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Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive
black hole in a galactic core, are expected to be key sources for LISA. Modelling these systems with
sufficient accuracy for LISA science requires going to second (or post-adiabatic) order in gravitational
self-force theory. Here we present a practical two-timescale framework for achieving this and gener-
ating post-adiabatic waveforms. The framework comprises a set of frequency-domain field equations
that apply on the fast, orbital timescale, together with a set of ordinary differential equations that
determine the evolution on the slow, inspiral timescale. Our analysis is restricted to the special case
of quasicircular orbits around a Schwarzschild black hole, but its general structure carries over to the
realistic case of generic (inclined and eccentric) orbits in Kerr spacetime. In our restricted context,
we also develop a tool that will be useful in all cases: a formulation of the frequency-domain field
equations using hyperboloidal slicing, which significantly improves the behavior of the sources near
the boundaries. We give special attention to the slow evolution of the central black hole, examining
its impact on both the two-timescale evolution and the earlier self-consistent evolution scheme.

I. INTRODUCTION AND SUMMARY

Four years after the first direct detection of gravita-
tional waves [1], the LIGO-Virgo collaboration now an-
nounces new detections on a regular basis [2–4]. To date,
all the signals have originated from compact binary in-
spirals, involving either black holes or neutron stars spi-
ralling toward each other and eventually merging. Ob-
servations of these systems have provided a wealth of
information about the population of black holes in the
universe [5], the equation of state of neutron stars [6],
and the validity of general relativity in the strong-field
regime [7, 8].

However, these binaries have all occupied a restricted
region of the parameter space, in which the two ob-
jects are of roughly equal size and their orbits are ap-
proximately quasicircular. When the space-based detec-
tor LISA is launched, one of its key sources will be a
very different class of binaries called extreme-mass-ratio-
inspirals (EMRIs), comprising a stellar-mass compact ob-
ject of mass µ slowly spiraling into a black hole of mass
M ∼ 105–107M� [9]. Because the inspiral is very slow,
an EMRI can lie in the LISA band for the full duration
of the mission. The small object can execute hundreds
of thousands of intricate orbits in that time, generating
a high-resolution map of the massive black hole’s space-
time. This map, as represented by precise measurements
of the black hole’s multipole moments, for example, is en-
coded in the emitted gravitational radiation, along with
other detailed information about the strong-field dynam-
ics [10].

To extract this information from a detected EMRI
waveform using matched filtering, we require a model
that maintains phase coherence over potentially ∼ 105

wave cycles. Gravitational self-force theory currently pro-
vides the only viable route to meeting this stringent ac-
curacy goal [11]. Broadly speaking, the gravitational self-
force describes a gravitating object’s deviation from test-
body motion due to the object’s own gravitational field.
In the context of an EMRI, the small object of mass µ
slightly perturbs the spacetime of the large black hole
of mass M , such that the total metric takes the form
gαβ = gαβ +εh1

αβ +ε2h2
αβ +O(ε3), where gαβ is the Kerr

metric of the large black hole and ε is a formal count-
ing parameter that counts powers of the small mass ratio
µ/M . The perturbations hnαβ accelerate the small object
away from geodesic motion in gαβ , driving the object’s
slow inspiral, and we interpret this to be the effect of a
self-force. If we represent the object’s trajectory with a
worldline zµ, its covariant acceleration in gαβ becomes

D2zα

dτ2
= εfα1 + ε2fα2 +O(ε3), (1)

where the proper time τ and covariant derivative D
dτ =

dzα

dτ ∇α are defined with respect to gαβ . The forces (per
unit mass) fαn include both the gravitational self-force,
due to hnαβ , and finite-size effects, due to the object’s

spin (in fα1 ), quadrupole moments (in fα2 ), and higher
moments (in fαn>2).

A. EMRI models: requirements and status

It has been stressed for some time [12] that to accu-
rately model EMRIs, one must include the second-order
terms in the equation of motion (1). This follows from
a simple scaling argument. Take E to be the energy
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of the small object and Ė to be the gravitational-wave
flux of energy out of the system. Given that E ∼ µ
and Ė ∼ (εh1

αβ)2, the inspiral will take place over the

radiation-reaction time trr = E/Ė ∼ M/ε. On this time
scale, the second-order force fα2 causes a cumulative shift
in zα of order

δzα ∼ ε2fα2 t
2
rr ∼ ε0. (2)

Since matched filtering will require errors in orbital phase
to be much less than 1 radian, this suggests that the
contribution of fα2 cannot be neglected. However, the
same reasoning shows that the effect of fα3 can be safely
neglected. Therefore, it is both necessary and sufficient
to include second-order effects.

This scaling argument was made more precise by
Hinderer and Flanagan [13], who showed that on the
radiation-reaction time scale, the phase of the gravita-
tional waveform has an expansion of the form

ϕ =
1

ε

[
ϕ0(εt) + εϕ1(εt) +O(ε2)

]
. (3)

The leading term in this expansion, 1
εϕ0, is said to be

of adiabatic order. Computing it requires only a cer-
tain time average of the dissipative piece of fα1 , fα1,diss.
The first subleading term, ϕ1, is said to be of first post-
adiabatic order. Computing it requires the complete fα1
(including the conservative piece, fα1,cons) and a certain

time average of the dissipative piece of fα2 , fα2,diss.
1 The

second post-adiabatic correction can be neglected, as it
only contributes ∼ ε to the accumulated phase.

In recent decades, there has been a significant effort
to develop and implement adiabatic and post-adiabatic
EMRI models, reviewed in Ref. [15]. Practical methods
of calculating only the necessary input for adiabatic evo-
lution have been formulated and implemented [16–19].
Due to the high-dimensional parameter space, significant
work remains to actually generate adiabatic waveforms
using this input [20], but it is expected that a template
bank based on such waveforms will suffice to detect many
(or even most) EMRI signals, though not to perform
high-precision parameter estimation. In the absence of
such adiabatic templates, existing “kludge models” may
even suffice for detection [21].

For post-adiabatic modeling, the full first-order self-
force can now also be calculated along generic bound or-
bits in Kerr spacetime [22], and there is ongoing work
to incorporate first-order effects of the small object’s
spin [23–25]. However, calculations of fα2 are far less ma-
ture. The basic formalism of self-force theory at second
order, including the fundamental analytical ingredients,
was derived by one of us in Ref. [26] (see also [27–31]).

1 This description is somewhat altered by the existence of transient
resonances, but the main conclusions are unchanged [14].

Since then, there has been steady progress in develop-
ing this formalism into a practical numerical scheme [32–
38]. In Ref. [39], we reported the first implementation
of that scheme, resulting in a calculation of the gravi-
tational binding energy of quasicircular EMRIs around
Schwarzschild black holes. But there remain many chal-
lenges in generating post-adiabatic waveforms, particu-
larly in the astrophysically relevant case of generic orbits
around Kerr black holes.

B. Orbital evolution and the two-timescale
approximation

One way that second-order calculations are more com-
plex than first-order ones is that they must incorporate
the system’s evolution ab initio. At first order there is
a sense in which one can delay the choice of evolution
scheme. On short enough time scales, the orbit can be
approximated as a geodesic. The metric perturbation
h1
αβ , and the self-force fα1 , can then be calculated as if

generated by a point mass moving on that geodesic, with
the freedom to later choose how to utilize those results
to drive the evolution. At second order, this is no longer
true: the evolution of the system acts as a source for
the second-order field, h2

αβ , meaning one must choose
an evolution scheme before one can even write down the
second-order field equation.

The simplest approach to evolution, used in derivations
by Gralla and Wald [29, 40], is to consider perturbative
corrections to the trajectory, as in zα(τ, ε) = zα0 (τ) +
εzα1 (τ) + O(ε2). In this approach, the mass µ moving
on the geodesic zα0 creates the metric perturbation h1

αβ ,
which drives the correction to the trajectory, zα1 . zα1 then
contributes to the next-order perturbation h2

αβ , which
contributes to the next-order correction to the trajectory,
zα2 , and so on. This is conceptually simple, but it is
obvious from the outset that it can only be accurate on
short time scales: Over the course of an inspiral, µ will
move far from zα0 , such that the “small correction” εzα1
will grow large with time. This growth in zα1 will create
a commensurate growth in h2

αβ . When the corrections
become comparable to the leading terms, the expansion
will no longer be valid.

