported that ALA, EPA and DHA all reduced barrier integrity of Caco-2 cell monolayers, indicated by increased fluorescein sulfonic acid permeability and decreased transepithelial electrical resistance [59, 60]. These increases in permeability could be associated to a cytotoxic level of ω -3 PUFAs being used, as high levels of EPA increased lactate dehydrogenase (LDH) release into the culture medium, a marker for cytotoxicity, in Caco-2 cell monolayers [59]. In contrast to these findings, EPA and DHA have been shown to improve barrier integrity in many other *in vitro* studies. In unstimulated Caco-2 cell monolayers, 24 hour EPA supplementation reduced permeability of horseradish peroxidase [23]. EPA and DHA were shown to attenuate increases in permeability induced by pro-inflammatory cytokines, including interleukin (IL)-4 [26] and combined tumour necrosis factor (TNF)- α and interferon (IFN)- γ [27] in T84 cells. Additionally, EPA and DHA were shown to prevent permeability changes induced by mycotoxin, deoxynivalenol, and infection in a porcine epithelial cell model, IPEC-1, by preventing redistribution of tight junction proteins,

276 claudin and ZO-1 [61]. Xiao et al. showed that incubation for 96 hours with EPA, but not with DHA, was able to significantly attenuate increased permeability in heat-stress impaired Caco-2 monolayers [24].

279 Differing effects of EPA and DHA on gut permeability have been reported *in vivo*. Male Wistar
280 rats subjected to heatstroke showed increased gut permeability, indicated by increased plasma D-
281 lactate and endotoxin levels, which was attenuated by DHA, and even more effectively by EPA [31].
282 High dose fish oil supplementation, containing both EPA and DHA and making up 15% total calories,
283 prevented increased plasma endotoxin levels and decreased tight junction protein (ZO-1) expression
284 in chronic ethanol exposed male Wistar rats [45]. DHA also prevented increased plasma endotoxin
285 levels in a necrotising enterocolitis model using Sprague-Dawley rats [37]. Dietary ω -3 PUFA
286 supplementation in young male Sprague-Dawley rats, had no effect on colitis-induced reductions of
287 tight junction protein expression (claudin-1 and occludin) and barrier-associated protein expression
288 (trefoil factor 3 and mucin 2) [46]. In other models of colitis, consumption of EPA-enriched fish oil
289 protected intestinal absorption function [44] and transgenic mice with increased mucosal ω -3 PUFAs
290 maintained ZO-1 tight junction protein expression [36]. Therefore, it seems the effects on ω -3 PUFAs
291 on epithelial cell permeability may be dependent on the type of stimulus exerting changes to
292 permeability, but could also be attributed to the dose and type of ω -3 PUFA used.

293 6. ω -3 PUFAs and intestinal epithelial inflammation

294 Epithelial cells respond to a plethora of stimuli, both from luminal contents and the
295 inflammatory milieu of the intestinal mucosa. The production of inflammatory mediators is governed
296 by the cellular response to particular stimuli, and can be modulated by ω -3 PUFAs. The effects of ω -
297 3 PUFAs on inflammatory mediator production by intestinal epithelial cells are summarised in Table
298 5.

299 Wang et al. demonstrated that, under non-inflammatory conditions, long-term (up to 90 days)
300 fish oil consumption (40 g/kg body weight, containing 15.4% EPA and 15.1% DHA) in male Lewis
301 rats significantly reduced cytokine mRNAs in the intestinal epithelium, including TNF- α , IFN- γ , IL-
302 4, IL-10, and IL-15, as well as IL-15 protein expression, but had no effect on IL-7, and altered the
303 phenotype of intraepithelial lymphocytes [62]. Acute exposure (12 hours) to EPA or to DHA
304 significantly up-regulated transforming growth factor (TGF)- β 1 mRNA expression in HT29 cells, and
305 EPA, but not DHA, treatment induced a significant increase in TGF- β 1 mRNA expression in mucus-
306 secreting HT29-MTX cells [63]. Neither EPA nor DHA had a consistent effect on IL-8 and HSP 72
307 mRNA expression in HT29 or HT29-MTX cell cultures [63].

308 Table 4: Effects of ω -3 PUFAs on intestinal permeability in cell and rodent models.

Reference	Model used	Condition	ω -3 PUFA(s) used	Concentration or dose used	Duration	Changes to permeability and related mechanisms
Cell line models						
Rosella et al. [23]	Caco-2 cells	Non-stimulated	EPA	100 μ g/ml	24 hours	\downarrow Permeability
	Caco-2 cells	Non-stimulated	ALA	50-200 μ M	24 hours	\uparrow Permeability (dose-dependent)
Usami et al. [59]			EPA			
			\uparrow Permeability (dose-dependent) \downarrow Electron-dense material at tight junctions and desmosomes (200 μ M only)			
Usami et al. [60]	Caco-2 cells	Non-stimulated	DHA	10-100 μ M	24 hours	\uparrow Permeability (dose-dependent)
Willemesen et al. [26]	T84 cells	IL-4-induced inflammation	ALA	10 or 100 μ M	48 hours	No effect on permeability
			EPA			
			DHA	\downarrow Permeability (100 μ M only) \downarrow Permeability \downarrow Tight junction protein redistribution		
Li et al. [27]	T84 cells	TNF- α and IFN- γ -induced inflammation	EPA	25-75 μ M	48 hours	\downarrow Tight junction altered morphology \downarrow Occludin and flotillin displacement from lipid rafts
			DHA	\downarrow Permeability \downarrow Tight junction protein redistribution \downarrow Tight junction altered morphology		

							↓ Occludin and flotillin displacement from lipid rafts ↓ Permeability ↓ Tight junction altered morphology ↓ Tight junction protein redistribution ↑ ZO-1 and occludin protein and mRNA expression	
Xiao et al. [24]	Caco-2 cells	Heat stress	EPA	50 μ M	96 hours		No effect on permeability ↑ ZO-1 and occludin protein and mRNA expression	
			DHA					
Xiao et al. [61]	IPEC-1 cells	Deoxynivalenol-induced inflammation	EPA	up to 25 μ g/ml	24-72 hours		↓ Permeability (24 and 48 hours) ↓ ZO-1 and claudin redistribution	
			DHA					
Rodent models								
Empey et al. [44]	Male Sprague-Dawley rats	Acetic acid-induced colitis	EPA-enriched fish oil	10% by weight of total diet	6 weeks	Protected ileal and colonic absorption		
Caplan et al. [37]	Neonatal Sprague-Dawley rats	Necrotising enterocolitis	DHA	23 mg/100 ml formula	96 hours	↓ Plasma endotoxin level		
Hudert et al. [36]	Transgenic fat-1 mice	DSS colitis	-	Mice have higher colonic EPA, DPA and DHA	-	↑ ZO-1 expression (maintained compared to colitis control)		
Xiao et al. [31]	Male Wistar rats	Heatstroke	EPA	1 g/kg body weight/day by gavage	21 days	↓ Intestinal permeability ↓ Plasma endotoxin and D-lactate levels ↓ Tight junction protein distortion ↑ Tight junction protein expression		

DHA						
Charpentier et al. [46]	Young male Sprague-Dawley rats	TNBS colitis	ω-3 PUFAs (source not specified but presumed to be fish oil)	6.1 g/kg of diet	28 days	↓ Intestinal permeability ↓ Plasma endotoxin and D-lactate levels ↓ Tight junction protein distortion ↑ Tight junction protein expression No effect on claudin-1 protein expression No effect on occludin protein expression No effect on TTF3 protein expression No effect on MUC2 protein expression
Chien et al. [45]	Male Wistar rats	Chronic ethanol exposure	Fish oil	7.1 or 16.2 g/kg diet	8 weeks	↓ Plasma endotoxin levels ↑ ZO-1 immunoreactive area in intestinal epithelial tissue (16.2 g/kg/day only)

309 Abbreviations used: ALA, α -linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; DSS, dextran sodium sulphate; EPA,
 310 eicosapentaenoic acid; ETE, eicosatrienoic acid; IFN, interferon; IL, interleukin; PUFA, polyunsaturated fatty acid; TNBS, 2,4,6-trinitrobenzenesulfonic acid;
 311 TNF, tumour necrosis factor; ZO, zonula occludens

