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We present a holographic model of QCD with a first order chiral restoration phase transition with
chemical potential, μ. The first order behavior follows from allowing a discontinuity in the dual description
as the quarks are integrated out below their constituent mass. The model predicts a deconfined yet massive
quark phase at intermediate densities (350 MeV < μ < 500 MeV), above the nuclear density phase, which
has a very stiff equation of state and a speed of sound close to one. We also include a holographic
description of a color superconducting condensate in the chirally restored vacuum and study the resulting
equation of state. They provides a well behaved first order transition from the deconfined massive
quark phase at very high density (μ > 500 MeV). We solve the Tolman-Oppenheimer-Volkoff equations
with the resulting equations of state and find stable hybrid stars with quark cores. We compute the tidal
deformability for these hybrid stars and show they are consistent with LIGO/Virgo data on a neutron
star collision. Our holographic model shows that quark matter could be present at the core of such
compact stars.
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I. INTRODUCTION

There is a growing literature [1–8] attempting to use
holography [9] to describe the equation of state (EoS) of
deconfined quark matter to determine whether it can play a
role in neutron star cores. In the first such paper [1] the
exact results at finite density [10,11] for the D3/probe D7
system [12], which is dual to quark multiplets in a super-
symmetric theory, were applied in this context. This model
described a possible deconfined but massive dense quark
phase. The resulting EoS was not stiff enough to support
quark cores in compact stars such as neutron stars or
hybrid stars.
Recently we adapted this system to a model that included

a running anomalous dimension, γ, for the quark conden-
sate through an effective dilaton profile [4]. That running
allowed a description of the chiral restoration transition
away from the deconfined massive phase. The transition
occurs dependent upon whether the Brietenlohner
Freedman (BF) bound [13] is violated for a scalar in the
bulk dual to the chiral condensate. We parametrized the
running of γ so we could control the derivative of

the running at the BF bound violation point. For all choices
of the derivative the model displayed a second order
transition from the chirally broken phase to the chirally
symmetric phase as μ increased. Generically the EoS
stiffened relative to the pure D3/D7 case with the speed
of sound squared in the material peaking, dependent on the
chosen derivative, at 0.6c2 for chemical potentials of order
the chiral restoration point. Even this was not sufficient to
convincingly support large mass neutron stars.
In this paper we present a related model in which the

chirally broken phase resists transition to the chirally
restored phase leading to a first order chiral transition.
Prior to the transition the EoS is even stiffer than our
previous example with a speed of sound rising close to the
speed of light. The key extra ingredient relative to our
previous work is that we have allowed a discontinuity in the
holographic description at the scale of the IR constituent
quark mass, where one might expect the quarks to be
integrated out of the running dynamics of the gauge fields.
This seems rather natural and it is interesting that our first
sensible attempt has led to a very different transition and a
much stiffer material.
Our model remains based on the Dirac Born Infeld (DBI)

action of a D7 brane in AdS5 with a scalar field describing
the chiral condensate and a U(1) gauge field for the
chemical potential. In the spirit of the model in [14]
(motivated by [15,16]) we then include a mass term for
the scalar by hand that allows us to include the running γ.
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We input this form from the perturbative QCD running result
for γ (allowing it to naively extend to the nonperturbative
regime). When the scalar mass passes through the BF bound
a chiral condensate is induced. This philosophy has been
used before in [14] to successfully describe T ¼ μ ¼ 0QCD
and strongly coupled theories beyond the Standard Model.
Previously such models have been able to dodge the question
of the deep IR physics below where the quarks become on
mass shell as a result of the formation of their constituent
mass. Here at finite μ an explicit description is needed for
the IR regime—we propose a simple completion where the
anomalous dimension is switched off in this regime and
sensible physics results.
We note that this modeling does not explicitly include

confinement—the philosophy is that confinement is a
property of the pure Yang Mills theory at scales below
the IR constituent quark mass and while implied in the
model is not directly included. We assume that as soon as
quark density switches on confinement is lost in the
plasma. We find a phase with quark density and chiral
symmetry breaking—we refer to this phase as a deconfined
massive quark phase. It is this proposed phase that has a
stiff EoS and could play a role in hybrid star cores.
We do not attempt to describe the nuclear physics phase

of QCD here. Holography lies close to large Nc where
baryons are infinitely massive so it is perhaps not a good
starting point (there are good attempts to describe the
nuclear phase holographically—for example [2,17–19]—
and one might seek to include those descriptions in the
future). Instead we simply take results from the nuclear
physics/neutron star literature [20] that provide three
possible varying stiffness EoS for the nuclear phase.
Above 308 MeV this phase takes over from the vacuum
of the holographic theory. In our model though we find that
at yet higher density the deconfined massive quark phase
becomes the true vacuum. Then, the first order transition to
the chirally symmetric phase occurs and the stiffness of the
EoS falls off sharply.
The EoS can be inserted into the Tolman-Oppenheimer-

Volkoff (TOV) equations to seek pressure versus radius
relations inside compact stars (see for example [21,22]).
Conditions for stability are discussed in [23,24] which we
will review below. Here we show, by solving the TOV
equations, that we do find stable stars with the deconfined
massive quark phase in the core. This is our first interesting
result.
The second task we undertake is to include a holographic

description of a possible color superconducting state [25]
above the first order chiral restoration transition.
Traditionally the holography community has declared
describing color superconductivity as very hard because
the naive colored qq order parameter is not gauge invariant
and suppressed at large Nc [26]. One would need to
describe the breaking of the color group and this remains
a tricky issue (see [27] for recent work in this direction).

However, in [28] we proposed to be more cavalier at a
phenomenological level and simply allow the inclusion of
gauge noninvariant operators and neglect their color sym-
metry breaking effects in the dynamics. This was motivated
by the idea that the colored density of quarks and monopoles
(associated with confinement) are already likely to have
given Debye masses [29] to the gluons before the Cooper
pairs form. In this spirit we include a new scalar field dual to
the Cooper pair in analogy to the scalar describing the chiral
condensate. Since the Cooper pair carries net baryon charge
it couples directly to the U(1) gauge field and the chemical
potential itself generates a BF bound violation that can
trigger a superconducting phase [30,31].
We construct a bottom up model of the superconducting

condensation in the chiral restored phase—the transition
between these two phases is second order at a finite μ (the
value is dependent on the precise coupling used but typical
before the true first order transition from the deconfined
massive quark phase). We can describe both a two flavor
condensate that breaks the color symmetry to SU(2) or a
three flavor model with a color flavor locked condensate
(although we stress we neglect the impact on the glue sector).
The presence of the condensate(s) increases the pressure of
the chirally restored phase and pushes the speed of sound
squared up. However, for sensible choices of parameters that
give a condensate at a scale in the 10s to 100sMeV, c2s ≤ 0.5
and this phase is not stiff enough to serve as the core of a
stable hybrid star. Nevertheless the increase in pressure
makes the first order transition from the deconfined massive
quark phase to the now superconducting chirally restored
phase occur at a lower μ. This serves to complete our model
since the speed of sound rises above one in the deconfined
massive phase if allowed to persist to too high μ.
Thus we present a holographic model that describes a

chirally broken vacuum at μ ¼ 0. We allow a first order
transition to a nuclear phase from 308 MeV, then the
holographic model predicts a first order transition to a stiff
deconfined massive quark phase above about 350 MeV
before a final first order transition to a superconducting
chirally restored phase at around 500 MeV. The EoS still
supports the hybrid stars we have previously discussed.
This at least encourages experimental studies of neutron
stars to seek such exotic hybrid stars.
In our final section we also seek to challenge our models

of hybrid stars with the recent data from LIGO/Virgo on a
neutron star collision [32] which has been used to provide
constraints on the tidal deformability parameter, λ̄ðtidÞ, of
neutron stars near 1.4 M⊙. We briefly review how to
compute λ̄ðtidÞ from the TOV equations [33–35] and then
compute for example equations of state where we have
predicted hybrid stars in the appropriate mass range. We
find the predictions lie within the allowed region but they
could be tested as future data accumulates.
This paper is organized as follows: In Sec. II we review

our models of the QCD phases and their EoS—here we
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review the base D3/D7 model, the nuclear EoS we use, the
holographic model of the deconfined massive phase and the
chirally restored vacuum, plus finally we add color super-
conducting condensates to the chirally restored phase. In
Sec. III we then solve the TOVequations to findM versus R
relations for hybrid stars. In Sec. IV we compute the tidal
deformability parameter and compare to the LIGO/Virgo
data. In Sec. V we summarize and conclude.

