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Mini-Abstract 

In this study we aimed to derive a prediction model for estimating overall survival after 

esophagectomy for cancer using a random survival forest methodology and 6399 patients. 

The technique provided excellent accuracy in characterising postoperative survival and 

provided significantly greater discrimination than using TNM status alone. 
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ABSTRACT 

Objective 

To develop a predictive model for overall survival after esophagectomy using 

pre/postoperative clinical data and machine learning. 

Summary Background Data 

For patients with esophageal cancer, accurately predicting long-term survival after 

esophagectomy is challenging. This study investigated survival prediction after 

esophagectomy using a Random Survival Forest (RSF) model derived from routine data from 

a large, well curated, national dataset.  

Methods 

Patients diagnosed with esophageal adenocarcinoma or squamous cell carcinoma between 

2012 and 2018 in England and Wales who underwent an esophagectomy were included. 

Prediction models for overall survival were developed using the RSF method and Cox 

regression from 41 patient and disease characteristics. Calibration and discrimination (time 

dependent AUC) were validated internally using bootstrap resampling. 

Results 

The study analysed 6399 patients, with 2625 deaths during follow-up. Median follow-up was 

41 months. Overall survival was 47.1% at 5 years. The final RSF model included 14 variables 

and had excellent discrimination with a 5-year tAUC of 83.9% (95%CI 82.6-84.9%), compared 

to 82.3% (95%CI 81.1-83.3%) for the Cox model.  The most important variables were lymph 
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node involvement, pT stage, CRM involvement (tumour at <1mm from cut edge) and age. 

There was a wide range of survival estimates even within TNM staging groups, with quintiles 

of prediction within Stage 3b ranging from 12.2-44.7% survival at 5 years. 

Conclusions 

An RSF model for long-term survival after esophagectomy exhibited excellent discrimination 

and well calibrated predictions. At a patient level, it provides more accuracy than TNM 

staging alone and could help in the delivery of tailored treatment and follow-up. 
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INTRODUCTION 

 

Esophagectomy for cancer is a highly morbid operation from which patients frequently take more 

than 18 months to recover. 1–3 Long-term prognosis for patients also remains poor, with 5-year 

survival estimated to be less than 50%. 4   

 

Currently, clinicians have a limited number of tools to identify patients with esophageal cancer who 

are likely to respond well to surgery and those who may not.  TNM staging is widely used for patient 

stratification, but the classification is based on largely historic data (patients treated in 1980s to 

2000s).5 In addition, staging groups remain coarse, even with the introduction of post-neoadjuvant 

staging (i.e. ypTNM) in TNM 8.6 Important characteristics that are readily available and routinely 

collected (such as circumferential resection margin) are not considered for the sake of simplicity, 

leading to a range of survival outcomes for patients within the same stage groups. This makes 

application at the patient level inaccurate. 

The delivery of personalized long-term survival estimates after treatment for esophageal cancer is 

challenging. In addition to informing patients, reliable survival figures would enable the 

identification of high-risk individuals or groups in whom enhanced surveillance or treatment 

intensification (with traditional or novel agents such as immunotherapy) could be considered, or 

conversely patients where de-escalation would be the preferred option. 

Prognostic models can address these limitations by combining multiple risk factors, although none 

have entered widespread use among surgeons or oncologists treating esophageal cancer. 7,8Models 

based on Machine Learning (ML) techniques may produce more accurate predictions than models 

built using traditional statistical methods (e.g. logistic/cox regression). 9,10  In particular, Random 

Survival Forest (RSF) models have produced promising results11–13 in various settings, and in 

esophageal cancer were used to derive the AJCC TNM 7th and 8th edition staging manuals,5,6 and to 
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quantify the benefits of optimising treatment.14 RSF is a machine-learning method that, when 

developed to predict survival, builds many decision trees with log-rank test based split points to 

identify different survival trajectories, with the predicted probability for an individual being derived 

as the average prediction across all of the trees. 

The aim of this study was to derive and validate a prognostic model based on Random Survival 

Forest methods for long-term survival after esophagectomy for cancer, and to compare its 

performance to a model developed using a common statistical approach (Cox regression), using a 

population-based dataset from England and Wales. 
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METHODS 

Study cohort 

The study used a linked dataset prepared by the National esophago-Gastric Cancer Audit (NOGCA), a 

national clinical audit of patients undergoing treatment for cancer of the esophagus or stomach in 

England and Wales.15  The audit was commissioned by the Healthcare Quality Improvement 

Partnership (HQIP) and funded by NHS England and the Welsh government.  Patients were eligible 

for inclusion in the audit if they had a histological diagnosis of epithelial cancer, with the first 

patients being registered in April 2012. The audit collects a dataset that covers the care pathway 

from diagnosis to the end of initial treatment and links these patient records with information from 

other national health care datasets, including the National Cancer Registration and Analysis Service 

(NCRAS, see 15 for more details).  Data collection was approved by the Confidentiality Advisory 

Group under section 251 of the NHS Act 2006. 

 
Ethics approval  
 
The study is exempt from UK National Research Ethics Committee approval as it involved secondary 

analysis of an existing dataset of anonymized data. The National esophago-Gastric (OG) Cancer Audit 

has approval for processing health care information under Section 251 (reference number: ECC 1-06 

(c)/2011) for all National Health Service (NHS) patients diagnosed with OG cancer in England and 

Wales. Data for this study are based on patient-level information collected by the NHS, as part of the 

care and support of patients with cancer. 