312

313

314

315

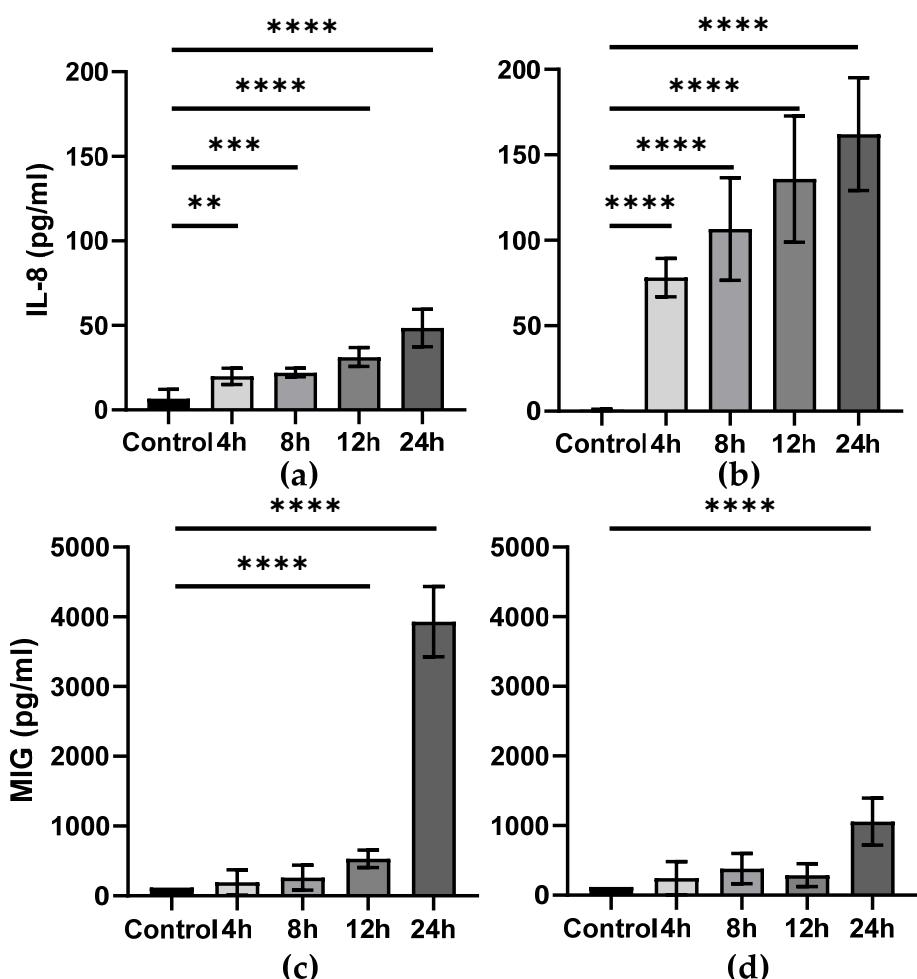
316

317

318

319 Table 5: Effects of ω -3 PUFAs on inflammatory mediators in cell, rodent and human models.

Reference	Model used	Condition	ω -3 PUFA(s) used	Dose used	Duration	Effect on inflammatory mediator(s)
Cell line models						
Zhao et al. [66]	HCT116 cells	Lauric acid/IE-DAP/MDP-induced inflammation	EPA	0-20 μ M	20 hours	\downarrow IL-8 protein (MDP only)
Marion-Letellier et al. [64]	Caco-2 cells	IL-1 β -induced inflammation	DHA			\downarrow IL-8 protein (all treatments)
			EPA	0.1-10 μ mol/L	18 hours	\downarrow IL-6 protein \downarrow IL-8 protein \downarrow IL-6 protein \downarrow IL-8 protein
Vincentini et al. [67]	Caco-2 cells	α -gliadin-induced inflammation	DHA	2 μ M	24 hours	\downarrow PGE ₂ \downarrow IL-8 protein
Bentley-Hewitt et al. [63]	HT29/HT29-MTX cell co-culture	Non-stimulated	EPA	50 μ M	12 hours	\uparrow TGF- β 1 mRNA No consistent effect on IL-8 or HSP 72 mRNA
			DHA			\uparrow TGF- β 1 mRNA No consistent effect on IL-8 or HSP 72 mRNA
Reifen et al. [34]	Caco-2 cells	IL-1 β -induced inflammation	Sage oil (providing ALA)	10 μ M	48 hours	\downarrow IL-8 protein
			ALA			\downarrow IL-8 protein
Wijendran et al. [65]	H4/NEC-IEC/Caco-2 cells	IL-1 β -induced inflammation	EPA	100 umol/L	48 hours	\downarrow IL-8 mRNA and protein (H4 only) \downarrow IL-6 mRNA and protein (H4 only)
			DHA			\downarrow IL-8 mRNA and protein \downarrow IL-6 mRNA (H4 only) \downarrow IL-6 protein (H4 and NEC-IEC)
Rodent models						
Empey et al. [44]	Rats	Non-stimulated	EPA-enriched fish oil	10% by weight of total diet	6 weeks	\uparrow PGE ₂ in colonic dialysate \uparrow LTB ₄ in colonic dialysate


Yuceyar et al. [50]	Male Wistar albino rats	TNBS colitis	Fish oil	EPA: 14.4 mg/g diet DHA: 11.6 mg/g diet	6 weeks (diet) 14 days (daily enema)	↓ Colonic LTB ₄ ↓ Colonic LTC ₄ ↓ Colonic LTB ₄ ↓ Colonic LTC ₄
Andoh et al. [49]	Male Sprague-Dawley rats	TNBS colitis	ω-3 PUFA-rich liquid diet (providing ALA)	150 mg/100 kcal	12 days (followed by 2 days starvation)	↓ Mucosal IL-6 secretion No effect on mucosal TNF-α secretion
Hudert et al. [36]	Transgenic fat-1 mice	DSS colitis	-	Mice have higher colonic EPA, DPA and DHA than controls	-	↑ Mucosal RvE1 ↑ Mucosal RvD3 ↑ Mucosal protectin D1 ↑ Mucosal PGE ₃ ↑ Mucosal LTB ₅ No effect on mucosal LTB ₄ No effect on mucosal PGE ₂ No effect on mucosal 15-hydroxyeicosatetraenoic acid (lipoxin A ₄ precursor) ↓ Colonic TNF-α mRNA ↓ Colonic IL-1β mRNA ↑ Colonic toll-interacting protein mRNA ↑ Colonic trefoil factor 3 mRNA
Wang et al. [62]	Male Lewis rats	Non-stimulated	Fish oil	Fish oil 4% by weight of total diet (EPA: 15.4 % of total fatty acids; DHA: 15.1 % of total fatty acids)	up to 90 days	↓ TNF-α mRNA ↓ IFN-γ mRNA ↓ IL-4 mRNA ↓ IL-10 mRNA ↓ IL-15 mRNA and protein No effect on IL-7 mRNA or protein

Hassan et al. [52]	Male Sprague-Dawley rats	TNBS colitis	ALA	28.8% of total fat content of formula	2 weeks	↓ TNF- α mRNA and protein ↓ LTB ₄ No effect on IL-6 expression or secretion No effect on PGE ₂ ↑ Colonic myeloperoxidase ↑ Colonic IL-1 β protein ↑ Colonic IL-12 protein ↑ Colonic keratinocyte-derived chemokine protein ↑ Colonic IL-10 protein ↑ Colonic TNF- α protein ↑ Mucosal PGE ₃ ↑ Mucosal TXB ₃ ↑ Mucosal LTB ₅ ↑ Mucosal 5-HEPE ↑ Mucosal 17,18-EEP ↓ Mucosal PGJ ₂ ↓ Mucosal 5,6-EET ↓ Mucosal 8,9-EET ↓ Mucosal 14,15-EET No effect on mucosal PGE ₂ No effect on mucosal TXB ₂ No effect on mucosal LTB ₄
Bosco et al. [35]	Rag2 ^{-/-} immunodeficient mice	Adoptive transfer of naïve T-cells-induced colitis	Fish oil	EPA: 3.37 g/100 g diet DHA: 2.10 g/100 g diet	8 weeks	
Brahmbhatt et al. [32]	Male Sprague-Dawley rats	Intestinal reperfusion and ischaemia	EPA and DHA	EPA: 3.00% of dietary fatty acids DHA: 1.98% of dietary fatty acids	3 weeks	No effect on cytokine production ↑ TXB ₃ ↑ 17,18-EEP ↑ 8-iso PGF _{2α}
Zhao et al. [39]	Mice	IL-10 deficient	DHA	35.5 mg/kg body weight per day intragastrically	2 weeks	↓ TNF- α protein ↓ IFN- γ protein ↓ IL-17 protein

Charpentier et al. [46]	Young male Sprague-Dawley rats	TNBS colitis	ω-3 PUFAs (source not specified but presumed to be fish oil)	6.1 g/kg of diet	28 days	↓ Colonic IL-6 protein ↓ Colonic LTB ₄ No effect on colonic TNF-α protein
Yao et al. [47]	Male Sprague-Dawley rats	TNBS colitis	ω-3 PUFAs (source not specified but presumed to be fish oil)	20 mg/kg body weight per day intragastrically	60 days	↓ Colonic IL-2 mRNA ↓ Colonic IL-4 mRNA
Zheng et al. [40]	Male C57 mice	DSS colitis	DPA	300 mg/kg body weight per day by gavage	28 days	↓ Colonic IL-1β mRNA and protein ↓ Colonic IL-6 mRNA and protein ↓ Colonic TNF-α mRNA and protein ↑ Colonic IL-10 mRNA and protein ↓ Colonic PGE ₂ ↓ Colonic LTB ₄
Human studies						
Hillier et al. [30]	Human	Inflammatory bowel disease	Fish oil	Fish oil: 18 g/day (3.3 g EPA and 2.2 g DHA per day)	12 weeks	↓ Colonic mucosa PGE ₂ ↓ Colonic mucosa TXB ₂

320 Abbreviations used: ALA, α -linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; DSS, dextran sodium sulphate; EEP,
 321 epoxyeicosatetraenoic acid; EET, epoxyeicosatrienoic acid; EPA, eicosapentaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HSP, heat shock protein; IE-
 322 DAP, γ -D-glutamyl-mesodiaminopimelic acid; IFN, interferon; IL, interleukin; LT, leukotriene; MDP, muramyldipeptide; PG, prostaglandin; PUFA,
 323 polyunsaturated fatty acid; Rv, resolvin; TGF, transforming growth factor; TNBS, 2,4,6-trinitrobenzenesulfonic acid; TNF, tumour necrosis factor; TX,
 324 thromboxane