Another approach is the self-consistent approximation,
which treats zα nonperturbatively and makes each hnαβ
a functional of that nonperturbative trajectory [31, 41].
The trajectory and metric perturbation are then to be
determined together as a coupled system. This approx-
imation accurately accounts for the long-term evolution
of the trajectory. It has also been used in many of the
foundational derivations in self-force theory, and it will
be our starting point in this paper. However, it has only
been concretely implemented in a scalar toy model [42],
and because it uses a trajectory that is always evolving, it
abandons the usual advantages of having approximately
geodesic motion at first order.

The alternative that has generally been used in prac-
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tice is a method of osculating geodesics [23, 43–48]. In
this approach, at each instant τ along the accelerated
worldline, one computes the self-force as if, for its entire
past history, the mass µ had been moving on the geodesic
that is tangential to the worldline at that instant τ . The
orbit then effectively evolves smoothly from one geodesic
to the next. In principle this method can be carried to
second order (and beyond), as sketched in Ref. [49]. How-
ever, it does not make maximal use of the properties of
an EMRI—specifically, the system’s near-periodicity.

The second-order calculation reported in Ref. [39] was
instead based on another alternative: a two-timescale
expansion [50] (or multiscale expansion) of the Ein-
stein field equations. This expansion, previously uti-
lized within self-force analyses in Refs. [13, 35, 51–55]
and within post-Newtonian analyses in Refs. [56–59], is
tailored to the properties of an EMRI. An EMRI has
two disparate time scales: the orbital period ∼ M and
the much longer radiation-reaction time ∼M/ε. On the
orbital time scale, the system is triperiodic, with frequen-
cies Ωr, Ωθ, and Ωφ associated with the radial, polar, and
azimuthal motions. This leads to a leading-order metric
perturbation with a discrete frequency spectrum,

h1
αβ =

∑
mpq

h
1,ωmpq
αβ (r, θ, φ)e−i(pΩr+qΩθ+mΩφ)t, (4)

where the frequency label refers to ωmpq = pΩr +
qΩθ + mΩφ, and (t, r, θ, φ) denote the Boyer-Lindquist
coordinates of the background Kerr geometry. On the
radiation-reaction time scale ∼M/ε, the system’s ampli-
tudes and frequencies slowly evolve. To efficiently and ac-
curately capture the behavior on both time scales, a two-
timescale expansion introduces multiple time variables:
fast times ϕr =

∫
Ωrdt, ϕθ =

∫
Ωθdt, and ϕφ =

∫
Ωφdt,

which vary on the orbital time scale; and a slow time
t̃ ∼ εt, which varies on the radiation-reaction time. The
analog of Eq. (4) is then

hnαβ =
∑
mpq

h̃
n,ωmpq
αβ (t̃, r, θ, φ)e−i(pϕr+qϕθ+mϕφ). (5)

On short time scales, the amplitudes h̃
n,ωmpq
αβ are approx-

imately constant, while the phases are approximately
ϕα ∼ Ωαt, such that the two-timescale expansion reduces
to the ordinary Fourier expansion (4) at leading order.
However, the form (5) remains approximately triperiodic
for all orders n over the entire inspiral, while an expan-
sion of the form (4), which freezes the frequencies and
amplitudes, can only be accurate at leading order and
for short intervals of time.

We will see below that the ansatz (5) splits the Einstein
equations into two distinct sets: frequency-domain equa-
tions that govern the amplitudes h̃

n,ωmpq
αβ at each fixed

value of t̃, and evolution equations that determine the
amplitudes and frequencies as functions of t̃. At first or-

der, the equations for h̃
1,ωmpq
αβ are identical to those for

the ordinary Fourier coefficients h
1,ωmpq
αβ , meaning a two-

timescale computation can naturally build on existing
frequency-domain codes [22, 60, 61].

C. Overview of this paper and outline of
wave-generation framework

Although two-timescale expansions have been utilized
in the past to explore features of EMRIs, they have
largely centred on the expansion of the equation of mo-
tion (1). The work of Hinderer and Flanagan [13] has
been particularly influential in this regard, having pro-
vided a complete treatment of that expansion, and having
led to Eq. (3). However, because the mass µ’s trajectory
zα is coupled to the metric perturbation, an expansion of
the equation of motion is by itself incomplete; it must be
combined with an expansion of the Einstein field equa-
tions.

Here we focus on that coupled problem, building on
our previous work on a scalar toy model [35]. We restrict
our analysis to the simplest case of quasicircular orbits
in Schwarzschild spacetime. The orbital dynamics in this
scenario is comparatively trivial, but the field equations
have most of the essential features of the full problem.
In this restricted context, we present the explicit form
of the expanded Einstein equations and the framework
they provide for generating post-adiabatic waveforms. A
forthcoming series of papers [62–65] will extend our anal-
ysis to generic orbits.2

In the remainder of this section, we provide a complete
outline of the paper and of the wave-generation frame-
work. The body of the paper then fills in the technical
details for interested readers.

We begin in Sec. II with a review of self-force theory in
the self-consistent framework, keeping the discussion gen-
eral enough to describe inspirals into a Kerr black hole.
Through second order in ε, the coupled field equations
and equation of motion take the form

Eαβ [h̄1R] = −Eαβ [h̄1P ], (6)

Eαβ [h̄2R] = 2δ2Gαβ − Eαβ [h̄2P ], (7)

D2zα

dτ2
= εfα1 [h1R] + ε2fα2 [h1R, h2R], (8)

given below in Eqs. (42) and (40)–(41) with (29), (33),
(38), and (39). Here Eαβ is the linearized Einstein ten-
sor in the Lorenz gauge (up to a factor of −1/2), a bar
denotes a trace-reversed field h̄nαβ := hnαβ − 1

2gαβg
µνhnµν ,

and δ2Gαβ is the piece of the full Einstein tensor that
is quadratic in h1

αβ . Rather than solving for the phys-

ical fields hnαβ , we solve for the residual fields hnRαβ :=

hnαβ −hnPαβ , where hnPαβ are analytically known punctures,

2 Some months after this paper was submitted for publication, one
of us provided an overview of the method for generic orbits [38].
Future papers will provide the complete details.
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which diverge on zα but guarantee that the full fields
hnαβ = hnPαβ + hnRαβ agree with the physical fields outside
the small compact object. At first order, this is equiva-
lent to approximating the small object as a point mass µ
on zα.

Typically, h1
αβ is taken to only include the linear field

of the mass µ. However, because the large black hole
absorbs gravitational radiation, its mass and spin slowly
change with time. To accurately account for this, we
modify previous descriptions of the self-consistent ap-
proximation such that the solution to Eq. (6) includes
perturbations proportional to δM and δS, the small,
evolving corrections to the black hole’s mass and spin.
(The background metric, on the other hand, remains sta-
tionary.)

In Sec. III, we review the two-timescale method, and in
Sec. IV B we apply it to the equation of motion (8), spe-
cializing to quasicircuclar orbits in a Schwarzschild back-
ground in the process. For a quasicircular orbit, rather
than three orbital frequencies and associated phases,

there is only one frequency, Ω(t, ε) :=
dφp
dt , associated

with the azimuthal angle φp of the particle’s orbit. (Here
and below we adopt standard Schwarzschild coordinates.)
Both Ω and the orbital radius rp are slowly evolving func-
tions of t̃ = εt, given by the expansions

Ω = Ω0(t̃) + εΩ1(t̃) +O(ε2), (9)

rp = r0(t̃) + εr1(t̃) +O(ε2). (10)

The terms rn satisfy ordinary differential equations with
the schematic form

dr0

dt̃
= ṙ0(r0, f

α
1,diss), (11)

dr1

dt̃
= ṙ1(r0, r1, f

α
2,diss), (12)

given explicitly by Eqs. (103) and (106), and the terms
Ωn are determined by relations

Ω0 = Ω0(r0), (13)

Ω1 = Ω1(r0, r1, f
α
1,cons), (14)

given in Eqs. (102) and (104). Here and throughout this
paper, an overdot denotes a derivative with respect to
slow time.