II. DESCRIPTIONS OF QCD PHASES WITH μ

In this section we will work through the descriptions we
use of the μ ¼ 0 chirally broken vacuum, the nuclear
physics phase, a deconfined massive quark phase and a
high temperature chirally restored phase with color super-
conductivity. All of these descriptions are holographic
except for the nuclear phase. Since our holographic models
are inspired by the D3/probe D7 model we review that
briefly first. Note that we do not include temperature in
any of these discussions since neutron star cores are likely
cool. In principle though one could straightforwardly
include temperature holographically by allowing a black
hole spacetime [9].

A. Review of the base D3/D7 probe model

At strong ’t Hooft coupling λ and in the large Nc limit,
the dual description of the N ¼ 4SUðNcÞ SYM theory is
given by a classical type IIB SUGRA in an AdS5 × S5

space time [9]. The flavor sector can be introduced as
Nf D7 branes extended along the AdS5 geometry and
warping an S3 sphere [12]. At zero temperature the metric
background is

ds2 ¼ r2

R2
ð−dt2 þ dx⃗2Þ þR2

r2
ðdρ2 þ ρ2dΩ2

3 þ dχ2 þ χ2dΩ2
1Þ

ð1Þ

where ðt; x⃗Þ are the gauge theory coordinates, the ρ and Ω3

are on the D7 brane world volume and two transverse
directions to the D7 brane are χ andΩ1. The energy scale of
the boundary theory corresponds to the radial direction
r2 ¼ ρ2 þ χ2. The AdS radius is denoted by R. To study
quarks, consider a D7 probe brane in the background
geometry in a quenched approximation when Nf ≪ Nc.
There is also a Uð1Þ gauge field Aa where a ¼ 0; 1;…; 7
runs over the world volume of the D7 brane. The DBI
action for the probe D7 branes is

S ¼ −NfTD7

Z
d8ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgab þ ð2πα0ÞFabÞ

p
ð2Þ

here TD7 is the D7 brane tension, the world volume
coordinates are ξa, the induced metric is denoted as gab
and Fab is the world volume Uð1Þ gauge field. The two
fields we will concentrate on are the gauge field AtðρÞ, with

the field strength Fρt ¼ A0
tðρÞ, and the embedding scalar

field χðρÞ corresponding to the transverse direction to
the D7 brane. They satisfy the following action at zero
temperature

S ¼ −N 7

Z
dρρ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2 − ð2πα0Þ2ð∂ρAtÞ2

q
ð3Þ

where N 7 ¼ NfTD7V3 and V3 ¼ 2π2 is the volume of the
unit S3 on the D7 brane. In the AdS/CFT dictionary α02 ¼ 1

λ

where λ is the ‘t Hooft coupling, TD7 ¼ ð2πÞ−7α0−4 and

N 7 ¼ NfNcλ

16π4
. We divide both sides of the D7 brane action

in (3) by the volume of boundary space time R3;1 and
henceforth work with action densities.
The holographic interpretation is that the two constants

of integration for χ are the quark mass m and the quark
condensate c. For At we have the chemical potential μ and
the density d.
It is helpful to rescale the factor of 2πα0 into At. The

constants of integration in the solutions μ and d are then on
a footing with the constants in χ (m and c) since to move
from distances in AdS to energy scales in the field theory
one multiplies by 1=2πα0. Formally one needs to set a scale
in the theory by picking for example the IR quark mass’
value—after expressing all physical quantities as ratios of
this setting scale the 2πα0 factors then cancel in the ratios.
Thus it is useful to work with the action (we will reinstate

the overall factor of N 7 shortly)

S ¼ −
Z

dρρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2 − ð∂ρAtÞ2

q
: ð4Þ

There are two constants of the motion d, c because only
derivatives of AtðρÞ and χðρÞ appear in the Lagrangian.
Thus

∂L
∂χ0 ¼

−ρ3χ0ðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ0ðρÞ2 − A0

tðρÞ2
p ¼ −c ð5Þ

and the equation following from ∂L
∂A0

t
gives At ¼ d=cχ.

One can solve for A0
tðρÞ and χ0ðρÞ in terms of the

constants c and d which can be integrated analytically. The
solution is [10]

χ ¼ c
6
ðd2 − c2Þ−1=3B

�
ρ6

ρ6 þ d2 − c2
;
1

6
;
1

3

�
ð6Þ

with B an incomplete Beta function. For c ¼ d ¼ 0 one
finds constant solutions for AtðρÞ and χðρÞ. To obtain the
physical solutions for the system with density one needs
d2 − c2 positive. Note these solutions have χ ¼ At ¼ 0 at
ρ ¼ 0 so “spike” out of the origin. The density of quarks are
D3/D7 strings that pull the D7 to the origin.
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The action density evaluated on the solutions is (reinstat-
ing N 7)

S ¼ −N 7

Z
dρρ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ6

ρ6 þ d2 − c2

s
: ð7Þ

One needs a regulator S0 to obtain a finite value for the
density action S. Numerically, we consider a cutoff at Λ, a
factor of 20 above the IR quark mass, and subtract

S0 ¼ −N 7Λ4

4
. Then one can define the thermodynamic

density free energy by the renormalized action as F ¼
−ðS − S0Þ and as a result an analytic form for the density
free energy [10]

F ¼ −
NcNf

4η3λ
ðμ2 −m2Þ2; η ¼ Γð7=6ÞΓð1=3Þffiffiffi

π
p : ð8Þ

To match the asymptotic UV form known from QCD one
can pick λ ¼ 3π=η3 so that:

F ¼ NcNf

12π2
μ4: ð9Þ

We will use Nf ¼ Nc ¼ 3.
At even infinitesimally small temperature, this theory is

deconfined. The phase therefore describes a vacuum with a
density of quarks of mass m. This mass, identified with the
constituent quark mass, must be put in by hand and there is
no chiral symmetry breaking mechanism. The EoS, which
relates the pressure P to the energy density E is found from

P ¼ −F ; E ¼ μ
∂P
∂μ − P: ð10Þ

Here the pressure is too small and the quark interiors of
stars cannot support neutron stars—see [1].