325 Inflammatory challenge alters epithelial cell inflammatory mediator production, as shown in
 326 Figure 3. This is considered to be damaging to epithelial barrier integrity, and it is thought that ω -3
 327 PUFAs can regulate these processes. Pre-incubation with EPA and DHA, but not ALA, significantly
 328 prevented IL-1 β -induced increases in IL-6 and IL-8 production in Caco-2 cells [64]. In a separate
 329 model using necrotising enterocolitis epithelial cells (H4 and NEC-IEC) and Caco-2 cells, IL-8 mRNA
 330 and protein expression were attenuated by DHA, after IL-1 β treatment, in all cell lines [65]. IL-1 β -
 331 induced increases in IL-6 mRNA and protein were attenuated by DHA and EPA but only in H4 cells
 332 [65]. In a model of IL-1 β -induced inflammation in Caco-2 cells, both ALA-rich sage oil and ALA
 333 inhibited increased IL-8 expression [34]. Separate DHA or EPA supplementation inhibited increased
 334 IL-8 expression in a colonic epithelial cell line, HCT116, treated with the NOD2 ligand,
 335 muramyl dipeptide (MDP) [66]. DHA, but not EPA, supplementation also inhibited increased
 336 HCT116 IL-8 expression induced by lauric acid and the NOD-1 agonist, γ -D-glutamyl-
 337 mesodiaminopimelic acid (IE-DAP) [66]. DHA also reduced prostaglandin (PG) E₂ and IL-8
 338 production in Caco-2 cells stimulated with a digest of α -gliadin [67].

339

340 **Figure 3.** IL-8 and monokine induced by gamma interferon (MIG) production by Caco-2 cells stimulated with a
 341 cocktail of cytokines (TNF- α (5 ng/ml), IFN- γ (50 ng/ml), and IL-1 β) in a transwell system; cytokines were
 342 added to the basolateral compartment, and apical and basolateral supernatants assessed for IL-8 and MIG by
 343 Luminex. Controls are unstimulated. A: Apical IL-8 production, B: Basolateral IL-8 production, C: Apical MIG
 344 production, and D: Basolateral MIG production. Data are mean \pm SEM from 3 experiments and are not
 345 previously published. Significance was determined by one-way ANOVA with Dunnett's multiple comparison
 346 tests, ** p<0.01, *** p<0.001, **** p<0.0001.

347 In an in vivo TNBS colitis model, ALA-rich camelina oil supplementation had no effect on IL-1 β
348 expression and secretion and the production of PGE₂, but did significantly reduce TNF- α mRNA and
349 protein, as well as leukotriene (LT) B₄ production, in colonic tissue [52]. IL-10 deficient mice
350 supplemented with DHA for 14 days had significantly reduced expression of TNF- α , IFN- γ , and IL-
351 17 in the colonic mucosa [39]. Male Sprague-Dawley rats fed EPA and DHA for 3 weeks, before
352 intestinal reperfusion and ischaemia, showed no alteration in cytokine production [32]. However,
353 EPA-derived metabolites including thromboxane (TX) B₃, 17,18-epoxyeicosatetraenoic acid (EET),
354 and 8-iso PGF_{2 α} were significantly increased in intestinal tissue [32].

355 Hillier et al. demonstrated that humans given fish oil over a 12-week period, had attenuated
356 colonic levels of AA-derived metabolites, PGE₂ and TXB₂ [30]. However, ω -3 PUFA supplementation
357 in male Sprague-Dawley rats showed a large (30-fold) increase in PGE₂ and a smaller increase in LTB₄
358 [44]. This is unexpected, as PGE₂ synthesis is attributed to COX-2 processing of AA, and ω -3 PUFAs
359 reduce AA availability and inhibit its metabolism by COX-2. EPA can also be processed by COX-2 to
360 PGE₃, which is known to be cross-reactive in PGE₂ assays and may explain the large increase in
361 “PGE₂” seen. Alternatively, after ω -3 PUFA supplementation, free-AA released from cell membranes
362 as a result of ω -3 PUFA incorporation could be processed by COX-2 to form PGE₂, contributing to the
363 increase in PGE₂ seen.

364 In TNBS colitis models, rats fed a diet rich in ω -3 PUFAs had decreased colonic concentrations
365 of IL-2 and IL-4 [47], as well as IL-6, but there was no effect on TNF- α [46, 49]. In a mouse model of
366 immunodeficiency-induced colitis, 8-weeks fish oil supplementation had no effect on mucosal PGE₂,
367 TXB₂ or LTB₄, but upregulated other colonic inflammatory mediators, including TNF- α , IL-1 β , IL-12,
368 myeloperoxidase (MPO), and keratinocyte-derived chemokine [35]. EPA and DHA-derived
369 metabolites including PGE₃, TXB₃, LTB₅, 5-hydroxyeicosapentaenoic acid (HEPE), and 17,18-EET
370 were increased after fish oil supplementation, whilst AA-derived metabolites PGJ₂, 5,6-
371 epoxyeicosatrienoic acid (EET), 8,9-EET, and 14,15-EET were decreased [35]. In a separate colitis
372 model, fish oil given through the diet or by enema, also attenuated colonic levels of AA-derived
373 metabolites, LTB₄ and LTC₄ [50].

374 DPA also altered inflammatory mediator production in a model of colitis in C57 mice. DPA
375 supplementation for 4 weeks decreased colonic IL-1 β , IL-6, and TNF- α mRNA and protein, as well
376 as increasing colonic IL-10 [40]. Increases in AA-derived metabolites, PGE₂ and LTB₄, were also
377 attenuated by DPA supplementation, suggesting DPA, like EPA and DHA, competitively inhibits
378 AA metabolism by COX and lipoxygenase (LOX) enzymes [40]. Transgenic increases of epithelial cell
379 concentrations of ω -3 PUFAs in a DSS model of colitis, including EPA, DPA, and DHA, also increased
380 mucosal levels of ω -3 PUFA-derived metabolites, including resolvin D3, resolvin E1, protectin D1,
381 PGE₃, and LTB₅ [36]. However, AA-derived metabolites: LTB₄, PGE₂, and 15-hydroxyeicosatetraenoic
382 acid were unaffected. The increase in TNF- α and IL-1 β mRNA was attenuated, whilst toll-interacting
383 protein and trefoil factor 3 mRNAs were upregulated in colonic mucosa [36].

384 Overall, supplementation with ω -3 PUFAs seems to upregulate the production of pro-resolving
385 ω -3-derived mediators, through COX and LOX enzyme processing and modulation of inflammatory
386 pathways, as well as attenuating the production of pro-inflammatory chemokines, cytokines and
387 eicosanoids. Varying effects seen between ω -3 PUFA treatments could be associated to the
388 mechanisms of the specific inflammatory condition, the dose of ω -3 PUFAs used, and the time of
389 exposure to the ω -3 PUFA supplementation.

390 7. Effect of ω -3 PUFAs on inflammatory signalling pathways in intestinal epithelial cells

391 The attenuation of inflammatory mediator production (as described above) is associated with
392 the incorporation of ω -3 PUFAs into membranes, but ω -3 PUFAs also interact with surface membrane
393 and intracellular receptors and intrinsic inflammatory pathway regulators; these effects are
394 summarised Table 6.

395 DHA induced significant increases in PPAR- α and PPAR- γ activity, which coincided with
396 significantly decreased triglyceride and apolipoprotein B release by Caco-2 cells [68]. EPA also
397 induced significant upregulation of PPAR- α , but had no significant effect on PPAR- γ . EPA and DHA

398 had no effect on PPAR- δ activity in vitro [68]. Additionally, post-prandial triglyceride release in vivo
399 was also inhibited by DHA treatment (but not by EPA) through a PPAR- α -dependent mechanism, as
400 this effect was diminished in PPAR- α deficient C57BL/6 mice [68]. The relevance of these findings is
401 that PPARs, especially PPAR- γ , are anti-inflammatory and these studies show that they can be
402 activated by EPA and DHA. In a separate model, PPAR- γ expression was upregulated by both EPA
403 and DHA in IL-1 β -treated Caco-2 cells [64]. ALA had no effect on PPAR- γ expression in either IL-1 β
404 stimulated Caco-2 cells [64] or colonic tissue of TNBS-treated male Sprague-Dawley rats [52].
405 Additionally, EPA had no effect on PPAR- α mRNA expression in either Caco-2 or T84 epithelial cell
406 lines [28]. Although variable effects have been seen on PPAR expression, assessing the activation of
407 these receptors, through associated downstream mechanisms, such as NF- κ B and iNOS, gives further
408 insight into the action of ω -3 PUFAs.

409 DHA attenuated NF- κ B activation and the degradation of the NF- κ B inhibitory subunit, I κ B α ,
410 induced by lauric acid, MDP, and IE-DAP treatment in HCT116 cells, whilst EPA had no effect [66].
411 DHA, but not EPA, attenuated NF- κ B and IL-1R1 mRNA expression in IL-1 β -treated H4 and Caco-2
412 cells [65]. ALA supplementation inhibited the activation of NF- κ B and expression of the oxidative
413 stress mediator, iNOS, in colonic tissue of TNBS treated male Sprague-Dawley rats but had no effect
414 on phosphorylation of downstream regulators, including JNK, P38, and I κ B [52]. Increased ω -3 PUFA
415 content of colonic tissue, through transgenic modification, attenuated increased NF- κ B activation and
416 iNOS mRNA expression [36]. IL-1 β treatment induced iNOS expression in Caco-2 cells, which was
417 attenuated by EPA and DHA supplementation, but not by ALA supplementation [64]. Conversely,
418 ALA supplementation in a similar model, using IL-1 β -stimulated Caco-2 cells, significantly reduced
419 iNOS expression [34] and DHA supplementation had no effect on iNOS expression in colonic tissue
420 from a neonatal Sprague-Dawley rat necrotising enterocolitis model [37]. Disparate findings from
421 these studies could be linked to ω -3 PUFA dose or to the precise inflammatory mechanisms involved
422 in the different models, as necrotising enterocolitis is driven by a multitude of inflammatory
423 mediators, including platelet-activating factor (PAF), TNF- α , and a variety of interleukins [69].