 

The study cohort included patients diagnosed with adenocarcinoma or squamous cell carcinoma of 

either the esophagus or gastro-esophageal junction (Siewert I – II) between 1 April 2012 and 31 

March 2018 who underwent a planned curative esophagectomy. The study excluded patients who 

died in hospital prior to discharge, had confirmed metastatic disease on post-operative histology or 

had an inadequate lymphadenectomy (<15 lymph nodes)16, in whom interpretation of lymph node 
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status would be biased. Supplementary Figures S.1  and S.2 details the patient exclusions and 

assumptions to derive the final sample size (n=6399).  

 

The primary outcome was overall survival from the date of discharge following surgery. Survival was 

confirmed by linking the audit records with records from the Office for National Statistics (ONS) 

death register.  Median duration of follow-up was 41 months (IQR 24-59).  

 

 

Variable definition 

The audit data contained 41 variables that were routinely measured in clinical practice, were beyond 

the control of the provider, had >50% completeness, and were clinically relevant to survival, listed in 

Table S.1. The dataset contained patient characteristics, disease information, details of treatment 

received, postoperative complications and tissue pathology.  Circumferential resection margins were 

considered involved if there was tumour at <1mm from the cut edge and longitudinal resection 

margins were considered involved if tumour was found at the cut edge, in line with Royal College of 

Pathologists Guidelines.17 In patients undergoing neoadjuvant therapy, treatment was specified as 

‘complete’ if it was completed as prescribed or ‘not complete’ (due to disease progression, 

treatment toxicity, technical problems or patient choice). Malignant esophageal and gastric surgery 

is centralised in England and Wales and undertaken solely by dedicated teams. We therefore defined 

annual hospital volume as average number of major upper gastrointestinal resections 

(esophagectomy/major gastrectomy) per year, in line with NHS commissioning guidelines.18 Staging 

was conducted using the 8th edition of the AJCC TNM staging manual. 

 

Among the 41 variables considered for inclusion, five had missing values for more than 5% of 

patients: completion of neoadjuvant treatment (19.9%), return to theatre (15.8%), grade of 

differentiation (7.0%), cT stage (5.9%) and surgical approach (5.7%). Missing data was assumed to be 
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missing at random and was addressed using multiple imputation by chained equations (MICE) with 

10 imputations.19  

 

Model development 

The study aimed to develop a model using a subset of variables so that data collection would be 

straightforward, and the model easy to use in clinical settings.  To select core variables, we used 

permutation based Random Forest variable importance (VIMP)11 with bootstrapped confidence 

intervals. Variables with a p<0.01 for VIMP greater than 0 were included in the final model (Table 

S.2). Pre-treatment histology (i.e. Adenocarcinoma or SCC) was also included to improve the face 

validity of the model. The final model was trained using 14 variables; Age, Gender, cT, cN, Site of 

Tumor, Pre-treatment histology, Neoadjuvant Treatment, Completion of neoadjuvant treatment, 

pT/ypT, number of positive lymph nodes, circumferential and longitudinal margin involvement, 

grade of differentiation and presence/absence of surgical complications.The RSF hyperparameters 

(i.e. number of trees, number of variables per tree and minimum node size) were optimIzed by grid 

search. Final predictions were combined across the imputed data.20–22 

 

A cox regression model was also developed using the same set of variables.  Not all relationships 

between survival and continuous variables were linear, and a square root transformation was 

adopted for positive lymph nodes, while age was included as a restricted cubic spline. 

 

Assessment of model performance 

Model performance was quantified by discrimination and calibration. Discrimination was assessed 

using the time dependent area under the receiver operator curve (tAUC)23. Here this represents the 

proportion of random pairs of patients (one alive at time point ‘t’ and one dead before this) where 

the model gives the patient who is alive a higher probability of survival than the patient who is dead. 

It can be considered analogous to the standard AUC in a binary regression model, extended to 
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survival by weighting of censored patients,24 and has advantages over the C-statistic measure of 

performance.25 Assessment of calibration was conducted visually for five patient subgroups of 

increasing risk (i.e. patients were grouped by quintiles of predicted risk of mortality at 5 years). In 

addition, we calculated the integrated brier score.26,27 A score closer to 0 indicates better accuracy of 

predictions.  

 

Finally, the relative performance of the two models was compared using decision curve 

analysis(DCA).28 This method is based on evaluating the ‘net-benefit’ of model predictions across of 

range of possible decision thresholds that reflect how a patient might weigh the risk of harm 

associated with a false positive result (compared with a true positive result).  Models with a better 

performance have a greater net benefit across all thresholds of probability.  

 

Data analysis was conducted in R 3.5.3.29 The RSF was trained using the packages Ranger30 and RF-

SRC31. This study was conducted to comply with the AJCC prognostic model32 and TRIPOD33 criteria, a 

compliance checklist is provided in Table S.3. Complete R code to reproduce the analysis is available 

on request. More extensive methodology and instructions to perform external validation are 

provided in the supplementary materials. All performance metrics were validated internally by the 

0.632 estimator34 in 1000 replications of the bootstrap with replacement.  
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RESULTS 

The study included 6399 patients with esophageal cancer who underwent an esophagectomy 

between April 2012 and March 2018.  Table 1 summarizes the characteristics of patients and their 

treatment.  The median age at diagnosis was 66 years and only 1 in 5 were women.  Tumours were 

predominantly adenocarcinoma (87%) and about 3 in 10 were classified as GEJ-Siewert I-II. There 

were 2625 recorded deaths, and the median survival was 53 months. Survival at 1, 3 and 5 years was 

83.7%, 57.1% and 47.1% respectively (Figure 1).  Differences in survival stratified by stage according 

to if patients received neoadjuvant treatment (i.e. ypTNM) or surgery alone (i.e. pTNM) are shown 

and discussed in supplementary Figure S.9. 