B. The μ= 0 chiral symmetry breaking phase

Our base motivation here and in our previous paper [4] is
to include the QCD running of the gauge coupling and
chiral symmetry breaking into the D3/D7 system to see if
the EoS stiffens. In [4] we added the running as a ρ
dependent dilaton prefactor to the action (3). As described
in [16], the crucial role the dilaton plays is to provide a
running anomalous dimension for the quark bilinear
operator which displays as a ρ dependent mass for the
field χ (after expanding the dilaton). In the previous paper
we used a set of functions that ran from γ ¼ 0 in the UV
through the critical γ ¼ 1 in the IR (with varying derivative
at this point) which indeed triggered chiral symmetry
breaking. These models all showed a second order tran-
sition from the chirally broken to the chirally symmetric
phase. We found the EoS stiffened around the transition so

that the speed of sound became as large as 0.6c yet this was
still not stiff enough to support hybrid stars.
Here we will take what appears only a slightly different

approach, which is to not introduce running through a
dilaton factor but directly through a ρ dependent mass term
for χ. This approach has been taken previously in [14].
Our original motivation for this was that we wanted to add
a field for a color superconducting order parameter in
sympathy with χ but we did not want that field to
experience the same running as χ which an overall dilaton
factor would introduce. We will see that this ansatz can lead
to a yet stiffer EoS. Thus we take the Lagrangian at μ ¼ 0

L ¼ −ρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2

q
− ρΔm2χ2: ð11Þ

The factors of ρ in the new term are fixed by dimensional
analysis withΔm2 dimensionless. If we write the additional
mass termΔm2 purely as a function of ρ then were this term
to lead to a violation of the BF bound in some range of
small ρ then the instability would exist however large χ
were to grow. Therefore we identify the RG scale in this
term with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ χ2

p
(this naturally happens in the D7 probe

action where this quantity is the radial distance in the
background space).
When Δm2 ¼ 0, near the boundary which corresponds

to the UV, the solution is given asymptotically by χðρÞ ¼
mþ c=ρ2, with c ¼ hq̄qi of dimension three and m, the
mass, of dimension one (note χ and ρ have dimension
one). For nonzero Δm2, the solution takes the form
χðρÞ ¼ mρ−γ þ cργ−2, with

Δm2 ¼ γðγ − 2Þ ð12Þ

Here γ is precisely the anomalous dimension of the quark
mass. The BF bound below which an instability occurs is
given by Δm2 ¼ −1 when γ ¼ 1. To directly control the
running of the dimension (which is our goal) it is best to
allowΔm2 to have ρ dependence at the level of the equation
of motion. This effectively neglects a term in the equation
of motion ρχ2 ∂

∂χΔm2—this term would in any case only

be large when Δm2 is varying fast at the BF bound
violation point.
We will fix the functional form of Δm2 using the one

loop running of the gauge coupling in QCD with Nf ¼ 3

flavors transforming in the fundamental representation.
This is found by solving:

Q
dα
dQ

¼ −b0α2; b0 ¼
1

6π
ð11Nc − 2NfÞ ð13Þ

with Q the renormalization group scale.
The one loop result for the anomalous dimension of the

quark mass is
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γ1 ¼
3C2

2π
α; C2 ¼

ðN2
c − 1Þ
2Nc

ð14Þ

We stress that using the perturbative result outside the
perturbative regime is a sensible but nonrigorous, phenom-
enological parametrization of the running.
We will identify the RG scale, Q with the AdS radial

parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ χ2

p
in our model. Working perturbatively

from the AdS result m2 ¼ ΔðΔ − 4Þ we have

Δm2 ¼ −2γ1 ¼ −
3ðN2

c − 1Þ
2Ncπ

α: ð15Þ

To find numerical solutions for χ’s vacuum configura-
tion, we need an IR boundary condition. In top down
models χ0ð0Þ ¼ 0 is the condition for a regular solution
[12]. In previous papers [14] using this model this con-
dition has been replaced by the very similar on mass shell
condition χðρ ¼ χ0Þ ¼ χ0 with χ0ðχ0Þ ¼ 0. Here χ0 is the
IR value of the quark mass where the on-shell condition
ρ ¼ χ is realized. Thus one shoots out form the 45° line in
the χ − ρ plane to find the value of χ0 that gives the desired
quark mass at some UV value—here we will require that
the mass vanishes in the UV. The resulting solution for χ is
shown in red in Fig. 1. Note here and henceforth we will
use χ0, the IR quark mass, to set the scales in the theory
rather than ΛQCD in the one loop running but there remains
just one scale introduced via ΛQCD.
In previous studies the solution above the on-mass shell

point has been sufficient—bound states masses can be
determined by looking at fluctuations of this solution. Now
though we wish to compute the action of this configuration.
There are two complications. First, since we imposed Δm2

at the level of the equations of motion we have neglected
one term dependent on the derivative of Δm2 in the
equation of motion so it is inconsistent to then use Δm2

directly in the action. Here though this is a small error since
Δm2 only has a large derivative in a very small region of ρ
and we will neglect this error.
Second, we have no solution below ρ ¼ χ0 yet the

chirally symmetric solution χ ¼ 0, which we will want
to compare the action of our solution to, extends all the way
to ρ ¼ 0. This problem will become worse below when we
allow solutions with density where one expects the solution
for χ to “spike” to the origin of the χ − ρ plane—with the
current boundary conditions we will lose all of this part of
the solution. Our resolution of this issue here is pragmatic,
based on simply obtaining sensible looking solutions in the
region interior to the 45° line. We will set Δm2 ¼ 0 in the
region χ2 þ ρ2 < 2χ20. The solutions of the equations of
motion are then just those of the base D3/D7 probe system
in (6). Thus for example at d ¼ 0 they are the solutions
χ ¼ m. We will require the solution to match (χ and χ0) to
our exterior solution on the χ2 þ ρ2 ¼ 2χ20 circle. Thus
we extend the solution in Figure 1 into the IR with the
blue solution shown. These solutions are now a sensible
approximation to the forms found for χ in complete D3/D7
models with chiral symmetry breaking.
Even now there remains an ambiguity as to the constant

prefactor between our UV and IR action pieces. We will
keep this ambiguity as a multiplier kIR on the IR action.
Thus the full action is

S ¼ −kIR
Z

χ0

0

dρρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2

q

−
Z

ΛUV

χ0

dρ
�
ρ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2

q
− ρΔm2χ2

�
; ð16Þ

with ΛUV a UV cutoff far above χ0. In the philosophy of
this modeling we assume that chiral symmetry breaking
occurs at a higher RG scale than confinement. Below χ0 the
quarks should integrate out from the dynamics leaving the
pure glue theory to provide confinement. Since we do not
include this dynamics our IR action is likely out by a
constant factor. The kIR choice is one way to include this
factor in the dynamics.
Thus the solution for χ in Fig. 1 is our description of the

μ ¼ 0 vacuum of QCD. We will use the action of this
configuration(for a given choice of kIR) to set our zero of
potential energy. In fact this state will persist until quark
density switches on at μ ¼ χ0 (a scale that is naturally of
order 330 MeV in QCD—one third of the proton mass).
However, before that point we must allow for a density of
nucleons to set in.

C. Nuclear phase

At small chemical potentials the nuclear transition in
QCD is well understood: the confined, chirally broken
vacuum is empty until a chemical potential of μ ¼
308.55 MeV when there is a first order phase transition

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

FIG. 1. The solution for the runing quark mass at d ¼ 0. The
blue curve is the solution below the quarks’ constituent mass with
Δm2 ¼ 0, and the red line is the solution above, where (15) holds.
We also show the 45° line where we set boundary conditions on
the solutions.
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to nuclear matter. This transition is well studied and the
nuclear matter EoS has been explored in [20]. There the
authors combined observations of a 1.97 solar mass neutron
star with effective field theory (EFT) to construct the EoS,
extrapolating with a constrained piecewise polytropic form.
Here holography is probably least able to help—given its
origin at infinite Nc, baryons are naturally very heavy and
far from the QCD limit. Thus, following several other
authors [1–3], we will simply use the results of [20] to
model the nuclear phase. Note there have been attempts to
study the QCD nuclear phase holographically, for example
in [2,17–19], but this will not be our focus in this paper.
Three ansatz for the EoS (soft, medium and stiff) are

presented in Table 5 of [20]—they give the energy density
and pressure for different densities. We have encoded their
data as a Mathematica fitting polynomial for the analysis
below and we plot these in Fig. 2.

