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Marine microbial communities are highly interconnected assem-
blages of organisms shaped by ecological drift, natural selection
and dispersal. The relative strength of these forces determines how
ecosystems respond to environmental gradients, how much diversity
is resident in a community or population at any given time, and how
populations reorganise and evolve in response to environmental per-
turbations. In this study we introduce a globally-resolved population-
genetic ocean model in order to examine the interplay of dispersal,
selection and adaptive evolution, and their effects on community as-
sembly and global biogeography. We find that environmental selec-
tion places strong constraints on global dispersal, even in the face of
extremely high assumed rates of adaptation. Changing the relative
strengths of dispersal, selection and adaptation has pronounced ef-
fects on community assembly in the model, and suggests that bar-
riers to dispersal play a key role in the structuring of marine com-
munities, enhancing global biodiversity and the importance of local
historical contingencies.
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Ocean microbial biogeography is determined by the bal-1

ance of two opposing forces: dispersal by the ocean cur-2

rents and selection by the local environment (1). In the limit3

where global dispersal is fast relative to population turnover,4

environmental conditions alone should be sufficient to pre-5

dict the presence or absence of a particular species from any6

given location on Earth (2, 3). This is the view encapsu-7

lated in Baas-Becking’s hypothesis that “everything is every-8

where, but the environment selects” (4). On the other hand,9

if global dispersal is slow relative to population turnover, lim-10

ited connectivity between ocean regions will tend to reinforce11

chance differences between isolated communities (5, 6), with12

geographically-isolated but otherwise similar environments13

displaying significant differences in taxonomic composition.14

Over evolutionary timescales, the balance of dispersal and15

selection will affect community assembly (through diversifi-16

cation and mass effects; 7), ecosystem function (through bio-17

geochemical cycling), and ultimately the resilience of marine18

ecosystems to environmental change (8). Therefore, under-19

standing the mechanisms that lead to niche diversification20

and biogeographic structure in microbial communities is a21

fundamental pursuit of marine microbial research. A cen-22

tral question is to what degree are biogeographic patterns23

attributable to local selection based on contemporary environ-24

mental factors, or to independent stochastic processes occur-25

ring in geographically-isolated regions (SI Appendix, Fig. S126

and ref. 1).27

Recent analysis of metagenomic data (Figure 1 and ref.28

9), has shown that large-scale trends in community compo-29

sition are correlated both with environmental variables and30

geographic distance, with distinct clusters emerging along31

environmental gradients and among the most rapidly con-32

nected sites, suggesting that both history and environment33

play important roles. When sample sites are clustered based 34

on metagenomic pairwise β-diversity (see SI Appendix), there 35

is discernible ecological similarity among sites within the the 36

same ocean basins (Figure 1a), although we also see geo- 37

graphically proximate sites clustered far apart, and sites from 38

geographically remote locations clustered together (Figures 1b, 39

SI Appendix, Fig. S4 and S5). These broad patterns appear 40

to reflect both geographic proximity and environmental se- 41

lection (9). Nonetheless, it can be difficult to assign causal 42

mechanisms and the drivers of observed biogeography thus 43

remain uncertain. 44

The roles of selection and dispersal have both been ex- 45

amined using global-scale models, but typically with one in 46

isolation from the other. On one hand, population dynamic 47

models have focused on the role of selection from among a 48

universal background of candidate species (11), in line with the 49

Baas-Becking (4) hypothesis. On the other hand, a number 50

of studies have addressed the question of global gene flow in 51

oceanic microbial communities, using particle tracking models 52

to assess connectivity through the surface waters (6, 12), but 53

these have typically assumed ecological neutrality (5), and 54

have thus ignored the role of selection. While some stud- 55

ies find that the ocean surface is very rapidly connected on 56

timescales of decades or less (12), others suggest that current 57

rates of passive dispersal are insufficient to overcome biogeo- 58

graphic differences created by chance mutations occurring in 59

geographically isolated regions of the ocean (6). 60

In order to distinguish between the biogeographic effects of 61

selection and dispersal, we need a framework that accounts for 62

both processes together. In this paper, we develop a population 63
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Fig. 1. Taxonomic community similarity clusters in the 0.22 - 3 µm size fraction across Tara Oceans sites (replotted using data from 9). (a) Community similarity is shown with
colours by projecting the Taxonomic Jaccard dissimilarity matrix into the ‘rgb’ colour space using the t-SNE dimension-reduction algorithm (10). (b) Links between community
similarity clusters (dimensionless x and y coordinates) and spatial location (colours corresponding to ocean basins). See also SI Appendix, Fig. S1 for interpretation of panel b.