In Sec. V, we turn to the two-timescale expansion of
the field equations (6) and (7). In place of the general
expansion (5), we assume an expansion of the form3

h̄nαβ =
∑
i`m

ai`
r
Rni`m(s̃, r)e−imφpY i`mαβ , (15)

3 In actuality, order-ε corrections appear on the right-hand side of
this expansion. Here we have implicitly absorbed those correc-
tions into the higher-n mode amplitudes.

FIG. 1. Penrose diagram of Schwarzschild spacetime illus-
trating a slice (blue curve) of constant hyperboloidal time
s = t − k(r∗). s transitions from advanced time v = t + r∗

near the future horizon, to Schwarzschild time t in a region in-
cluding the particle’s worldline zα, to retarded time u = t−r∗
near future null infinity.

and the analogs for h̄nRαβ and h̄nPαβ . Here in addition to
the multiscale expansion, we have performed an expan-
sion in tensor spherical harmonics; i = 1, . . . , 10 label
the 10 linearly independent harmonics Y i`mαβ , given ex-
plicitly in Appendix B, and ai` is a convenient numeri-
cal factor. More importantly, we have also exploited the
freedom that arises in extending the slow and fast time
variables away from the worldline. Rather than simply
using t̃ = εt, we have introduced a slow time s̃ := εs(t, r).
This allows us to naturally account for retardation: the
slow evolution of the orbit does not propagate out from
zα instantaneously along slices of constant t, but instead
along null curves. In our analysis we hence consider a
hyperboloidal slow time s that is equal to t in a neigh-
bourhood of the particle but becomes null as r → 2M
or r → ∞, as illustrated in Fig. 1. Analogously, as

our fast time, rather than φp(t, ε) =
∫ t

Ω(z, ε)dz, we use

φp(s, ε) =
∫ s

Ω(z, ε)dz.
When we substitute the expansion (133) into Eqs. (6)

and (7), derivatives with respect to t and r act on the
slow- and fast-time dependence, as shown in Eqs. (134)
and (135). In this counting, a derivative with respect to
slow time is supressed by a factor of ε. Factoring out
the spherical harmonics and fast-time phase factors, we
obtain a sequence of frequency-domain equations for the
mode amplitudes Rni`m:

E0
ij`mR

1R
j`m = −E0

ij`mR
1P
j`m, (16)

E0
ij`mR

2R
j`m = 2δ2G0

i`m − E0
ij`mR

2P
j`m − E1

ij`mR
1
j`m, (17)

where E0
ij`m and E1

ij`m are given in Eq. (144), and the

repeated basis label j is summed over. E0
ij`m is a radial

operator in which ∂t has been replaced with −iωm, where
ωm := mΩ0. E1

ij`m contains the first subleading effect of
the time derivatives in Eαβ ; it is linear in ∂s̃ − imΩ1.
The left-hand side of Eqs. (16) and (17) have precisely
the same form as if the metric perturbations had been
expanded in hyperboloidal-time Fourier modes e−iωms.
Such use of hyperboloidal slicing in the frequency do-
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main has been considered before in, e.g., Refs. [66, 67],
though not directly for the linearized Einstein equation.
In the context of our two-timescale expansion, this slic-
ing dramatically improves the behavior of the source term
E1
ij`mR

1
j`m as r → 2M or r →∞.

In Sec. VI we derive our waveform-generation scheme.
The solutions to Eqs. (16) and (17) (for the full fields
RnRi`m +RnPi`m) have the schematic form

R1
i`m = R̂1

i`m(r0, r) + x̄i`m(M1, S1, r), (18)

R2
i`m = R̂2

i`m(r0, r1,M1, S1, r) + x̄i`m(M2, S2, r), (19)

where R̂1
i`m = Rpp

i`m is the usual linear perturbation due
to a point particle on a circular orbit, and Mn and Sn
are the coefficients in

δM = εM1(s̃) + ε2M2(s̃) +O(ε3), (20)

δS = εS1(s̃) + ε2S2(s̃) +O(ε3). (21)

All the slow-time dependence is encoded in the depen-
dence on rn(s̃), Mn(s̃), and Sn(s̃). x̄i`m(Mn, Sn, r) is the
same function for all n, just with different arguments. It
represents a linear perturbation toward a slowly evolving
Kerr metric with mass and spin parameters M+εnMn(s̃)
and εnSn(s̃); this has no fast-time dependence, contain-
ing only ` = 0 and ` = 1,m = 0 contributions.

Once one has obtained the solutions (18) and (19),
one can calculate the self-forces appearing in Eqs. (11)–
(14). These forces depend only on the mode amplitudes
Rni`m; because Y i`mαβ e−imφp ∝ eim(φ−φp), the phases drop
out of the metric perturbation on the worldline, where
φ = φp, and therefore out of the force. The forces then
have the schematic forms fα1,diss = fα1,diss(r0), fα1,cons =

fα1,cons(r0,M1, S1), and fα2,diss = fα2,diss(r0, r1,M1, S1).

Substituting these dependences into Eqs. (11)–(14), and
noting that s̃ = t̃ on the orbit, we see that the orbital
evolution equations take the form

Ω0 = Ω0(r0),
dr0

ds̃
= ṙ0(r0), (22)

Ω1 = Ω1(r0, r1,M1, S1),
dr1

ds̃
= ṙ1(r0, r1,M1, S1). (23)

We also have that

dM1

ds̃
= ĖH(r0),

dS1

ds̃
= L̇H(r0), (24)

where ĖH and L̇H are the leading-order gravitational-
wave fluxes of energy and angular momentum into the
black hole; these depend only on the first-order mode
amplitudes Rpp

i`m and therefore only on r0. In Sec. VII,
we re-derive Eq. (24) from first principles, directly from
our two-timescale field equations; at the same time, we
re-derive the standard balance laws relating the loss of or-
bital energy and angular momentum, Ė0(r0) and L̇0(r0),

to the total fluxes out of the system, ĖH(r0) + Ė∞(r0)

and L̇H(r0) + L̇∞(r0).

FIG. 2. The ` = 2, m = ±2 mode of the
‘+’ polarization of the waveform at infinity in units of
µ. The thin red curve shows an adiabatic waveform,

h+ = lim
r→∞

∑
ai`R

1
i`m(εu, r)r−2Y i`mθθ e−im

∫ u
0 Ω0(εz)dz, where

the sum is over i = 7, 10, ` = 2, m = ±2. We have
used an exaggerated mass ratio ε = 0.1 to make the evo-
lution clearly visible. For comparison, the thick blue curve
shows the waveform produced by a point mass on a circular
geodesic with the same initial frequency as the adiabatic or-

bit, h+ = lim
r→∞

∑
ai`R

1
i`m(0, r)r−2Y i`mθθ e−imΩ0(0)u.

Equation (22) represents an adiabatic evolution
scheme. One can use dr0

ds̃ = ṙ0(r0) to evolve the leading-
order orbital radius r0(s̃), recover the leading-order fre-
quency Ω0(r0), and from it recover the adiabatic-order
phase φp(s, ε) =

∫ s
Ω0(εz)dz. Since one has already com-

puted the amplitudes Rpp
i`m(r0, r) as input for ṙ0(r0), one

then has the waveform
∑
Rpp
i`me

−im
∫

Ω0dsY i`mαβ as an out-

put (since it only evolves slowly, x̄i`m is not required in
the leading-order waveform). Fig. 2 shows an adiabatic
waveform generated with this scheme, using the compu-
tational methods described in Ref. [68].

Equations (22)–(24) together represent a post-
adiabatic evolution scheme. In this case one has four
parameters to evolve: r0, r1, M1, and S1. From
their evolution, one extracts the frequency evolution
Ω0(r0) + εΩ1(r0, r1,M1, S1); from the frequency, the
post-adiabatic phase evolution φp(s, ε) =

∫ s
[Ω0(εz) +

εΩ1(εz)]dz; and from the phase, the waveform. Explic-
itly, the two polarizations of the leading-order waveform
are given by [69]

h+ = lim
r→∞

∑ ai`
r2
Rpp
i`m(ũ, r)e−imφp(u,ε)Y i`mθθ , (25)

h× = lim
r→∞

∑ ai`

r2 sin2θ
Rpp
i`m(ũ, r)e−imφp(u,ε)Y i`mθφ , (26)

where the sums run over i = 7, 10, ` ≥ 2, m 6= 0. Because
the waveform’s amplitude is not required to be highly
accurate for matched filtering, it is unlikely that we would
need to include the second-order mode amplitudes in this
waveform.

