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Abstract—Next-generation wireless communications are ex-
pected to provide reliable high-rate connectivity. The recent
concept of fog-enabled architecture comes to rescue by invoking
a substantial amount of data storage close to end-user devices
for meeting these challenges. Thus, caching popular contents
at heterogeneous devices, e.g., fog nodes (FNs) or fog access
points (FAPs), constitutes a promising technique of reducing
both the traffic and the energy consumption of the backhaul
links. Therefore, in this paper, we propose an energy-efficient
caching and node association algorithm for cache-aided fog
networks. First, we solve the problem of energy-efficient content
caching and delivery in the FNs/FAPs in conjunction with a
fixed node association strategy, where the FNs communicate
either with other FNs by node-to-node (N2N) communications
or with the FAPs in their proximity. In both caching scenarios,
we investigate the relationship between the caching probability of
the file and the energy-efficient content delivery by formulating
the associated energy efficiency (EE) optimization problem under
caching memory constraints. Then, we derive a joint modulation
mode allocation strategy and caching policy for each content
caching node and conceive a joint node association and caching
algorithm for maximizing the EE. Finally, we quantify both
the overall EE and throughput for demonstrating that the
proposed caching and transmission strategy achieves significant
performance improvements.
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node-to-node communications, access points
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I. INTRODUCTION

W IRELESS traffic has experienced a tremendous growth
in recent years due to the proliferation of hand-held

devices connected to the Internet. This traffic increase is
expected to continue steadily during the forthcoming years,
hence in excess of 4.8 zettabytes of mobile traffic is forecast
worldwide for the year 2022 [1]. With the exponential growth
of data traffic, energy efficiency (EE) has emerged as a
key figure of merit and has become the design metric of
green wireless communication systems [2]. On the other hand,
given the fact that often a large fraction of content requests
aim for downloading cached files, caching at the wireless
edge has become a popular content delivery technique [3, 4].
Specifically, caching the most popular content is capable of
improving the quality of experience (QoE) for the users, whilst
simultaneously improving both the throughput and the EE, as
demonstrated in [5, 6]

Regarding the exponential increase in demand for popu-
lar content, next-generation wireless systems must provide
fast, reliable and sustainable wireless connection. The most
promising solutions of meeting these challenges are consti-
tuted by device caching and small-cell base station (SBS)
caching, which have attracted intensive research attention [7–
9]. In case of device-based caching, the user equipment (UE)
communicate directly with the aid of device-to-device (D2D)
communication. D2D communication relies on direct informa-
tion exchange between devices without their data being routed
to the evolved NodeB (eNB), hence offloading the traffic from
the base stations (BS). These D2D user equipments (DUEs)
are capable of using the same resources as the cellular users
under the control of the eNB, i.e., underlaying the coverage of
the cellular BSs. As a benefit, D2D communication is capable
of improving the area spectral efficiency of the system [7],
whilst maintaining efficient load balancing. Therefore, D2D
communication constitutes a promising technique of achieving
the ambitious goals of next-generation wireless networks. On
the other hand, driven by the development of heterogeneous
cell sizes of micro-, pico- and femto-cells, the large number of
traditional SBSs, may be exploited as fog access points (FAPs)
in the process of the ongoing small-cell densification, which
allows a more intense spatial reuse of the resources. Conse-
quently, the beneficial concept of fog computing networks has
been proposed [10], which enhances the cloud radio access
network (C-RAN) architecture by allowing the remote radio
heads (RRHs) to be equipped with caching and signal process-
ing functionalities. The resultant fog caching is a promising
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technique of alleviating the heavy network traffic. Clearly,
analyzing the network’s tele-traffic and proactively caching
popular content locally both at the FNs and FAPs is capable
of significantly reducing the backhaul traffic, especially when
the conventional network is inundated with requests for the
cached content. In recent years fog networking has also gained
popularity in a diverse range of vehicular scnearios [11–14].

In this context, our proposed framework is focused on
the general family of collaborative fog networks relying on
heterogeneous nodes, e.g., FNs and FAPs, sharing storage and
spectral resources. These nodes cache a subset of popular
contents depending on their limited storage and computing
capabilities. Fog computing systems are envisioned to act
as a promising enabler of real-time applications due to the
proximity of fog nodes to the IoT/end-user devices, which
can fill the gap between the cloud and the things to enable a
service continuum [10, 15].

A. Related Work

The idea of caching popular content at the edge of the
network is gaining momentum as one of the most promising
enablers of next-generation networks [8, 16, 17]. The content
can be cached at the UEs, which is termed as device-
based caching [18]. Generally speaking, device-based caching
mitigates the cellular traffic by offloading the most popular
content from the BSs, thereby increasing the access rate of
the service requests and reducing the energy consumption of
the BSs [8]. More particularly, device caching enhances the
experience of the UEs by reducing the delays, because the
cached content can be reached near-instantaneously through
D2D communication from local caches. Although the explicit
offloading throughput benefits have indeed been shown in
previous research efforts relying on device caching [18–21],
the EE has not been explicitly considered. To characterize
the bandwidth efficiency of a cache-enabled D2D network,
the authors of [18] have shown that it scales linearly with
the network size, provided that their content requests are not
uniformly distributed. The problem of UE throughput maxi-
mization was shown analyzed in [19], provided that the size
of the UE cache is larger than the library and that only a low
outage probability is allowed. Consequently, the throughput is
scaling proportionally with the UE cache size. When consider-
ing the D2D link scheduling and power allocation, the authors
of [7] solved the problem of system throughput maximization.
By contrast, the problem of offloading maximization was
solved by the authors of [21], relying on an interference-aware
reactive caching mechanism.

In addition to device-based caching, the content can also
be stored at SBSs. By relying on SBS caching, we can
reduce the number of transmissions from the core network and
alleviate the backhaul constraint of the small-cells. In [22], an
SBS-caching scheme has been proposed, Shanmugam et al.
analyzed the optimum way of assigning files to the SBSs for
minimizing the expected downloading time for files. However,
the energy consumption imposed by downloading files was not
considered. Hajri and Assaad in [23] proposed an optimization
framework for deriving the optimal active SBS density vector

in order to maximize the EE. Liu and Yang in [5] have
found the condition of when EE can indeed benefit from
caching as well as EE-memory relationship, and the maximal
attainable EE of caching. In [24], Gregori et al. determined
the prefetching and local caching gains either by caching at
the SBSs, or directly by the user devices, which determines
the optimal transmission and caching policies that minimize
a specific cost function, such as the energy or throughput
attained. In [25], Zhao et al. jointly optimized the resource
allocation and remote radio heads (RRH) association, Gabry
et al. in [26] considered the minimization of two fundamental
metrics: the expected backhaul rate and the energy consump-
tion, the content caching in user devices is not considered in
both of the above literature. In [15, 27, 28], fog computing-
based content delivery and task scheduling wireless networks
have been proposed in order to improve the overall system
performance in terms of the service delay and EE. However,
joint energy-efficient content caching and delivery have not
been considered in these contributions. In contrast to most of
the existing literature, our proposed energy-efficient caching
model relies on general fog networks, including caching at the
FNs and FAPs, which are capable of simultaneously arranging
for energy-efficient node association, content caching and
delivery with the aid of sharable storage and spectral resources.