 

A total of 13 variables were identified as important to include in the final model in addition to 

histological diagnosis. The RSF variable importance measure indicated the number of lymph nodes 

as the most important single risk factor for worse prognosis followed by pT/ypT stage (see partial 

dependence plots, supplementary figures S.3/S.4).  

 

Model performance: internal validation 

The RSF model demonstrated excellent discrimination, with a bootstrapped tAUC at 60 months of 

83.9% (95% CI 82.6-84.9%), which was similar at other time points (Figure S.6).  This was better than 

the Cox regression model (coefficients of which are given in Table S.4), which had a bootstrapped 

tAUC of 82.3% (95%CI 81.1-83.3%) and TNM stage alone (tAUC 74.5%).  Figure 2 shows the 

agreement between the RSF model predicted and observed survival times for patients grouped 

according to quintile of prediction and in both models, calibration was visually good throughout 

these groups. The integrated brier scores for the RSF model was superior to the cox regression at 

0.136 (95%CI 0.134-0.138) and 0.141 (0.139-0.143), respectively. Decision curve analysis also 

showed a greater net benefit for the RSF over Cox regression model (Figure S.7) or using TNM alone 

(Figure S.8).  
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There was a broad range of predictions yielded even within p/ypTNM staging groups, with the 

lowest risk quintile of Stage 3b patients having a predicted 5-year survival of 44.7% compared to 

12.2% for the highest risk quintile. Moreover, there is a subgroup of early stage disease (TNM stage 

0-1), who would generally be considered to be cured, who had a relatively poorer survival of only 

64.7% at 5 years (Figure 3) and overlap of quintiles between staging groups.    

Figure 4 gives an overview of mean predicted 5-year survival for combinations of the most important 

variables (Lymph node status, T-stage, CRM involvement and age at diagnosis). Age at diagnosis is 

most influential with early stage (T0-2,N0-1) disease, however its importance diminishes with 

increasing T/N-stage. Examples of how the model might be used are given in the supplementary 

materials (Figure S.10) 
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DISCUSSION 

Accurate predictions of long-term survival following surgery for esophageal cancer may help 

clinicians and patients.  This study has demonstrated that an RSF model can discriminate between 

patients with different long-term prognoses using a small number of routinely collected variables. 

The model showed very good calibration and discrimination on internal validation, and exceeded 

that achieved using Cox regression analysis. The model is applicable to patients who have undergone 

a planned curative esophagectomy for adenocarcinoma or squamous cell carcinoma of the 

esophagus, who had an adequate lymphadenectomy and survived to discharge from hospital. 

At present, information given to patients after surgery about their long-term survival is limited and is 

largely based on TNM staging. This can mean the information provided to patients can be vague, 

such as ‘50% survive to 5 years’. Decisions on whom to offer adjuvant treatment or consider for 

entry into trials may involve more criteria than TNM staging, but the relationship between these 

criteria and survival may be uncertain.  

The model described here provides a more precise prediction of prognosis for an individual patient 

than TNM staging alone, and this will be valuable in postoperative discussions with patients. This 

increased accuracy has several benefits.  In a research setting, it is key for establishing the efficacy of 

treatment. In clinical practice, it supports selecting the right patients for the right treatments, 

particularly with the emergence of novel therapies (e.g. Immune checkpoint inhibitors35). Further 

research on how best to communicate predicted survival to patients is required, even in early stage 

disease, desire for detail of prognosis is highly variable,36 and the effective use of decision aids is 

challenging.37  

 

The model compares favourably to those published previously. Cox proportional hazard models 

using a variety of predictors have reported C-index/tAUCs of between 0.61-0.70.38–40 In comparison 
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the C-index of our model was 0.76 (0.75-0.78) and the 5-year tAUC 0.84 (0.83-0.85). It also is more 

broadly applicable and includes patients with all modalities of neoadjuvant treatment. 

 

The variables found to be most influential are consistent with clinical experience and the findings 

from other studies, with lymph node involvement being widely recognized as the most influential 

determinant of long-term survival in esophageal cancer.  Both clinical T stage and clinical N stage 

were found to be important independent of their pathological equivalents. There is some logic to 

support including both clinical and pathological variables, in that changing variables within patients 

may indicate the impact of neoadjuvant treatment (although this is limited by the relatively 

decreased accuracy of clinical staging). This is supported by recent studies which have shown that 

downstaging after neoadjuvant treatment improves absolute survival independent of the ypTNM 

stage.41 Completion of neoadjuvant treatment was included which is biologically sensible, and 

important in the context of the increasing use of potentially more toxic regimens such as FLOT.4  

 

The main strength of this study is the large sample size from a national population.  The case 

ascertainment of esophagectomies exceeds 90% in the national audit, and the dataset was 

representative of patients within England and Wales who underwent curative surgery.  Another 

strength is the linkage of audit records with ONS mortality data which enabled complete follow-up.  

 

There are a number of limitations to the approaches taken in this study. Despite being more 

accurate than TNM staging at the individual patient level in the post-operative setting, no attempt 

has been made to develop a pre-treatment predictive model and cTNM remains the gold-standard in 

this domain. The NOGCA lacks several data items known to influence survival such as tumour 

regression grade (TRG)42 and lympho-vascular invasion.43 Additionally length of tumour44 and BMI45 

could be considered, but were only available in recent years and therefore had too many missing 



 16 

values. There was also no clear information on what adjuvant treatment this patient cohort had 

received in addition to their neoadjuvant/perioperative treatment. 