Figure 3 shows the full sequence of steps required to
generate adiabatic and post-adiabatic waveforms. The
heart of this evolution scheme lies in solving the field
equations (16) and (17) at fixed values of slow time—
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FIG. 3. Our procedure for computing the gravitational waveform to adiabatic and first post-adiabatic orders. The computation
moves along a sequence of orbital radii, described as functions of slow time s̃ = εs by rp = r0(s̃) + εr1(s̃) + O(ε2). At each
value of slow time, one solves (discrete) frequency-domain field equations for the metric-perturbation mode amplitudes. From
the mode amplitudes, one computes the self-force, which determines the evolution to the next value of slow time as well as the
post-adiabatic correction Ω1 to the orbital frequency. Once the mode amplitudes and frequency evolution are known, one can
construct the full time-domain waveform. For simplicity we suppress details such as the tensor-harmonic basis labels and the
numerical factor ai`.

i.e., for given points in the (r0, r1,M1, S1) parameter
space. The evolution then progresses through that pa-
rameter space. One could alter this evolution scheme
in various ways. For example, one can instead work
in the (Ω0,Ω1,M1, S1) parameter space by simply re-
arranging Eqs. (13)–(14) to obtain r0 = r0(Ω1) and
r1 = r1(Ω0,Ω1, f

r
1 ). More significantly, one could ad-

just the evolution scheme to generate the waveform as
a function of the full, nonperturbative frequency Ω, re-
ducing s̃ to an auxiliary variable. This approach, which
we describe in Appendix A, hews slightly closer to our
starting point in the self-consistent expansion, as it treats
more of the particle’s trajectory nonperturbatively. It
also provides a convenient way to associate a local state

of the binary to an asymptotic waveform: the two are
naturally identified when their frequencies are the same.

But the core of the scheme, solving first- and second-
order frequency-domain field equations, is largely inde-
pendent of which of these approaches is taken. In all
cases, the calculations at each point in the parameter
space require (i) a practical method of solving the field
equations, subject to given boundary conditions, (ii) a
computation of the source terms in the field equations,
and (iii) a specification of physical boundary conditions.
We will present these remaining requirements in a se-
quence of followup papers [64, 65, 70–72].

In this paper we use a mostly positive metric signa-
ture, (−,+,+,+), and geometrical units with G = c = 1.
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Indices are raised and lowered with the background met-
ric gαβ , and ∇ and a semicolon both denote the co-
variant derivative compatible with gαβ . (t, r, θ, φ) de-
note Schwarzschild coordinates, and θA = (θ, φ). Unless
otherwise stated, gαβ denotes the Schwarzschild metric,

diag
(
−f, f−1, r2, r2 sin2 θ

)
, where f := 1− 2M/r.

II. SELF-FORCE THEORY IN THE
SELF-CONSISTENT FRAMEWORK

In this section we review our starting point: self-force
theory through second order in ε. We follow the self-
consistent formalism of Refs. [41, 49], which provides
the most direct line to a two-timescale approximation.
However, as alluded to in the introduction, we extend
previous descriptions to accurately incorporate the evo-
lution of the central black hole. Sec. II A reviews the
standard description in the literature, and Sec. II B dis-
cusses what prevents that description from admitting a
two-timescale expansion. Sec. II C describes how to over-
come the problem using an evolving background space-
time, and Sec. II D simplifies that formulation by working
with small, slowly evolving perturbations rather than an
evolving background. The end result, Eqs. (72)–(73), is
a self-consistent formalism that can be straightforwardly
expanded in two-timescale form.

A. Review of previous descriptions

The self-consistent formalism begins by expanding gαβ
in the limit ε→ 0 while holding zµ(t, ε) fixed:

gαβ = gαβ(xµ) +
∑
n≥1

εnhnαβ(xµ; zµ). (27)

Here gαβ(xµ) is the background metric (e.g., the metric
of the central Kerr black hole in an EMRI), xµ are a set
of background coordinates (e.g., Boyer-Lindquist coordi-
nates on the Kerr background), and hnαβ(xµ; zµ) is the

nth-order perturbation due to the small object.4 The
expansion (27) is taken to be accurate except in a small
region around the small object, called the body zone or in-
ner region, where the object itself is the dominant source
of gravity. In the body zone, a second approximation is
used, called a scaled or inner expansion. The two are
linked using the method of matched asymptotic expan-
sions. We find hnαβ by solving the vacuum field equations
outside the small object, subject to the matching condi-
tion that near the body zone, the metric (27) suitably
agrees with, or “matches”, the inner expansion.

Because zµ depends on ε, the perturbations
hnαβ(xµ; zµ) do as well. This means we need a special

4 log ε terms also generically appear in this expansion [30]. For
visual simplicity, we hide these inside the coefficients hnαβ .

formulation of the field equations. To see this, substi-
tute the metric (27) into the vacuum Einstein equations
Gαβ [g] = 0, and move nonlinear terms to the right-hand
side, to obtain

Gαβ [g] + εδGαβ [h1] + ε2δGαβ [h2]

= −ε2δ2Gαβ [h1] +O(ε3), (28)

where δGαβ is the linearized Einstein tensor, and δ2Gαβ
is the piece of Gαβ [g + h] that is quadratic in hαβ . Ex-
plicitly, in vacuum,

δ2Gαβ = δ2Rαβ −
1

2
gαβg

µνδ2Rµν , (29)

where

δ2Rαβ [h] =
1

2
h̄µν ;µ

(
2hν(α;β) − hαβ;µ

)
+

1

4
hµν ;αhµν;β

+
1

2
hµβ

;νhµα;ν −
1

2
hµβ

;νhνα;µ

− 1

2
hµν

(
2hµ(α;β)ν − hαβ;µν − hµν;αβ

)
. (30)

Because of the ε dependence in hnαβ(xµ; zµ), we cannot

naively equate coefficients of powers of ε in Eq. (28).
By virtue of the Bianchi identity, the Einstein equations
constrain any material degrees of freedom in the system,
and equating coefficients of powers of ε in Eq. (28) forces
the zµ in h1

αβ(xµ; zµ) to be an ε-independent geodesic

zµ0 . The ε dependence of the object’s motion then ap-
pears in the higher-order perturbations hn>0

αβ in the form
of deviation vectors zµn , which describe the small object’s
deviation away from zµ0 . In effect, the perturbative Ein-
stein equations force the trajectory to be expanded in
the form zµ(τ, ε) = zµ0 (τ) + εzµ1 (τ) + . . ., with h1

µν only

depending on zµ0 , h2
µν depending on zµ0 and zµ1 , etc. This

is the Gralla-Wald treatment of the motion, which (as
described in the introduction) becomes inaccurate over
an inspiral because the corrections zµn>0 grow large with
time.

We avoid this problem by casting the field equations
in a relaxed form that does not constrain zµ. To achieve
that, we impose the Lorenz gauge condition

∇β(εh̄1
αβ + ε2h̄2

αβ) = O(ε3). (31)

(Refs. [30] and [73] discuss more general choices of gauge
to achieve the same end.) This condition puts Eq. (28)
in the form of a weakly nonlinear wave equation,

εEαβ [h̄1] + ε2Eαβ [h̄2] = 2ε2δ2Gαβ [h1] +O(ε3), (32)

where

Eαβ [h̄] := ∇µ∇µh̄αβ + 2Rµ ν
α βh̄µν . (33)

Equation (32) is the desired relaxed equation; it can be
solved for arbitrary zµ. We can now equate coefficients
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of powers of ε to obtain a solution that is valid for all zµ,
yielding Gαβ [g] = 0 for the background metric and

Eαβ [h̄1] = 0, (34)