B. Main Contributions

Although the above discussions have demonstrated the
benefits of edge caching, the joint optimization of content
caching and transmission maximizing the EE in heterogeneous
fog frameworks has not been considered to the best of our
knowledge, even though it is a key figure of merit in wire-
less networks [27, 29–31], which is particularly important for
battery-limited FNs or FAPs. The proposed heterogeneous fog
architecture includes all heterogeneous nodes, e.g., wearable
devices, mobile phones and vehicular terminals. The total
energy consumption includes both the transmission energy
and circuit energy. The circuit energy consumption is the
energy consumed by the circuit blocks along the signal path.
Additionally, to characterize the node association effects in
heterogeneous fog networks, we employ a joint node associa-
tion and content caching policy for modelling the EE. Based
on fixed node association, we aim for studying how hetero-
geneous fog nodes tackle the challenge of numerous delivery
requests fetching a few popular content files. Specifically, we
first aim for exploiting the optimal cache placement strategy in
order to minimize the traffic burden and then maximize the EE
of fog networks. Secondly, we would like to characterize the
relationship of content placement and energy-efficient delivery
strategy. Finally, we aim for jointly optimizing the node-
association and content placement-delivery policy.

Against the above backdrop, our contributions can be sum-
marized as follows:
• In terms of the system model, we propose a novel

energy-efficient caching framework for heterogenous fog
networks defined by a group of heterogeneous nodes
with sharable storage and spectral resources to cache
the popular files. Furthermore, we propose a problem
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formulation for maximizing the EE of cache-aided fog
networks, which offers a new approach to content caching
and delivery in fog networks.

• In terms of the mathematical framework and theoretical
analysis, we propose an adaptive content delivery strategy
for optimizing the EE, which can select the most energy-
efficient modulation mode for information transmissions.
To the best of our knowledge, considering the modulation
alphabet-size of probabilistic caching in energy-efficient
fog networks has not been considered in the open litera-
ture.

• Additionally, we optimize the node association policy
based on the fixed caching policy. Based on the optimal
solutions advocated, we propose an algorithm for jointly
optimizing the content caching and node association,
which maximizes the EE of heterogeneous fog networks.

• We evaluate the performance of the proposed caching
and delivery strategy through extensive simulations. Our
simulation results demonstrate that the proposed strategy
achieves significantly better EE than the traditional strate-
gies subject to realistic caching constraints and relying on
diverse system parameters.

C. Paper Organization

The rest of the paper is organized as follows. Section
II introduces the system model, while Section III presents
our problem formulation and analysis. Section IV is focused
on caching at the FNs, including the EE analysis and EE
optimization. In Section V, we optimize caching for the FAPs.
Our EE analysis is provided in Section V-A and the resultant
EE optimization problem is solved in Section V-B. Section
VI presents our joint node association and content caching
algorithm. In Section VII, we provide our simulation results,
and our conclusions are offered in Section VIII. Table I lists
the frequently used notations.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider a heterogeneous fog
network consisting of FNs and FAPs, where the active FNs
either rely on N2N communications or are served by the
FAPs for content exchange, let us denote the location set of
FAPs by M. Each FN and FAP has a local cache memory of
size Cu and a cache capacity of Qj units for storing popular
files, respectively. Let us assume that the FNs are distributed
according to a homogeneous Poisson Point Process (PPP)
Φu [32], where the intensity of Φu is λu. Specifically, a FN
may be classified as (1) a content request node (RN), (2) an
inactive neighbor helper node (HN), and (3) an idle node (IN)
with spare spectrum. For every FN of Φu, the probability of
active requests for a file is ρ ∈ [0, 1], and the HNs will serve
as potential transmitters. Let us denote the location sets of the

IN
RN FAPHN

Fig. 1. System model.

HNs and the RNs by N and Nr, respectively. 1

We consider a finite set of content files F = {1, · · · , F}
consisting of F files each with Nf bits that all FNs in the
network may request, which are indexed in descending order
according to their popularity, i.e., the f th file is the f th
most popular file. Every FN retains a cache of Cu files, and
the library size is larger than Cu. We assume that the files
requested by the RNs are from the content library, and the
probability of their requests obeys the Zipf distribution [33–
35]. According to this model, after ordering the files according
to their decreasing popularity, the probability that the f th file
is requested is

pf =
1

fβ
∑
n∈F n

−β , (1)

where β is the popularity exponent of the Zipf distribution.
This parameter characterizes the skew of the popularity distri-
bution. Considering the geographic caching strategy of [32] at
both the HNs and FAPs, the f th file has a certain probability
of cf,k and zf,j to be independently cached by each HN k,
k ∈ N , and FAP j, j ∈ M. Following the probabilistic
caching approach of [36], each user device applies the ge-
ographic caching strategy independently caching file with a
certain probability. Additionally, the caching probabilities have
to satisfy zf,j ∈ [0, 1] and cf,k ∈ [0, 1]. Due to the limited size
of the caching storage, we have

∑
f∈F cf,k ≤ Cu, ∀k ∈ N

and
∑
f∈F zf,j ≤ Qj .

1In the cloud computing systems such as C-RAN, the edge nodes, e.g., HNs,
are connected to the cloud processor by fronthaul links. While the RNs request
a file, it causes large latencies due to fronthaul transmission. Recognizing
that next generation wireless networks are expected to cater to a broad range
of quality of service requirements for mobile broadband communication, a
hybrid architecture of fog computing systems is proposed [10]. Fog computing
organizes and manages the local data storage, computing, communication and
networking. In this case, the content of the popular files is prefetched in a
cache-enabled fog network with the help of FNs and FAPs, which can enhance
the overall system efficiency.
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TABLE I
FREQUENTLY USED NOTATION

Definition Notation Definition Notation
Location set of FAPs M Cache memory size of FN Cu

Cache memory size of FAP Qj Location set of HNs N
Location set of RNs Nr Set of content files F
Total number of files F File size Nf

Popularity exponent of the Zipf distribution β Set of resource blocks Nm

Bandwidth of a resource block W Noise power σ2

Circuit power consumption P0 Battery lifetime of HN k Tk
The probability that the FAP caches the f th file zf,j Transmit power of FAP j destined to the RN i Pi,j

modulation scheme bi,j binary association flag between RN i and HN k yi,k
The probability that the HN k caches the f th file cf,k The request probability of the f th file from the HN k pf,k

As illustrated above, the RN can fetch a file from the
content library in three realistic ways. Firstly, the requested
file may be cached in its own storage, hence it is retrieved
locally with a negligible delay; The second case is via N2N
transmission, when the requested file is cached in one of the
nearby HNs within a certain distance Rd, but not cached in its
own storage, provided that the N2N link can be established.
Generally speaking, if more than one HNs have the requested
file, the nearest one will be selected to transmit the file. In the
third scenario the file is performed at the FAP, when the RNs’
requested file is not locally available.

