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ABSTRACT Unmanned aerial vehicle (UAV)-assisted device-to-device (D2D) communications can be
deployed flexibly thanks to UAVs’ agility. By exploiting the direct D2D interaction supported by UAVs,
both the user experience and network performance can be substantially enhanced at public events. However,
the continuous moving of D2D users, limited energy and flying time of UAVs are impediments to their
applications in real-time. To tackle this issue, we propose a novel model based on deep reinforcement
learning in order to find the optimal solution for the energy-harvesting time scheduling in UAV-assisted
D2D communications. To make the system model more realistic, we assume that the UAV flies around a
central point, the D2D users move continuously with random walk model and the channel state information
encountered during each time slot is randomly time-variant. Our numerical results demonstrate that the
proposed schemes outperform the existing solutions. The associated energy efficiency game can be solved
in less than one millisecond by an off-the-shelf processor using trained neural networks. Hence our deep
reinforcement learning techniques are capable of solving real-time resource allocation problems in UAV-
assisted wireless networks.

INDEX TERMS Energy harvesting, time scheduling, resource allocation, UAV-assisted D2D communica-
tions, and deep reinforcement learning.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have various wireless
applications ranging from public safety, environmental mon-
itoring, and enhanced network connectivity as a benefit of
their nimble mobility features. UAVs are capable of assisting
wireless networks in providing ubiquitous coverage, robust
handovers, and flawless real-time multi-media communica-
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tions. However, the performance of UAV-assisted networks is
limited by the UAVs’ energy-storage and the resultant flying
time. Recent research has tackled some of the challenges in
UAV-supported wireless communications [1]–[9]. Yet, most
techniques rely on unrealistic simplifications and focus pre-
dominantly on data transmission. Hence it is crucial to find
solutions to the associated problems in realistic dynamic
environments, as detailed below.

Device-to-device (D2D) communications solutions have
been designed for diverse applications, such as smart city
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operation [10] and video streaming [11], by exploiting direct
D2D connections. UAV-supported D2D communications is
eminently suitable for providing emergency notifications or
simple text messages, when deployed in inaccessible disaster
zones or remote areas. But again, they potentially suffer
from limited UAV flying time as well as energy constraints,
and often have strict computational deadlines in support of
D2D communications. These stringent requirements call for
powerful solutions in support of real-time resource allocation
for enhancing the network performance while satisfying all
the constraints. Several techniques have been proposed for
solving the associated resource management problems, some
of which achieve excellent performance, but they cannot
satisfy the stringent time constraints of real-life applications.

Machine learning-based solutions are regarded as power-
ful techniques for tackling the challenges in UAV-assisted
wireless communications. Very recently, deep reinforcement
learning (DRL)-based methods, which rely on a combination
of reinforcement learning and neural networks, have demon-
strated impressive results in resource allocation [12]–[15].
Upon interacting directly with the environment to learn by
trial-and-error, the approaches based onDRL algorithms have
demonstrated self-organising capability to adapt to a dynamic
environment that exhibits rapidly fluctuating channel state
information. Furthermore, by using neural networks for train-
ing, flexible and prompt decisions may be made according
to the environment’s state. Inspired by the success of DRL
algorithms in solving the resource allocation problems tack-
led in [12]–[15], we also rely on the broad family of DRL
algorithm-based techniques to deal with the energy harvest-
ing scheduling problem of UAV-assisted D2D communica-
tions. The UAV is considered to be an agent, who interacts
with the environment in order to find the optimal policy. After
being trained, the agent embarks on the most appropriate
action in each time step by deciding to opt for either energy
harvesting or for information transmission, approximately
maximising the network performance. We will demonstrate
that our proposed models outperform the benchmarks in
terms of the processing time imposed, requiring less than one
millisecond to decide upon the most beneficial action for the
next time step.

A. STATE-OF-THE-ART AND CHALLENGES
UAVs have been adopted for various applications such as
geographic surveys, security control, agriculture, and goods
delivery. For example, as seen in [16], Amazon provided a
service that allows customers to opt for UAV-delivery and
receive packages within 30 minutes. In [17], a scouting
UAV suitable for counter-terrorism was developed in order
to discover weapons and hide-out locations, or to conduct
battle damage assessment. Moreover, UAVs are becoming
practical resources for rescue teams and medical emergen-
cies, as in payload delivery missions [18]. UAVs have also
been used to enhance wireless network performance [3],
[5]–[7], [19], [20] or in disaster relief networks [3], [19],
public safety communications [21] and sensor data tracking

systems [19], [22]. For example, the authors of [7] proposed a
cooperative interference cancellation scheme for multi-beam
UAV communication, with the objective of maximising the
uplink sum-rate, while suppressing the interference at the
ground base stations (BSs). But again, UAVs also suffer from
some stringent constraints owing to limitation to their power,
flying time and reliability. Thus, it is necessary to optimise
their flight trajectory and resource allocation in order to
enhance the network performance.