genetic model representing taxonomic and phenotypic diver-64

sity within a single clonally-reproducing plankton population,65

embedded within an empirically-constrained representation of66

the ocean circulation (13). In contrast to previous studies, our67

model accounts for population size, stochastic demography,68

natural selection, adaptation and transport through the ocean69

interior (we find that dispersal pathways restricted to the70

ocean surface are artificially sensitive to fluid convergence and71

divergence). With a more realistic transport term accounting72

for dispersal at all depths, we find that varying the degree of se-73

lection and adaptation leads to very different model outcomes74

in terms of community biogeography and global connectivity.75

We show that selection based on thermal niches acts as a major76

constraint on dispersal, with the clear effects on biogeographic77

organisation at the global scale.78

Simulations79

To assess the rate of planktonic dispersal across the global80

ocean, we developed a model that tracks the relative abun-81

dances of adapting subpopulations in a globally distributed82

metapopulation, with spatially varying carrying capacity, N83

(SI Appendix, Fig. S2). At the beginning of each simulation,84

a resident subpopulation is assumed to have population fre-85

quency of 1 throughout the global ocean. However, at each of86

94 ‘seed locations’ distributed more or less evenly around the87

ocean (dots in Figure 3), the resident subpopulation is replaced88

with a taxonomically distinct (but ecologically identical) local89

subpopulation. From this initial condition, the model is inte-90

grated for 100 years in discrete time. Every six hours, plankton91

populations are dispersed by the ocean circulation. Every 2492

hours each population is replaced with a new generation of93

N cells, drawn stochastically from a probability distribution94

determined by the relative abundance of each subpopulation95

and, where appropriate, a temperature-dependent selection96

coefficient, s (14). In regions where a subpopulation is present97

in high abundance, the stochasticity of this process has no98

significant effect on the relative abundance, but it introduces a99

meaningful chance of local extinction wherever abundances are100

low (such as at edges of a subpopulation’s range). Repeating101

each simulation five times, we found no meaningful differences102

between iterations in terms of the presented results (Figure 2).103

Our main set of simulations tracks the dispersal of a104

Fig. 2. Fraction of connections between the 94 seed locations and the rest of the
ocean through time. Solid lines show the results of simulations with time-invariant
temperatures and carrying capacities. Dotted lines show the results of simulations
with seasonally varying temperature and carrying capacity. Neutral simulations were
repeated five times to 100 years. Selective and adaptive simulations were evaluated
once to 100 years, and four additional times to 10 years. (Please note that the
replicate simulations are so alike that the lines are effectively plotted on top of each
other.)