B. EE of HN Caching

Let us denote the set of resource blocks (RBs) by Nm =
{1, 2, · · · , Nm}, where Nm is the total number of RBs from
the INs. Note that a RB is formed by a single time-slot as
well as 12 subcarriers, and we assume that the bandwidth of
a RB is W . Upon involving RB resource reuse, the rth RB
allocated to IN l is reused by HN k. In order to transmit the
cached file from HN k on the rth RB, the transmit power is
set to Pk,r. Let σ2 denote the noise power, and the resulting
average data rate of the HN k on the rth RB is denoted as
Rk,r.

When aiming for energy-efficient transmission, the battery
lifetime is beneficially extended. In quantifying the battery
lifetime both the circuit power and caching power dissipation
play important roles. Based on [2], we can estimate the circuit
power consumption of all the circuit blocks. In this work,
we assume that all the nodes have the same constant circuit
power consumption P0, and the caching power consumption
is proportional to the cache capacity expressed as PcaCuNf ,
where Pca is the power coefficient in Watt/bit and the value
of Pca strongly depends on the caching hardware technology.
Similar to the traditional EE metric, the transmission power of
the HN is also considered. Thus, both the circuit power and the
transmission power are taken into account in the total power
consumption. Furthermore, in order to capture the non-linear
effect of battery charge on EE, Peukert’s law can be used for
modelling the battery lifetime T [37], which can be expressed
as

T =
Bc

Dα
c
, (2)

where Bc and Dc are the battery capacity and the discharge
current, respectively, while the exponent α is a constant around

1.3. If the average operating voltage is V0, we can express the
expected battery lifetime Tk of HN k as

Tk =
Bc,kV

α
0

(Pk,r + P0 + PcaCuNf )α
. (3)

Our goal is to maximize the expected amount of transmitted
data during the battery lifetime. Then, the EE of content
exchange from RN i associated with HN k can be expressed
as

Ui,k = Rk,rTk =
Rk,rBc,kV

α
0

(Pk,r + P0 + PcaCuNf )α
,∀i ∈ Nr. (4)

Consequently, there is a fundamental tradeoff between the
total power consumption and the average data transmission
rate. Note that EE is the ratio of the throughput to the power
consumption, hence (4) is also an EE metric. The reason
why we use (4) instead of the traditional definition of EE
is that capturing the non-linear effects of power consumption
is beneficial for the lifetime of battery-driven devices. In
comparison to the traditional instantaneous EE, this metric
also characterizes the network’s average amount of data trans-
mitted during the nodes’ lifetime, which is better in term of
characterising the EE of caching systems.

C. EE of FAP Caching
Similar to HN caching, a probabilistic caching policy is

considered in the FAP. We consider Nj RNs requesting files
selected by the FAP j to be served simultaneously, and
each FAP has L antennas, with L ≥ Nj . Similarly, the
FAP independently selects files from the set F for caching
according to a specific probability distribution. To unify our
analysis, we denote the probability that the FAP caches the
f th file by 0 ≤ zf,j ≤ 1. When zj = [zf,j ]f∈F is given, the
FAP determines which particular files should be cached using
the method of [32].

Remark 1. In fog computing networks, several FAPs have
the same non-orthogonal spectral resources. However, in this
contribution we assume that each FAP is assigned orthogonal
resources, so that the FAPs have non-overlapping coverage
areas. Hence, energy efficient solutions can be obtained ac-
cording to our specific EE optimization problem for each
FAP. Although using cooperative transmission among the FAPs
having overlapping coverage areas and activating multicast
transmissions to different FAPs is capable of achieving bene-
ficial extra caching gains, coordinating the design of the FAPs’
caching policies is beyond the scope of this treatise.
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An uncoded caching strategy is utilized for the files’ trans-
mission over the links, where the FAP will send the requested
files to the RNs. Let us denote the precoding vector and the
transmit power of FAP j destined to the RN i by wi,j ∈ CL×1
and Pi,j , respectively. Then the signal-to-interference-plus-
noise ratio of RN i associated with FAP j can be formulated
as

γi,j =
|hHi,jwi,j |2∑

l 6=i |hHl,jwi,j |2 + σ2
. (5)

As a benefit of its low computational complexity, zero-
forcing (ZF) beamforming is considered. Since the direction
of the beamforming vectors is defined by the ZF, only the
transmit power of each beam has to be optimized. Given the
ZF beamforming vector, the precoding vector of RN i is given
as wi,j =

√
Pi,jai,j , where ai,j is the ZF beamforming vector

of RN i associated with FAP j, which is the ith column of the
matrix HH

j (HjH
H
j )−1, with Hj = [h1,j , · · · ,hNj ,j ]T , where

hi,j denotes the channel vector between FAP j and the RN i.
Given the ZF beamforming, we can obtain the downlink

signal-to-noise ratio (SNR) at RN i as

γi,j =
Pi,jδi,j
σ2

, ∀δi,j ∈ δ, (6)

where δ = [δ1,j , δ2,j , · · · , δNj ,j ] is the eigenvalue vector of
HjH

H
j . Based on the Chernoff upper bound [38], we can

approximate the symbol error rate (SER) ε as:

ε = 2(1− 2−bi,j/2)e
− 3

2
bi,j−1

γi,j
2 . (7)

Upon substituting (6) into (7), the average transmit power of
the FAP j for the RN i can be approximated as

Pi,j =
σ2

δi,j

2(2bi,j − 1)

3
ln

2(1− 2−bi,j/2)

ε
, (8)

where bi,j characterizes the modulation scheme. Similarly, the
circuit power and the caching power consumption of FAP j
are given by P0 and PcaQjNf , respectively. Similarly, the
expected transmission time Tj of FAP j can be expressed as

Tj =
Bc,jV

α
0,j

(Pi,j + P0 + PcaQjNf )α
, (9)

where Bc,j and V0,j are the battery capacity and the average
operating voltage of FAP j, respectively. Then, the EE of
content delivery from FAP j to RN i can be expressed as

Ui,j = R̄i,jTj , (10)

where R̄i,j is the average data rate from FAP j to RN i.

III. PROBLEM FORMULATION AND ANALYSIS

A. Problem Formulation

In this section, we discuss the node association, the content
placement constraints and formulate the related optimization
problem. Then, the EE is formulated to maximize the system
level benefits.