424 COX-2 activity and expression, which is involved in the production of PGs from AA, can be
425 regulated by ω -3 PUFAs. In male Wistar rats treated with TNBS or DSS to induce colitis, both fish oil
426 and sage oil (rich in ALA) decreased COX-2 mRNA expression in colonic tissue [34]. ALA
427 supplementation in TNBS-stimulated Sprague-Dawley rats also decreased COX-2 expression in
428 colonic tissue [52]. Additionally in vitro, ALA and sage oil treatment inhibited COX-2 expression in
429 IL-1 β -stimulated Caco-2 cells [34] and DHA supplementation of Caco-2 cells stimulated with α -
430 gliadin also reduced COX-2 expression [67]. ω -3 PUFA supplementation suppressed colonic COX-2
431 expression, as well as increasing IL-1A, toll-like receptor (TLR) 2, and MA2K3 mRNA expression in
432 a Sprague-Dawley rat model of TNBS-induced colitis [46]. DHA has also been shown to inhibit toll-
433 like receptor 4 and PAF receptor mRNA expression in PAF-treated IEC-6 epithelial cultures [38]. PAF
434 receptor and phospholipase A₂ expression were also suppressed by DHA in a neonatal Sprague-
435 Dawley rat model of necrotising enterocolitis [37]. DHA treatment in HT-29 epithelial cultures altered
436 cell maturation, with fewer cells in the stationary phase and increased numbers of cells in the G₀/G₁
437 phase. Additionally, DHA potentiated TNF- α and CH-11 induced epithelial cell apoptosis [70].
438 Dietary fish oil supplementation in male Wistar rats reduced MPO activity in a model of TNBS colitis,
439 whilst the same dose of fish oil given by enema had no effect on MPO activity [50]. It seems that route
440 or mode of administration may affect the anti-inflammatory efficacy of fish oil in this model of colitis.

441 Microarray analysis has also shown that EPA and DHA can regulate a multitude of pathways
442 across small intestinal tissue. Six hours after being given an oral dose of either EPA or DHA small
443 intestinal tissue resected from wild-type mice showed regulated responses to pathways involved in
444 long-chain fatty acid uptake, peroxisomal β -oxidation, ω -oxidation, metabolism of energy-yielding
445 substrates, and oxidative stress, as well as suppression of the cholesterol uptake transporter, Npc1l1,
446 the apical mannose and glucose uptake transporter, Sglt4, and the serotonin transporter, Slc6a4. EPA
447 treatment (but not DHA) also increased cholesterol efflux protein, Abca1, and dopamine transporter,
448 Dat1, expression [71].

449 Table 6: Effects of ω -3 PUFAs on inflammatory mechanisms in rodent and cell models.

Reference	Model used	Condition	ω -3 PUFA(s) used	Concentration or dose used	Duration	Effect on inflammatory mechanisms(s)
Cell line models						
Hofmanová et al. [70]	HT-29 cells	TNF- α or anti-Fas monoclonal antibody/cycloheximide-induced inflammation	DHA	20 μ M	48 hours	\uparrow G ₀ /G ₁ phase cells \uparrow Apoptosis (TNF- α and anti-Fas monoclonal antibody treatments)
Renaville et al. [28]	T84/Caco-2 cells	Non-stimulated	EPA	300 μ M	3 hours or 3 hours and 7 days	No effect on PPAR- α mRNA (both time periods) \downarrow Stearoyl CoA desaturase and SREBP-1c mRNA (3 hours and 7 days only)
Lu et al. [38]	IEC-6 cells	Platelet activating factor treatment	DHA	67 μ M	30 minutes	\downarrow TLR4 mRNA \downarrow Platelet activating factor receptor mRNA
Zhao et al. [66]	HCT116 cells	Lauric acid/IE-DAP/MDP-induced inflammation	DHA	0-20 μ M	20 hours	\downarrow NF- κ B activation \downarrow I κ B degradation
			EPA			No effect on NF- κ B activation No effect on I κ B degradation
Marion-Letellier et al. [64]	Caco-2 cells	IL-1 β -induced inflammation	ALA	0.1-10 μ mol/L	18 hours	No effect on PPAR- γ protein No effect on iNOS protein No effect on I κ B protein
			DHA			\downarrow PPAR- γ protein \downarrow iNOS protein No effect on I κ B protein
			EPA			\downarrow PPAR- γ protein \downarrow iNOS protein No effect on I κ B protein

Vincentini et al. [67]	Caco-2 cells	α -gliadin-induced inflammation	DHA	2 μ M	24 hours	\downarrow Cytosolic phospholipase 2 activity \downarrow COX-2 protein
Kimura et al. [68]	Caco-2 cells	Non-stimulated	DHA	25 μ M	24 hours	\uparrow PPAR- α activity \uparrow PPAR- γ activity No effect on PPAR- δ activity \downarrow Triglyceride and apolipoprotein B secretion
			EPA			\uparrow PPAR- α activity No effect on PPAR- γ activity No effect on PPAR- δ activity
Reifen et al. [34]	Caco-2 cells	IL-1 β -induced inflammation	Sage oil	10 μ M	48 hours	\downarrow COX-2 protein
			ALA			\downarrow COX-2 protein \downarrow iNOS protein
Wijendran et al. [65]	H4/NEC-IEC/Caco-2 cells	IL-1 β -induced inflammation	DHA	100 μ mol/L	48 hours	\downarrow NF- κ B mRNA \downarrow IL-1R1 mRNA
			EPA			No effect on NF- κ B mRNA No effect on IL-1R1 mRNA
Rodent models						
Yuceyar et al. [50]	Male Wistar albino rats	TNBS colitis	Fish oil	EPA: 14.4 mg/g diet DHA: 11.6 mg/g diet	6 weeks (diet)	\downarrow Myeloperoxidase activity
					14 days (daily enema)	No effect on myeloperoxidase activity
Caplan et al. [37]	Neonatal Sprague-Dawley rats	Necrotising enterocolitis	DHA	23 mg/100 ml formula	96 hours	No effect on iNOS protein \downarrow Phospholipase A ₂ protein \downarrow Platelet activating factor receptor protein
Hudert et al. [36]	Transgenic fat-1 mice	DSS colitis	-	Mice have higher colonic EPA, DPA	-	\downarrow Colonic NF- κ B activity \downarrow Colonic iNOS mRNA

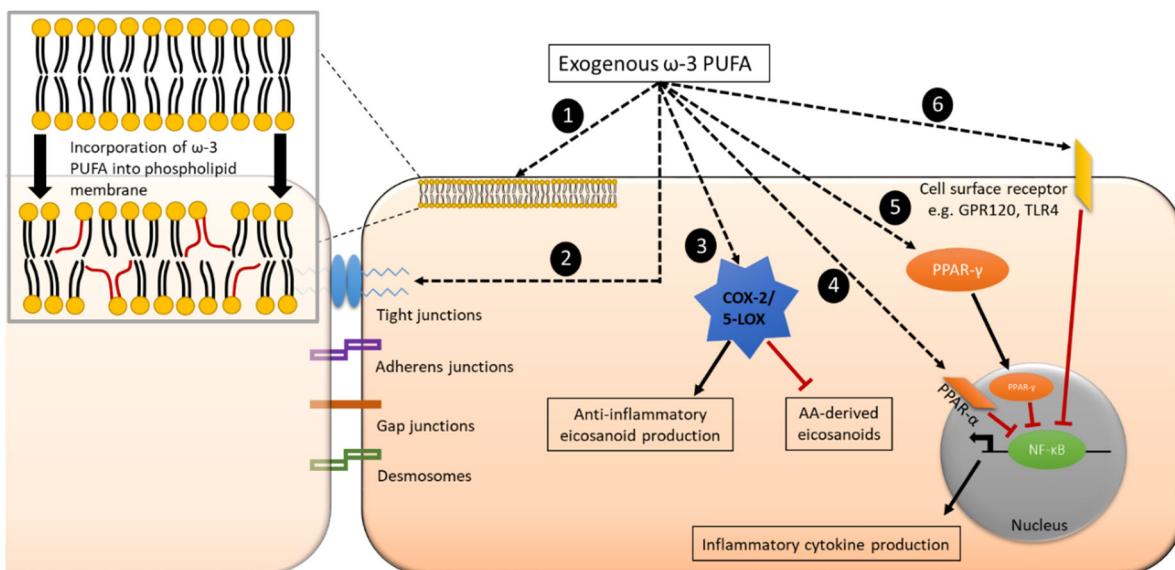
				and DHA than controls	
de Vogel-van den Bosch et al. [71]	129S1/SvImJ wild-type mice	Non-stimulated	DHA	EPA or DHA: 6 hours 12.5 g/kg body weight by gavage	No effect on regulated long chain fatty acid uptake, mitochondrial and peroxisomal β -oxidation, ω -oxidation, and metabolism of energy-yielding substrates No effect on regulated oxidative stress mRNAs ↓ Cholesterol uptake transporter (Npc1l1), apical mannose and glucose uptake transporter (Sglt4), and Serotonin transporter (Slc6a4)
			EPA		No effect on regulated long chain fatty acid uptake, mitochondrial and peroxisomal β -oxidation, ω -oxidation, and metabolism of energy-yielding substrates No effect on regulated oxidative stress mRNAs ↓ Cholesterol uptake transporter (Npc1l1), apical mannose and glucose uptake transporter (Sglt4), and Serotonin transporter (Slc6a4) ↑ Cholesterol efflux protein (Abca1) and dopamine transporter (Dat1)
Hassan et al. [52]	Male Sprague-Dawley rats	TNBS colitis	ALA	28.8% of total fat content of formula	↓ Colonic iNOS protein ↓ Colonic COX-2 protein ↓ Colonic NF- κ B activation No effect on phosphorylation of JNK, P38 and I κ B
Kimura et al. [68]	Male C57BL/6 mice	PPAR- α deficiency	DHA-rich oil	60% energy fat diet with 1.9% or 3.7% of total fatty acids as DHA (plus some EPA)	↓ Triglyceride secretion (inhibited by PPAR- α deficiency) with 3.7% DHA