D. The dense quark phases

We next consider the (separate) transitions associated
with the onset of quark density and to a chirally symmetric
quark phase in our holographic model. We allow for a
quark density by including a U(1) gauge field in addition to
the action (11)

L ¼ −ρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2 − ð∂ρAtÞ2

q
− ρΔm2χ2 ð17Þ

Here At has UVasymptotic solution μþ d=ρ2 where d is
the density. We apply a Legendre transformation to obtain
the action in terms of the density d

L̃ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ χ02Þðρ6 þ dÞ

q
− ρχ2Δm2: ð18Þ

Then the equations of motion are

∂ρ

� ðρ6 þ dÞ∂ρχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ χ02Þðρ6 þ dÞ

p �
− ρΔm2χ ¼ 0 ð19Þ

ð∂ρAtÞ2 ¼
d2ð1þ χ02Þ
ðρ6 þ dÞ ð20Þ

Note in the first equation we have again suppressed the
term ρχ2 ∂

∂χΔm2.
We solve the equations of motion in two steps for each d

in the spirit of (16). We divide the space using the IR value
of the quark mass at d ¼ 0, χ0. We obtain solutions for χðρÞ
and AtðρÞ in two intervals: first for 0 ≤ ρ2 þ χ2 ≤ 2χ20,
which we call the region below the constituent mass and the
other 2χ20 ≤ ρ2 þ χ2 ≤ Λ2

UV, with ΛUV a large UV cut off,
which we call the region above the constituent mass.
Below the constituent mass we fixed Δm2 to zero. For a

given d we shoot from the origin of the χ − ρ plane
with different gradients for χ. We solve until we reach
the surface χ2 þ ρ2 ¼ 2χ20 when we read off χ and χ0 plus
At. These numerical solutions can also be checked against
the analytic form in (6). External to the circle we use the
running Δm2 from the QCD perturbative running and
match the initial conditions provided from the interior
on the circle. We then seek among those solutions the one
that shoots to a zero UV quark mass. Then in the UV we
can read off the value of the chemical potential from the At
solution. We repeat this for each value of d.
The results are shown in Fig. 3. The chirally broken

phase exhibits a second order transition where density
switches on. This behavior is controlled by the low ρ phase
with Δm2 ¼ 0—it is just the transition of theN ¼ 2model
where a spike grows from the origin of the ρ − χ plane
connecting to the flat embedding. The exterior region (in
red) plays no role initially. As d increases the model resists
returning toward the χ ¼ 0 chirally symmetric phase with
the maximum value of χ even increasing. This is the phase
we call the deconfined massive quark phase.
After d ¼ 0.554χ30 there are no nontrivial solutions that

have a zero UV mass so by this value of d a transformation
to the chiral restored phase must have occurred (this puts
some constraints on the parameter kIR as we will see).
We compute the free energy by obtaining the on-shell

action for each value of d. The integration follows the same
separation into the regions above and below the constituent
mass. We weight the IR piece’s action by the parameter kIR.
Our assumption is that because this phase has density it is
deconfined. The transition with density switching on is
continuous here whereas one might imagine that the loss of
confinement might be a first order transition. Were this the
case we could justify using a different kIR for this phase
than in the d ¼ 0 phase or even just adding a bag constant
to the free energy of the dense phase. We will not add in
this extra degree of freedom, or equivalently assume it is
small, simply because we find interesting models without
it. In principle though a constant shift on the free energy of
the dense phases could be included—the reader can
mentally perform that shift on our free energy plots to
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FIG. 2. Data for the nuclear phase taken from [20]: we show the
pressure versus chemical potential. The green line represents a
soft EoS, the orange a medium EoS and the red line a stiff EoS.
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come. One must be careful when splitting into subregions
that any counterterm is the same for each computation. We
normalize so that the vacuum energy is zero for the d ¼ 0
embedding as previously discussed.
We show some example plots of the pressure (minus the

free energy) against μ for various kIR in Fig. 4. For kIR ¼ 1
and 2 the system does not make sense. The chirally broken
state ceases to exist before it stops being the true vacuum.
On the other hand for kIR ¼ 0.575 the system is more
sensible—the chirally restored vacuum becomes preferred
and the chirally broken state becomes metastable before it
ceases to exist. This provides a sensible description of a
first order chiral restoration transition. We also show the
case kIR ¼ 0.1 where the transition occurs at lower μ.
Our expectation is that in the sensible systems the

chirally broken phase is rather stiff. It is resisting the
transition to the chirally restored phase. A good test of this
is to determine the speed of sound squared, c2s (which is
simply ∂P=∂E)—see Fig. 5. We show the results for the
four values of kIR in Fig. 4 and also for the chirally
symmetric phase χ ¼ 0. We plot for values of μ above the
transition where density switches on. The c2s in the chirally
symmetric phase is 1=3. The speed of sound in the chirally
broken phase though rises much higher and even passes
through the speed of light c ¼ 1. Note that for the cases of

kIR ¼ 1, 2 the speed of sound has rather strange behavior
including a turning point—this suggests again that these
choices of kIR do not make physical sense. The cases we
will continue with between kIR ¼ 0.1–0.575 have mono-
tonic rising behavior. For the moment we will allow the
speed of sound to lie greater than one but will return to
address this issue when we add a color superconducting
condensate to the chirally restored phase.
We can next set χ0 ¼ 330 MeV and compare the free

energy of these phases to the nuclear phase’s free energy.
We do this in Fig. 6 (left) showing the cases kIR ¼ 0.1, 0.35
and 0.575. The transition to the nuclear phase occurs at
308 MeV. At 330 MeV the deconfined massive quark
phase’s pressure begins to rise. The kIR ¼ 0.575 curve
rapidly becomes the true vacuum relative to even the least
stiff nuclear phase. The case kIR ¼ 0.1 only becomes the
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FIG. 4. Pressure versus chemical potential. The solid line
corresponds to the deconfined massive phase, and the dashed line
represents the chirally restored phase (χ ¼ 0 phase). The different
colors represent different values of kIR; kIR ¼ 0.1 (purple), kIR ¼
0.575 (blue), kIR ¼ 1 (green) and kIR ¼ 2 (orange).
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FIG. 5. The speed of sound squared as a function of μ for
the Figure 4 solutions. The top lines represent the chirally
broken phase with different values of kIR; kIR ¼ 0.1 (purple),
kIR ¼ 0.575 (blue), kIR ¼ 1 (green) and kIR ¼ 2 (orange). The
lower dark blue line corresponds to the chirally restored phase
(L ¼ 0 phase) which asymptotes to 1=3.
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FIG. 3. Solutions for χ and At when d ¼ 0.00147χ30, 0.0147χ
3
0,

0.147χ30, 0.295χ
3
0, 0.488χ

3
0 and 0.554χ30. The blue curve is the

solution below the constituent mass scale and the red is that
above.
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true vacuum relative to the stiffest nuclear equation of state.
For intermediate kIR one can achieve curves between these
limits—for example kIR ¼ 0.35 grows to dominate the
medium and stiffest nuclear curves but does not replace the
soft nuclear curve.
In the second plot in Fig. 6 we show the variation of c2s

with μ for the case of the soft nuclear EoS (the EoS is
piecewise constructed so there are discontinuities—we just
quote these from [20]) and the kIR ¼ 0.575 case for the
chirally broken and chirally symmetric vacua. The vertical
dotted lines show where the phase transitions between
phases occur. For the moment c2s rises above one before
the final transition to the chirally restored phase. In the next
section we will show that, by modifying the chirally
restored phase by including a color superconducting con-
densate, the transition away from the deconfined massive
quark phase can occur earlier removing the region
with c2s > 1.