globally-abundant Prochlorococcus population with a cellu-105

lar diameter of approximately 0.6 microns, setting N to the106

depth-integrated cellular abundance within each grid box (SI107

Appendix, Fig. S2 and ref. 15). The results presented be-108

low are derived from simulations based on a single repeating109

year with time-invariant environmental temperatures and pop-110

ulation carrying capacities. We also performed simulations111

where these variables followed a seasonal cycle, finding that112

the results were not overly sensitive to the change (Figure 2).113

Ecologically neutral dispersal by surface transport. We initially114

considered a scenario where cells are transported exclusively115

within the surface layer, with all subpopulations equally well116

adapted at all temperatures (i.e. ecologically neutral; 5). The117

dark blue lines in Figure 2a show the timescales over which118

the 94 Prochlorococcus seed subpopulations reach the rest of119

the ocean. Largely in agreement with previous studies (12),120

almost 90% of the surface ocean is connected within a decade.121

The global dispersal of the ecologically neutral subpopula-122

tions is broken down further in Figure 3a. Here immigration123
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DRAFTFig. 3. Immigration and emigration timescales (years) for ecologically neutral
Prochlorococcus subpopulations, given (a) surface only transport, and (b) depth-
integrated transport. Taxonomically distinct subpopulations were seeded in each of
the 94 locations marked with dots. Emigration times, represented by the coloured dots,
are defined as the time taken for each seed subpopulation to disperse to 90% of all
locations). Immigration times, represented by the background colours, are defined as
the time taken for 90% of all seed subpopulations to arrive in each location. Planktonic
transport velocities are shown as vectors. (c) Relative changes in global immigration
and emigration times when switching from surface-only to depth-integrated transport
(b÷a).