			EPA-rich oil	3.4% EPA and 1.5% DHA	No effect on triglyceride secretion
Reifen et al. [34]	Male Wistar rats	TNBS or DSS colitis	Fish oil	Fish oil: 5% by weight of total diet (EPA: 11.7% of total fatty acids DHA: 15.7% of total fatty acids)	↓ COX-2 mRNA
Charpentier et al. [46]	Young male Sprague-Dawley rats	TNBS colitis	Sage oil ω-3 PUFAs (source not specified but presumed to be fish oil)	6.1 g/kg of diet	↓ COX-2 mRNA ↑ Colonic IL-1A mRNA ↑ Colonic TLR-2 mRNA ↑ Colonic MA2K3 mRNA ↓ Colonic iNOS protein ↓ Colonic COX-2 protein
Yao et al. [47]	Male Sprague-Dawley rats	TNBS colitis	ω-3 PUFAs (source not specified but presumed to be fish oil)	20 mg/kg body weight per day intragastrically	↓ Colonic nuclear factor of activated T cells mRNA ↑ Colonic PPAR-γ mRNA
Zheng et al. [40]	Male C57 mice	DSS colitis	DPA	300 mg/kg body weight per day by gavage	↓ Colonic myeloperoxidase activity ↓ Colonic COX protein ↓ Colonic 5-LOX protein

450 Abbreviations used: ALA, α -linolenic acid; COX, cyclooxygenase; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; DSS, dextran sodium
 451 sulphate; EPA, eicosapentaenoic acid; IE-DAP, γ -D-glutamyl-mesodiaminopimelic acid; I κ B, inhibitory subunit of NF- κ B; IL, interleukin; LOX,
 452 lipoxygenase; MDP, muramyl dipeptide; NF- κ B, nuclear factor kappa-light-chain-enhancer of activated B cells; NOS, nitric oxide synthase; PPAR,
 453 peroxisome proliferator activated receptor; PUFA, polyunsaturated fatty acid; SREBP, sterol receptor element binding protein; TLR, toll like receptor;
 454 TNBS, 2,4,6-trinitrobenzenesulfonic acid; TNF, tumour necrosis factor

456 **8. Gut microbiota, gut inflammation, and ω -3 PUFAs**

457 In addition to direct effects of ω -3 PUFAs on the intestinal epithelial inflammation, it is important
458 to consider the contribution of the microbiota to the regulation and maintenance of the gut
459 epithelium-immune system axis and whether ω -3 PUFAs might mediate some of their actions via
460 effects on the microbiota. Homeostatic mechanisms of the gut microbiota include anti-microbial
461 protection, immunomodulation (through secretion of mediators and interaction with epithelial cells),
462 maintenance of the intestinal barrier integrity, and nutrient metabolism [72]. Microbial dysbiosis can
463 contribute to the dysfunction of the intestinal barrier and the induction of intestinal inflammation
464 [73]. Supplementation with ω -3 PUFAs has been shown to alter the composition of the gut microbiota
465 across the life course in mouse models [74,75]; however the evidence for ω -3 PUFA-induced
466 modulation of the gut microbiota in humans is still relatively scarce. Djuric et al. have recently
467 described that ω -3 PUFA consumption induced small changes to gut microbial populations in
468 humans, which were associated with increased colonic EPA to arachidonic acid ratios and a reduction
469 in colonic PGE₂ expression [76]. Associations between increased favorable gut microbial populations
470 and improved disease outcomes with ω -3 PUFA treatment have also been reported in obesity [77],
471 rheumatoid arthritis [78] and cancer [79]. The microbial populations that appear to be promoted by
472 increased ω -3 PUFA intake, including *Bacteroidetes*, *Firmicutes*, *Lachnospiraceae*, *Bifidobacteria*, and
473 *Enterobacteria*, exhibit anti-inflammatory properties through increased production of SCFAs,
474 particularly butyrate, and reduced endotoxaemia [80]. There is evidence that ω -3 PUFAs can be
475 metabolized by particular bacterial species, resulting in the production of potential active
476 metabolites, which could induce anti-inflammatory actions in the intestinal mucosa [81, 82]. Further
477 research into EPA, DPA and DHA metabolism by the gut microbiota and the subsequent effects on
478 the gut epithelium, could identify new anti-inflammatory mechanisms for ω -3 PUFAs.
479


480 **9. ω -3 PUFAs and human IBD**

481 The pre-clinical research involving cell lines and rodent models described in earlier sections
482 demonstrates the ability of ω -3 PUFAs to exert anti-inflammatory actions at the level of the intestinal
483 epithelium. This would suggest a role for ω -3 PUFAs in preventing, and perhaps in treating, human
484 IBD. Mozaffari et al. recently conducted a systematic review and meta-analysis of studies evaluating
485 intake of fish or of different ω -3 PUFAs and risk of incident IBD [83]; studies were a mix of prospective
486 cohort studies and case-control studies. An inverse association between fish consumption and the
487 incidence of Crohn's Disease (Effect size: 0.54) was observed, but there was no relationship between
488 total dietary ω -3 PUFA intake and risk of IBD (Effect size: 1.17) [83]. There was a significant inverse
489 association between dietary EPA and DHA intake and the risk of IBD (Effect size: 0.78) and ulcerative
490 colitis (Effect size: 0.75), but not of Crohns Disease (Effect size: 0.85). There was no association
491 between ALA intake and IBD (Effect size: 1.17) [83]. Thus, EPA and DHA, but not ALA, may protect
492 against development of ulcerative colitis. With regard to the treatment of IBD, there have been a
493 number of trials of ω -3 PUFAs (mainly preparations of EPA plus DHA) over the years; trials
494 conducted prior to 2009 are reviewed in [84] while trials published since 2010 are reviewed in [85].
495 The focus of the majority of such human trials has not been on the function of the intestinal barrier
496 and epithelial cells specifically, but rather on macroscopic inflammatory scores, relapse and
497 remission rates, and systemic markers of inflammation such as plasma concentrations of cytokines.
498 The findings from these trials are inconsistent. Several systematic reviews and meta-analyses of
499 randomised controlled trials of ω -3 PUFAs in patients with IBD have been published [86-89].
500 Ajabnoor et al. recently published a large meta-analysis of 83 randomised controlled trials reporting
501 on inflammatory outcomes and including over 41,000 participants [89]. Of these trials, 13 recruited
502 patients with IBD. The meta-analysis identified that increasing intake of EPA and DHA may reduce
503 risk of IBD relapse (relative risk 0.85) and of IBD worsening (relative risk 0.85); EPA and DHA also
504 reduced erythrocyte sedimentation rate, a marker of inflammation in patients with IBD [89]. ALA
505 seemed to have little effect. EPA and DHA supplementation was also seen to increase risk of IBD

506 diagnosis and to increase faecal calprotectin (a biomarker of IBD) [89], effects which are difficult to
 507 explain and which conflict with the meta-analysis of Mozaffari et al. [83].

508 10. Summary, concluding remarks and limitations of the literature

509 Epithelial cells appear to easily incorporate ω -3 PUFAs both in vitro and in vivo. They also
 510 metabolise ALA to EPA and DHA. Overall, the literature supports the regulatory properties of
 511 marine-derived ω -3 PUFAs, EPA, DPA and DHA, and the plant-derived ω -3 PUFA, ALA, in
 512 intestinal epithelial cells and tissue. This regulatory role of ω -3 PUFAs in epithelial cells involves a
 513 number of mechanisms (Figure 4), and these fatty acids appear to reduce responses of epithelial cells
 514 to many inflammatory stimuli both in vitro and in vivo and lead to improvements in inflammation-
 515 related outcomes in many animal models as well as in patients. EPA and DHA are incorporated fairly
 516 rapidly into cultured epithelial cells (over hours to days). Rodent models showed increased intestinal
 517 tissue ω -3 PUFA composition after fish oil consumption, over longer supplementation periods (7–21
 518 days), but shorter periods have not been frequently investigated. Two human studies indicated that
 519 fish oil supplementation over 12 weeks and 1 year altered ω -3 PUFA content in colonic and rectal
 520 tissue, respectively [29, 30]. Therefore, it seems that complexity of the model (human>rodent>cell) is
 521 correlated with the time period required to alter ω -3 PUFA content of intestinal tissue.