E. Color superconducting phases

There has been considerable speculation in recent years
that there may be a color superconducting phase of high
density QCD [25]. In the presence of a Fermi surface and
any attractive interaction the formation of a diquark
condensate is expected [36,37]. In the two flavor theory
the spinless condensate is in the fundamental representation
of color SU(3) and a single colored qq bilinear condenses.
In the three flavor theory a color flavor locking (CFL) state
is expected to form with three qq bilinears nonzero.
Holographically it has been shown that the presence of a

chemical potential, through a dual gauge field At, causes
a charged scalar’s mass to be driven through the BF bound
and cause condensation [30,31]. Thus baryon number
charged operators such as the qq bilinears would be

expected to condense. The holographic dual is formally
a description of gauge invariant operators and so it has
proven hard to describe superconducting operators which
are color charged and should break the gauge group.
However, in [28] we proposed that phenomenologically
one can be more relaxed about this constraint. In a quark
gluon plasma near a confining region of the phase diagram
one expects a plasma of quarks but also potentially a
plasma of color magnetic monopoles that will play a part in
the confinement mechanism. If these are present then the
electric and magnetic gluon fields will all already have a
Debye mass [29] and the gauged nature of color will be
blurred. We proposed to simply neglect the backreaction
of the colored condensates on the gluons but use holog-
raphy to describe the condensation mechanism and to
compute the vacuum energy. In this spirit we will include
the superconducting phase into our holographic model for
neutron stars.
Wewill describe each condensing qq operator by a scalar

field ψ i that we introduce into the holographic model in
analogy to the chiral condensate field χ (both are dimension
3 scalars). In addition though because the qq operator
carries baryon number it will couple directly to the baryon
number U(1) gauge field in the bulk. Thus we propose
the action

L ¼ −ρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρχÞ2 − ð∂ρAtÞ2

q
− ρ3gρρ

X
i

ðDψ iÞ2 − ρΔm2χ2;

Dμ ¼ ∂μ − iG½ρ�QAμ: ð21Þ

We have trialled actions where ψ i enter the square root term
but have not been able to make them give sensible profiles
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FIG. 6. Transitions from the nuclear phase to the deconned phase: on the left a plot of pressure vs chemical potential. The nuclear
phase curves are copied from Figure 2. The other solid lines corresponds to the massive chirally broken phase and dashed lines represent
the chirally restored phase (χ ¼ 0 phase), with kIR ¼ 0.575 (blue) kIR ¼ 0.35 (magenta) and with kIR ¼ 0.1 (purple). For kIR ¼ 0.575
there is not a sensible transition to the χ ¼ 0 phase. For kIR ¼ 0.1 the nuclear phase is always favoured, eg kIR ¼ 0.1 only plays a role
relative to the stiff nuclear matter phase. On the right we show an example plot of the speed of sound squared vs chemical potential with
colours corresponding to the left hand plot. The dashed vertical lines represent the transition from nuclear to chirally broken quark matter
and from chirally broken quark matter to the chirally restored phase.
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for ψ i particularly because in the deep IR the square root
approaches zero. Here the action for ψ i is the kinetic term
emerging from the DBI action in the expansion where all
fields are small and with the derivative promoted to a
covariant derivative. This is intended in the same spirit as
Δm2 is added, being the leading term for χ when aspects of
the metric or dilaton contribute to its running γ.
Q is the quark number charge of the qq bilinear (which

we set to 2). The final issue though is that we must match
the running coupling strength,G½ρ�, of the U(1) gauge field.
In principle one should match this as the coupling runs
from the perturbative regime but it may not be appropriate
to just use the one loop running for αðρÞ. In addition to that
running one also expects this coupling to run logarithmi-
cally as one approaches the Fermi surface—see [37] for
example. In addition the strength of the attraction in
different channels depends on group theory factors which
could suppress the Cooper pair condensation coupling by
as a much as an order of magnitude [28]. Together these
effects could, at larger μ change the coupling further. We
will therefore take G to have the form

G½ρ�2 ¼ καðρÞ ð22Þ

where κ is a free parameter we will vary. Note allowing this
choice enables us to find a wider set of solutions than were
found in [38].
We do not expect both χ and ψ to condense together

since Lagrangian terms we could include such as jϕj2jψ j2
would tend to fight against any BF bound violation for
one field if the other field condenses. There is still the
possibility for a small mixed phase around the boundary
between the two phases which might be interesting to look
for in the future. Here we will just concentrate on Cooper
pair formation in the chirally symmetric χ ¼ 0 phase to see
how its presence effects that phase.
The equations of motion are

∂ρðρ3∂ρψ iÞ þ
G½ρ�2Q2

ρ
A2
tψ i ¼ 0

∂ρðρ3∂ρAtÞ −
X
i

G½ρ�2Q2

ρ
ψ2
i At ¼ 0: ð23Þ

We solve the equations between a large UV cut off where
ψ i ∼ Ji þOi=ρ2 with Ji a source and Oi the Cooper pair
vev, and the IR scale

ffiffiffi
2

p
χ0 where the running has become

strong enough to cause χ condensation at μ ¼ 0. Now we
need suitable IR boundary conditions. It is not clear what
to pick although any nonextreme choice gives similar
behavior—we pick ψ 0

i ¼ −ψ=χ0 which has the same
proportionality as the usual holographic superconducting
case where the embedding ends on a black hole. Thus we
can now set ψð ffiffiffi

2
p

χ0Þ to find solutions that asymptote
to J ¼ 0.

For At we use theN ¼ 2 theory At at χ ¼ 0 for various d
and use the values of the solutions at ρ ¼ ffiffiffi

2
p

χ0 to set
boundary conditions for At externally.
Finally we note that the number of ψ i fields is easily

dealt with. If there are N such degenerate fields then in the
lower equation of (22) there is simply a factor of N—it can
be absorbed into the normalization of ψ i. Since the top
equation in (22) is linear in ψ i this rescaling does not
change the solution. Similarly at the level of the action (20)
rescaling ψ2

i by 1=N while summing over N copies leaves
the action invariant. Thus the difference between the theory
of the two flavor condensate (where there is one ψ i) and
the color flavor locked phase (with three) is just a rescaling
of the condensate by a factor of

ffiffiffi
3

p
. We will therefore

restrict to one ψ i for the analysis to come but the free
energy/pressure analysis is the same for the color flavor
locked phase.
The proof of all this construction is whether we obtain

sensible phenomenology for the Cooper pair formation.
In Fig. 7 we plot some example embeddings for κ ¼ 1

and varying μ. We indeed find profiles that asymptote to
J ¼ 0 at each μ and where the gap size grows with μ. We
plotO against μ for varying κ in Fig. 8. Now we can see that
there is a second order transition (from the chirally
symmetric vacuum) to the color superconducting phase
with μ. Note that this will not be a physical transition
because at lower scales the deconfined massive phase is
preferred to the χ ¼ 0 state—the true transition will be a
first order transition from the deconfined massive phase to
the superconducting phase. For κ ¼ 10, at μ ≃ 1.5χ0
(approximately 500 MeV) where this first order transition
to this phase will occur, the condensate’s scale is of order
χ30—ð330 MeVÞ3—which is possibly large relative to the
supposed gap scale although it serves as a sensible upper
possible case. For κ ¼ 1 the condensate only switches on
close to μ ≃ 1.5χ0 and can be an order of magnitude smaller
which is again a sensible lower estimate for the conden-
sate’s value. As μ increases in all cases the condensate
grows in rough proportion to μ.
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FIG. 7. Solutions for ψ in units of χ0 for κ ¼ 1 and different
values of μ after condensation is triggered.
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We plot the pressure (minus the free energy) of the
solutions in Fig. 9. We see that the pressure of the phase is
raised depending on the size of κ. We will adjust κ to move
the transition to the deconfined phase (now with color
superconductivity) of Figure 6 to lower μ so that the speed
of sound in the deconfined massive quark phase never rises
above one. We can make the transition occur just before
the speed of sound passes through 1 with κ ¼ 0.85 for the
case of kIR ¼ 0.575; κ ¼ 0.89 for kIR ¼ 0.35 and finally
κ ¼ 0.94 for the case of kIR ¼ 0.1.
To display this graphically we again set χ0 ¼ 330 MeV