times (background colours) suggest that temperate latitudes124

are generally more easily invaded than the equatorial regions.125

Conversely, emigration times (coloured dots) suggest that126

subpopulations initialised at lower latitudes are more rapidly127

dispersed throughout the ocean than those from higher lati-128

tudes.129

These regional differences in immigration and emigration130

timescales are explained by the surface circulation patterns131

shown in Figure 3a. The two-dimensional surface transport132

vectors are highly divergent in equatorial upwelling regions (SI133

Appendix, Fig. S3a), driving a consistent efflux of cells that134

must be topped up to the carrying capacity by reproduction of135

the local resident population. These regions thus export cells136

to the rest of the ocean, while remaining resistant to immi-137

gration. The sub-tropical gyres, meanwhile, are characterised138

by convergent flow, with a consistent influx of cells diluting139

the local resident populations. These regions are thus easily140

invaded and are slower to export cells to the rest of the ocean.141

Depth-integrated transport. The assumption that horizontal142

dispersal of plankton occurs only in the surface layer ignores143

the potential role of subsurface connectivity. To test the144

sensitivity of our results to this pathway, we calculated the145

depth-integrated horizontal transport of cells across the entire146

water column, weighting transport fluxes at each depth by147

the local population abundance. After this adjustment to the148

transport component, we repeated our initial experiment in149

the same way. Accounting for sub-surface transport generally150

decreases global ocean connectivity at timescales less than151

about 20 years, although there is a very slight increase in152

global connectivity from 20 years to the end of the simulation153

(pale blue line in Figure 2).154

The generally slower rate of global connectivity in the depth-155

integrated simulation occurs as the transport field incorporates156

slower fluxes through the ocean interior (compare the transport157

vectors in Figure 3a and b). Nonetheless, there are limited158

regions where the depth-integrated flow field markedly acceler-159

ates immigration, most notably the Indian Ocean and Hudson160

Bay. In these semi-enclosed regions the large-scale circulation161

is characterised by inflow at depth and outflow at the surface,162

such that the influx of cells is markedly underestimated in the163

surface-only simulation.164

Selection. The previous experiments have assumed that all165

subpopulations are equally well-adapted to conditions through-166

out the entire ocean, but we know that changing conditions167

select for different phenotypes along environmental gradients168

(16, 17), and that dispersing populations will be selected169

against as they stray beyond their optimal environments.170

To test the influence of selection, we focussed on a single171

exemplar trait, assigning thermal tolerance curves such that172

populations are preferentially selected when ambient tempera-173

tures align with their thermal optima (Equation 4). Each seed174

population is assigned a thermal optimum matching the aver-175

age temperature at its initial location. At the same time, the176

global resident population is divided into 77 subpopulations,177

each with thermal optima matching the average temperature178

at its initial location. This is consistent with the known179

prevalence of locally-adapted resident populations (17), but180

ignores the ability of populations to themselves evolve over181

time (see next section). The model was then evaluated with182

the depth-integrated circulation scheme.183

The global dispersal of the 94 seed populations is severely184

restricted by temperature-based selection (green line in Fig-185

ure 2), with global connectivity not rising above 15% in the186

100 year simulation.187

Adaptation. Temperature-related selection places a strong188

constraint on the dispersal of thermally-adapted populations.189

If populations are to overcome this restriction, they must adapt190

dynamically to their environments by generating heritable phe-191

notypic changes over time (17, 18). We included this capacity192

in the model by allowing all subpopulations to produce a small193

fraction of offspring with different thermal optima (see SI194

Appendix, Methods). This ‘trait-diffusion’ model is represen-195

tative of a large range of molecular mechanisms, including196

heritable and plastic responses, standard mutations, sex, and197

horizontal gene transfer (19). We initialised the experiment as198

before, with each subpopulation optimally adapted to its local199

temperature, but allowed for a small diffusive flux between200

adjacent phenotypes (19, 20). In line with previous studies201

(19), we performed simulations with trait-diffusion rates of 1%202

and 10%.203

Even with a very high trait-diffusion rate of 10%, global204

dispersal is markedly restricted by selection effects, with 90%205

connectivity only achieved after more than 30 years (orange206

line in Figure 2). When the trait-diffusion rate is set to 1%,207

just under 30% of the ocean has been connected within 100208

years (yellow line in Figure 2).209
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Niche breadth. In the selective cases outlined above, the ther-210