Let xi,j ∈ {0, 1} be a binary variable, which can be defined
as

xi,j =

{
1, if RN i is associated to FAP j,
0, otherwise. (11)

Similarly, yi,k ∈ {0, 1} denotes the binary association flag
between RN i and HN k. We assume that every RN can only
be served by a single transmitter, which is formulated as∑

j∈M
xi,j +

∑
k∈N

yi,k ≤ 1,∀i ∈ Nr. (12)

Similarly, for N2N-aided communications, only a single RN
can be linked to one HN, which can be formulated as∑

i∈Nr

yi,k ≤ 1,∀k ∈ N . (13)

Let Ui,k and Ui,j denote the EE between RN i and HN k
or FAP j. Then the EE of the associated fog networks can be
formulated as

Uee =
∑
i∈Nr

∑
k∈N

yi,kcf,kUi,k +
∑
i∈Nr

∑
j∈M

xi,jzf,jUi,j . (14)

Hence, the EE optimization problem of fog networks is
expressed as:

max
xi,j ,yi,k,zf,j ,cf,k,bk,r,bi,j

Uee,

s.t.
∑
j∈M xi,j +

∑
k∈N yi,k ≤ 1,∀i ∈ Nr,∑
i∈Nr

yi,k ≤ 1,∀k ∈ N ,
bk,r, bi,j ∈ [bmin, bmax],
xi,j , yi,k ∈ {0, 1},∀i ∈ Nr,
zf,j , cf,k ∈ [0, 1],∀f ∈ F ,∑
f∈F

zf,j ≤ Qj ,∀i ∈ Nr,∀j ∈M,∑
f∈F

cf,k ≤ Cu,∀i ∈ Nr,∀k ∈ N ,

(15)
where bk,r and bi,j represent the modulation scheme selected
for the HN k at the rth RB and the modulation scheme of the
RN i associated with the FAP j, respectively.

B. Problem Analysis

With the problem formulation described above, we can
analyze Problem (15), where xi,j and yi,k are binary variables,
hence the feasible set of Problem (15) is non-convex. The
objective function is not convex due to the product-based
relationship between binary variables. The global optimum
of a mixed discrete and non-convex optimization problem is
challenging to find [39]. Thus, we have to simplify Problem
(15).

By exploiting the fact that the RN-FAP and RN-HN asso-
ciation constraints and the caching constraints are separable,
we propose an iterative algorithm for optimizing the content
placement at each node assuming a fixed node association
policy, as described below.

1) Caching Relying on a Fixed Association Policy: Given
the fixed associations {x′i,j} and {y′i,k}, ∀i ∈ Nr, ∀k ∈ N ,
the caching problem is coupled among the FAPs and HNs. In
particular, the content placement problem formulated for HNs
can be written as

max
zf,k,bk,r

UD
ee =

∑
i∈Nr

∑
k∈N y

′
i,kcf,kUi,k,

s.t. bk,r ∈ [bmin, bmax],∀k ∈ N ,∀r ∈ Nm,
cf,k ∈ [0, 1],∀f ∈ F ,∀k ∈ N ,∑

f∈F
cf,k ≤ Cu,∀k ∈ N ,

(16)
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where UDee and cf,k represent the EE of the HNs-based caching
network and the caching result for the f th file at the HN k,
respectively.

Similarly, the content placement problem of FAPs can be
written as

max
zf,j ,bi,j

UB
ee =

∑
i∈Nr

∑
j∈M x′i,jzf,jUi,j ,

s.t. bi,j ∈ [bmin, bmax], j ∈M,
zf,j ∈ [0, 1],∀f ∈ F , j ∈M,∑

f∈F
zf,j ≤ Qj ,∀j ∈M,

(17)

where UBee , bi,j , zf,j and M represent the EE of the FAP-
based caching network, the modulation scheme selection by
the FAP j, the caching result of the f th file at the FAP j and
the set of FAPs, respectively.

2) Node Association with Fixed Caching Policy: Given the
fixed content placement at each HN and FAP as {c′f,k} and
{z′f,j}, the association problem can be stated as

max
xi,j ,yi,k

∑
i∈Nr

∑
k∈N

yi,kc
′
f,kUi,k +

∑
i∈Nr

∑
j∈M

xi,jz
′
f,jUi,j ,

s.t.
∑
j∈M xi,j +

∑
k∈N yi,k ≤ 1,∀i ∈ Nr,∑
i∈Nr

yi,k ≤ 1,∀k ∈ N ,∑
i∈Nr

xi,j = Nj ,∀j ∈M,
xi,j , yi,k ∈ {0, 1},∀i ∈ Nr.

(18)
Observe that Problem (18) is a mixed integer programming
problem, hence obtaining the globally optimal solution is
challenging. As a result, we adopt a similar strategy to that
used in [40] for solving a partially dualized version of the
original problem with respect to the constraints.

IV. MAXIMAL EE OF HN CACHING

In this section, we conceive an energy-efficient content
caching and delivery policy for the HNs relying on fixed user
association.

A. N2N Transmission Probability Analysis

It should be noted that if a random RN requests a file, it
can fetch it from its local cache. However, if the requested
content is not cached in the local storage, the RN would get
the content from neighbour HN via N2N transmission. Under
this condition, the probability of fetching the requested file
from the HN is given by the probability that the RN relies on
the N2N transmission mode.

Under probabilistic caching, the probability of finding a file
cached by the HN strongly depends on the popularity of the
file and on the distance between them. Next, upon denoting
the f th requested file by ff , the caching probability of the f th
file from the HN k by cf,k and the request probability of the
f th file from the HN k by pf,k, respectively, the probability of
finding the requested file cached in the HN k within distance
Rd can be calculated as [41]

ζk,f = 1− e−π(1−ρ)λucf,kR
2
d , (19)

where ρ represents the active probability of the neighbor HNs.
Note that the content library has F files, and each file can
be cached by HNs based on its request probability. Upon

averaging over all the files, we arrive at the content exchange
probability from the HN k as ζk =

∑
f∈F pf,k(1− cf,k)ζk,f ,

which is given by

ζk =
∑
f∈F

pf,k(1− cf,k)
(

1− e−π(1−ρ)λucf,kR
2
d

)
. (20)

B. Power and Throughput Analysis

In order to derive the EE, we should first calculate the power
consumption of content delivery. The probability that the f th
file requested by the RN will be found within the HN k, but
not cached in its own local cache is quantified by ζk,f , which
is given by (19). Based on the content caching probability of
the HN k, the transmit power of the f th file can be quantified
as Pk,rζk,f , where Pk,r denotes the transmit power of the HN
k on the rth RB. Averaging over all files in the content library
with the aid of the N2N request probability, we can derive the
average transmit power of the HN k as

Pk =
∑
f∈F

Pk,rpf,k(1− cf,k)ζk,f ,

= Pk,rζk.

(21)

We assume that an adaptive modulation scheme is used by
each HN, which has been actively used in wireless standard-
s [29]. It is widely recognized that [42] the SER ε of M-ary
quadrature amplitude modulation (MQAM) having an alphabet
size 2bk,r , is given by

ε = 2(1− 2−bk,r/2)Q

(√
3

2bk,r − 1
γk,r

)
, (22)

where Q(·) is the complementary cumulative distribution func-
tion (CCDF) of the standard Gaussian random variable and
bk,r is the modulation alphabet size for HN k on the rth RB.
In order to derive the average caching probability distribution
for the content, we assume that the channel experiences an
inlarge second-order path loss law [38]. Let us denote the
transmit power of the IN l on the corresponding rth RB by
Pl,r. Then we can compute the received signal-to-interference-
plus-noise ratio (SINR) γk,r for the HN k on the rth RB as

γk,r =
Pk,rφ(dk,k)

Pl,rφ(dl,k) + σ2
, (23)

where φ(dk,k) = KdB − 10γ log10
dk,k
d0

, and the parameters
KdB, γ and d0 represent the shadowing effects, path loss
exponent and reference distance, respectively [38]. Based on
the Chernoff upper bound, the transmission symbol error rate
can be approximated as (in the high SINR regime)

ε ≤ 2(1− 2−bk,r/2)e
− 3

2
bk,r−1

γk,r
2 . (24)

Therefore upon substituting (23) into (24), the closed-form
expression of the transmission power of the HN k is given by

Pk,r ≈
Ik,r

(
Pl,rφ(dl,k) + σ2

)
φ(dk,k)

2(2bk,r − 1)

3
ln

2(1− 2−bk,r/2)

ε
,

(25)
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where Ik,r ∈ {0, 1} is the indicator of the rth RB allocated
to the HN k. Thus, the average transmit power of the HN k
can be approximated as

Pk,r =
Ik,rζk

(
Pl,rφ(dl,k) + σ2

)
φ(dk,k)

2(2bk,r − 1)

3
ln

2(1− 2−bk,r/2)

ε
.