Sophisticated techniques have been developed to deal with
resource allocation problems in UAV-assisted wireless net-
works. In [19], the authors proposed a system model using
UAVs in the aftermath of natural disasters. A real-time opti-
misation method having a low complexity was proposed to
design the optimal path for gathering data in wireless sensor
networks. In [22], a UAVwas used to collect data from sensor
nodes in Internet-of-Things (IoT)’s networks. By jointly opti-
mising the sensor nodes’s wake-up schedule and the UAV tra-
jectory, the authors minimised the energy consumption, while
reducing the data collection time. In [3], the authors provided
network coverage to an inaccessible disaster-stricken area
with the support of UAVs. The K-means clustering method
combined with a sophisticated power allocation algorithm
was proposed for the real-time support of users sending infor-
mation about their positions and conditions to families and
rescue teams during and after a disaster. However, there is
still a paucity of solutions for realistic real-time scenarios.

To elaborate a little further, the associated resource alloca-
tion problems are complex owing to the dynamic positions
of UAVs. In this context, the authors of [8] used the classic
Lagrangian relaxation method to incorporate their constraints
into the objective function and conceived resource optimisa-
tion for harvest-and-transmit protocols of UAV-assisted D2D
communications. Explicitly, the D2D transmitters harvested
energy from the UAV and then used the harvested energy for
information transmission to the D2D receivers. In [6], a novel
solution based on a logarithmic inequality was introduced for
jointly optimising the power allocation and energy harvesting
in UAV-aided D2D communications.

Both deep learning and reinforcement learning have
become popular for mitigating the violently fluctuating chan-
nel quality effects of realistic wireless networks. In [3],
the authors proposed an unsupervised learning algorithm,
namely the K-means algorithm, for clustering the remote
users located in a disaster area into small groups and then a
UAV was deployed to serve them separately. Indeed, numer-
ous DRL algorithms have been proposed in the literature
[12]–[15], [23] for finding the optimal policy in the face
of the near-instantaneously fluctuating propagation environ-
ment. The agents observe the environment’s state and take
actions; then, trial-and-error based learning is employed until
the performance saturates. In realistic scenarios it would take
excessive time to find the optimal solution, when relying on
mathematical models. By contrast, DRL based model-free
schemes are potentially capable of finding the solutions more
promptly by neural networks following a training session.

VOLUME 9, 2021 3639



K. K. Nguyen et al.: Real-Time Energy Harvesting Aided Scheduling in UAV-Assisted D2D Networks

In [15], the authors proposed models based on both deep
Q-learning, as well as on double deep Q-learning and duel-
ing deep Q-learning algorithms to solve a multi-agent aided
power allocation problem inD2D communications. However,
the action space in those algorithms has to be discrete, and
human intervention may also be required. In [13], the authors
improved the model by introducing a distributed deep deter-
ministic policy gradient algorithm to solve the power control
problem of D2D-based vehicle-to-vehicle communications.
Inspired by the encouraging results of the above applica-
tions, we conceive bespoke DRL algorithms for optimising
the energy harvesting time scheduling of UAV-enabled D2D
communications.

B. CONTRIBUTIONS
Our main contributions are as follows:
• We conceive a system model capable of reflecting the
dynamic position of UAVs and the unknown channel
state information (CSI).

• We then formulate our energy-harvesting time schedul-
ing problem for UAV-assisted D2D communications,
where the UAV is considered to be an agent in the game.
The agent will observe the environment’s state and then
takes the action of approximately choosing the specific
time span τ that maximises the energy efficiency (EE)
of the network. In each time step of the DRL algorithm,
the UAV chooses the most appropriate action to be taken
according to the change of the environment and the CSI.

• We propose a novel deep deterministic policy gradient
(DDPG) algorithm for solving the energy efficiency
optimisation game for the UAV-supported D2D scenario
considered. Our method outperforms conventional opti-
misation techniques in terms of its EE vs. complexity,
hence resulting in a reduced processing time.