mal tolerance curve is a Gaussian function of temperature with211

an interquartile range of ∼10◦C. To evaluate the sensitivity of212

dispersal to the breadth of the thermal niche, we repeated the213

selective and adaptive simulations increasing and decreasing214

the niche breadth parameter by a factor of 2. SI Appendix,215

Fig. S8 shows that while a broader niche corresponds to more216

rapid global dispersal, this effect decreases as the rate of adap-217

tation increases. Nonetheless, the requirement for relatively218

rapid rates of adaptation to overcome the selective restriction219

of dispersal appears robust to the evaluated breadths of the220

thermal niche.221

Global dispersal and community assembly. The global distribu-222

tion of a single seed population, 100 years after it was initialised223

in the central North Atlantic (35◦N, 46◦W) is shown in four224

illustrative cases in Figure 4. In the neutral model the high-225

lighted population has complete global coverage, with highest226

concentrations in the Atlantic subtropical gyres (Figure 4a).227

Without selection, all seed populations are globally dispersed228

after 100 years, with communities clustering strongly within229

and across ocean basins (here plotted as in Figure 1 across the230

Tara Oceans sites). Sites within each ocean basin often cluster231

together, but there is little of the discrete separation between232

sites in adjacent basins (e.g. North and South Pacific; Indian233

Ocean and Red Sea) that we see in the Tara data (Figure 1b).234

With temperature-based selection enabled, but without235

adaptation, the distribution of the seed population is restricted236

to a relatively small area within the North Atlantic subtrop-237

ical gyre (Figure 4d), in waters between 5 and 28◦C. The238

population is unable to disperse beyond its original North239

Atlantic habitat, excluded from thermally suitable environ-240

ments in other ocean basins by the population’s inability to241

successfully traverse warmer or colder regions. In this case242

we see multiple distinct clusters of sites within each ocean243

basin, indicative of the strong niche separation by temperature. 244

Despite the presence of similar temperature niches in multiple 245

ocean basins, we do not see any of the clustering across basins 246

that is apparent in the Tara data (Figure 1b). Indeed, only 247

three clusters include sites drawn from different basins (Red 248

Sea with Indian, N. Pacific with S. Pacific and N. Atlantic 249

with Mediterranean). 250

The distribution of the same seed population when it is 251

allowed to adapt with a mutation rate of 1% is shown in Fig- 252

ure 4g. After 100 years the lineage has dispersed much further 253

into the South Atlantic, but the majority of its descendants 254

remain trapped within the North Atlantic subtropical gyre. 255

With trait diffusion enabled we see fewer and slightly larger 256

clusters, but there remains a relatively low degree of clustering 257

among sites drawn from different regions. 258

Only when the trait-diffusion rate is increased to 10% does 259

the seed population attain similar global dispersal to the neu- 260

tral case after 100 years, and even then its distribution is 261

centred more strongly on its original Atlantic habitat (Fig- 262

ure 4j). With this extremely high rate of trait-diffusion, we 263

see the global metapopulation clustering strongly both within 264

and across ocean basins. 265

Discussion 266

Plankton circulating within the global ocean are not dispersed 267

as inert tracers. With their growth and relative fitness affected 268

by the changing physical, chemical and biotic environment, 269

populations are continually under selection as a function of 270

their environmental setting. In environments outside their 271

optimal habitat, dispersing populations are likely to be outcom- 272

peted by better adapted local populations, with an increasing 273

risk of local extinction as their abundances decline (21). This 274

selective process has the capacity to place very strong con- 275

straints on the global dispersal of individual populations, and 276

hence on the flow of genetic information from one ocean re- 277

gion to another. In our experiments, global connectivity only 278

seems to be assured – on timescales of decades to centuries – 279

when subpopulations are able to rapidly adapt to changing 280

conditions as they are dispersed. 281

While the model presented here is likely far too idealised 282

to allow direct quantitative comparison with the Tara Oceans 283

data in all its complexity, our simulations imply that even 284

while the marine plankton are rapidly dispersed by the ocean 285

circulation, significant barriers to viable dispersal exist – even 286

for highly abundant and rapidly evolving microbial taxa. This 287

has important implications for the study of plankton biogeog- 288

raphy and community assembly, and for the interpretation 289

of a growing archive of bioinformatic information (22). In 290

particular, to what extent might local community assembly in 291

any one part of the ocean be constrained by its isolation from 292

other ocean regions – either by limited dispersal or selective 293

constraints? In other words, is ‘everything really everywhere’ 294

as Bass-Becking suggests (4), or is a species’ global distribution 295

fundamentally limited? 296

With physical rates of dispersal in the model well con- 297

strained (13), the balance between selection, dispersal and 298

adaptation as subpopulations are transported along environ- 299

mental gradients appears to have a pronounced effect on the 300

global biogeography of microscopic plankton (Figure 4). In the 301

neutral case, we find that abundant populations are rapidly dis- 302

tributed throughout the global ocean with gradual changes in 303

community structure across distance. Enabling temperature-304

based selection places strong constraints on global dispersal305

(23), with distinct locally-adapted communities emerging in306

environmentally dissimilar regions of the same ocean basins307

(Figure 4e,f). At the same time, very different communities308

can emerge in otherwise environmentally similar regions, espe-309

cially within different ocean basins at lower latitudes, for which310

all connecting pathways must pass through the polar oceans311

where warm-adapted types are rapidly attenuated. The abil-312

ity to sustain both within basin and across basin community313

differences are both diminished with increasing rates of phe-314

notypic adaptation, although the latter appears more robust315

over the ≤100 year timescales examined here.316

Faster rates of adaptation allow populations to adjust their317

traits as they are dispersed across environmental gradients,318

thus achieving global distributions much wider than their origi-319

nal habitat. Very little is known about rates of trait diffusion in320

natural populations, and empirical estimates of this are needed321

to constrain models of adaptation for microscopic plankton.322

However, given the rapidity with which phytoplankton adapt323

to environmental shift in laboratory experiments (24–26), very324

high rates of trait diffusion are not implausible.325

Nonetheless, even with very rapid rates of adaptation, dis-326

persing model populations remain extremely rare in regions327

that are far from their original seed locations. This is con-328

sistent with rank-abundance distributions characterised by a329

long-tail of rare species in marine microbial communities (27),330
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Fig. 4. Global dispersal and taxonomic clustering of modelled subpopulations. Each row represents a different experiment: Row 1, neutral case; Row 2, selective case; Row 3,
adaptive case (1% mutation rate); Row 4, adaptive case (10% mutation rate). The left-hand column maps the global abundance distribution of individual seed populations,
initialised at the site indicated by the pink dot (white areas indicate zero abundance). The center column shows community dissimilarity among the Tara Oceans sites, with
similar sites assigned similar colours (cf. Figure 1). The right-hand column shows similar environmental clustering for the same Tara Oceans sites, with similar sites clustered
together in the x and y coordinates. Colours indicate the ocean basin for each site. All panels show results after 100 years of dispersal.
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with community structure maintained as the homogenising331