(26)
We assume that each packet of the content exchange con-

tains L bits. Let W denote the transmission bandwidth. Then
the transmission time per cached packet from HN k can be
obtained as

tL =
L

Wbk,rζk
. (27)

In this continuation, the cached packet contains an overhead
of Lp bits. Since not all the transmitted data in the packet
are information bits, we can get the successful transmission
probability for a cached packet as Sp = (ζk(1− ε))

L
bk,r .

Taking into account the overheads, the effective throughput
Rk,r can be defined as the payload information of cached
files that can be correctly received per second, which is given
as [43–45]:

Rk,r = Ik,r
LpSp

tL
= Ik,r

Lp

L
Wbk,rζ

(1+ L
bk,r

)

k (1− ε)
L
bk,r . (28)

C. Optimizing Content Caching and Delivery

Substituting (26) and (28) into (4) and denoting ζk as ϕ(c),
we arrive at the EE of the caching networks relying on the
HNs as

UD
ee =

∑
k∈N

∑
r∈R

Ik,r(ϕ(c))
1+ L

bk,r θk,r
[Ik,rϕ(c) (gk,r + P0 + PcaCuNf )]

α , (29)

where θk,r =
Lp

L bk,rWBc,kV
α
0 (1 − ε)

L
bk,r and gk,r =

(Pl,rφ(dl,k)+σ2)
φ(dk,k)

2(2bk,r−1)
3 ln 2(1−2−bk,r/2)

ε . We assume that the
resource allocation of the HNs has already been accomplished
by the central controller, and that the rth RB allocated to the
HN k results in Ik,n = 0 for n 6= r, which means that each
HN can only reuse one RB and this RB cannot be reused by
other HNs.

To achieve energy efficient communications, the modulation
alphabet size and the caching probability distribution have to
be determined for each N2N pair. Given the cache capacity
Cu of each HN, the number of cached files should satisfy∑
f∈F

zf,k ≤ Cu. We assume using adaptive modulation and

coding (AMC).

Lemma 1. The optimization Problem (16) is equivalent to
optimizing the problem

max
cf,k,bk,r

Ik,r(ϕ(c))
1+ L

bk,r θk,r
[Ik,rϕ(c) (gk,r + P0 + PcaCuNf )]

α . (30)

Proof: The proof is given in Appendix A.
In order to solve the optimization Problem (30), we first

study the characteristics of the N2N transmission probability
ϕ(c) via the following lemma.

Lemma 2. [ϕ(c)]
α− L

bk,r is a convex function of cf,k, ∀f ∈ F .

Proof: The proof is given in Appendix B.
By analyzing Problem (30), we have

Theorem 1. For the HN k, the optimal caching probability
c∗f,k, ∀f ∈ F , and modulation b∗k,r of Problem (30) exists,
which achieve the optimal EE for the RN-HN transmissions.

Proof: The proof is given in Appendix C.

Algorithm 1 EE optimization for HNs-based caching
1: For bk,r = bmin : bmax

Step 1): Initialization: Let c1 be a feasible point and δ1 =

Ik,r(ϕ(c1))
1+ L

bk,r θk,r
[Ik,rϕ(c1)(gk,r+P0+PcaCuNf )]

α . Let v = 1.
Step 2): Invoking convex programming to solve the fol-
lowing problem:

η(δv) = max
cf,k

{
Ik,r(ϕ(c))

1+ L
bk,r θk,r

−δv [Ik,rϕ(c)(gk,r + P0 + PcaCuNf )]
α} . (31)

With the aid of convex optimization, we find the solution
point zv+1.
Step 3): If the solution η(δv) = 0, stop and qv is optimal.

Otherwise, set δv+1 =
Ik,r(ϕ(cv+1))

1+ L
bk,r θk,r

[Ik,rϕ(cv+1)(gk,r+P0+PcaCuNf )]
α ,

and v = v + 1, and go to step 2.
2: Energy-efficient caching probability: cf,k = c∗f,k, and the

modulation mode is: bk,r = b∗k,r.

Based on Algorithm 1, the globally optimal solution b∗k,r
and z∗ can be found by a one-dimensional search and c∗ is
given by a closed-form expression. Hence, the solution has a
low complexity.

V. MAXIMAL EE OF FAP CACHING

Similarly to the previous section, this section considers the
energy-efficient content caching and delivery policy in FAPs
in conjunction with fixed node association.

A. EE Analysis

According to the content exchange probability relying on
FAP caching, the average data rate from FAP j to RN i can
be expressed as

R̄i,j =
∑
f∈F

pf,izf,je
−π(1−ρ)λuzf,jR

2
dWbi,j , ∀i ∈ Nr, ∀j ∈M,

(32)
where pf,i and Rd are the request probability of the f th file
from the RN i and the N2N search distance, respectively.
Based on (8), (9), (10) and (32), the average EE, which is
defined as the expected amount of transmitted data during the
FAP lifetime, is given by

UB
ee =

∑
j∈M

∑
i∈Nr

∑
f∈F

x′i,jpf,izf,je
−π(1−ρ)λuzf,jR

2
dWbi,jBc,jV

α
0,j

(Pi,j + P0 + PcaQjNf )
α .

(33)

Our aim is to jointly design the transmission policy b =
{b1,1, · · · , bNj ,M} at the FAP, and the local caching policy
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zj = {z1,j , · · · , zF,j} at the FAP, for maximizing the EE
of fog networks. By exploiting that the content caching con-
straints and modulation constraints are separable, Problem (17)
can be decoupled into the sub-problems (Q1), (Q2) and thus
can be efficiently solved via optimizing these two problems
independently, where (Q1) can be expressed as

max
z

S(z) =
∑
j∈M

∑
i∈Nr

∑
f∈F

x′i,jpf,izf,je
−π(1−ρ)λuzf,jR

2
d bi,j ,

s.t. 0 ≤ zf,j ≤ 1, f = 1, · · · , F,∑
f∈F

zf,j ≤ Qj ,∀j ∈M,

(Q1)
and (Q2) is shown at the bottom of this page.

We then have the following remark.