and compare the free energy of these phases to the nuclear
phases’ free energy and to the deconfined massive quark
phase of the previous sections. We do this in Fig. 10 (top
left) showing the cases kIR ¼ 0.1, 0.35 and 0.575. As seen
before the transition to the nuclear phase occurs at
308 MeV. At 330 MeV the deconfined massive quark
phase’s pressure begins to rise. The kIR ¼ 0.575 curve
rapidly becomes the true vacuum relative to even the least
stiff nuclear phase. The case kIR ¼ 0.1 only becomes the

true vacuum relative to the stiffest nuclear equation of state.
For intermediate kIR one can achieve curves between these
limits—for example kIR ¼ 0.35 grows to dominate the
medium and stiffest nuclear curves but does not replace the
soft nuclear curve.
Now though we also include the chirally restored

vacuum with color superconductivity curves for κ¼0.94,
0.89 and 0.85. They rise sharply in pressure and become the
true vacuum in the range μ ¼ 450–500 MeV.
In the remaining plots in Fig. 10 we show again the

variation of c2s with μ in a number of these scenarios.
For example, in the upper right we show c2s for the soft

nuclear EoS, for the kIR ¼ 0.575 case for the chirally
broken, and for the κ ¼ 0.85 case of the color super-
conducting vacuum. The vertical dotted lines show where
the phase transitions between phases occur. We have tuned
κ so that the transition to the color superconducting phase
occurs just before the speed of sound passes through 1 (in
order to have the stiffest EoS we can). The inclusion of
color superconductivity in the chirally restored phase does
raise c2s but only a little to around 0.4c2. This will not be
sufficient to support neutron stars if this material forms the
core as we will see in the next section. The crucial role color
superconductivity is playing here is to reduce the critical μ
for the transition from the deconfined massive quark phase
to ensure c2s does not rise above 1.
The lower two figures in Figure 10 show a variety of

scenarios for the medium and stiff nuclear EoS. In all cases
there are, with increasing μ, the phases: chiral broken;
nuclear; massive deconfined quark; chirally restored with
color superconductivity. In each case c2s rises close to
0.7-0.8 in the nuclear phase then to close to 1 in the
deconfined massive quark phase.

III. NEUTRON STAR MASS-RADIUS RELATIONS

The mass-radius relation for neutron stars is determined
by the EoS of the neutron/quark matter. One solves the
Tolman-Oppenheimer-Volkov (TOV) equations (see for
example [21,22])

dP
dr

¼ −GNðE þ PÞ M þ 4πr3P
rðr − 2GNMÞ ; ð24Þ

dM
dr

¼ 4πr2E ð25Þ

which are the relativistic equations that model hydrostatic
equilibrium inside the stars. GN is Newton’s constant. Here
M and P are the mass and pressure in the star as a function
of radius r. To integrate the equations we need to input the
EoS EðPÞ, as well as the central pressure Pc ¼ Pðr ¼ 0Þ as
initial condition, and the output are the mass MðrÞ and
pressure PðrÞ of the corresponding star. The radius R of the
star will be the value of r at which the pressure vanishes.
Then varying the initial condition Pc as a parameter we can
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FIG. 8. Cooper pair condensate as a function of the chemical
potential for different values of κ; κ ¼ 10 (yellow), κ ¼ 1 (red)
and κ ¼ 0.85 (brown).
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FIG. 9. Pressure versus chemical potential in the superconduct-
ing vacuum for different values of κ; κ ¼ 10 (yellow), κ ¼ 1
(red), κ ¼ 0.94 (black), κ ¼ 0.89 (gray) and κ ¼ 0.85 (brown).
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construct a curve for the mass of the star M⊙ ¼ Mðr ¼ RÞ
against R.
It is useful to place the TOV equations in their dimen-

sionless form:

dp
dξ

¼ −B
yeð1þ p0

ϵ0
p
eÞ

ξ2ð1 − 2B p0

ϵ0
y
ξÞ
�
1þ A

p0

ϵ0
ξ3

p
y

�
; ð26Þ

dy
dξ

¼ Aξ2eðξÞ ð27Þ

Where r ¼ r0ξ, M ¼ m0yðξÞ, P ¼ p0pðξÞ, E ¼ ϵ0eðξÞ,
A ¼ 4πr3

0
ϵ0

m0
and B ¼ Gm0ϵ0

p0r0
.

For the numerics one can fix the scale with, for example,

the value of p0 ¼ ϵ0 ¼ ð308.55 MeVÞ4
π2

as is sensible in the
context of the nuclear equation of state discussed above;
this choice then fixes the rest of our scale parameters.
One can make a radial perturbation about a solution. In

terms of the mass vs radius curve one increases the value of
the central density Ec while keeping the same mass. If
∂M⊙ðEcÞ∂Ec > 0 then the corresponding equilibrium solution for
this new configuration has a higher mass and therefore
there is a deficit of mass. The gravitational force then needs

to be balanced by increasing the central pressure. The
forces acting on the matter in the star will therefore act to
return the new configuration toward its original unper-

turbed state. However for the case in which ∂M⊙ðEcÞ∂Ec
≤ 0, if

the star is perturbed, the forces acting on the perturbed
star will act to drive it further from its original point in the
mass vs radius curve. Therefore the condition for stability is
given by

∂M⊙ðEcÞ
∂Ec

> 0: ð28Þ

As mentioned in [24] we can also determine the stability of
a star from the mass vs radius curve using the Bardeen,
Thorne and Meltzer (BTM) criteria [23] which established
a simple formulation to know if all its radial modes are
stable:
(1) At each extremum where the M⊙ðRÞ curve rotates

counterclockwise with increasing central pressure,
one radial stable mode becomes unstable.

(2) At each extremum where the M⊙ðRÞ curve rotates
clockwise with increasing central pressure, one
unstable radial stable mode becomes stable.

We now perform these calculations for the EoS we
obtained in Fig. 10. To summarize our model has three
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FIG. 10. Transitions from the nuclear phase to the deconfined phase and then to superconducting phase. The different colors represent
the cases of massive chirally broken phase with kIR ¼ 0.575 (blue), kIR ¼ 0.35 (magenta) and with kIR ¼ 0.1 (purple) as in Fig. 6,
whereas the superconducting cases are κ ¼ 0.85 (brown), κ ¼ 0.89 (gray) and κ ¼ 0.94 (black). The dashed vertical lines represent the
transition from nuclear to chirally broken quark matter and from chirally broken quark matter to the superconducting phase.
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parameters: χ0 which is the IR quark mass that we have
set to 330 MeV; kIR which must lie below 0.575 to ensure
there is a sensible transition from the deconfined massive
quark phase to the chirally restored phase; and κ which
determines the strength of the superconducting interaction
which we have used to move the chiral restoration
transition so that c2s is never greater than one.
We present the mass radius relations for neutron stars that

we obtain in Figure 11. At low mass the stars are entirely
neutron matter and the M − R plot is determined by the
nuclear EoS—these are the green, orange and red lines
depending on the choice of nuclear EoS. In each case though
we now propose a transition to hybrid stars with deconfined
massive quarks in the core. These are the blue, magneta or
purple lines departing from the nuclear curves—the stable
parts of these curves aremarked by dashed lines. Finally there
is a transition in the center of the star to chirally symmetric
quark matter leading to unstable stars. These branches angle
off the deconfined massive curves down to the left—the
higher example of this branch in each case is the chirally
restored phase without superconductivity while the lower
example has a superconducting condensate present.
Let us look at the top plot in detail as an example with the