522

523 **Figure 4.** Proposed mechanisms involved in ω -3 PUFA regulation of inflammation in intestinal epithelial cells.
 524 1. Incorporation of ω -3 PUFA into phospholipid membrane/lipid rafts. 2. Modulation of tight junction protein
 525 expression and redistribution. 3. Production of anti-inflammatory eicosanoids and inhibition of AA-derived
 526 eicosanoids catalysed by COX-2 or 5-LOX. 4. Activation of nuclear receptors, e.g., PPAR- α . 5. Translocation of
 527 transcription factors into nucleus, e.g., PPAR- γ . 6. Interaction with transmembrane/cell surface receptors, e.g.,
 528 GPR120 and TLR4. Mechanisms 4, 5, and 6 lead to the inhibition of NF- κ B and the subsequent reduced
 529 production of multiple inflammatory mediators.

530 Histological improvements after ω -3 PUFA supplementation in rodents have been reported in a
 531 range of inflammatory conditions, including various forms of colitis, haemorrhagic shock, IL-10
 532 deficiency, β -lactoglobulin-induced inflammation, and peritoneal colitis. However, in some studies
 533 of colitis and a model of chronic ethanol exposure, no benefit of ω -3 PUFAs was seen. The specific
 534 protective effect or lack of effect seen could be attributed to the specific ω -3 PUFA used, the dose of
 535 ω -3 PUFAs, the inflammatory condition, or a combination of these factors.

536 Investigations using cell and rodent models have explored the effects of ω -3 PUFAs on specific
 537 inflammatory outcomes including permeability, inflammatory mediator production, and regulation
 538 of inflammatory proteins. ω -3 PUFA supplementation was shown to influence permeability by
 539 preventing tight junction protein redistribution or changes to tight junction protein expression in cell

540 models of cytokine-induced inflammation, heat stress, and deoxynivalenol-induced inflammation,
541 and in rodent models of DSS-induced and acetic acid-induced colitis, necrotising enterocolitis,
542 heatstroke, and chronic ethanol exposure. However, in one rodent model of TNBS-induced colitis, ω -
543 3 PUFA treatment had no effect on permeability-associated protein expression [46].

544 Inflammatory cytokines, such as IL-6 and IL-8, were attenuated by ω -3 PUFA supplementation
545 in several different inflammatory conditions, including IL-1 β -induced inflammation, lauric acid-
546 induced inflammation, α -gliadin-induced inflammation, and TNBS-induced colitis. Additionally,
547 PUFA-derived metabolites were altered after ω -3 PUFA supplementation, although the findings
548 varied across different models. Inflammatory regulators responsible for alterations in mediator
549 production, such as NF- κ B, iNOS, COX-2, and PPARs were altered by ω -3 PUFA supplementation in
550 various cell and rodent models.

551 Thus, the current body of literature highlights a large range of interacting mechanisms of action
552 of ω -3 PUFAs by which they reduce epithelial inflammation; these mechanisms are identified in both
553 cell models and in rodents. Nevertheless, it remains unclear which ω -3 PUFA is most effective,
554 although comparator studies suggest this might be DHA, and the actual primary mechanism(s)
555 within each different inflammatory condition is not clear. Further to this, ω -3 PUFAs modify the gut
556 microbiota in ways that might reduce epithelial inflammation. In addition, gut microbes can
557 metabolise ω -3 PUFAs to bioactive anti-inflammatory mediators. Through their multiple anti-
558 inflammatory actions ω -3 PUFAs, especially EPA and DHA, would be expected to reduce risk of
559 human IBD and perhaps even improve outcomes in patients with existing IBD. In both regards, the
560 existing literature is inconsistent. However recent systematic reviews and meta-analyses indicate that
561 EPA and DHA, but not ALA, may protect against development of ulcerative colitis [83] and may
562 reduce the risk of IBD relapse and worsening [89].

563 One limitation of the current literature is the large variety of concentrations/doses of ω -3 PUFAs
564 used across the different models. In some cases, the concentrations used in in vitro models and the
565 doses used in in vivo rodent models are extremely high and therefore hard to translate to the human
566 equivalent diet. A second limitation is a lack of human studies investigating the intestinal epithelium
567 in the context of altered ω -3 PUFA exposure. Most studies have focused on EPA and DHA, with a
568 number of in vitro and some animal studies of ALA. DPA is emerging as a bioactive ω -3 PUFA.
569 Epithelial cells produce DPA [25, 28] from EPA and there have been a small number of studies of
570 DPA in intestinal epithelial models [36, 40]; however DPA requires greater investigation in this
571 context. Other underexplored ω -3 PUFAs such as stearidonic acid (18:4 ω -3) also deserve
572 investigation using these models.

573 **Author Contributions:** Conceptualization, L.A.D. and P.C.C.; writing—original draft preparation, L.A.D.;
574 writing—review and editing, C.E.C. and P.C.C. All authors have read and agreed to the published version of the
575 manuscript.

576 **Funding:** This research received no external funding.

577 **Conflicts of Interest:** L.A.D. and C.E.C. declare no conflict of interest. P.C.C. acts as a consultant to BASF AS,
578 Smartfish, DSM, Cargill, Danone/Nutricia and Fresenius-Kabi.

579

580 References

1. McCole, D.F.; Barrett, K.E. Varied role of the gut epithelium in mucosal homeostasis. *Curr Opin Gastroenterol* **2007**, *23*, 647–654.
2. Michielan, A.; D’Inca, R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. *Mediat Inflamm* **2015**, *2015*, 628157.
3. Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. *Gut Microbes* **2016**, *7*, 189–200.
4. Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. *Milit Med Res* **2017**, *4*, 14.

589 5. Guillot, X.; Semerano, L.; Saidenberg-Kermanac'h, N.; Falgarone, G.; Boissier, M-C. Vitamin D
590 and inflammation. *Joint Bone Spine* **2010**, *77*, 552-557.

591 6. Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: a review. *Dermatol Ther* **2018**, *8*, 5-16.

592 7. Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-
593 inflammatory effects. *Curr Opin Food Sci* **2016**, *8*, 33-42.

594 8. Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of short-
595 chain fatty acids in health and disease. *Adv Immunol* **2014**, *121*, 91-119.

596 9. Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: the anti-inflammatory
597 potential of long-chain omega-3 fatty acids. *Nutr Rev* **2010**, *68*, 280-289.

598 10. Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and
599 clinical relevance. *Biochim Biophys Acta Mol Cell Biol Lipids* **2015**, *1851*, 469-484.

600 11. Calder, P.C. Omega-3 fatty acids and inflammatory processes: from molecules to man. *Biochem
601 Soc Trans* **2017**, *45*, 1105-1115.

602 12. de Bus, I.; Witkamp, R.; Zuilhof, H.; Albada, B.; Balvers, M. The role of n-3 PUFA-derived fatty
603 acid derivatives and their oxygenated metabolites in the modulation of inflammation.
604 *Prostagland Other Lipid Mediat* **2019**, *144*, 106351.

605 13. Innes, J.K.; Calder, P.C. Marine omega-3 (n-3) fatty acids for cardiovascular health: an update
606 for 2020. *Int J Mol Sci* **2020**, *21*, 1362.

607 14. Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune
608 function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis.
609 *Brit J Nutr* **2012**, *107*, S171-S84.

610 15. Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel
611 diseases. *Mol Nutr Food Res* **2008**, *52*, 885-897.

612 16. Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits.
613 *Ann Rev Food Sci Technol* **2018**, *9*, 345-381.

614 17. Calder, P.C. Is increasing microbiota diversity a novel anti-inflammatory action of marine n-3
615 fatty acids? *J Nutr* **2019**, *149*, 1102-1104.

616 18. Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3
617 fatty acids in humans. *Am J Clin Nutr* **2006**, *83*, 1467S-1476S.

618 19. Derikx, J.P.M.; Luyer, M.D.P.; Heineman, E.; Buurman, W.A. Non-invasive markers of gut wall
619 integrity in health and disease. *World J Gastroenterol* **2010**, *16*, 5272-5279.

620 20. Cencić, A.; Langerholc, T. Functional cell models of the gut and their applications in food
621 microbiology — A review. *Int J Food Microbiol* **2010**, *141*, S4-S14.

622 21. Simon-Assmann, P.; Turck, N.; Sidhoum-Jenny, M.; Gradwohl, G.; Kedinger, M. In vitro
623 models of intestinal epithelial cell differentiation. *Cell Biol Toxicol* **2007**, *23*, 241-256.

624 22. Sakolish, C.M.; Esch, M.B.; Hickman, J.J.; Shuler, M.L.; Mahler, G.J. Modeling barrier tissues in
625 vitro: methods, achievements, and challenges. *EBioMed* **2016**, *5*, 30-39.

626 23. Rosella, O.; Sinclair, A.; Gibson, P.R. Polyunsaturated fatty acids reduce non-receptor-
627 mediated transcellular permeation of protein across a model of intestinal epithelium in vitro. *J
628 Gastroenterol Hepatol* **2000**, *15*, 626-631.

629 24. Xiao, G.; Tang, L.; Yuan, F.; Zhu, W.; Zhang, S.; Liu, Z.; et al. Eicosapentaenoic acid enhances
630 heat stress-impaired intestinal epithelial barrier function in Caco-2 cells. *PlosONE* **2013**, *8*,
631 e73571.