• We further improve ourmodel with the aid of an efficient
sampling technique by appropriately adapting the proxi-
mal policy optimisation (PPO) algorithms of [24]. More
explicitly, we rely on the clipping surrogate objective
and Kullback-Leibler (KL) divergence penalty [24] for
formulating the objective function (OF) of the PPO algo-
rithm. These techniques improve the speed of conver-
gence, and are robust in terms of adapting to the changes
of the environment.

In the remainder of our paper, Section II formulates the
system model of UAV-enabled D2D communications. The
background of DRL algorithms is introduced in Section III. In
Section IV, we solve our energy-harvesting time scheduling
problem by using the DDPG algorithm for the continuous
action space of D2D communications supported by a UAV.
To improve training and sampling, in Section V, we propose
a model based on the PPO algorithm to constrain the size of
policy updating at each iteration. Our numerical results are
presented in Section VI for characterising DRL algorithm-
based UAV-assisted wireless networks. Finally, we conclude
the paper and propose some future research directions in
Section VII.

FIGURE 1. System model of D2D communications supported by a UAV.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Our system includes N D2D pairs and one UAV equipped
with a single-antenna, as seen in Fig. 1. Each D2D pair
consists of a single-antenna D2D transmitter (D2D-Tx) and
a single antenna D2D receiver (D2D-Rx). The N D2D pairs
are randomly distributed within the UAV’s coverage area.
In each time step, the D2D pairs are moving continuously
following the random walk model with the velocity v. The
UAV is moving randomly in a zone around a point in the
centre of coverage are due to the effect of wind. We adopt the
harvest-then-transmit protocol of [25]. The energy harvesting
and information transmission take place in their dedicated
phases. In the first phase the D2D-Tx harvests energy from
the UAV during time span τT with 0 ≤ τ ≤ 1. Then
in the remaining phase spanning (1 − τ )T the information
transmission between D2D-Tx and D2D-Rx takes place. For
convenience, we assume that the block time is normalised
to 1, T = 1.

We assume that the central point in the 3D place of theUAV
is (x0, y0,H0), where H0 is the altitude of the UAV’s antenna.
In a real-life application, the UAV is affected by environmen-
tal factors, such as wind and rain, which is the reason for its
random movement around the position (xUAV , yUAV ,HUAV ).
The locations of the ith D2D-Tx and the jth D2D-Rx are
(xTxi , y

Tx
i ) and (xRxi , yRxi ) with i, j = 1, . . . ,N , respectively.

The distance between the UAV and the ith D2D-Tx is given
by

Di =
√
d2i + H

2
UAV , (1)

where di =

√
(xUAV − xTxi )2 + (yUAV − yTxi )2 is the

Euclidean distance between the UAV and the ith D2D-Tx.
The air-to-ground channel between the UAV and the

D2D-Tx is subjected to blockage effects of buildings.
The probability of having a line-of-sight (LoS) connection
between the UAV and the ith D2D user is given by [26]

PLoSi =
1

1+ a exp
[
− b

(
2i − a

)] , (2)
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where a and b are constants that depend on the environment.
The elevation angle θ is defined as

2i =
180
π

sin−1
(
HUAV
Di

)
. (3)

The probability of having a non-line-of-sight (NLoS) link
isPNLoSi = 1−PLoSi . Thus, the channel gain between the UAV
and the ith D2D user characterised by the LoS and NLoS is
given by

hi = PLoSi × d−αEi + PNLoSi × ωd−αEi , (4)

where ω and αE are the NLOS connection factor and the
path-loss exponent between the UAV and the user link,
respectively.

Furthermore, we define P0 and gi as the maximum total
transmit power of the UAV and the link’s power gain between
the UAV and the ith D2D-Tx, respectively. The energy har-
vested at the ith D2D-Tx over the time span τ is given by

E = τηP0gi, (5)

where 0 < η < 1 is the energy harvesting efficiency. We
denote the information transmission power usage between
D2D-Tx and D2D-Rx of the ith D2D pair by pi. Thus, the
total power usage available for information transmission in
the entire network is given by

8 =

N∑
i

(1− τ )pi, i ∈ N . (6)

We define the channel power gain at the reference distance
by βD2D, the small scale fading channel power gain (an expo-
nentially distributed random variable) by f 2i , and the path-
loss exponent by α. The channel’s power gain between the
ith D2D-Tx and the jth D2D-Rx is defined as

hij = βD2Df 2i d
−α
ij , (7)

where dij =
√
(xTxi − x

Rx
j )2 + (yTxi − y

Rx
j )2 is the Euclidean

distance between ith D2D-Tx and jth D2D-Rx.
The signal-to-interference-plus-noise (SINR) ratio at the

ith D2D user’s receiver is:

γi =
pihii∑j6=i

j∈N pjhji + σ
2
, (8)

where hji is the channel gain between the jth D2D-Tx and the
ith D2D-Rx, while σ 2 is the AWGN power.
The information throughput at the ith D2D pair is given by

Ri(τ, pi) = (1− τ )W log2(1+ γi), (9)

where W is the bandwidth. The D2D link’s communication
constraint is formulated as:

Ri(τ, pi) ≥ rmin, ∀i ∈ N , (10)

where the threshold rmin represents the quality-of-service
(QoS) constraint. The power total consumption during the
energy harvesting phase between the UAV and the ith D2D

user as well as of the information transmission phase between
the ith D2D-Tx and the ith D2D-Rx is formulated as

ρ(τ, p) =
N∑
i=1

(1− τ )pi + τηP0 + Pcir , (11)

where we have p = [pi]|Ni=1 and Pcir is the total circuit power
dissipation at the UAV and the D2D users.

In harvesting scheduling optimisation, we assume that each
D2D-Tx uses the maximum energy harvested from the UAV
for transmitting information, yielding

(1− τ )pi = τηP0gi. (12)

Our objective is to maximise the EE defined as

χ =

∑N
i=1 Ri(τ, pi)
ρ(τ, p)

, (13)

Thus, we formulate the EE optimisation problem as

max
τ

∑N
i=1(1− τ )W log2(1+ γi)∑N
i=1(1− τ )pi + τηP0 + Pcir

s.t. 0 < τ < 1

Ri(τ, pi) ≥ rmin, ∀i ∈ N , (14)

We proceed by setting up our EE game as a Markov
decision process (MDP) [27], defined by the five tuple
〈S,A,P,R, ζ 〉, where S is the state space, A is the action
space, P : S×A×S → R is the state transition probability,
R : S → R is the reward function, and ζ ∈ (0, 1)
is the discount factor. We define the policy mapping as a
distributionπ : S×A→ [0, 1]. Then, the game is formulated
as follows:
• Agent: TheUAV is an agent. The agent observes the state
and takes an action to interact with the environment for
finding the optimal policy.

• State space: The state space is defined as a cooperative
state of all nodes in the network as

S = {I1, . . . , Ii, . . . IN }, (15)

where Ii indicates whether the ith D2D pair satisfies the
SINR constraints:

Ii =
{
1, for Ri(τ, pi) ≥ rmin
0, for otherwise.

(16)

• Action space: The agent at state s selects an action a from
the legitimate action space to obtain the reward r ,

A = {τ }, 0 < τ < 1. (17)

• Reward function: At each time step t , the agent will take
action a following the policy π to maximise the reward
r of the network. The reward function is a joint function
of all D2D pairs formulated as

R =
∑N

i=1(1− τ )W log2(1+ γi)∑N
i=1(1− τ )pi + τηP0 + Pcir

. (18)
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III. PRELIMINARIES
The DRL algorithms rely either on a value function-based
model or on a policy gradient-basedmodel. In this section, we
briefly present the concepts and mathematical formulation of
both the value function and the policy gradient based models.

A. VALUE FUNCTION
The value function at state s is the expected reward, while
following the policy π

V π (s) = E
[∑
t≥0

ζ r t |s0 = s, π
]
, (19)

where the expectationE[�] denotes the empirical average over
a batch of samples.

The action-value function is the expected reward obtained
after taking action a at state s under the policy π , which is
expressed as

Qπ (s, a) = E
[∑
t≥0

ζ r t |s0 = s, a0 = a, π
]
. (20)

The optimal performance obtained at state s when taking
action a is associated with the maximum expected reward
defined as

Q∗(s, a)=Qπ
∗

(s, a) =max
π

E
[∑
t≥0

ζ r t |s0=s, a0 = a, π
]
,

(21)

where π∗ is the optimal policy.
We can reach the optimal performance by finding the

optimal policy π∗ that follow the Bellman equation [28]

Q∗(s, a) = E
[
r + ζ max

a′
Q∗(s′, a′)|s, a

]
. (22)

Recently, the deep Q-learning algorithm of [29] has gained
substantial attention, since it is eminently suitable for esti-
mating the action-value function. To estimate the action-
value function, we use a function approximator Q(s, a; θ ) ≈
Q∗(s, a) where θ is the parameter of the neural network. Our
objective in deep Q-learning is that of minimising the loss
Li(θi) at each iteration i as follows:

Li(θi) = E
[(
yi − Q(s, a; θi)2

)]
, (23)

where Q̂(s′, a′; θtarg) is the target network with parameter
θtarg and the target value yi for iteration i is defined as

yi = E
[
r + ζ max

a′
Q̂(s′, a′; θtarg)|s, a

]
. (24)

The gradient update is written as

∇θiLi(θi) = E
[
r + ζ max

a′
Q̂(s′, a′; θtarg)

−Q(s, a; θi)∇θiQ(s, a; θi)
]
. (25)

B. POLICY SEARCH
As for the policy search-basedmethod, we can directly search
for an optimal policy π∗ for the agents to reach the best
performance in terms of maximising the reward value of

J (θ ) = E
[∑
t≥0

ζ r t |π0

]
. (26)

The optimal policy parameters can be formulated as

φ∗ = argmax J (φ). (27)

Mathematically, the average value can be written as

J (φ) =
∫ κ

R(κ)p(κ, φ)dκ, (28)

where κ is represented by the trajectory {s0, a0, s1, a1, . . . ,
sT−1, aT , sT }, while p(κ;φ) is a trajectory distribution given
by

p(κ;φ) = p(s0)
T−1∏
t=0

p(st+1|st , at )π (at |st ;φ), (29)

where φ denotes the parameters of the policy π . Upon differ-
entiating the expected reward, we have [30]

∇φJ (φ) =
∫ κ

R(κ)∇φp(κ;φ)dκ

=

∫ κ

R(κ)∇φ log p(κ;φ)p(κ;φ)dκ

= E
[
R(κ)∇φ log p(κ;φ)

]
. (30)

Thus, we can estimate the gradient of the reward function
by:

∇φJ (φ) ≈
T−1∑
t=0

R(κ)∇φ logπ (at |st ;φ). (31)

The parameter φ corresponding to the policy π can be
updated by using the stochastic gradient descent algorithm
as

φ← φ + α∇φJ (φ), (32)

where α ∈ [0, 1] is the learning rate.
Several algorithms have been developed in the literature

based on policy search, such as natural policy gradient meth-
ods [31] and vanilla policy gradient methods [32].

IV. ENERGY HARVESTING TIME SCHEDULING IN
UAV-POWERED D2D COMMUNICATIONS: A DEEP
DETERMINISTIC POLICY GRADIENT APPROACH
In this section, we propose a deep deterministic policy gra-
dient algorithm (DDPG) [33] for energy harvesting time
scheduling in UAV-powered D2D communications. The
DDPG algorithm is a hybrid model of the value function
and policy search methods. By exploiting the benefits of
both models, the DDPG algorithm improves the convergence
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speed of the optimisation to be suitable even for large-scale
action spaces.

The DDPG algorithm consists of two fundamental ele-
ments: the actor function and critic function. The actor func-
tion µ(s; θµ) maps the states to a specific action according to
the current policy, while the critic function Q(s, a) is learned
as in Q-learning for qualifying the action taken. The pair of
techniques that we advocate in the DRL algorithm are as
follows:
• Experience replay buffer : We use a replay memory pool
D for storing the transitions (st , at , r t , st+1), which are
inferred from the environment under the exploration
policy. A mini-batch K of samples stored in the replay
buffer D will be randomly taken for training the actor
and critic network. Additionally, the buffer D is set to
a finite size. Thus, the oldest transitions are discarded
for updating samples space, hence the buffer is always
up-to-date.

• Target network: One of the challenges during the train-
ing step is the unstable nature of the network, if we use
a shifting set ofQ values for calculating the target value.
To overcome this challenge, we use the target network
for estimating the target values. Here particularly, in
the DDPG algorithm, we use the target actor network
and the target critic network, µ′(s; θµ′ ) and Q′(s, a; θq′ ),
respectively.

We create a mini-batch of K transitions (sk , ak , rk , sk+1)
from the buffer D by random sampling for training. The
critic network parameters are updated for minimising the loss
function

L =
1
K

K∑
k

(
yk − Q(sk , ak ; θq)

)2

, (33)

where we have

yk = rk (sk , ak )+ ζQ′(sk+1, ak+1; θq′ )|ak+1=µ′(sk+1;θµ′ ).