Remark 2. Based on the problem formulation, the energy-
efficient caching problem can be partitioned into a trans-
mission strategy maximizing the EE and caching strategy
maximizing the delivery success probability for the RNs.
From a heterogeneous fog network perspective, the maximum
probability of satisfying RN demand only depends on the cache
size, and it is independent of the FAP density, as well as of
the content transmit power.

B. Optimizing Content Caching and Delivery

Lemma 3. The optimal caching policy z of Problem (Q1) can
be obtained as follows:

z∗f,j = min


[W(

ηfe∑
i∈Nr x

′
i,jpf,ib

∗
i,j

)− 1

−π(1− ρ)λuR2
d

]+
, 1

 , (34)

for ∀f ∈ F , where [$]+ = max{0, $} and W is from the
definition of the Lambert function [46].

Proof: The proof is given in Appendix D.

Remark 3. Since the modulation mode bi,j used for each
transmission stream is an integer and the number of modula-
tion modes is limited for realistic next-generation standards,
we can find the globally optimal solution by enumerating bi,j
until the value of E(b) achieves the maximum. Then, we
can derive the optimal z∗f,j , ∀f ∈ F , with the optimal b∗i,j ,
∀i ∈ Nr. Then we achieve the maximum of S(z) in (Q1)
under the constraints considered.

Interestingly, it turns out that the parameter
W(

ηfe∑
i∈Nr x

′
i,jpf,ib

∗
i,j

), which depends both on the Lagrange
multiplier and on the modulation mode, characterizes the
caching policy: if we have

W(
ηfe∑

i∈Nr x
′
i,jpf,ib

∗
i,j

) ≥ 1, (35)

then the f th file, ∀f ∈ F , is not cached at the FAP; while, if
we have

W(
ηfe∑

i∈Nr x
′
i,jpf,ib

∗
i,j

) = 1− π(1− ρ)λuR
2
d , (36)

the f th file, ∀f ∈ F , is completely cached at the FAP; and,
finally, if

1− π(1− ρ)λuR
2
d <W(

ηfe∑
i∈Nr x

′
i,jpf,ib

∗
i,j

) < 1, (37)

the FAP j caches the f th file, ∀f ∈ F , with a probability of
z∗f,j .

Note that the above energy-efficient content caching policy
relies on known node association. In practical situations in
which the contents are cached during off-peak hours and ac-
cessed during peak hours, the optimization of content caching
would require predicting the specific node association.

VI. OPTIMIZING NODE ASSOCIATION AND CACHING
POLICY

In this section, we study the node association policy with
the aid of fixed content caching for the heterogeneous fog
networks considered. Then we investigate the joint energy-
efficient node association and content placement with the aid
of the energy-efficient solutions obtained.

A. Optimizing Node Association

Since problem (18) is a mixed integer programming prob-
lem, it is challenging to obtain its globally optimal solution.
In this case, we adopt the partially dualized method of [47]
to solve Problem (18). Let us introduce dual variables υ =
[υ1, · · · , υN ] for the second constraint of Problem (18), and
ψ = [ψ1, · · · , ψM ] for the third constraint of Problem (18).
The Lagrangian function is given by

L ({xi,j}, {yi,k},ψ,υ) =
∑
i∈Nr

∑
k∈N

yi,kc
′
f,kUi,k

+
∑
i∈Nr

∑
j∈M

xi,jz
′
f,jUi,j −

∑
j∈M

ψj

(∑
i∈Nr

xi,j −Nj

)

−
∑
k∈N

υk

(∑
i∈Nr

yi,k − 1

)
. (38)

In this context, the partially dualized problem of the original
Problem (18) is given by

f(ψ,υ) = max
xi,j ,yi,k

L ({xi,j}, {yi,k},ψ,υ) ,

s.t.
∑
j∈M xi,j +

∑
k∈N yi,k ≤ 1,∀i ∈ Nr.

(39)

Then, we can obtain explicit analytical solutions, that are

x∗i,j =

{
1, if Ui,j∗ − ψj∗ > Ui,k∗ − υk∗ ,
0, otherwise, (40)

max
b

E(b) =
∑
j∈M

∑
i∈Nr

x′i,jbi,jBc,jV
α
0,j(

σ2

δi,j

2(2
bi,j−1)

3 ln 2(1−2
−bi,j/2)
ε +P0+PcaQjNf

)α ,
s.t. bi,j ∈ [bmin, bmax],

(Q2)
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and
y∗i,k =

{
1, if Ui,k∗ − υk∗ ≥ Ui,j∗ − ψj∗ ,
0, otherwise, (41)

where j∗ = arg max
j∈M

(Ui,j−ψj) and k∗ = arg max
k∈N

(Ui,k−υk).

The optimal dual variables ψ∗j and υ∗k can be found by the
subgradient method of [40].

B. Optimizing Node Association and Content Caching

Before proceeding to our optimization results, we would like
to mention that the optimal solutions of Problem (39) may not
be the optimal solution of Problem (15), because Problem (15)
has the nonconvex nature. However, given that the utility-
maximization based association approach often produces ex-
cellent solutions for the overall problem [40], we assume that
the suboptimal solutions (40) and (41) of Problem (39) are
acceptable in practice.

Based on the above analysis, we can solve the joint content
placement and node association problem. The optimization
process is summarized in Algorithm 2, which describes the
joint node association and caching design.

Remark 4. Both the node association and the content place-
ment steps of Algorithm 2 aim for increasing the EE of
heterogeneous fog networks. As a result, the overall algorithm
is guaranteed to converge. By contrast, due to the nonconvex
nature of the original Problem (15), the converged solutions
are not capable of achieving the global optimum.

Algorithm 2 Energy Efficient Node Association and Content
Caching

Initialization: Set the initial node association {xi,j} and
{yi,k} without considering content caching;
repeat

Step 1: Fix the node association policy {xi,j} and {yi,k}.
Then find the energy efficient content caching policy
{c∗f,k} and {z∗f,j} according to the optimal solutions from
Algorithm 1 and (34).
Step 2: Fix the content caching policy {c∗f,k} and {z∗f,j}
at each HN and FAP from Step 1. Then update the node
association policy {xi,j} and {yi,k} by solving (39).

until convergence.

C. Complexity Analysis

This subsection briefly analyzes the computational complex-
ity of the proposed algorithms. After obtaining the content
caching policy {c∗f,k} and {z∗f,j} from Algorithm 1 and (34),
the corresponding contents that need to be cached would be
pushed to the FAP and HN from the content server. As for
the content delivery phase, the node association policy would
be optimized based on (39) after the RNs send the content
requests. For simplicity, we assume that the numbers of HNs
and FAPs are the same M, the number of RNs is K.

Under our fixed node association policy, the energy effi-
cient content caching Algorithm 1 has a complexity order

of O(MF 2). Furthermore, if we denote nmax the maximum
number of iterations in Algorithm 2, then Algorithm 2 has a
complexity order of O(nmax(MF 2 + M2K)). Hence, Algo-
rithm 2 exhibits a polynomial time-complexity.

VII. PERFORMANCE EVALUATION

This section characterizes the performance of content
caching and delivery both at the HNs and at the FAPs.