Eαβ [h̄2] = 2δ2Gαβ [h1] (35)

for the perturbations.
The solutions to Eqs. (34)–(35) are required to satisfy

the matching condition. We can enforce that condition
using a puncture scheme, which amounts to replacing
the small object with a singular puncture in the space-
time geometry. The matching condition dictates that in
a neighbourhood of zµ, the metric perturbations are re-
quired to satisfy

h1
αβ = h1P

αβ + h1R
αβ , (36)

h2
αβ = h2P

αβ + h2R
αβ , (37)

where hnPαβ are the puncture fields, which diverge on zµ,

and hnRαβ are the residual fields, which satisfy certain reg-
ularity conditions on zµ. The puncture fields capture the
dominant physical behavior of the metric near the small
object, and they encode the object’s multipole moments.
If we define zµ to be the object’s center of mass, then
for a generic compact object with spin sµ, the punctures
have the schematic structure

h1P
αβ ∼

µ

|xµ − zµ|
+O(|xµ − zµ|0), (38)

h2P
αβ ∼

µ2 + sµ

|xµ − zµ|2
+

µh1R
αβ

|xµ − zµ|
+O(|xµ − zµ|0), (39)

given explicitly in covariant form in Ref. [32] (with the
exception of the sµ term, given in local coordinates cen-
tered on zµ in [30]). With the punctures known, we can
move them to the right-hand side of the field equations
and solve for the residual fields. This can be done in
two equivalent ways: with a worldtube [74] or with a
window function [75]. Here for simplicity we adopt the
window method, in which one makes the puncture go to
zero (smoothly or sharply) outside some region Γ around
zµ. The field equations then take the form

Eαβ [h̄1R] = −Eαβ [h̄1P ], (40)

Eαβ [h̄2R] = 2δ2Gαβ [h1]− Eαβ [h̄2P ]. (41)

Outside Γ, the residual field h̄nRαβ reduces to the physical

field h̄nαβ .

A solution to the wave equations (40)–(41) only be-
comes a solution to the non-relaxed Einstein equations
if it also satisfies the gauge constraint (31). By impos-
ing this condition on the fields near zµ, one determines
that for a nonspinning, approximately spherical object,
the object’s center-of-mass trajectory is governed by the
equation of motion [26, 31]

D2zµ

dτ2
= −1

2
Pµν

(
g ρ
ν − hRρν

) (
2hRβρ;α − hRαβ;ρ

)
uαuβ

+O(ε3), (42)

where Pµν := gµν + uµuν and hRαβ = εh1R
αβ + ε2h2R

αβ . The
punctures then move on this trajectory. The gauge con-
dition also determines dµ/dτ = O(ε3) and Dsµ/dτ =
O(ε3). Note that here and throughout this paper, τ de-
notes proper time in gµν , and uµ := dzµ/dτ denotes the
four-velocity normalized in gµν .

The coupled set of equations (40)–(42) represent the
self-consistent evolution scheme through second order.
By sidestepping a Taylor expansion of zµ, this scheme
avoids the associated, secularly growing errors that would
occur in an ordinary, Gralla-Wald-type perturbative ap-
proximation. In the next section, we will describe the
remaining secular errors that nevertheless do arise in this
scheme.

However, before doing so we remark on how the punc-
ture formulation of self-force theory, used in the descrip-
tion above, relates to a point-particle description. In the
field equations (40), Eαβ [h̄1P ] is defined off zµ as an ordi-
nary function and defined on zµ by taking the limit from
off zµ. This makes the source terms regular at zµ, allow-
ing us to enforce regularity of h̄1R

µν . However, if we move

the puncture h̄1P
αβ back to the left-hand side and treat

the derivatives in Eαβ [h̄1P ] distributionally, then we find
that the total field h̄1

αβ = h̄1P
αβ + h̄1R

αβ is precisely the field

of a point mass, replacing Eq. (40) with

Eαβ [h̄1] = −16πT 1
αβ , (43)

where

T 1
αβ = µ

∫
uαuβ

δ4 [xµ − zµ (τ)]√
−detg

dτ (44)

is the stress-energy tensor of a point mass µ moving on
zµ in the background gµν . Therefore, at first order the
puncture scheme is equivalent to approximating the small
object as a point particle.

At second order in a generic gauge, the strongly sin-
gular behavior of δ2Gαβ [h1] prevents us from straight-
forwardly writing a unique distributional source for the
total field h̄2

αβ = h̄2P
αβ + h̄2R

αβ [49] (see also Sec. 1.2.5 of

Ref. [37]). However, forthcoming work [76] will show that
there exists a canonical distributional interpretation of
δ2Gαβ [h1], under which the field equation takes the form

Eαβ [h̄2] = −16πT 2
αβ + 2δ2Gαβ [h1] (45)

with

T 2
αβ = −µ

2

∫
γ

uαuβQ
ρσh1R

ρσ

δ4 [xµ − zµ (τ)]√
−detg

dτ. (46)

Here Qρσ := gρσ−uρuσ. The sum Tαβ = εT 1
αβ+ε2T 2

αβ+

O(ε3) can also be written as what we will call the De-
tweiler stress-energy

Tαβ =

∫
µũαũβ

δ4 [xµ − zµ (τ̃)]√
−detg̃

dτ̃ , (47)
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where ũα := g̃αβ
dzβ

dτ̃ is normalized in the effective metric

g̃αβ = gαβ + hRαβ , and τ̃ is proper time in that metric.

This stress-energy, introduced in Ref. [28], is that of a
point mass µ in g̃αβ . Ref. [76]’s proof of its validity in
Eq. (45) is based on the class of highly regular gauges
derived in Ref. [31], and there is considerable subtlety
in meaningfully extending it outside that class. We will
not explore these subtleties here, focusing instead on the
more well-developed puncture formulation of the second-
order problem. However, we will also make some use of
this point-particle formulation.

If the object has a spin sα, then the spin term in the
puncture (39) is equivalent to an additional second-order
stress-energy

T
2(spin)
αβ =

∫
u(αsβ)

γ∇γ
δ4 [xµ − zµ (τ)]√

−detg
dτ (48)

where sαβ := εµαβγu
µsγ and εµαβγ is the Levi-Civita ten-

sor; see, e.g., Ref. [30]. We will not include this source in
our two-timescale analysis, but doing so should be rela-
tively straightforward [25].

B. Inaccuracies due to the black hole’s evolution

While accounting carefully for the evolution of zµ, our
description above has ignored the evolution of another
component of the system: the central black hole. We
know that radiation falls into the black hole, causing it
to evolve. The black hole’s mass, for example, changes at
an average rate [77, 78]

〈
dMBH

dt

〉
∼ ε2M2∂h1∂h1. Over

a radiation-reaction time t ∼ M/ε, this accumulates to
a change δM ∼ εM . Hence, on the radiation-reaction
time scale, we expect the black hole mass to behave as
MBH ∼ M + δM(εt), where M is a constant, zeroth-
order mass; the correction δM remains ∼ εM over the
inspiral, and its rate of change is small as well, such that
dMBH/dt ∼ ε2. Here and below we focus on the mass,
but analogous statements apply to the black hole’s spin,
which is expected to behave as SBH ∼ aM + δS(εt) with
δS ∼ εM2.

These changes in the black hole must manifest them-
selves in the metric outside the black hole. In a two-
timescale expansion, we expect that h1

µν will contain
slowly evolving terms proportional to δM and δS. This
was the ansatz of Hinderer and Flanagan [13], and at
least in the case of a Schwarzschild background, the
ansatz is borne out by a complete analysis of the Ein-
stein field equations, sketched in Ref. [39] and detailed
later in this paper.

On the other hand, if we were to perform an ordi-
nary Taylor expansion of the metric, then the evolv-
ing mass MBH ∼ M + δM(εt) would become MBH ∼
M + δM(0) + εdδM

dt̃
(0)t. What was a slowly evolving

first-order perturbation would hence become a linearly
growing second-order perturbation. This approximation
clearly goes bad on the radiation-reaction time, when

εt ∼M (although it remains accurate much longer than
a Gralla-Wald-type expansion, which fails on the dephas-
ing time t ∼M/

√
ε due to quadratic growth in zµ1 ).

The question, then, is how these effects appear in the
self-consistent formalism. Do they evolve dynamically on
a long time scale, as they should in an accurate descrip-
tion, or do they grow linearly with time, at a forever-fixed
rate, as they would in a strict Taylor series?