(34)

The actor policy is updated using the sampled policy gra-
dient as follows:

∇θµJ≈
1
K

K∑
k

∇akQ(s
k , ak ; θq)|ak=µ(sk )∇θµµ(s

k
; θµ). (35)

The parameters θq and θµ′ of the target actor network and
the target critic network are then updated by using soft target
updates associated with ~ � 1

θq′ ← ~θq + (1− ~)θq′ , (36)

θµ′ ← ~θµ + (1− ~)θµ′ . (37)

It makes the target values be constrained to change signifi-
cantly more slowly which allows the Q function approach to
supervised learning more closely. However, the price is that
this may slow down the training due to the delayed value
estimators propagation in the target networks µ′ and Q′. In
continuous action space, we have to find a good exploration

Algorithm 1 Deep Deterministic Policy Gradient Algorithm
for Energy Harvesting Time Scheduling in UAV-Assisted
D2D Communications
1: Initialise the critic network Q(s, a; θq) and the actor net-

work µ(s; θµ) with random parameter θq and θµ, respec-
tively

2: Initialise the target critic networks Q′ and the target
actor network µ′ with parameter θq′ ← θq, θµ′ ← θµ,
respectively

3: Initialise the replay memory pool D
4: for episode = 1, . . . ,M do
5: Initialise a random process N for the action explo-

ration
6: Receive initial observation state s0

7: for iteration = 1, . . . ,T do
8: Obtain the action at at state st according to the

current policy and the exploration noise
9: Measure the achieved SINR according to (8)
10: Update the reward r t according to (18)
11: Observe the new state st+1

12: Store transition (st , at , r t , st+1) into the replay
buffer D

13: Sample randomly a mini-batch of K transitions
(sk , ak , rk , sk+1) from D

14: Update the critic by minimising the loss as in (33)
15: Update the actor policy using the sampled policy

gradient as in (35)
16: Update the target networks as in (36) and (37)
17: Update the state sti = st+1i
18: end for
19: end for

policy for attaining better convergence. Thus, we add a noise
process of N (0, 1) associated with a small constant ψ to our
actor policy, which is formulated as [33]

µ′(st ) = µ(st ; θ tµ)+ ψN (0, 1). (38)

The details of our DDPG algorithm-based technique of solv-
ing the energy harvesting time scheduling in UAV-assisted
D2D communications are described in Algorithm 1 whereM
and T are the number of maximum episode and time step per
episode, respectively.

V. EFFICIENT LEARNING WITH PROXIMAL POLICY
OPTIMISATION ALGORITHMS TO SOLVE THE ENERGY
HARVESTING TIME SCHEDULING PROBLEM IN D2D
COMMUNICATIONS ASSISTED BY UAV
In this section, we propose a novel model based on the
PPO algorithm relying on an efficient sampling technique
for solving the energy harvesting time scheduling game
in UAV-assisted D2D communications. The PPO algorithm
allows the policy to carry out the most significant possi-
ble improvement step using the current data without over-
estimation that might degrade the performance.
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A. CLIPPING SURROGATE METHOD
Let ptθ denote the probability ratio ptθ =

π (s,a;θ )
π (s,a;θold )

. Then our
main objective is to maximise L as follows:

L(s, a; θ ) = E
[
π (s, a; θ )
π (s, a; θold )

Aπ (s, a)
]

= E
[
ptθA

π (s, a)
]
, (39)

where Aπ (s, a) = Qπ (s, a) − V π (s) is an estimator of the
advantage function defined in [34]. Again, we create a mini-
batch K and then use the classic stochastic policy gradient
descent to train our neural networks. The policy parameter is
updated via

θk+1 = argmaxE
[
L(s, a; θk )

]
. (40)

Without improving any constraints, the maximisation of
L(s, a; θ ) may lead to an incentive for the policy to move
the probability ptθ away from 1. Thus, we opt for a suitable
clipping technique for modifying the objective of (40) to [24]

LCLIP(s, a; θ ) = E
[
min(ptθA

π (s, a),

clip(ptθ , 1− ε, 1+ ε)A
π (s, a))

]
, (41)

where ε is a small hyper-parameter. We use the function
clip(ptθ , 1 − ε, 1 + ε) for limiting the probability ratio to
avoid the excessive modification of ptθ outside the interval
[1−ε, 1+ε]. In this paper, we use an estimate of the advantage
function Aπ (s, a) formulated as [32]

Aπ (s, a) = r t + ζV π (st+1)− V π (st ). (42)