 

Involvement of circumferential margin was defined according to Royal College of Pathologists (RCP) 

criteria, i.e. <1mm from cut edge is involved. Throughout much of the rest of the world the American 

College of Pathologist guidelines are used,46 i.e. involved if tumour at cut edge. There is considerable 

debate about the most appropriate measure,47 and this model requires validation if it is to be used 

with this definition. It was not possible to use T stage subdivided into ‘a’ or ‘b’ because not all 

patients were recorded with this information.  Consequently, the analysis used the base T stage 

only. Patients treated solely with endoscopic techniques (mucosal resection or submucosal 

dissection) who did not require surgery were also excluded and it is not appropriate to use the 

model in this patient group. 

 

The Esophageal Complications Consensus Group – ECCG48 has recently specified and defined a core 

set of complications for esophagectomy which has been adopted worldwide.49 The NOGCA relies on 

reporting from local cancer centres and pragmatically uses a limited set of complications with 

broader definitions. In this study the reported rate of complications was 40.0%, which is significantly 

less than the figures from the ECCG data (59%).  This is likely to reflect the varying definitions and 

under reporting rather than a truly lower rate, which may explain the low overall importance of 

complications and absence of specific complications (e.g. anastomotic leak) in the model. The ECCG 

classification of complications has recently been adopted into the national Cancer Outcomes and 

Services Dataset (COSD) used in cancer registration within England, so more accurate complication 

data will be available in future iterations of the model. 
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CONCLUSIONS 

Using a large, nation-wide, contemporaneous clinical dataset, this study has demonstrated the 

ability of a Random Survival Forest model to provide accurate predictions of long-term survival after 

surgery for esophageal cancer. A key benefit of the model is its performance in identifying patients 

with the same disease stage who have diverging 5-year survival. For example within Stage 3b, the 

largest group with 2023 patients, the model identifies a low risk quintile of patients with a predicted 

5-year survival more than three times the highest risk quintile (44.7% vs 12.2%). These groups will 

likely benefit from different post-operative monitoring and/or treatment strategies. A similar 

pattern is seen with stage 4a disease (21.7% vs 6.1% 5-year survival), suggesting that there is a 

subgroup even in the most advanced (non-metastatic disease) who might be well served by targeted 

intervention. 

The RSF model described in this paper is available at https://uoscancer.shinyapps.io/AugisSurv/  and 

could be a valuable prognostication tool for patients, surgeons and oncologists. In the future, it may 

also be useful to guide adjuvant treatment. External validation of this tool in other healthcare 

systems would be of benefit to confirm its performance. 

  

https://uoscancer.shinyapps.io/AugisSurv/
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FIGURE LEGENDS 

 

Figure 1 Survival of patients who underwent an esophagectomy between April 

2012 and March 2018, stratified by TNM stage 

 

  



 24 

Figure 2 Calibration of predictions from RSF model. Patients grouped into 

quintiles according to predicted survival at 60 months post surgery 
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Figure 3 Range of predictions by p/ypTNM stage. (A) Stage 0-1, (B) Stage 2-3a, 

(C) Stage 3b, (D) Stage 4a. Patients were grouped into quintiles by predicted 

survival at 60 months, with the highest and lowest groups shown. 
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Figure 4 Predicted 5-year survival for a given combination of selected 

variables. Colors represent differing prognosis, with green more favourable 

and red less favourable. 
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Table 1 Background characteristics of patients who underwent an 
esophagectomy between April 2012 and March 2018 

Characteristic   N = 6399 
Median 
Survival   Characteristic   N = 6399 

Median 
Survival 

Sex Male 5045 (78.8) 47  
Anastomotic 
Leak No      5923 (92.6)  54 

 Female 1354 (21.2) 72  Yes       445 (7.0)  40 

Age 0-40        64 (1.0)  NR  Unknown        31 (0.5)  NR 

  41-50       405 (6.3)  68  
Any 
Complication No      3810 (59.5)  55 

  51-60      1397 (21.8)  59  Yes      2558 (40.0)  49 

  61-70      2615 (40.9)  60  Unknown        31 (0.5)   

  71-80      1787 (27.9)  42  
Involved 
Longitudinal 
Margin 

No 6188 (96.7) 55 

  81+       131 (2.0)  29  Yes       211 (3.3)  19 

Site of Tumor 

Upper/Mid 
Esophagus       792 (12.4)  61  

Involved 
Circumferential 
Margin 

No      4617 (72.2)  77 

Lower Esophagus      3795 (59.3)  52  Yes      1534 (24.0)  21 

GEJ (S1-2)      1812 (28.3)  53  Unknown       248 (3.9)  57 

Histopathology Adenocarcinoma 5540 (86.6) 51  
pT/ypT 

T0/is       524 (8.2)  NR 

  SCC 859 (13.4) 68  
  

T1      1201 (18.8)  NR 

cT T0/is/1       467 (7.3)  NR  
  

T2       836 (13.1)  NR 

 T2      1294 (20.2)  67  
  

T3      3549 (55.5)  30 

 T3      3979 (62.2)  38  
  

T4       289 (4.5)  13 

 T4       284 (4.4)  36  Lymph Nodes Examined      26 [15-130]  

 Unknown       375 (5.9)  NR  
pN/ypN 

N0      2994 (46.8)  NR 

cN N0      2551 (39.9)  76  
  

N1      1414 (22.1)  46 

  N1      2547 (39.8)  41  
  

N2      1133 (17.7)  22 

  N2       938 (14.7)  32  
  

N3       858 (13.4)  14 

  N3       159 (2.5)  28  
Grade 

G1 (Well) 226 (3.5) NR 

  Unknown       204 (3.2)  47  

 

G2 (Moderate) 2331 (36.4) 60 

cM M0      6151 (96.1)  54  

 