632 25. Beguin, P.; Schneider, A-C.; Mignolet, E.; Schneider, Y-J.; Larondelle, Y. Polyunsaturated fatty
633 acid metabolism in enterocyte models: T84 cell line vs. Caco-2 cell line. *In Vitro Cell Develop Biol
634 Animal* **2014**, *50*, 111-120.

635 26. Willemse, L.E.; Koetsier, M.A.; Balvers, M.; Beermann, C.; Stahl, B.; van Tol, E.A.
636 Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated
637 permeability in vitro. *Eur J Nutr* **2008**, *47*, 183-191.

638 27. Li, Q.; Zhang, Q.; Wang, M.; Zhao, S.; Xu, G.; Li, J. n-3 polyunsaturated fatty acids prevent
639 disruption of epithelial barrier function induced by proinflammatory cytokines. *Mol Immunol*
640 **2008**, *45*, 1356-1365.

641 28. Renaville, B.; Mullen, A.; Moloney, F.; Larondelle, Y.; Schneider, Y.J.; Roche, H.M.
642 Eicosapentaenoic acid and 3,10 dithia stearic acid inhibit the desaturation of trans-vaccenic
643 acid into cis-9, trans-11-conjugated linoleic acid through different pathways in Caco-2 and T84
644 cells. *Brit J Nutr* **2006**, *95*, 688-695.

645 29. Hawthorne, A.; Daneshmend, T.; Hawkey, C.; Belluzzi, A.; Everitt, S.; Holmes, G.; et al.
646 Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month
647 randomised controlled trial. *Gut* **1992**, *33*, 922-928.

648 30. Hillier, K.; Jewell, R.; Dorrell, L.; Smith, C. Incorporation of fatty acids from fish oil and olive
649 oil into colonic mucosal lipids and effects upon eicosanoid synthesis in inflammatory bowel
650 disease. *Gut* **1991**, *32*, 1151-1155.

651 31. Xiao, G.; Yuan, F.; Geng, Y.; Qiu, X.; Liu, Z.; Lu, J.; et al. Eicosapentaenoic acid enhances
652 heatstroke-impaired intestinal epithelial barrier function in rats. *Shock* **2015**, *44*, 348-356.

653 32. Brahmbhatt, V.; Oliveira, M.; Briand, M.; Perrisseau, G.; Schmid, V.B.; Destaillats, F.; et al.
654 Protective effects of dietary EPA and DHA on ischemia-reperfusion-induced intestinal stress. *J
655 Nutr Biochem* **2013**, *24*, 104-111.

656 33. Nieto, N.; Torres, M.I.; Ríos, A.; Gil, A. Dietary polyunsaturated fatty acids improve
657 histological and biochemical alterations in rats with experimental ulcerative colitis. *J Nutr* **2002**,
658 *132*, 11-19.

659 34. Reifen, R.; Karlinsky, A.; Stark, A.H.; Berkovich, Z.; Nyska, A. α -Linolenic acid (ALA) is an
660 anti-inflammatory agent in inflammatory bowel disease. *J Nutr Biochem* **2015**, *26*, 1632-1640.

661 35. Bosco, N.; Brahmbhatt, V.; Oliveira, M.; Martin, F-P.; Lichti, P.; Raymond, F.; et al. Effects of
662 increase in fish oil intake on intestinal eicosanoids and inflammation in a mouse model of
663 colitis. *Lipids Health Dis* **2013**, *12*, 81.

664 36. Hudert, C.A.; Weylandt, K.H.; Lu, Y.; Wang, J.; Hong, S.; Dignass, A.; et al. Transgenic mice
665 rich in endogenous omega-3 fatty acids are protected from colitis. *Proc Natl Acad Sci* **2006**, *103*,
666 11276-11281.

667 37. Caplan, M.S.; Russell, T.; Xiao, Y.; Amer, M.; Kaup, S.; Jilling, T. Effect of polyunsaturated fatty
668 acid (PUFA) supplementation on intestinal inflammation and necrotizing enterocolitis (NEC)
669 in a neonatal rat model. *Ped Res* **2001**, *49*, 647-652.

670 38. Lu, J.; Jilling, T.; Li, D.; Caplan, M.S. Polyunsaturated fatty acid supplementation alters
671 proinflammatory gene expression and reduces the incidence of necrotizing enterocolitis in a
672 neonatal rat model. *Ped Res* **2007**, *61*, 427-432.

673 39. Zhao, J.; Shi, P.; Sun, Y.; Sun, J.; Dong, J.N.; Wang, H.G.; et al. DHA protects against
674 experimental colitis in IL-10-deficient mice associated with the modulation of intestinal
675 epithelial barrier function. *Brit J Nutr* **2015**, *114*, 181–188.

676 40. Zheng, Z.; Dai, Z.; Cao, Y.; Shen, Q.; Zhang, Y. Docosapentaenoic acid (DPA, 22: 5n-3)
677 ameliorates inflammation in an ulcerative colitis model. *Food Funct* **2019**, *10*, 4199–4209.

678 41. Li, Y.; Wang, X.; Li, N.; Li, J. The study of n-3 PUFAs protecting the intestinal barrier in rat
679 HS/R model. *Lipids Health Dis* **2014**, *13*, 146.

680 42. Tang, H.; Zhu, X.; Gong, C.; Liu, H.; Liu, F. Protective effects and mechanisms of omega-3
681 polyunsaturated fatty acid on intestinal injury and macrophage polarization in peritoneal
682 dialysis rats. *Nephrol* **2019**, *24*, 1081–1089.

683 43. Haddi, A.; Guendouz, M.; Tabet, S.A.; Mehedi, N.; Kheroua, O.; Saidi, D. Polyunsaturated fatty
684 acids affect intestinal anaphylactic response in BALB/c mice sensitized with β -lactoglobulin.
685 *Rev Française d'Allergol* **2018**, *58*, 437–443.

686 44. Empey, L.R.; Jewell, L.D.; Garg, M.L.; Thomson, A.B.; Clandinin, M.T.; Fedorak, R.N. Fish oil-
687 enriched diet is mucosal protective against acetic acid-induced colitis in rats. *Can J Physiol
688 Pharmacol* **1991**, *69*, 480–487.

689 45. Chien, Y-W.; Peng, H-C.; Chen, Y-L.; Pai, M-H.; Wang, H-Y.; Chuang, H-L.; et al. Different
690 dietary proportions of fish oil regulate inflammatory factors but do not change intestinal tight
691 junction ZO-1 expression in ethanol-fed rats. *Mediat Inflamm* **2017**, *2017*, 5801768.

692 46. Charpentier, C.; Chan, R.; Salameh, E.; Mbodji, K.; Ueno, A.; Coëffier, M.; et al. Dietary n-3
693 PUFA may attenuate experimental colitis. *Mediat Inflamm* **2018**, *2018*, 8430614.

694 47. Yao, J.; Lu, Y.; Zhi, M.; Hu, P.; Wu, W.; Gao, X. Dietary n-3 polyunsaturated fatty acids
695 ameliorate Crohn's disease in rats by modulating the expression of PPAR- γ /NFAT. *Mol Med
696 Rep* **2017**, *16*, 8315–8322.

697 48. Vilaseca, J.; Salas, A.; Guarner, F.; Rodriguez, R.; Martinez, M.; Malagelada, J. Dietary fish oil
698 reduces progression of chronic inflammatory lesions in a rat model of granulomatous colitis.
699 *Gut* **1990**, *31*, 539–544.

700 49. Andoh, A.; Tsujikawa, T.; Ishizuka, I.; Araki, Y.; Sasaki, M.; Koyama, S.; et al. N-3 fatty acid-
701 rich diet prevents early response of interleukin-6 elevation in trinitrobenzene sulfonic acid-
702 induced enteritis. *Int J Mol Med* **2003**, *12*, 721–725.

703 50. Yuceyar, H.; Ozutemiz, O.; Huseyinov, A.; Saruc, M.; Alkanat, M.; Bor, S.; et al. Is
704 administration of n-3 fatty acids by mucosal enema protective against trinitrobenzene-induced
705 colitis in rats? *Prostagland Leukot Essent Fatty Acids* **1999**, *61*, 339–346.

706 51. Shoda, R.; Matsueda, K.; Yamato, S.; Umeda, N. Therapeutic efficacy of N-3 polyunsaturated
707 fatty acid in experimental Crohn's disease. *J Gastroenterol* **1995**, *30*, 98–101.

708 52. Hassan, A.; Ibrahim, A.; Mbodji, K.; Coëffier, M.; Ziegler, F.; Bounoure, F.; et al. An α -linolenic
709 acid-rich formula reduces oxidative stress and inflammation by regulating NF- κ B in rats with
710 TNBS-induced colitis. *J Nutr* **2010**, *140*, 1714–1721.

711 53. Lee, B.; Moon, K.M.; Kim, C.Y. Tight junction in the intestinal epithelium: its association with
712 diseases and regulation by phytochemicals. *J Immunol Res* **2018**, *2018*, 2645465.

713 54. Lechuga, S.; Ivanov, A.I. Disruption of the epithelial barrier during intestinal inflammation:
714 Quest for new molecules and mechanisms. *Biochim Biophys Acta Mol Cell Res* **2017**, *1864*, 1183–
715 1194.