effects of ocean mixing are counterbalanced by local selec-332

tion. Even when immigrant populations can adapt to local333

conditions, the necessity to compete with similarly adapted334

but much more abundant residents means that the incoming335

populations remain scarce.336

We have shown that a number of factors influence connec-337

tivity, including subsurface circulation, selection and rate of338

adaptation. We note that while we demonstrate temperature-339

based selection is likely to constrain dispersal, we have only340

considered one of many factors that are known to affect plank-341

ton fitness. Our model is highly simplified and includes just342

a single plankton group whose distribution is in reality set343

by a complex array of biotic and abiotic factors. For exam-344

ple, with the selection coefficient implemented as a simple345

function of temperature, we ignore the potential interaction346

of multiple complementary or contradictory selective pres-347

sures within the complex microbial community. Furthermore,348

we expect that the need to simultaneously adapt multiple349

traits along environmental gradients would likely decrease the350

likelihood of effective adaptation, further increasing selective351

constraints on dispersal. Global dispersal would likely also352

be more difficult among larger and more sparsely distributed353

plankton populations, for which regions of low abundance will354

act as population bottlenecks. On the other hand, we have355

also neglected a number of factors that may serve to increase356

connectivity, with the existence of dormant stages (with low357

growth and mortality) likely to play a key role for some major358

groups, such as diatoms.359

Ultimately, the degree to which the dispersing populations360

are selected against in non-optimal environments, and the361

degree to which they are able to adapt, will determine the362

ubiquity, or otherwise, of marine microbial species. We have363

shown that geographic proximity can be a strong correlate of364

microbial community structure even in an ecologically neutral 365

model (6). However, the existence of distinct community clus- 366

ters both within and across ocean basins (Figure 1) is perhaps 367

indicative of a system where everything is not everywhere, 368

because the environment selects. Correctly accounting for 369

selection, speciation and limited dispersal therefore appears 370

critical to understanding community structure and biogeog- 371

raphy in the ocean. Alongside global metagenomic surveys, 372

our results suggest that when developing models of marine 373

microbial biogeography and ecology we need to go beyond the 374

assumption that everything is everywhere and to consider the 375

selective limitations to dispersal and the adaptive means by 376

which these are overcome. 377

Materials and Methods 378

The Evolutionary Plankton Metacommunity Dynamics (EPMD) 379

model considers the global distribution of an arbitrary number of 380

planktonic subpopulations distributed across a two-dimensional 381

(latitude and longitude) ocean grid. The probability of survival 382

for each subpopulation in each generation is a function of its rela- 383

tive abundance and (optionally) its thermal tolerance to the local 384

environmental temperature (14). Plankton cells are circulated in 385

physical space according to a realistic ocean circulation model 386

(13, 28). 387

Passive dispersal by the ocean circulation. Plankton cells are 388

transported between grid boxes using a [J × J ] oceanic ‘trans- 389

port matrix’ A that describes the transport of K populations of 390

neutrally buoyant cells between J points in the ocean grid (29). 391

This transport can be written as 392

Xt+1 = AXt [1] 393

Here Xt is the [J ×K] matrix of population abundances in each 394

grid box of the ocean model. Each element of the transport matrix 395

A describes the transport of cells between source boxes (columns) 396

and recipient boxes (rows). The transport matrix represents the 397

annual mean transport during a single year of the “Estimating the 398

Circulation and Climate of the Ocean” (ECCO) version 4 ocean 399

model (13, 28). It represents physical transport attributable to 400

advection, diffusion and parameterised sub-grid-scale processes in 401

the ocean model with 6-hourly resolution. Results in the main text 402

use annual average circulation, temperature and carrying capacities. 403

We also performed simulations using monthly resolved temperatures 404

and carrying capacities, finding that our results were not overly 405

sensitive to the change (Figure 2). We note that this may not be 406

the case for plankton groups with more pronounced seasonal cycles, 407

such as diatoms. 408