A. System Parameters

We assume that the HN cache capacity and FAP cache
capacity are Cu = 8 files and Qj = 16 files, respectively,
∀j ∈M, and the content library has a size of F = 25 files. We
assume furthermore that there are 5 FAPs in the heterogeneous
fog networks considered. Based on the request probabilities of
p = [p1, · · · , pF ], ρ = 50% of the FNs will request a random
file from F as RNs, and the request probability obeys the Zipf
distribution with a parameter of β = 1.3 in (1). The potential
HNs come from the remaining 50% of FNs, which would
serve the RNs with data requests. The N2N search distance is
Rd = 70m. The other parameters are listed in Table I.

TABLE II
PARAMETERS

Minimum modulation size bmin 4
Maximum modulation size bmax 8
Circuit power P0 60mW
Power spectral density of noise -90dBm/Hz
Packet size L 320bits
α 1.3
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Fig. 2. Energy efficiency, for Qj = 16 and β = 1.3.

B. Performance of HN caching

Fig. 2(a) and Fig. 2(b) show the EE for different number of
N2N pairs and cache sizes, respectively, where we compare
our energy-efficient caching strategy to the conventional tech-
nique of caching the most popular content (MPC). Explicitly,
in the MPC caching, each node simply stores the most popular
contents according to its individual request probability. We
can see that as expected, our energy efficient caching strategy
can always offer better EE than that of the MPC strategy
for different number of N2N pairs and different cache sizes,
respectively. Furthermore, we can observe that the optimal
modulation mode selection offers better EE than that of the
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conventional adaptive modulation of coding (AMC) strategy,
which confirms the analytical results. Another interesting
remark is that upon increasing the number of N2N pairs, the
EE is increased. It is obvious that if the number of N2N pairs
is higher, then the EE of the proposed strategy will be higher,
implying that it is more beneficial for increasing the system
throughput. These results further indicate that the EE can
be improved for N2N transmissions by placing different files
associated with different probabilities in the HNs’ cache. It can
also be observed from the figure that the EE is nonincreasing,
when the number of N2N pairs increases from 13 to 14, which
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Fig. 5. Energy efficiency, for Cu = 8 and Qj = 16.
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Cu = 8 and Qj = 16.

is due to the increased circuit power consumption. Based on
these simulation results, it is intuitive that there is a tradeoff
between the EE and the number of active N2N pairs. In
Fig. 2(b), we observe that the EE is increased with increasing
the cache capacity. It is obvious that if the cache size is larger,
then the EE of the proposed strategy will be higher, implying
that it is more beneficial for caching more files.

For the comparison of different caching strategies, we also
plot the system throughput when applying the energy-efficient
caching strategy q∗. Fig. 3 shows the system throughput versus
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the number of N2N pairs Nd. We observe that the system sum
rate increases upon increasing Nd, due to having more N2N
transmissions. We can see that the throughput of the energy-
efficient caching strategy can be higher than that of the MPC
strategy associated with the same modulation strategy. These
results indicate that the system throughput can be guaranteed
for N2N transmissions with energy-efficient caching strategy.
As expected, the optimal modulation selection strategy offers
indeed a higher EE than that of AMC. In summary, the energy-
efficient caching strategy can make the N2N transmissions
energy-efficient without degrading its throughput.

In Fig. 4, we illustrate the EE of the proposed caching
strategy versus the battery capacity. It can be observed that
the energy-efficient caching strategy has the best performance
regardless of the average battery capacity, which confirms
the analytical results. Furthermore, the EE increases upon
increasing the average battery capacity of the HNs. This is
due to the fact that in case of a high battery capacity, each
HN tends to cache the most popular files with an increased
probability in order to increase the EE. In case of cache-aided
N2N communications, our results indicate that it is necessary
to take into account the battery capacity, when aiming for
energy-efficient content placement.

C. Performance of the FAP caching
As shown analytically in Section V, the caching gain of the

EE policy over the MPC policy decreases both with the node
intensity λu and the node activity probability ρ, while it is not
affected by the library size. In this section, we demonstrate
the impact of λu, ρ, Cu, Qj and β on the EE by means of
simulations.

In Fig. 5(a) and Fig. 5(b), we illustrate the EE versus the
number of RNs and FAPs for different caching strategies.
Compared to traditional systems operating without cache, the
no-caching strategy serves as a benchmark. We can see that
as expected, our energy-efficient caching strategy can always
offer better EE than that of the MPC strategy for different
number of RNs and FAPs, respectively. We can observe from
this figure that the energy-efficient caching strategy relying
on the optimal modulation selection scheme always achieves
significant performance improvements over the traditional
caching strategy. On the other hand, the optimal modulation
selection strategy performs much better than AMC using the
same caching strategy. Note that even if the energy-efficient
caching strategy is used, AMC is outperformed by the modula-
tion strategy associated with MPC. This is because the optimal
caching strategy increases both the system’s throughput as
well as its power consumption, it reduces the average power
consumption per bit. Additionally, we observe from Fig. 5(b)
that upon increasing the number of FAPs, the EE is increased.
It is obvious that if the number of FAPs is higher, then the
EE of the proposed strategy will be higher, implying that
it is more beneficial for increasing the system throughput.
These results further indicate that the EE can be improved by
placing different files associated with different probabilities in
the FAPs’ cache.

In Fig. 6, we illustrate the relationship between the aver-
age throughput and the cache size associated with different

caching strategies. As expected, we can observe that the
energy-efficient caching strategy using the optimal modulation
selection scheme is capable of guaranteeing the throughput.
At the same time, the average throughput is increased upon
increasing the cache size of the FAPs, which implies that
the delivery success probability is increased. Furthermore, the
MPC strategy performs better than the energy-efficient caching
strategy using the same modulation mode selection strategy.
This is due to the fact that the MPC strategy achieves the
maximal delivery success probability for the model of (1). In
Fig. 7, we illustrate the relationship between the EE and the
cache size associated with different caching strategies. Since
the optimal modulation selection scheme realizes the most
energy-efficient transmission, the energy-efficient caching s-
trategy using the optimal modulation selection scheme always
performs best in EE, which confirms the analytical results.
Furthermore, the MPC strategy with optimal modulation mode
selection strategy performs better than the energy-efficient
caching strategy with AMC strategy. This is due to the fact that
the optimal modulation mode selection achieves the maximal
EE in content delivery. Another interesting remark is that upon
increasing the cache size, the EE converges to a stable value.
This is due to the fact that the size of the content library is
limited..

Next, in Fig. 8, we plot the EE versus the file popularity
parameter β. We can observe from this figure that the EE is
dramatically increased when β is increased. Therefore, as β
increases, the figure suggests to allocate more power for each
transmission stream in order to increase the average network
throughput. These results further indicate that the EE can be
improved for caching more popular files. We can also observe
that for different modulation selection strategies, there is a
crossing point at β = 0.8 between the performances of the
energy-efficient caching strategy and the MPC strategy. When
β is small, the energy-efficient caching strategy performs
better than the MPC strategy. By contrast, when β is large,
the performance of the MPC strategy converges to that of
the energy-efficient caching strategy. We believe that this is
due to the fact that the popularity parameter has a significant
influence on the EE at a large β. Hence, the optimal solution
is the MPC strategy.