G3/4 (Poor/Anaplastic) 2697 (42.1) 38 

 M1        44 (0.7)  26  

 

GX (Unable to determine) 695 (10.9) 66 

 Unknown       204 (3.2)  47  

 

Unknown 450 (7.0) 72 

ASA 1       892 (13.9)  64  
NAT 

Chemotherapy      3976 (62.1)  42 

  2      3745 (58.5)  53  Chemoradiotherapy       450 (7.0)  NR 

  3      1726 (27.0)  42  None      1973 (30.8)  66 

  4        36 (0.6)  43  
Completion of 
NAT Completed      2981 (46.6)  51 

Approach Open      3357 (52.5)  51  Not Completed       282 (4.4)  32 

 Hybrid      1931 (30.2)  51  Not Applicable      1861 (29.1)  67 

 MIO       748 (11.7)  NR  Unknown      1275 (19.9)  42 

 Unknown       363 (5.7)  41  
Annual 
Hospital 
Volume 

1 to 30       504 (7.9)  59 

     31 to 60      3351 (52.4)  55 

     >60      2544 (39.8)  48 
Data given as absolute number (percentage) and median [Range] KEY: NAT = Neoadjuvant Treatment, NR= median survival not reached. MIO = Minimally invasive 
esophagectomy 
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Supplementary Methods 

Missing Data 

2817 cases out of 6399 had missing data (44.0%), with a total of 5015 missing data points (5015/270143, 
1.9%). Variables considered that had >5% missing data were outcome of neoadjuvant treatment (22.3%), 
return to theatre (15.8%), differentiation grade (7.0%) and surgical approach (open/minimally invasive/hybrid, 
5.7%). Circumferential resection margin, Clinical/pathological T/N/M stage, longitudinal resection margin, 
length of stay and survival time all had missing data in 1-5% of cases. All other variables had <1% missing data. 

In this study missing data was assumed to be at random (MAR) and was handled using multiple imputation by 
chained equations (MICE),(1) with 10 iterations across 10 imputed datasets. MICE imputes iteratively, across 
variables, one at a time using a variety of methods according to the class of the data. In general, a type of 
regression model is generated with the missing value as the dependent variable and the known variables as 
the independent variables. Extension to the survival setting has been described previously(2,3). The optimal 
number of imputed datasets has been suggested to be 100 multiplied by the fraction of incomplete cases(4). 
Here, the number of imputed datasets was limited to 10 for computational reasons and 10 iterations were 
performed as suggested(1). All 41 candidate covariates (Table 1) were included in the imputation model, which 
should increase the quality of its specification. We elected to include cases with missing survival data (i.e. the 
outcome) as this have been shown to improve the imputation model(5) and is generally recommended(6). For 
the Cox-Proportional hazards method, final pooled models were generated. For the RSF, pooled survival 
probabilities were created as described below. 

Training and Validation Datasets 
 
The performance of the model was reported as the mean of 1000 bootstrap replications assessed using the 
0.632 estimator. For each of the 1000 bootstrap resamples, an RSF was trained on a random sample of the 
whole dataset with replacement, meaning that approximately 63.2% of cases were selected randomly and 
some of these cases are then replicated to give a sample size of 6399 for model training. Having trained the 
model, its performance was then assessed on the samples not used for training (testing set) and on those 
samples used for model training (training set).  
 

RSF Derivation 

To derive the RSF, hyperparameters were optimised to mimimise prediction error (1 – c index) in the random 
forest Out-of-Bag (OOB) samples. Each tree in the random forest is trained on 2/3 of the cases with 
replacement (the in-bag samples) and then tested on the remaining 1/3 (the OOB samples), and hence the 
OOB error averaged across all trees is equivalent to the simple bootstrap with repetitions equal to the number 
of trees in the forest. Hyperparameters optimised were number of trees, number of variables in each decision 
tree and minimum node size. 

This process was repeated for each imputed dataset to yield 10 separate models. It is not possible to directly 
combine RSF models generated on multiply imputed data as would be the case for Cox or Logistic Models, due 
to the absence of coefficients with this technique. To address this, predictions were directly combined(7,8). 
The standard error of prediction for each unique death time was calculated using the predictions from 
individual decision trees in the forest (i.e. 200-400 samples), allowing the predictions from each dataset to be 
combined using Rubin’s rules after a complementary log-log transformation(9). 
 
Assessment of Discrimination 

In comparison to the binary outcome setting, there is no clear consensus on the assessment of discrimination 
in survival models. The Harell’s C-statistic in a binary outcome model is equivalent to the area under the 
receiver operator characteristic (ROC) curve or AUC. It can be defined as the proportion of pairs of cases where 
one has an outcome and the other does not, that the model correctly orders their predictions (i.e. the case 
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with an outcome scores higher than the case without). In a survival setting, confusingly, Harrell’s C-statistic is 
not equivalent to this, instead representing the proportion of random pairs of cases where the case which lives 
longer is given a higher probability of survival at a specified time point.  

Although a reasonable diagnostic measure of a model, it differs crucially from the binary outcome setting with 
which most users are familiar and may be misinterpreted in that way. It has also been criticised for considering 
only ‘usable pairs’ (i.e. uncensored pairs of cases) and is hence heavily dependent on the censoring 
distribution of the study dataset. An alternative method of assessment that has increasing popularity due to its 
ready interpretability and better utilisation of censored data is the time-dependent area under receiver 
operating characteristic curve (tAUC). 