softest nuclear EoS. Here we only had the case kIR ¼ 0.575
where the deconfined massive quark phase became the
vacuum. To invoke a transition to the superconducting phase
when the c2s has just risen to one we set κ ¼ 0.85—see the
top two plots of Fig. 10. The top plot of Fig. 11 shows the
resulting stars. Where the curve is green the nuclear phase
only plays a role—the star is neutrons to the core. The blue
line marks where the star has begun to have a deconfined
massive quark phase in its core. If we did not include the
superconducting phase but instead as in Fig. 6 transitioned to
the chirally restored χ ¼ 0 phase this branch extends to the
highest point. After the core of the star experiences the
transition to the chirally restored phase the stars become
unstable—this is the sharp transition to the blue dashed line
that angles down to the left. The region of these stars which
satisfy the stability criteria above and have c2s < 1 are
marked by the dashed section of line. Finally if we allow
a transition to the superconducting phase rather than the
χ ¼ ψ ¼ 0 phase then we obtain the brown line—these stars
with superconducting cores are again unstable but now the
transition to them occurs at c2s ¼ 1 in the deconfined massive
quark phase, leaving a fully sensible picture of the dynamics
at all μ. This EoS does not support neutron stars as high in
mass as the observational ∼2 solar mass limit so is
presumably not a good description of QCD.
In the central figure of Fig. 11 we show example cases

using the medium stiffness EoS for the nuclear phase. Here
there are deconfined massive quark phases for lower kIR
and we show the cases of 0.575 and 0.35. The plots show
the same structure and elements as for the top plot as we
have described. Again there are stars with quark cores but
still reaching two solar masses is a struggle.

Finally in the bottom picture we show three cases for the
stiffest nuclear EoS—kIR ¼ 0.575, 0.35 and 0.1. Between
the last two of these values we find solutions with
deconfined massive quark cores and a upper most mass
for stable stars between 2 and 2.5 solar masses. This is a
considerable success. We have taken sensible phenomeno-
logical holographic models of the QCD EoS and shown
that such stars can exist within sensible choices of
parameters. This lends credence to the idea that quark
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FIG. 11. Mass vs radius curves for the case of kIR ¼ 0.575
(blue), kIR ¼ 0.35 (magenta) and kIR ¼ 0.1 (purple). The curves
leaving the green/red/orange nuclear EoS prediction is the
transition to a quark phase from Fig. 10. The case with kIR ¼
0.35 only has a transition from medium (orange) and stiff nuclear
matter (red) and the case with kIR ¼ 0.1 only has a transition from
stiff nuclear matter. The stable branch where c2s ≤ 1 is indicated
in dashed cyan/pink. The transition to a superconducting state
for κ ¼ 0.85 (brown), κ ¼ 0.89 (gray) and κ ¼ 0.94 (black) just
before the speed of sound goes beyond 1 is also shown.
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cores can exist in neutron stars and hopefully encourages
study for signals of such cores in gravitational wave signals
from neutron star collisions. It is interesting to look at
the structure of stars in this range. In Fig. 12 we plot the
pressure vs radius profiles of the stars for the case of the
stiffest nuclear equation of state and kIR ¼ 0.35, coloring
the radial regions that are nuclear matter, deconfined
massive quarks and the color superconducting phase (stars
with superconducting cores are unstable). We see that the
quark core of some stars can be quite substantial.

IV. LIGO CONSTRAINTS FOR TIDAL
DEFORMABILITIES

It is expected that in a colliding binary system of two
neutron stars, the tidal forces between the two objects
would have a measurable effect in the gravitational
wave signal that could be observed using gravitational
wave detectors. In [32] the measurement of this effect
was reported as a limit given for the tidal deformabilities
of the two stars involved in the merger. To calculate the
tidal deformability for specific solutions of the TOV
equations that represent a neutron star, we follow
Refs. [33–35].
The tidal deformation between neutron stars in a binary

system connects the EoS, that describe the matter inside
neutron stars, to the gravitational wave emission during the
inspiral. It has been shown that a small tidal signature arises
in the inspiral below 400 Hz [39]. This signature amounts
to a phase correction which can be described in terms of a
single EoS dependent tidal deformability parameter λ̄ðtidÞ,
which is the ratio of each star’s induced quadrupole
moment to the tidal field of its companion in the binary
system. The parameter λ̄ðtidÞ depends on the EoS via both
the neutron star radius R and mass M, and a dimensionless

quantity kðtidÞ2 called the Love number:

λ̄ðtidÞ ¼ 2

3

�
M
R

�
−5
kðtidÞ2 : ð29Þ

A quick summary of this formalism is: one considers a
static, spherically symmetric star of mass M placed in a
time-independent external quadrupolar tidal field Eij. In
response, the star will develop a quadrupole momentQij. In
the star’s local rest frame, for large values of the radial
coordinate r, the metric coefficient gtt is given by [40]:

ð1− gttÞ
2

¼ −
m
r
−
3Qij

2r3

�
ninj −

δij

3

�
þ Eij

2
xixj þ… ð30Þ

where ni ¼ xi=r. This expansion defines the traceless
tensors Eij andQij. To linear order, the induced quadrupole
will be of the form

Qij ¼ −λ̄ðtidÞEij ð31Þ
Thus Qij and Eij are defined as the coefficients in an
asymptotic expansion of the metric at large distances from
the star.
The perturbation to the metric can be expanded in

spherical harmonics. If one allows just the l ¼ 2 harmonic
as a perturbation with a fixed spin axis then E andQ can be
written in terms of Y20. In the metric Y20 is then multiplied
by a function of r, HðrÞ. Now one solves the Einstein
equations. A first degree differential equation is obtained
for the radial function of the spherical harmonicsHðrÞ and,
when solved together with the TOVequations, can give the
value of the tidal deformability λ̄ðtidÞ from the following

expression for the Love number κðtidÞ2 :

κðtidÞ2 ¼ 8

5
β5ð1 − 2βÞ2½2þ 2βðzR − 1Þ − zR�

× f2β½6 − 3zR þ 3βð5zR − 8Þ�
þ 4β3½13 − 11zR þ βð3zR − 2Þ þ 2β2ð1þ zRÞ�
þ 3ð1 − 2βÞ2½2 − zR þ 2βðzR − 1Þ� lnð1 − 2βÞg−1

ð32Þ
where β ¼ M=R is the compactness parameter, and zR ¼
RH0ðRÞ=HðRÞ is evaluated using the surface value of the
radial function HðrÞ determined by the system of differ-
ential equations (33):

dH
dr

¼ Y

dY
dr

¼ 2

�
1 − 2

M
r

�
−1
H

�
−2π

�
5E þ 9Pþ ðE þ PÞ

c2s

�

þ 3

r2
þ 2

�
1 − 2

M
r

�
−1
�
M
r2

þ 4πrP

�
2
�

þ 2Y
r

�
1 − 2

M
r

�
−1
�
−1þM

r
þ 2πr2ðE − PÞ

�
ð33Þ
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FIG. 12. Pressure as a function of the radial distance r in km for
a hybrid star. The blue line corresponds to medium EoS nuclear
matter. The pink line corresponds to the massive chirally broken
phase wih kIR ¼ 0.35. The green line corresponds to the super-
conducting phase with κ ¼ 0.89 (stars with superconducting
cores are unstable).
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with boundary conditions HðrÞ ¼ a0r2, YðrÞ ¼ 2a0r for
r ≪ 1. a0 is a constant that determines how much the star is
deformed and can be fixed arbitrarily as it cancels in the
expression for the Love number (32). The functions MðrÞ,
PðrÞ and EðrÞ in Eq. (33) are the enclosed mass, pressure
and energy density at the radial distance r, respectively,
obtained using the TOV equations. Here we also have the
appearance of the sound speed squared c2s ¼ ∂P=∂E. Thus
by setting the central pressure Pc, which fixes the mass and
the radius of the star, one can find the value of zR. Then for
each Pc we can obtain the dimensionless tidal deform-
ability of the star λ̄ðtidÞ as a function of the mass of the star.
LIGO and Virgo have provided a constraint for the value