Although we cannot answer this with complete cer-
tainty, we can provide strong evidence that the self-
consistent evolution produces the less accurate, linear-
growth description of the black hole. Consider prescrib-
ing initial data on a spatial slice Σ and then evolving into
the future of Σ using the self-consistent equations (43),
(45), and (42) [or (40)–(42)]. Given a retarded Green’s
function Gαβα′β′ for the operator Eαβ , we can write the
solution to this Cauchy-type problem as [30]

h̄1
αβ =

∫
Σ

(
h̄1
α′β′∇γ′Gαβα

′β′ −Gαβα
′β′∇γ′ h̄1

α′β′

)
dΣγ

′

− 16π

∫
V

Gαβ
α′βT 1

α′β′dV
′, (49)

h̄2
αβ =

∫
Σ

(
h̄2
α′β′∇γ′Gαβα

′β′ −Gαβα
′β′∇γ′ h̄2

α′β′

)
dΣγ

′

+

∫
V

Gαβ
α′β
(
2δ2Gα′β′ − 16πT 2

α′β′
)
dV ′, (50)

where V is the future Cauchy development of Σ and
primes denote quantities at the integration point. This
form splits the solution into two pieces: the integral
over V , which is a particular solution to the wave equa-
tion (43) or (45) with zero initial data; and the integral
over Σ, which is a homogeneous solution to the wave
equation with the prescribed initial data. The key fact
is the following: the linearly growing perurbation pro-
portional to ˙δM |Σ is a homogeneous solution to the wave
equation, and for physical initial data, it always arises
from the first integral in Eq. (50).

To illustrate this, we take the background spacetime
to be Schwarzschild and Σ to be the surface t = 0. The
initial data comprises the metric perturbation and its
t derivative at t = 0. If the data describes a slice of
time in a physical inspiral, then it must include a lin-
ear metric perturbation induced by δM(0). If δM were
constant in time, then that perturbation could be writ-
ten as 2gαβδM(0), a homogeneous Lorenz-gauge pertur-
bation (reviewed in Appendix D). But we must also in-

clude a nonzero t derivative ˙δM(0) in the data. Imposing
the Lorenz gauge condition at t = 0 then demands that
we add a t-r component to the initial field, such that
hδMαβ (0) = 2gαβδM(0) + εpαβ , where pαβ = 2 ˙δM(0)(r −
3M)f−1δt(αδ

r
β). This form holds true even if we choose

initial data with δM(0) = 0, because we do not have

the freedom to set ˙δM(0) to zero; this is shown explic-
itly in Sec. VII. Finally, with hδMαβ (0) as initial data, it is
straightforward to show that the unique homogeneous so-
lution to Eαβ [h̄] = 0 is hδMαβ (t) = hδMαβ (0) + 2εgαβ ˙δM(0)t.
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Hence, unless the volume integral in Eq. (50) somehow
miraculously cancels this homogeneous perturbation, the
presence of a time-varying mass perturbation in the ini-
tial data automatically induces a linearly growing per-
turbation hδMαβ (t).

The induced perturbation hδMαβ (t) is a physical one. It
satisfies the Lorenz gauge condition in addition to the
wave equation, and it correctly encodes the evolution
of the black hole’s mass. On time scales much shorter
than the radiation-reaction time, it is perfectly suitable.
But on the time scale of an inspiral, it becomes inaccu-
rate. Moreover, it clearly does not admit a two-timescale
expansion, meaning we cannot take the existing self-
consistent expansion as our starting point for the two-
timescale approximation. So we must (slightly) reformu-
late the self-consistent expansion.

C. Self-consistent approximation on an evolving
background

At its core, the self-consistent approximation is based
on a division of the system into its field degrees of freedom
and its mechanical degrees of freedom. The field degrees
of freedom are contained in the metric gαβ , and the me-
chanical degrees of freedom are in the trajectory zµ. The
piece of the Einstein field equations that leaves zµ uncon-
strained can be solved perturbatively by expanding gαβ
in a suitable perturbative series. The piece of the field
equations that constrains zµ, on the other hand, can be
used to obtain an approximate equation of motion for zµ

without expanding zµ in a perturbative series.

However, our analysis above makes clear that we are
putting different mechanical degrees of freedom on un-
equal footing: while we derive and actively enforce a uni-
formly accurate evolution equation for the nonperturba-
tive zµ, we leave the evolution of the black hole parame-
ters to be determined passively, and we end up with an
approximation that is not uniformly accurate over long
time scales. To obtain an accurate evolution, we must
treat the black hole parameters in the same way we have
treated zµ.

This motivates a generalization of the self-consistent
framework. Rather than dividing the system into the
metric and the trajectory, we divide it into the metric
and the complete list of mechanical degrees of freedom:
the effective positions and full set of multipole moments
of both objects. We write the effective position of the
large black hole as Zµ, and its set of multipole moments
collectively as M̂ . Analogously, we write the effective
position of the small object as zµ, and its multipole mo-
ments collectively as m̂. The full set of mechanical de-
grees of freedom is P̂ = {Zµ, M̂ , zµ, m̂).

We now split the metric into a background plus a per-
turbation,

gαβ = ĝαβ(xµ;Z, M̂) + ĥαβ(xµ, ε; P̂ ). (51)

Here the background metric ĝαβ(xµ;Z, M̂) describes an

evolving black hole spacetime, and ĥαβ(xµ, ε; P̂ ) is the
correction due to both the small object and the back-
ground’s evolution. We imagine prescribing some con-
crete form for ĝαβ(xµ;Z, M̂) in terms of moments with
an unspecified time dependence. For concreteness, we
take it to be a Kerr metric with mass MBH and spin SBH

treated as arbitrary (order-µ0) functions of some time
parameter. All its higher moments are then determined
by the Kerr relationship M` + iS` = MBH(iSBH/MBH)`,
where M` denotes the `th mass moment and S` the
`th current moment. This choice ĝαβ sets Zµ to be at
the “origin” of the Boyer-Lindquist coordinates, and the
black hole’s spin direction to be along the θ = 0 axis. In
reality the large black hole’s position and spin direction
will be slightly perturbed by the small object’s gravity,
but these corrections are gauge perturbations (removable
by a time-dependent translation and rotation of the co-

ordinates) that we can incorporate into ĥαβ . We also
specialize the small object to be compact, with a radius
ρ ∼ µ, implying that its `th moments scale as µρ` ∼ µ`+1.

For simplicity, we write the field equations formally
with a stress-energy tensor rather than a puncture, as

Gαβ [ĝ] + δGαβ [ĥ; ĝ] + Sαβ [ĥ; ĝ] = 8πTαβ (52)

where Tαβ = Tαβ [z, m̂, ĝ + ĥR] is a point stress-energy
associated with the small object; through order ε2, it
will be the sum of (47) plus (48) with g̃αβ replaced by

ĝαβ + ĥRαβ . Sαβ [ĥ; ĝ] denotes the sum of all the terms

in Gαβ [ĝ + ĥ] that are nonlinear in ĥαβ . As mentioned
above, a field equation of this form can be made well
defined at least through order ε2 [76].

Due to the black hole’s evolution, ĝαβ is not precisely
a vacuum metric, and we move its Einstein tensor to the
right-hand side of the field equations, treating it as a
source for the metric perturbation. We also once again
impose the Lorenz gauge condition, defining the trace
reversal and divergence with respect to ĝαβ , such that
the field equations become

Êαβ [ĥ] = 2Gαβ [ĝ] + 2Sαβ [ĥ; ĝ]− 16πTαβ . (53)

Here Êαβ is given by Eq. (33) with the covariant deriva-
tives and Riemann tensor associated with ĝαβ . We write
Eq. (53) more compactly as

Êαβ [ĥ] = Ŝαβ [Z, M̂, z, m̂, ĥ]. (54)

In the true evolution, ĝαβ is only slowly varying, meaning
it is almost a vacuum metric. In that case, every term in
the source Ŝαβ is small. We have suggestively written the

source as a function of (Z, M̂) instead of ĝαβ , assuming

the background metric is a prescribed function of (Z, M̂).
We can construct a solution to Eq. (54) iteratively,

introducing one additional multipole moment at each it-
eration and solving

Êαβ [ĥ(0)] = Ŝαβ [Z, M̂, z, m̂ = 0, ĥ = 0] (55)
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for the zeroth iteration and

Êαβ [ĥ(n)] = Ŝαβ [Z, M̂, z, m̂(n−1), ĥ(n−1)] (56)

for subsequent iterations. Here m̂(n−1) stands for the set
of all of the small object’s multipole moments up to its
(n − 1)th moment. Adopting the retarded solution at
every iteration, we obtain