To calculate the tAUC, firstly we must consider censoring. If we treat the censored patients as missing (i.e. 
ignore censoring), then a biased comparison of cases and controls is conducted.  There are multiple ways of 
addressing this issue, and here we have used the Inverse Probability of Censoring Weighting (IPCW) , a 
standard technique for survival analysis to appropriately weight the cases, as described by Blanche et al(10). In 
short, surviving cases are weighted according to the inverse of the probability of being censored at each time 
point so that surviving cases are proportionally over-represented in the final comparison.  

Secondly, we must decide how to account for time. In this study we used the Cumulative sensitivity/dynamic 
specificity (C/D) definitions (there are two alternative definitions, Incident sensitivity and dynamic specificity – 
I/D and Incident sensitivity and static specificity – I/S). Here, for each measured time point (i.e. death time), all 
patients are classified into being either cases (i.e. dead at that time point) or controls (i.e. alive at that time 
point). The cumulative sensitivity at time point ‘t’ is the proportion of cases who are dead at time ‘t’ who are 
given a probability of dying above a set cut-off point ‘c’. The dynamic specificity is the proportion of cases who 
are alive at time ‘t’ who are given a probability of dying below ‘c’(11). Cases are weighted according to IPCW to 
yield a final sensitivity and specificity and calculated across a range of cut-points to derive the time dependent 
receiver operator curve (tROC), from which the tAUC can be calculated. The performance across all time points 
(integrated tAUC, iAUC) can also be calculated, and was 82.4% in the RSF. There was preservation of 
performance across time points (Figure S.6). 

Decision Curve Analysis 

Predicted probabilities for each model were compared using decision curves. These were first developed in 
2006 by Vickers et al.(12) and designed to provide more information on the clinical utility of a model than 
arbitrary statistics, such as the C-index. Decision curve analysis (DCA) calculates the ‘net benefit’ of decisions 
made across a range of probability thresholds by applying validation data to the formula: 

 

Where TP is the number of true positives, FP is the number of false positives, n is the number of patients and 
pt is the chosen probability threshold. Plotting net benefit across all probability thresholds yields the decision 
curve. The principle is to assess the cost/benefit of basing a decision to intervene at a defined probability (i.e. 
pt) of an event (e.g. disease present/absent), and has been previously extended to censored data(13). Having 
generated the curve, it is possible to see the range of probabilities of disease in which the model has utility for 
basing treatment decisions above that of treating all patients or none.  

Furthermore, different clinical prediction models can be compared by the same technique. The DCA is 
important in that it can show that a model that both discriminates and calibrates well, is still useless in clinical 
practice and should be discarded due to the distribution of predicted probabilities(14). DCA can also be used 
to show if a particular model would be beneficial based on individual patients expectations of acceptable 
risk(15). In a survival setting, decision curves are generated for individual survival times, which we conducted 
annually between 1 and 5 years (Figure S.7). The net-benefit of the RSF model was greater than for the Cox 
regression predictions across all threshold probabilities. This pattern is preserved at all time periods. 
Importantly, the RSF model also has a net benefit over the use of mortality as a function of pathological TNM 
stage alone (Figure S.8). 
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Figure S.1 Study Flow Diagram 

 
Factor levels in Clinical T Stage were collapsed so that T0,Tis and T1 were a single category 
due to low number of patients in these categories and similar observed survival (as shown 
below in Figure S.2). TX was treated as missing. 
 
Figure S.2 Observed survival for 6399 patients after oesophagectomy, stratified by cT Stage 
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Table S.1 Candidate variables considered for inclusion 

 

Preoperative Operative Post-Operative 

Gender Any Surgical Complication Involved Longitudinal Margin 

Age Anastomotic Leak 

Involved Circumferential 

Margin 

Site of Tumour Chyle Leak 

Number of Positive Lymph 

Nodes 

Histopathology Bleeding Complication pT/ypT 

cT Cardiac Complication Differentiation Grade (Worst) 

cN Acute Kidney Injury 
 

cM Pneumonia   

Neoadjuvant Treatment Modality ARDS 
 

Completion of Neoadjuvant Treatment Pulmonary Embolism   

Surgical Approach Pleural Effusion 
 

Type of Operation Any Respiratory Complication   

Cardiovascular Comorbidity Infective Complication 
 

COPD Return to Theatre   

Chronic Kidney Disease Number of Operations 
 

Chronic Liver Disease     

Diabetes Mellitus 
  

Psychiatric Illness     

Cerebrovascular Disease 
  

Barrett’s Oesophagus     

Performance Status (PS) 
  

ASA Grade     

Annual Hospital Volume     
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Table S.2 Full Model VIMP, ordered by magnitude 

  VIMP LCI UCI 
Total Positive Lymph Nodes* 10.85 9.76 12.00 
pT/ypT* 3.57 2.90 4.19 
Involved Circumferential Margin* 1.69 1.41 2.00 
Age* 0.39 0.28 0.49 
cT* 0.32 0.19 0.45 
cN* 0.22 0.11 0.34 
Neoadjuvant Treatment* 0.15 0.08 0.22 
Completion of Neoadjuvant 
Treatment* 0.13 0.06 0.22 
Differentiation Grade (Worst)* 0.09 0.02 0.15 
Involved Longitudinal Margin* 0.07 0.03 0.10 
Gender* 0.06 0.01 0.12 
Site of Tumour* 0.06 0.02 0.10 
Any Complication* 0.05 0.00 0.11 
Approach 0.03 -0.02 0.08 
ASA 0.02 -0.04 0.08 
Return to Theatre 0.02 -0.02 0.06 
Procedure 0.02 -0.01 0.05 
Histopathology* 0.02 -0.01 0.04 
Anastomotic Leak 0.01 0.00 0.03 
Hospital Volume 0.01 -0.02 0.05 
COPD 0.01 -0.02 0.03 
Barrett’s 0.01 -0.01 0.02 
Respiratory Complication 0.01 -0.02 0.03 
ARDS 0.01 0.00 0.01 
DM 0.00 -0.01 0.02 
Chyle Leak 0.00 -0.01 0.02 
IHD 0.00 -0.03 0.04 
Pneumonia 0.00 -0.01 0.02 
Cardiac Complication 0.00 -0.02 0.02 
cM 0.00 0.00 0.00 
CVD 0.00 -0.01 0.01 
Number of Procedures 0.00 -0.02 0.02 
Renal Complication 0.00 0.00 0.00 
Pulmonary Embolism 0.00 0.00 0.00 
Chronic Liver disease 0.00 0.00 0.00 
Bleeding Complication 0.00 0.00 0.00 
Pleural Effusion 0.00 -0.01 0.01 
Psychiatric Illness 0.00 -0.01 0.00 
CKD 0.00 0.00 0.00 
Infective Complication 0.00 -0.01 0.00 
Performance Status 0.00 -0.05 0.05 
*Included in final model    
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Table S.3 AJCC Prognostic Model Criteria 