of the tidal deformability for a star of a mass M ¼ 1.4 M⊙
[32], assuming slow rotation, at a 90% Bayesian probability
level. In addition to this, Fig. 5 of [32] gives both 90%
and 50% probability contours for the independent tidal

deformabilities of the two stars in the λ̄ðtidÞ1 − λ̄ðtidÞ2 plane.
Thus one can compare the results for a modeled star with
these values, and show how exotic phases relate to these
contours. The curves are generated by independently
determining the tidal deformabilities for each of the stars
involved in the merger, obtaining the possible mass pairs
using the chirp mass of the event, M ¼ 1.188 M⊙.
We will choose to study two example sets of hybrid stars

we have found above. The first set corresponds to a
transition from the soft nuclear matter to the deconfined
massive quark matter with kIR ¼ 0.575—the top M vs R
relation in Fig. 11 (green to blue lines); the second case
corresponds to a transition from the medium nuclear matter
to the deconfined massive quark matter with kIR ¼ 0.35—
right hand M vs R curve in the middle plot of Fig. 11.
(orange to magenta lines). We choose these cases because
they predict hybrid stars for M⊙ ¼ 1.4 and through a good
part of the possible range of masses cited for the detected
signal from a binary neutron star inspiral in [32]. For these
cases we then compute the tidal deformability. We plot the
tidal deformability as a function of the mass for these two
cases in Fig. 13. Note the discontinuity in the green line
simply reflects the movement from one part of the nuclear
piecewise function to another. The spike in the blue curve
near 1.5 M⊙ is due to an apparently accidental cancellation
of terms driving the denominator of (32) small. We find that
broadly as we increase the central pressure for both cases
the tidal deformability decreases as the mass increases (this
can be cross checked for example against the results in [7]
which use the same nuclear equations of state). LIGO and
Virgo provide the constraint λ̄ðtidÞð1.4 M⊙Þ ≤ 800 for the
likely case of slowly rotating stars (the low-spin prior) at a
90% Bayesian probability level. The models satisfy this
constraint.
Additionally Fig. 5 of [32] gives both 90% and 50%

probability contours for the independent tidal deformabil-

ities of the two stars on the λ̄ðtidÞ1 − λ̄ðtidÞ2 plane, where 1 and

2 correspond to the two stars in the collision. To compare
our results to these values, we show in Fig. 14 how our
example EoSs relate to these contours. The curves are
generated by independently determining the tidal deform-
abilities for each of the stars involved in the merger.
To describe the binary system we take a chirp mass given

by Eq. (34), of M ¼ 1.188 solar mass.

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

ð34Þ
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FIG. 13. The dimensionless tidal deformability as a function of
the mass (in units of solar masses) for a holographic quark, and
nuclear equations of state. The soft nuclear phase (green) has a
transition to a chirally broken quark matter phase with kIR ¼
0.575 (blue). The medium nuclear phase (orange) has a transition
to a chirally broken quark matter phase with kIR ¼ 0.35 (ma-
genta). The LIGO/Virgo upper bound of λ̄ðtidÞ ¼ 800 at 1.4 M⊙ is
indicated by the horizontal line.
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FIG. 14. The tidal deformabilities λ̄i obtained for two stars with
masses corresponding to those involved in the binary Neutron
Star merger observed by LIGO and Virgo [32], corresponding to
masses m1 ∈ ½1.36; 1.60� M⊙ and m2 ∈ ½1.17; 1.36� M⊙ (low-
spin prior). The curves stand for the corresponding quark matter
phases displayed in Fig. 13; the chirally broken quark matter
phase has kIR ¼ 0.575 (blue) and the chirally broken quark matter
phase has kIR ¼ 0.35 (magenta). The black curve is a sketch of
the 90% experimental bound contour given in Fig. 5 of [32].
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where m1 and m2 are the masses of the components of
the two body system. We can solve for m1 in terms of m2

for a fixed value of M. Then we can vary m2 as a para-
meter and use the relation we have for the tidal deform-
ability as a function of the mass of the star to obtain a
relation between the tidal deformability for one of the two
stars of the binary system with respect to the second one.
This means that the two stars involved in the binary neutron
star merger correspond to masses m1 ∈ ½1.36; 1.60� M⊙
and m2 ∈ ½1.17; 1.36� M⊙. We observe that the two cases
considered in Fig. 15 fit inside the 90% probability contour
given in [32]. It is reasonable to hope that as more events
are recorded that the bounds will begin to probe our
models.

V. DISCUSSION

In this paper we have presented a holographic model of
quark dynamics that provides a fully self-consistent equa-
tion of state for quark matter and that allows for the
existence of hybrid stars. The model has a sequence of
transitions with μ: the chirally broken vacuum first order
transitions to a nuclear density phase above 308 MeV (we
have not described this transition holographically); there is
then a first order transition to a phase with a density of
chirally broken deconfined massive quarks; finally there
is a first order transition to a chiral restored but color
superconducting phase. The speed of sound in each of the
nuclear and deconfined massive quark phases grows with μ
until the transition to the next phase (see Fig. 10 for
examples). Thus phases that resist second order transitions
generate stiff matter.
The holographic model of the quark dynamics has two

regimes above and below the IR constituent quark mass.
Above that scale the model is an AdS scalar dual to the
chiral condensate with a radially dependent mass set by the
running of the anomalous dimension γ in the gauge theory.
When this running violates the BF bound in AdS a chiral
condensate forms. At scales below the IR constituent quark
mass we have needed to introduce a distinct description in
the regime where the quarks should be integrated out—we
have simply turned off the running mass in this very low
energy regime which seems to provide a sensible IR
completion of the model. The, very natural, discontinuity
is though what drives the chiral restoration transition to be
first order (rather than the second order transitions we saw
in smoother descriptions in [4]).

In the chirally restored phase we have also introduced an
AdS scalar to describe a color superconducting Cooper pair
condensate. Solutions with this present somewhat raise the
pressure of the chirally restored vacuum.
Our model has three parameters: χ0 the IR quark mass

that we have set to 330 MeVand sets the scale of the theory
(this scale is formally introduced through the running
coupling); kIR a parameter that weights the relative con-
tributions to the action of the two regimes above and below
the constituent quark mass; and κ that controls the size of
the interaction that triggers the superconducting conden-
sate. The description of the nuclear phase taken from [20]
also contains a range of EoS adding essentially an extra
parameter through that choice. We have used the freedom
of these parameters to construct a consistent set of phase
transitions. The resulting equations of state include stiff
nuclear and then deconfined massive quark phases.
We have solved the TOVequations using these equations

of state to compute the structure of neutron/hybrid stars.
We find hybrid stars with deconfined massive quark cores
for stars in the 1-2.5 solar mass range depending on the
precise choice of parameters. The superconducting chirally
restored phase is not stiff enough to support stars for
sensible values of the condensate.
We also compared our stable solutions with observations

made by the LIGO and Virgo collaboration of the tidal
deformabilities obtained from the detection of gravitational
waves from a binary neutron star inspiral. We observed an
agreement with the data reported by LIGO and Virgo as the
two cases we considered fit inside the 90% probability
contour.
We conclude that sensible holographic models can

provide support to the idea that quark matter can be present
at the cores of the most massive neutron stars observed. Our
introduction of a deconfined massive quark phase requires
a separation between chiral symmetry breaking and con-
finement at high density but this is far from impossible.
Overall then this is an exciting conclusion that hopefully
motivates further astrophysical and gravitational wave
analysis of neutron stars and their collisions.
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