716 55. Kowalczyk, A.P.; Green, K.J. Structure, function, and regulation of desmosomes. *Progr Mol Biol*
717 *Transl Sci* **2013**, *116*, 95–118.

718 56. Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.M.; Roy, N.C.
719 Regulation of tight junction permeability by intestinal bacteria and dietary components. *J Nutr*
720 **2011**, *141*, 769–776.

721 57. Cunningham, K.E.; Turner, J.R. Myosin light chain kinase: pulling the strings of epithelial tight
722 junction function. *Ann NY Acad Sci* **2012**, *1258*, 34–42.

723 58. Suzuki, T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. *Animal*
724 *Sci J* **2020**, *91*, e13357.

725 59. Usami, M.; Muraki, K.; Iwamoto, M.; Ohata, A.; Matsushita, E.; Miki, A. Effect of
726 eicosapentaenoic acid (EPA) on tight junction permeability in intestinal monolayer cells. *Clin*
727 *Nutr* **2001**, *20*, 351–359.

728 60. Usami, M.; Komurasaki, T.; Hanada, A.; Kinoshita, K.; Ohata, A. Effect of gamma-linolenic acid
729 or docosahexaenoic acid on tight junction permeability in intestinal monolayer cells and their
730 mechanism by protein kinase C activation and/or eicosanoid formation. *Nutrition* **2003**, *19*, 150–
731 156.

732 61. Xiao, K.; Liu, C.; Qin, Q.; Zhang, Y.; Wang, X.; Zhang, J.; et al. EPA and DHA attenuate
733 deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function
734 integrity by inhibiting necroptosis signaling pathway. *FASEB J* **2020**, *34*, 2483–2496.

735 62. Wang, J.; Zhang, H.; Ma, H.; Lu, B.; Wang, J.; Li, Y.; et al. Inhibitory effect of dietary n-3
736 polyunsaturated fatty acids to intestinal IL-15 expression is associated with reduction of
737 TCR $\alpha\beta$ CD8 $\alpha\alpha$ CD8 $\beta\beta$ intestinal intraepithelial lymphocytes. *J Nutr Biochem* **2008**, *19*, 475–481.

738 63. Bentley-Hewitt, K.L.; De Guzman, C.E.; Ansell, J.; Mandimika, T.; Narbad, A.; Lund, E.K.
739 Polyunsaturated fatty acids modify expression of TGF- β in a co-culture model utilising human
740 colorectal cells and human peripheral blood mononuclear cells exposed to *Lactobacillus gasseri*,
741 *Escherichia coli* and *Staphylococcus aureus*. *Eur J Lipid Sci Technol* **2014**, *116*, 505–513.

742 64. Marion-Letellier, R.; Butler, M.; Dechelotte, P.; Playford, R.J.; Ghosh, S. Comparison of cytokine
743 modulation by natural peroxisome proliferator-activated receptor gamma ligands with
744 synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells—potential for dietary
745 modulation of peroxisome proliferator-activated receptor gamma in intestinal inflammation.
746 *Am J Clin Nutr* **2008**, *87*, 939–948.

747 65. Wijendran, V.; Brenna, J.T.; Wang, D.H.; Zhu, W.; Meng, D.; Ganguli, K.; et al. Long-chain
748 polyunsaturated fatty acids attenuate the IL-1 β -induced proinflammatory response in human
749 fetal intestinal epithelial cells. *Ped Res* **2015**, *78*, 626–633.

750 66. Zhao, L.; Kwon, M.-J.; Huang, S.; Lee, J.Y.; Fukase, K.; Inohara, N.; et al. Differential modulation
751 of Nod1 signaling pathways by fatty acids in human colonic epithelial HCT116 cells. *J Biol*
752 *Chem* **2007**, *282*, 11618–11628.

753 67. Vincentini, O.; Quaranta, M.G.; Viora, M.; Agostoni, C.; Silano, M. Docosahexaenoic acid
754 modulates in vitro the inflammation of celiac disease in intestinal epithelial cells via the
755 inhibition of cPLA(2). *Clin Nutr* **2011**, *30*, 541–546.

756 68. Kimura, R.; Takahashi, N.; Lin, S.; Goto, T.; Murotam K.; Nakata, R.; et al. DHA attenuates
757 postprandial hyperlipidemia via activating PPAR alpha in intestinal epithelial cells. *J Lipid Res*
758 **2013**, *54*, 3258–3268.

759 69. Lin, P.W.; Stoll, B.J. Necrotising enterocolitis. *Lancet* **2006**, *368*, 1271-1283.

760 70. Hofmanová, J.; Vaculová, A.; Kozubík, A. Polyunsaturated fatty acids sensitize human colon
761 adenocarcinoma HT-29 cells to death receptor-mediated apoptosis. *Cancer Lett* **2005**, *218*, 33-41.

762 71. de Vogel-van den Bosch, H.M.; Bünger, M.; de Groot, P.J.; Bosch-Vermeulen, H.; Hooiveld,
763 G.J.; Müller, M. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene
764 expression. *BMC Genom* **2008**, *9*, 231.

765 72. Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar
766 Reddy, D. Role of the normal gut microbiota. *World J Gastroenterol* **2015**, *21*, 8787-8803.

767 73. Yu, L.C-H. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and
768 colorectal cancers: exploring a common ground hypothesis. *J Biomed Sci* **2018**, *25*, 79.

769 74. Yu, H-N.; Zhu, J.; Pan, W-S.; Shen, S-R.; Shan, W-G.; Das, U.N. Effects of fish oil with a high
770 content of n-3 polyunsaturated fatty acids on mouse gut microbiota. *Arch Med Res* **2014**, *45*,
771 195-202.

772 75. Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; et al.
773 Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota
774 development in adolescence and adulthood. *Brain Behav Immun* **2017**, *59*, 21-37.

775 76. Djuric, Z.; Bassis, C.M.; Plegue, M.A.; Sen, A.; Turgeon, D.K.; Herman, K.; et al. Increases in
776 colonic bacterial diversity after ω -3 fatty acid supplementation predict decreased colonic
777 prostaglandin E2 concentrations in healthy adults. *J Nutr* **2019**, *149*, 1170-1179.

778 77. Coelho, O.G.L.; Cândido, F.G.; Alfenas, R.dC.G. Dietary fat and gut microbiota: mechanisms
779 involved in obesity control. *Crit Rev Food Sci Nutr* **2019**, *59*, 3045-53.

780 78. Dourado, E.; Ferro, M.; Sousa Guerreiro, C.; Fonseca, J.E. Diet as a modulator of intestinal
781 microbiota in rheumatoid arthritis. *Nutrients* **2020**, *12*, 3504.

782 79. Ilag, L.L. Are long-chain polyunsaturated fatty acids the link between the immune system and
783 the microbiome towards modulating cancer? *Medicines* **2018**, *5*, 102.

784 80. Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of omega-3 fatty acids on the gut
785 microbiota. *Int J Mol Sci* **2017**, *18*, 2645.

786 81. Shama, S.; Liu, W. Omega-3 fatty acids and gut microbiota: a reciprocal interaction in
787 nonalcoholic fatty liver disease. *Dig Dis Sci* **2020**, *65*, 906-910.

788 82. Costantini, L.; Merendino, N. Polyunsaturated fatty acids and microbiota relationship:
789 implications in cancer onset and treatment. *J Clin Med* **2020**, *9*, 3490.

790 83. Mozaffari, H.; Daneshzad, E.; Larijani, B.; Bellissimo, N.; Azadbakht, L. Dietary intake of fish,
791 n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: a systematic review
792 and meta-analysis of observational studies. *Eur J Nutrition* **2019**, *59*, 1-17.

793 84. Calder, P.C. Fatty acids and immune function: relevance to inflammatory bowel diseases. *Int
794 Rev Immunol* **2009**, *28*, 506-534.

795 85. Marton, L.T.; Goulart, R.A.; Carvalho, A.C.A.; Barbalho, S.M. Omega fatty acids and
796 inflammatory bowel diseases: an overview. *Int J Mol Sci* **2019**, *20*, 4851.

797 86. MacLean, C.H.; Mojica, W.A.; Morton, S.C.; Pencharz, J.; Garland, R.H.; Tu, W.; et al. Effects of
798 omega-3 fatty acids on lipids and glycemic control in type II diabetes and the metabolic
799 syndrome and on inflammatory bowel disease, rheumatoid arthritis, renal disease, systemic
800 lupus erythematosus, and osteoporosis: summary. AHRQ Evidence Report Summaries:
801 Agency for Healthcare Research and Quality, US, 2004.

802 87. MacLean, C.H.; Mojica, W.A.; Newberry, S.J.; Pencharz, J.; Garland, R.H.; Tu, W.; et al.
803 Systematic review of the effects of n-3 fatty acids in inflammatory bowel disease. *Am J Clin*
804 *Nutr* **2005**, *82*, 611–619.

805 88. Turner, D.; Shah, P.S.; Steinhart, A.H.; Zlotkin, S.; Griffiths, A.M. Maintenance of remission in
806 inflammatory bowel disease using omega-3 fatty acids (fish oil): a systematic review and meta-
807 analyses. *Inflamm Bowel Dis* **2011**, *17*, 336–345.

808 89. Ajabnoor, S.M.; Thorpe, G.; Abdelhamid, A.; Hooper, L. Long-term effects of increasing
809 omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers
810 of inflammation: a systematic review and meta-analysis of randomized controlled trials. *Eur J*
811 *Nutr* **2020**; in press.

812

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

813