Inclusion Criteria Checklist 

The probability of overall survival, disease-specific survival (DSS), or disease-specific mortality (DSM) must be the outcome 

predicted Predicts Overall Survival 

The model should address a clinically relevant question Yes 

At face value, the model should include the relevant predictors, or explain why something relevant was not included Yes 

The model validation study should specify precisely which patients were used to evaluate the model and the validation 

dataset’s inclusion/exclusion criteria See Patient Flow Diagram 

The model should be assessed for generalizability and external validation Internal validation conducted 

The model should have a well-defined prognostic time zero Time of Surgery 

All predictors must be known at time zero and sufficiently defined for someone else to use Yes 

Sufficient detail must be available to implement the model OR the author must allow free access to the model. Yes 

A measure of discrimination must have been reported Yes 

Calibration in the small must be assessed (from the external validation data set) and provided Yes 

The model should be validated over a time frame and practice setting that is relevant to contemporary patients with disease Yes 

It should be clear which initial treatment(s), if any, were applied, and with what frequency Yes 

The development and/or the validation of the prediction model must appear as a peer-reviewed journal article Yes 

    

Exclusion Criteria 

A substantial proportion of patients had essentially no follow up, either missing entirely or very short censored follow up, in 

the validation dataset No 

No information on number of missing values in validation dataset Provided 

The number of events in the validation dataset is small (<100) No 
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Variable Importance Measures 

Partial dependence plots can be used to visualise the relative importance of different variables. The 

partial dependence function at specified variable values (e.g. Total Positive Lymph nodes = 5 or 

Neoadjuvant Treatment = Chemoradiotherapy) is calculated as the average prediction of the RSF if 

all cases in the training set were changed to have this value. It therefore allows visualisation of the 

average marginal effect of individual variables and how changing them effects overall predictions, 

although does not assess how individual variables interact. Figure S.3 and Figure S.4 show this 

function for the variables included in the final model, ordered by importance. The differential 

survival can be seen to be far more important for the first 4 variables compared to the others.  

 

The interpretation of this graph is complex.  We note that cT and cN appear to have little effect on 

survival based on these measures. In reality we know they are important, and the graph reflects that 

the p/yp staging values are also included in the model.  

Figure S.3 Partial Dependence Plots (1). (A) pN/ypN, (B)pT/ypT, (C) Circumferential Margin, (D) Age at 
diagnosis, (E) cT, (F) cN 
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Figure S.4 Partial Dependence Plots(2). (A) Neoadjuvant Treatment  Modality, (B) Completion of 
Neoadjuvant Treatment, (C) Grade of Differentiation, (D) Longitudinal Resection Margin,(E) Gender,(F) Site 
of Tumour,(G) Surgical Complications, (H) Histological Diagnosis 
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Cox Proportional Hazards Model (CPH) 

A CPH was fitted to the variables used for the RSF model with no interactions or transformations. 

The proportional hazards assumption was assessed using Schoenfeld residuals. To assess for non-

linearity of variables, the Martingale residuals of continuous variables separately entered into a null 

Cox model (Age and Number of Positive Lymph nodes) were calculated and a loess smoother 

applied. Both of these variables showed a clear non-linear form.  A square root transformation 

improved the fit of positive lymph nodes but standard transformation (power or logarithmic) did not 

results in an improvement for age (more details available on request). A restricted cubic spline was 

therefore applied to age with 4 knots (ages 49, 62, 69 and 78). Table S.4 gives the final model 

coefficients (excluding Age, where the spline is represented in Figure S.5). 

 

We examined the gain in performance for adding interaction terms between key variables.  

In brief we evaluated whether there was evidence of interactions between: 

1. Age and pT stage 

2. pT stage and number of positive nodes 

3. Age and number of positive nodes 

4. Histology, pT and number of positive nodes 

 

These demonstrated only a marginal effect on performance of the model (C-index 0.751 

without interactions, 0.749-0.752 with interactions) and were therefore not included.  A 

benefit of this approach is that the cox regression model gives the reader information about 

the basic strengths of the relationships between the explanatory variables and survival.  
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Table S.4 Final CPH Coefficients 

    Regression Coefficients Proportional 
Hazards 

    Beta Hazard Ratio (95% CI) P value Chi2 P value 

Site of Tumour Mid/Upper Oesophagus  1    
 Lower Oesophagus -0.007 0.99 (0.87 - 1.14) 0.916 1.49 0.222 