B. KULLBACK-LEIBLER DIVERGENCE PENALTY
Instead of using clipping surrogate objective as in
Section V-A, we can also use the KL divergence penalty
[24] based technique, where the parameters are updated by
optimising the KL penalty objective [24]

LKL(s, a; θ ) = E
[
π (a|s;φ)
π (a|s;φold )

A(s, a)

−ϕKL[π (�|s;φold ), π(�|s;φ)]
]
. (43)

Then, we compute d = E
[
KL[π (�|s;φold ), π(�|s;φ)]

]
based on the target value dtarg of KL divergence [24] :

• if d < dtarg/1.5, ϕ← ϕ/2,
• if d < dtarg × 1.5, ϕ← ϕ × 2.

The parameter ϕ is promptly updated in the next episode.
The details of the PPO based algorithm of solving the energy
harvesting time scheduling in UAV-assisted D2D communi-
cations are presented in Algorithm 2.

Algorithm 2 Our Proposed Method Based on the PPO
Algorithm for Energy Harvesting Time Scheduling in UAV-
Assisted D2D Communications
1: Initialise the policy parameter θπ
2: Initialise the penalty method parameters
3: for episode = 1, . . . ,M do
4: Receive initial observation state s0

5: for iteration = 1, . . . ,T do
6: Obtain the action at at state st according to the

current policy
7: Measure the achieved SINR according to (8)
8: Update the reward r t according to (18)
9: Observe the new state st+1

10: Update the state sti = st+1i
11: Collect a set of partial trajectories withK transitions

12: Estimate the advantage function according to (42)
13: end for
14: Update the policy parameters using stochastic gradient

descent with mini-batch K

θk+1 = argmax
1
K

K∑
L(s, a; θk ) (44)

15: end for

TABLE 1. Simulation parameters.

VI. SIMULATION RESULTS
In this section, we illustrate the efficiency of our DRL
algorithms over the conventional approaches. All the algo-
rithms are implemented using Tensorflow 1.13.1 [35] and
the Adam optimisation algorithm [36] for training the neural
networks. The algorithm in [6] is implemented using Python
and CVXPY library [37] for convex optimisation. All the
other simulation parameters are provided in Table 1.

A. PERFORMANCE COMPARISION
Fig. 2 characterises our DRL algorithms when the number of
D2D pairs is set to N = 30, in comparison to the optimal
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FIGURE 2. The EE of optimal harvesting time using our DDPG, PPO
algorithm and the OHT optimisation [6] when the number of D2D pairs
N = 30.

harvesting time optimisation (OHT) solution of [6]. We use
two hidden layers for the DDPG algorithm associated with
100 nodes per layer, while we use a single hidden layer
associated with 100 nodes per layer for the PPO algorithm.
This is because the DDPG algorithm has an off-policy nature,
while the PPO algorithm is of on-policy nature. The posi-
tion of the UAV is changing over time, hence the channel
state information also fluctuates dynamically in every time
step. Both algorithms approach the optimal performance after
about 50 episodes. The results based on our DDPG and PPO
algorithm combination are better than the ones using the OHT
optimisation. Moreover, as can be observed in Fig. 2, the
methods based on both the PPO algorithm using the above
mentioned clip surrogate and KL divergence penalty achieve
both similar EE and convergence speed. The convergence
speed of the scheme using the PPO algorithm is substantially
faster than that of the ones using the DDPG algorithm.

In Fig. 3, we present the performance of our DRL
algorithm-based methods and of the OHT optimisation-based
method [6], while considering different numbers of D2D
pairs. We average the performance over 200 episodes. The
average performance of the PPO algorithm-based method is
higher than that of the DDPG algorithms. Furthermore, the
EE of our proposed solutions is better than that of OHT
optimisation regardless of the numbers of D2D pairs within
the UAV’s coverage area.

The performance for different values of connection con-
straints of the DDPG and PPO algorithms is presented in
Fig. 4. The EE of methods based on the DDPG and PPO
algorithm are similar, when rmin is in the range of 0.2 to 1.0.
The results suggest that the PPO algorithm is indeed flexible
and robust in the scenarios considered.

B. PARAMETER ANALYSIS
In Fig. 5, we present the EE of our method based on the
PPO algorithm for different batch sizes, K . Upon increasing
the batch size K , the convergence speed is reduced. This is
because when we take a smaller batch size of samples to train
the networks in the PPO algorithm, the policy parameters are

FIGURE 3. The performance results of optimal harvesting time scheduling
with different numbers of D2D pairs N .