In the surface transport case, equation 1 does not conserve mass 409

at the local scale, because the surface flow field is divergent (SI 410

Appendix, Fig. S3a). The associated imbalances are generally small 411

(± < 5%; SI Appendix, Fig. S3b), and are overcome as the local 412

population is restored to the local carrying capacity by positive or 413

negative net growth (as described in the next section). Transport in 414

the depth-integrated cases is generally mass conservative (with the 415

exception of very isolated regions of deep convection in the Irminger 416

and Ross seas). 417

Stochastic demography. We used a stochastic population model 418

to estimate the global abundance of 94 ecologically neutral sub- 419

populations (i), at the 60,646 surface grid points (j) defining the 420

global ocean. Each subpopulation was initialised with population 421

abundance, Xi,j , equal to the local carrying capacity, Nj , at 94 422

unique “seed locations”, distributed approximately evenly around 423

the surface ocean. In addition to the seed populations, we included 424

one additional tracer representing a globally resident species, with 425

a local population abundance of Xi,j = 0 at all seed locations, 426

and Xi,j = Nj throughout the rest of the surface grid. The total 427

number of individuals Xj,tot of all subpopulations at any location, 428

j, is equal to the carrying capacity, Nj . 429

Under the assumption that all species have equal fitness (and 430

from now on ignoring subscripts), the number of individuals X in 431

each subpopulation surviving at each generation is drawn randomly 432

from a probability distribution representative of the local popu-433

lation (after oceanic transport and mutation) with probability p434

equal to the local population frequency (x = XN−1). Under these435

assumptions, the expected population size in each generation is436

given by the multinomial distribution,437

X ∼M(N, p) [2]438

For large values of N considered here, equation 2 is well approxi-439

mated by a normal distribution when X & 100 (i.e. p & 1× 10−20).440

We therefore adopt the (computationally-efficient) normal distribu-441

tion in all simulations.442

X ≈ N (Np,
√

Np(1− p)) [3]443

This will not be the case as subpopulations approach extinction (or444

more generally fixation), but we expect this error to be small in445

comparison to cell transport (equation 1). In cases where random446

draws from the normal distribution yield negative abundances, these447

are replaced with zeros.448

Selection. Selection can be further incorporated through the se-449

lection vector, s, that defines the relative fitness of each population450

in X. With a local water temperature of T , a plankton population451

with thermal optimum Topt and thermal niche breadth w will have452

a selection coefficient of453

s = exp
[
−
(

Tenv − Topt

w

)2]
[4]454

This is incorporated into the probability of selection such that the455

sum of all probabilities remains equal to one. The probability of456

selection for population i at each location is thus457

pi = xisi

[ K∑
k=1

xksk

]−1
[5]458
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where K is the total number of populations.459

In the non-adaptive simulations, each seed population is assigned460

a thermal optimum equivalent to the annual mean water temper-461

ature at its seed location. At the same time, the global resident462

population is divided into 77 subpopulations, each with thermal463

optima matching the average temperature at its initial location. All464

populations have a thermal niche breadth, w, of 6◦C.465

Adaptation. Adaptive evolution is enabled by further dividing466

each subpopulation into 77 genotypes, each corresponding to a467

different thermal optimum. The genotypes are linearly spaced at468

0.5◦C intervals from -2 to 36◦C, with only the locally optimum469

genotype initialised with non-zero biomass at the beginning of each470

simulation. At each timestep, a small fraction of successfully re-471

producing individuals are diverted to adjacent genotypes in the472

same subpopulation with higher or lower thermal optima. In prac-473

tice, this is achieved after each reproductive cycle by multiplying474

the population matrix [X] by the K ×K trait-diffusion matrix M475

(19, 20).476

Xt+1 = MXt [6]477

The trait-diffusion matrix itself is defined by the parameterised trait-478

diffusion rate (here 1 or 10%). This is the fraction of daughter cells479

in each population that are diverted to the neighbouring phenotypic480

class in each generation (19, 20).481

Simulations. In each case the model was integrated for 100 years.482

The transport matrix was applied every six hours, with selection483

and adaptation applied every 24 hours.484
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