ĥ
(0)
αβ = 2

∫
Ĝαβ

α′β′Gα′β′ [ĝ]dV ′, (57)

ĥ
(1)
αβ = 2

∫
Ĝαβ

α′β′
{
Gα′β′ [ĝ] + Sα′β′ [ĥ

(0); ĝ]

− 8πTα′β′ [z, µ, ĝ + ĥ(0)]
}
dV ′, (58)

ĥ
(2)
αβ = 2

∫
Ĝαβ

α′β′
{
Gα′β′ [ĝ] + Sα′β′ [ĥ

(1); ĝ]

− 8πTα′β′ [z, µ, s, ĝ + ĥ(1)]
}
dV ′, (59)

where Ĝαβ
α′β′ is the retarded Green’s function associated

with Êαβ . In this way, ĥ
(0)
αβ is fully determined by Zµ and

M̂ ; ĥ
(1)
αβ by Zµ, M̂ , zµ, and µ; and ĥ

(2)
αβ by Zµ, M̂ , zµ,

µ, and the spin sµ. In the limit n → ∞, ĥ
(n)
αβ should

converge to a solution to Eq. (54).
The iterative solution can be found (at least formally)

for any behavior of the mechanical degrees of freedom P̂ .
The true behavior of P̂ is then found by enforcing the
Lorenz gauge condition, ensuring that the solution sat-
isfies the full Einstein equation and not just the relaxed
one. Here we will only conjecture that one can use the
gauge condition to systematically derive uniform-in-time
evolution equations for M̂ , which would complement the
existing equations for zα and sα. It will become clear
from the two-timescale analysis in Sec. VII that if these
self-consistent evolution equations are to admit a two-
timescale solution, they must be compatible with the ex-
pected laws: the black hole’s mass and spin must evolve
according to the gravitational-wave flux down the hori-
zon.

From this iterative solution, if desired, one can extract
an expansion analogous to (27),

ĥ
(n)
αβ (xµ, ε; P̂ ) =

n∑
p=0

εnĥ
(n,p)
αβ (xµ; P̂ ), (60)

where the terms in the expansion are obtained by reading
off explicit factors of ε that come from the scaling of the
multipole moments. For example,

ĥ
(1,0)
αβ (xµ; P̂ ) = 2

∫
Ĝαβ

α′β′
{
Gα′β′ [ĝ]

+ Sα′β′ [ĥ
(0); ĝ]

}
dV ′, (61)

ĥ
(1,1)
αβ (xµ; P̂ ) = −16π

∫
Ĝαβ

α′β′T 1
αβ [z, ĝ + ĥ(0)]dV ′, (62)

where T 1
αβ [z, ĝ+ ĥ(0)] is given by Eq. (44) with the four-

velocity, proper time, and metric determinant all defined

with respect to ĝαβ+ ĥ
(0)
αβ . Note that in this power count-

ing, ĥ
(0)
αβ is formally of order 1, and the source Sαβ [ĥ(0); ĝ]

can be infinitely nonlinear in ĥ
(0)
αβ . However, once we sub-

stitute the true time dependence of the multipole mo-

ments, as determined from the gauge condition, ĥ
(0)
αβ will

be small because Gαβ [ĝ] will be small. This means that

in practice, one would be able to truncate Sαβ [ĥ(0); ĝ] at

a finite power of ĥ
(0)
αβ .

We will not belabour this construction, as we will move
onto a simpler one in the next section.

D. Self-consistent approximation with evolving
mass and spin perturbations

The problem becomes more tractable if we note that
over the course of an inspiral, the background mass and
spin change only by an amount of order ε. We can there-
fore divide M̂ = (MBH, SBH) into constant, zeroth-order
parameters P = (M,S) and small, evolving corrections
δP = (δM, δS).

Given this division of the black hole mechanical degrees
of freedom, we may re-expand the metric at fixed {P, p},
where p = {zµ, m̂, δP} is the complete list of perturbative
degrees of freedom. Equation (51) then becomes

gαβ = gαβ(xµ;P ) + hαβ(xµ, ε;P, p), (63)

where the background gαβ is now an exact Kerr met-
ric with parameters P , and the perturbation is hαβ =

ĥαβ(xµ, ε;P, p) + δgαβ(xµ, ε;P, δP ) with δgαβ := ĝαβ −
gαβ . hαβ contains all the information about the small
mechanical parameters. Both pieces of the perturbation
can be expanded with fixed mechanical parameters, as

ĥαβ(xµ, ε;P, p) =
∑
n>0

εnĥnαβ(xµ;P, p), (64)

δgαβ(xµ, ε;P, p) =
∑
n>0

εngnαβ(xµ;P, δP ), (65)

where

gnαβ :=
1

n!

[
dn

dεn
ĝαβ(M + εδM, S + εδS)

]
ε=0

(66)

(holding δM and δS fixed while evaluating the deriva-
tives). Or in total,

hαβ(xµ, ε;P, p̂) =
∑
n>0

εnhnαβ(xµ;P, p). (67)

At the first few orders, this reads

gαβ = gαβ(x;P ) + εh1
αβ(x;P, δP, z, µ)

+ ε2h2
αβ(x;P, δP, z, µ, s) +O(ε3). (68)

Just as in the case of an evolving background, we wish
to treat the evolving δP as a source in the field equations.
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If we impose the Lorenz gauge condition (31) on hαβ and
move δgαβ to the right-hand side of the field equations,
we obtain the relaxed Einstein equation

εEαβ [ˆ̄h1] + ε2Eαβ [ˆ̄h2] = 2ε2δ2Gαβ [h1]− εEαβ [ḡ1]

− ε2Eαβ [ḡ2] +O(ε3). (69)

Demanding that ĥnαβ satisfies these field equations for
arbitrary p̂, we have

Eαβ [ˆ̄h1] = −16πT 1
αβ − Eαβ [ḡ1], (70)

Eαβ [ˆ̄h2] = −16πT 2
αβ + 2δ2Gαβ [h1]− Eαβ [ḡ2]. (71)

Or in a puncture scheme,

Eαβ [ˆ̄h1R] = −Eαβ [ḡ1]− Eαβ [ˆ̄h1P ], (72)

Eαβ [ˆ̄h2R] = 2δ2Gαβ [h1]− Eαβ [ḡ2]− Eαβ [ˆ̄h2P ]. (73)

We seek the retarded solutions to these equations for ar-
bitrary δM and δS.

Evolution equations for zµ, µ, sµ, δM , and δS are then
to be determined from the gauge condition (31). The lo-
cal analysis near the small object, which led to Eq. (42),
dµ/dτ = O(ε3), and Dsµ/dτ = O(ε3) in prior work,
goes through essentially unchanged. A similar analysis
near the horizon of the central black hole should yield
(uniform-in-time) evolution equations for δM and δS.
However, as in the case of an evolving background, we
note that in order to admit a two-timescale solution,
those evolution equations must take the expected form in
terms of fluxes of energy and angular momentum down
the horizon. We therefore put aside any further anal-
ysis of this modified scheme, satisfying ourselves that
it is now, at least in principle, compatible with a two-
timescale expansion. In Sec. VII we will then use the
two-timescale scheme to derive the standard flux-balance
equations for δM and δS.

At this stage, astute readers will have noticed that if
we simply move gnµν back to the left-hand side of the field
equations (72) and (73), then this new self-consistent
framework recovers exactly the equations in the usual
self-consistent scheme, (40) and (41). What, then, has
changed? In the old scheme, we had no way of enforc-
ing that h1

µν includes a dynamically evolving g1
µν . Our

method of solving the field equations implicitly treated

g1
µν as the Taylor series g1

µν |t=0 + εt
dg1µν
dt̃

∣∣∣
t=0

+ O(ε2),

such that the evolution of g1
µν covertly slipped into h2

µν

in the form of a linearly growing perturbation. In the
altered scheme, the perturbations gnµν instead play the
role of punctures. Just as the usual punctures on zµ

enforce the correct physical behaviour near the small ob-
ject, the punctures gnµν enforce the correct long-term be-
havior. More concretely, if we refer back to the discussion
in Sec. II B, we see that the initial data which seeded the
unwanted linear growth in h2

µν will not be included in

the initial data for ĥ2
µν ; everything linear in δM and its

derivatives will already be accounted for in h1
µν .