 GOJ -0.152 0.86 (0.74 - 0.99) 0.042* 0.24 0.623 
Gender Male   1       
  Female -0.205 0.81 (0.73 - 0.91) <0.001* 0.12 0.733 
Histopathology Adenocarcinoma  1    
 SCC 0.216 1.23 (1.07 - 1.42) 0.004* 3.85 0.05 
cT T0/1/is   1       
  T2 0.186 1.2 (0.94 - 1.55) 0.1443 0.34 0.559 
  T3 0.213 1.24 (0.96 - 1.59) 0.0948 0.47 0.491 
  T4 0.2 1.22 (0.9 - 1.66) 0.2019 0.23 0.628 
cN N0  1    
 N1 0.136 1.15 (1.04 - 1.26) 0.006* 0.76 0.384 

 N2 0.144 1.15 (1.02 - 1.31) 0.022* 0.2 0.656 

 N3 -0.015 0.98 (0.78 - 1.25) 0.899 0.24 0.624 
Neoadjuvant 
Treatment 
  
  
  
  

None   1       
CRT - Completed 0.165 1.18 (0.92 - 1.51) 0.190 0.8 0.372 
CRT - Not Completed 0.888 2.43 (1.01 - 5.86) 0.048* 0.09 0.765 
CT - Completed -0.013 0.99 (0.88 - 1.11) 0.836 0 0.967 
CT - Not Completed 0.11 1.12 (0.93 - 1.34) 0.237 0.01 0.934 

Any 
Complication No 

 
1 

   
 Yes 0.12 1.13 (1.04 - 1.22) 0.004* 0.07 0.784 
Square root Total LN Positive 0.453 1.57 (1.52 - 1.63) <0.001* 0.12 0.728 
pT/ypT T0  1    
 T1 0.205 1.23 (0.93 - 1.63) 0.1531 1.11 0.291 

 T2 0.512 1.67 (1.27 - 2.19) <0.001* 0.83 0.363 

 T3 0.93 2.53 (1.97 - 3.25) <0.001* 1.2 0.272 

 T4 1.442 4.23 (3.17 - 5.64) <0.001* 2.16 0.141 
Involved CRM No   1       
  Yes 0.309 1.36 (1.24 - 1.49) <0.001* 1.32 0.251 
Involved LRM No  1    
 Yes 0.289 1.33 (1.11 - 1.61) 0.003* 0.42 0.515 
Differentiation 
Grade Well   1       

  Moderate 0.315 1.37 (1.05 - 1.79) 0.021* 0.3 0.584 
  Poor/Anaplastic 0.453 1.57 (1.21 - 2.05) <0.001* 5.41 0.020* 
  GX 0.28 1.32 (0.99 - 1.76) 0.055 2.32 0.128 

* = p<0.05             
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Figure S.5 Hazard of increasing age over time fitted with a restricted cubic spline. Knots 
are placed at age 49, 62, 69 and 78. 
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Figure S.6 Random Forest Model AUC across time points. Dashed lines represent 95% confidence 
intervals 
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Figure S.7 Net benefit of the RSF model compared with the CPH model 

 
 

Figure S.8 Net benefit of the RSF model compared with TNM stage  
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Figure S.9 Survival stratified by (A) pTNM stage and (B) ypTNM stage 

 

 
 
Interestingly, we saw very little difference in outcomes between p and yp staging groups in 
comparison to that demonstrated in the 8th edition TNM data. It is not clear why this 
discrepancy is seen – but it may reflect a larger proportion of cases in the Worldwide 
Esophageal Cancer Collaboration (WECC) undergoing preoperative chemoradiotherapy, 
compared with a large majority of patients in our dataset who instead underwent 
perioperative chemotherapy. While it is true that p and yp staging differ it is probably also 
true that yp staging differs between modalities of treatment, and a smaller discrepancy 
between surgery-alone and chemotherapy treated patients would not be surprising.  
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Examples of use 
To illustrate how the model provides discrete predictions, two example cases are described below: 

 

Case 1: 60-year-old male patient with adenocarcinoma of the oesophagus, who undergoes 

neoadjuvant chemotherapy before an oesophagectomy. His post-operative pathology reveals a well 

differentiated T3N1 (1/30) M0 tumour with no circumferential or longitudinal margin involvement. 

The ypTNM Stage is 3b. 

 

Case 2: 60-year-old male patient with adenocarcinoma of the oesophagus, who undergoes 

neoadjuvant chemoradiotherapy which he fails to complete before an oesophagectomy. His post-

operative pathology reveals a poorly differentiated T3N2 (6/30) M0 tumour with circumferential 

margin involvement. He also suffers from a post-operative complication. The ypTNM Stage is also 

3b. 

 

Figure S.10 Example Case Predicted Survival 

 
A marked difference can easily be seen between these two cases, with a predicted 3-year survival of 

55.5% and 15.1% respectively for two cases with identical ypTNM staging. The mean survival 

observed for TNM3b patients is 26.0%.   
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External Validation Instructions 
 
A basic knowledge of R is required to conduct the external validation. As the model does not 
generate coefficients, access to the model itself is required.  
 
First, download the file packet from the web application in the ‘Model Details’ tab. This 
contains the models themselves and the manner in which dummy coding was conducted.  
 
An example blank dataframe is also included showing the structure in which data must be 
presented to the model. Care should be taken to match the variables/names/factor-levels in 
this file. If the model fails to generate predictions, it is probably due to a discrepancy here. 
 
Then access and download the R script from github:  
 
https://github.com/saqibrahmanUGI/AUGIS-Surv 
 
Running this script will firstly install and load the needed R packages, then batch generate 
predictions, calculate the tAUC and C-index, plot annual calibration curves and plot quintiles 
of prediction against observed KM estimates. 
 
 
  

https://github.com/saqibrahmanUGI/AUGIS-Surv
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