FIGURE 4. The performance results of optimal harvesting time scheduling
with different QoS constraints.

FIGURE 5. The performance of optimal harvesting time using our PPO
algorithm relying on the clipping objective technique while considering
different value of batch size K .

updated more frequently. Thus, we can approach the optimal
performance faster. However, if we take the training time into
consideration, the smaller batch size requires more time for
training the neural networks in order collect enough samples.
In this study, we opted for the batch size of K = 32, for the
implementation of the DDPG and PPO algorithms.

In Fig. 6, we consider the difference in EE between
the method using the DDPG algorithm in conjunction with

VOLUME 9, 2021 3645



K. K. Nguyen et al.: Real-Time Energy Harvesting Aided Scheduling in UAV-Assisted D2D Networks

FIGURE 6. The performance of optimal harvesting time using our DDPG
algorithm with different value of exploration parameter ψ .

various exploration parameters, ψ . Choosing the appropriate
value of exploration is one of the challenges in designing the
DDPG algorithm. If we choose the value ψ to be too small
in Fig. 6, our algorithm will be stuck at a local optimum
because the DRL algorithm is a trial-and-error based method.
Hence the agents cannot reach the optimal policy, if we do
not allow the agent to try all the possible circumstances. By
contrast, if we choose an excessive exploration parameter, ψ ,
the convergence speed will be affected, because the agents
may bounce around the optimal value to explore more hith-
erto unexplored information. This reduces the convergence
speed. As a compromise, we opted for the exploration ratio
of ψ = 0.99995 for the DDPG algorithm.

Fig. 7 presents the performance of UAV-assisted D2D
communications upon using the PPO algorithm relying on
the clipping surrogate method, while considering different
clipping thresholds, ε. The results show that we can achieve
the best performance with a threshold of ε = 0.2.Meanwhile,
Fig. 8 illustrates the EE of the PPO algorithm using the KL
penalty divergence in our optimal harvesting time scheduling
problem of UAV-assisted D2D communications. In Fig. 8a,
the initial value of ϕ is not critical in the PPO algorithm using
the KL penalty method, because ϕ quickly adjusts. Thus,
the results are similar for different values of ϕ. As a further
result, Fig. 8b shows the performance when we employ the
method based on the PPO algorithm using the KL method
with different values of dtarg. The results suggest that we
should choose the value of dtarg to be moderate for rapid
convergence.

C. COMPUTATIONAL COMPLEXITY
We compare the computational complexity of our DDPG
algorithm and PPO algorithm in the training phase for the
energy harvesting time scheduling problem of D2D commu-
nications supported by a UAV.With the DDPG algorithm, the
computational complexity is O(MTK (Nnl1 + nl1nl2 + . . .))
with nli is the number of nodes at layer i in a neural network.
On the one hand, the complexity is O(MT + MK (Nnl1 +
nl1nl2 + . . .)) with the PPO algorithm. Furthermore, we
compare the time processing of our neural networks in the

FIGURE 7. The performance of optimal harvesting time by using our PPO
algorithm relying on the clipping objective technique with different value
of ε.

FIGURE 8. The performance of optimal harvesting time by using our PPO
algorithm relying on the KL divergence penalty technique.

testing phase and the OHT algorithm [6]. After training,
simple calculations are required to predict the proper action
in each time-step. The computational complexity of trained
networks is O(Nnl1 + nl1nl2 + . . .). Specifically, our pro-
posed DDPG algorithm solved the problem in only 0.229ms,
0.259ms, and 0.255ms with the number of D2D pairs at 5, 15,
and 30, respectively. Meanwhile, the OHT optimisation takes
54.1ms, 115.5ms, and 170.3ms. Thus, our DDPG algorithm
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TABLE 2. The processing time while considering varied number of D2D
pairs.

and PPO algorithm outperforms mathematical models in
terms of robustness, EE, and complexity.

VII. CONCLUSION
In this paper, we presented the efficiency of our proposed
DRL algorithms to schedule the energy harvesting time
of UAV-assisted D2D communications. Our proposed tech-
niques outperform benchmarks in terms of EE and com-
plexity. By utilising the advantages of deep learning, the
energy harvesting time scheduling game can be solved almost
instantly. The results suggest the DRL algorithm can be a
potential technique for real-time applications under limitation
of the energy storage and the flying time-constrained UAVs.
In the future, we will solve more complicated problems by
jointly optimising power allocation, trajectory planning, and
multiple UAV scenarios.
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