VIII. CONCLUSIONS

We investigated the energy-efficient caching and node asso-
ciation strategy of heterogeneous fog networks. Two different
scenarios have been considered, where the popular files are
cached at the HNs and the FAPs, respectively. We formulated
the optimization problem as an EE problem operating under
the relevant caching and association constraints, and derived
the joint modulation mode allocation and caching schemes
for maximizing the EE of the heterogeneous fog networks
considered. Finally, we conceive the joint node association and
caching design. It has been shown that the proposed strategy
achieves a better EE than the traditional caching strategy,
when the modulation modes and caching are jointly optimized.
Moreover, the results show that the proposed strategy can also
guarantee a high network throughput. In particular for HNs-
based caching, the simulation results indicate that both the
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number of active HNs and the average battery capacity have
positive impact on the system’s performance, when using our
energy-efficient caching strategy. For future work, we will
consider the joint content caching and task offloading in the
proposed framework.

APPENDIX A
PROOF OF LEMMA 1

Conditioned on deterministic RB allocation r∗k for each HN
k, we only have to solve the following problem instead of
solving the problem in (16),

max
cf,k,bk,r

∑
k∈N

Ik,r∗k(ϕ(c))
1+ L

bk,r∗
k θk,r∗k[

Ik,r∗kϕ(c)
(
gk,r∗k + P0 + PcaCuNf

)]α . (42)

Specifically, for every HN, only one RB can be used, and this
RB cannot be used by other HNs. Therefore, if k 6= k(1), then
r(k) 6= r(k(1)). As a result, for any k ∈ N and r ∈ Nm, the
optimization problem of (42) is equivalent to independently
optimizing the following Nd problems,

max
cf,k,bk,r

Ik,r(ϕ(c))
1+ L

bk,r θk,r
[Ik,rϕ(c) (gk,r + P0 + PcaCuNf )]

α . (43)

APPENDIX B
PROOF OF LEMMA 2

By taking the second-order derivative of ϕ(c) with respect
to cf,k, ∀f ∈ F , we have

∂2ϕ(c)

∂c2f,k
=
∑
f∈F

(
−pi,fe−π(1−ρ)λucf,kR

2
d π(1− ρ)λuR

2
d

−pi,fπ(1− ρ)λuR
2
de
−π(1−ρ)λucf,kR

2
d

−pi,f (1− zf,k)π2(1− ρ)2λ4uR
4
de
−π(1−ρ)λucf,kR

2
d

)
. (44)

Then the second-order derivative is strictly negative. We can
obtain the result that ϕ(c) is positive and also a concave
function of cf,k, ∀f ∈ F .

Since α is a constant around 1.3, L
bk,r
− α > 1, we have

proved that ϕ(c) is positive and also a concave function of
cf,k, ∀f ∈ F , then (ϕ(c))−1 is positive and a convex function.

As a result,
[
(ϕ(c))−1

] L
bk,r
−α

is a convex function of cf,k.

APPENDIX C
PROOF OF THEOREM 1

Since the modulation alphabet size bk,r is an integer, we
can find the globally optimal solution by first finding the
optimal probability distribution cf,k, ∀f ∈ F , for any given
bk,r and then enumerating bk,r until the value of Uee achieves
its maximum under the constraints considered.

Based on Lemma 2, [ϕ(c)]
α− L

bk,r is a convex function with
respect to cf,k, ∀f ∈ F . Then, the numerator of (43) is a
concave function, and the denominator of (43) is a convex
function. In all, by exploiting an iterative algorithm known as
Dinkelbach’s method [48], the optimization problem (43) can
be solved by Algorithm 1.

APPENDIX D
PROOF OF LEMMA 3

The second-order derivative of the objective function is
strictly negative, thus S(z) is a concave function of zf,j ,
∀f ∈ F . By constructing the Lagrangian function of (Q1),
we have

L(z,µ,λ,η) = S(z) +
∑
f∈F

µfzf,j +
∑
f∈F

λf (1− zf,j)

+
∑
f∈F

ηf (Qj −
∑
f∈F

zf,j), (45)

where µf , λf and ηf are the non-negative Lagrange multipliers
associated with the constraints. Then, we have

∂L(z,µ,λ,η)

∂zf,j
=
∑
i∈Nr

(
x′i,jpf,ie

−π(1−ρ)λuzf,jR
2
d bi,j−

x′i,jpf,izf,jπ(1− ρ)λuR
2
de
−π(1−ρ)λuzf,jR

2
d bi,j

)
+µf−λf−ηf .

(46)

The Karush-Kuhn-Tucker (KKT) conditions can be written as

∂L(z∗,µ,λ,η)

∂z∗f,j
= 0, ∀f ∈ F , (47)

µfz
∗
f,j = 0, λf (1− z∗f,j) = 0, ∀f ∈ F , (48)

ηf (Qj −
∑
f∈F

z∗f,j) = 0, ∀f ∈ F , (49)

∑
f∈F

z∗f,j = Qj , 0 ≤ z∗f,j ≤ 1, ∀f ∈ F . (50)

Based on (46) and (47), we arrive at

ηf = Vi

(
e−π(1−ρ)λuz

∗
f,jR

2
d−

z∗f,jπ(1− ρ)λuR
2
de
−π(1−ρ)λuz

∗
f,jR

2
d

)
+ µf − λf ,∀f ∈ F ,

(51)

where Vi =
∑
i∈Nr x

′
x,jpf,ibi,j . As a result, the optimal

solution can be summarized as follows:
• Under the condition that

ηf ≥ Vi
(
e−π(1−ρ)λuz

∗
f,jR

2
d−

z∗f,jπ(1− ρ)λuR
2
de
−π(1−ρ)λuz

∗
f,jR

2
d

)
, (52)

we have z∗f,j = 0, λf = 0 and µf ≥ 0 based on (48).
• Under the condition that

ηf ≤ Vi
(
e−π(1−ρ)λuz

∗
f,jR

2
d−

z∗f,jπ(1− ρ)λuR
2
de
−π(1−ρ)λuz

∗
f,jR

2
d

)
, (53)

we have z∗f,j = 1, µf = 0 and λf ≥ 0 based on (48).
• If 0 < z∗f,j < 1, we have µf = λf = 0 based on (48).

Thus, we have

ηf = Vi

(
e−π(1−ρ)λuz

∗
f,jR

2
d−

z∗f,jπ(1− ρ)λuR
2
de
−π(1−ρ)λuz

∗
f,jR

2
d

)
. (54)
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Let ψ = −π(1−ρ)λuz
∗
f,jR

2
d , we have Vi(eψ+ψeψ) = ηf .

The solution of ψeψ = a is ψ =W(a) by the definition
of the Lambert W function [46] and then the optimal

solution can be derived as z∗f,j =
W(

ηf e∑
i∈Nr x

′
i,j
pf,ib

∗
i,j

)−1

−π(1−ρ)λuR2
d

,
∀f ∈ F .
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