However, for simplicity in later sections, we will move
gnµν back to the left-hand side of the field equations, as
in Eqs. (40)–(41). The reason this will pose no problem
is that the two-timescale framework will automatically
enforce the correct long-term behavior of the solution.
In that context, the quantity xµν that appears in the
two-timescale solution will implicitly replace g1

µν .
Before proceeding to the multiscale expansion, we

make one comment. Rather than starting from the self-
consistent framework, one could instead build a two-
timescale approximation starting from the Gralla-Wald
formalism [29, 40]. As discussed above, this approach
cannot remain accurate on the radiation-reaction time.
However, one could still utilize its results to inform a
two-timescale expansion by performing a short-time re-
expansion of the two-timescale variables around each
fixed value of slow time and matching the results, term
by term, to the Gralla-Wald variables.5

III. OVERVIEW OF TWO-TIMESCALE
EXPANSIONS

Before performing the two-timescale expansion of our
system of equations, we begin with a review of the
method.

Consider a differential equation

Dψ(t, xa, ε) = S(t, xa, ε), (74)

where D is a linear differential operator, xa are a set of
n spatial coordinates, and ε is a small parameter. Sup-
pose we know that the source S and solution ψ are char-
acterized by a very nearly discrete frequency spectrum,
but with a slowly evolving set of discrete frequencies
ωk = kω ∼ ε0. For simplicity, assume the timescale over
which ω varies is ∼ 1/ε, such that ω = ω(εt) [or more
generally, ω = ω(εt, ε)]. The system is then character-
ized by two timescales: a short time scale 1/ω ∼ ε0, and
a long time scale 1/ε. We can characterize the system’s
dependence on these time scales by introducing two new
time variables: a fast time ϕ(t, ε) ∼ ε0 t given by dϕ

dt = ω;

and a slow time t̃(t, ε) = εt. t̃ changes appreciably only
over the long time scale t ∼ 1/ε, while ϕ changes on the
time scale ∼ 1/ω.

Things very quickly go wrong if we attempt to
solve Eq. (74) by assuming regular asymptotic expan-
sions ψ(t, xa, ε) =

∑∞
n=0 ε

nψn(t, xa) and S(t, ε) =∑∞
n=0 ε

nSn(t, xa). The exact, slowly evolving solution
will contain oscillatory functions of the fast time, of the

5 This would be made (slightly) more difficult again if Gralla’s ex-
plicit second-order results in Ref. [29] were used, because Gralla’s
gauge appears to exhibit growth in time that would not arise even
in a short-time expansion of the two-timescale metric; this extra
growth can be inferred from the combination of Gralla’s Eqs. (80)
and (83) with his Eq. (B4)-(B6). The matching procedure would
hence also require a gauge transformation.
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form eikϕ(t,ε). If we expand this in a regular power series,
using

ϕ =

∫ t

0

ω(εt)

=

∫ t

0

[ω(0) + εtω̇(0) +O(ε2)]dt

= ω(0)t+
1

2
εω̇(0)t2 +O(ε2), (75)

we obtain

eikϕ(t,ε) = eikω(0)t

[
1 +

ik

2
εω̇(0)t2 +O(ε2)

]
. (76)

What was a sinusoid with a slowly varying frequency and
constant amplitude has become a sinusoid with a con-
stant frequency and growing amplitude. After a time
t ∼ 1/ε, the sinusoid’s frequency ω(0) will differ by or-
der ε0 from the true frequency ω(εt). After that same
time, the sinusoid’s amplitude will be ∼ 1/ε � 1,
rendering the expansion entirely invalid. For a simi-
lar reason, the ωk = 0 piece of the solution also fails.
A slowly varying solution of the form ψ0(εt) becomes

ψ0(0) + εψ̇0(0)t + O(ε2). After a time t ∼ 1/ε, every
term in the expansion becomes of order ε0. More dra-
matically, the expansion of ϕ in Eq. (75) breaks down on
the shorter dephasing time t ∼ 1/

√
ε; this is especially

disastrous in gravitational-wave data analysis, where ac-
curate phasing is paramount.

The multiscale approximation method eliminates these
errors by treating t̃ and ϕ as independent variables, trans-
forming the (n+1)-dimensional problem (74) into a more
tractable (n+ 2)-dimensional problem.

First, we assume that ψ(t, xa, ε) can be written as

ψ(t, xa, ε) = ψ̃(εt, ϕ(t, ε), xa, ε),6 where the function

ψ̃(t̃, xa, ϕ, ε) has a regular asymptotic expansion at fixed
t̃, ϕ, and xa,

ψ̃
(
t̃, ϕ, xa, ε

)
=

∞∑
n=0

εnψ̃n(t̃, ϕ, xa). (77)

Each coefficient ψn is further assumed to be (i) a pe-
riodic function of ϕ and (ii) a bounded function of
t̃ (at fixed xa). Analogously, we write S(t, xa, ε) =

S̃(εt, ϕ(t, ε), xa, ε), where S̃ is the asymptotic series

S̃(t̃, ϕ, xa, ε) =

∞∑
n=0

εnS̃n(t̃, ϕ, xa). (78)

6 We can relax this to the weaker assumption that
ψ(t, xa, ε) is uniformly approximated, on an interval of
time ∼ 1/ε, by the asymptotic series (77). That is, if

we define ψ̃N (t̃, xa, ϕ, ε) =
∑N
n=0 ε

nψn(t̃, ϕ, xa), then

limε→0
sup |ψ(t,xa,ε)−ψN (εt,ϕ(t,ε),xa,ε)|

εN
= 0 for all integers

N ≥ 0, where the supremum is taken over t ∈ [T1, T2/ε] for
fixed xa and some fixed T1,2 ∈ R.

These expansions can be compared to the self-consistent
approximation, in which the expansions were carried out
while holding fixed the mechanical functions rather than
slow and fast times.

When we substitute ψ = ψ̃ into Eq. (74), we can eval-
uate time derivatives using the chain rule,

dψ

dt
=
dϕ

dt

∂ψ̃

∂ϕ
+
dt̃

dt

∂ψ̃

∂t̃

= ω
∂ψ̃

∂ϕ
+ ε

∂ψ̃

∂t̃
. (79)

The operator D then becomes a differential operator D̃
on the (n+2)-dimensional manifold charted by (t̃, ϕ, xa),
and Eq. (74) becomes

D̃ψ̃ = S̃. (80)

This is completely equivalent to Eq. (74) when evalu-
ated at t̃ = εt and ϕ = ϕ(t, ε). But we now consider
it as a partial differential equation rather than an or-
dinary one, with t̃ and ϕ as independent variables, and
with periodicity in ϕ providing an additional boundary
condition. Thus, we effectively define ψ̃(t̃, ϕ, xa, ε) to be
the periodic-in-ϕ solution to Eq. (80), to any desired or-
der in ε. By construction, when evaluated at t̃ = εt and
ϕ = ϕ(t, ε), ψ̃ will then also be a solution to the original
equation (74), to any desired order in ε, with the desired
property of approximate periodicity.

To solve (80), we now fully expand it in powers of ε at
fixed t̃ and ϕ. In the case that ω depends on both t̃ and
ε, this requires that we assume that it has an asymptotic
expansion

ω(t̃, ε) =

∞∑
n=0

εnωn(t̃). (81)

Given the expansion (81), we can write Eq. (79) as

dψ

dt
= ω0∂ϕψ̃ + ε(∂t̃ + ω1∂ϕ)ψ̃ +O(ε2). (82)

Due to their periodicity, the coefficients can be ex-
panded in a discrete Fourier series

ψ̃n(t̃, ϕ, xa) =

+∞∑
k=−∞

ψ̃nk(t̃, xa)e−ikϕ. (83)

Analogously,

S̃n(t̃, ϕ, xa) =

+∞∑
k=−∞

S̃nk(t̃, xa)e−ikϕ. (84)

This means the ϕ derivatives can be explicitly evaluated,
giving us

dψn
dt

=
∑
k

[
−ikω0ψnk + ε∂̃t̃ψnk +O(ε2)

]
e−ikϕ, (85)
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where ∂̃t̃ := ∂t̃ − ikω1.

This treatment of derivatives leads to the operator D̃
becoming D̃0,k + εD̃1,k + O(ε2), and the original differ-
ential equation (74) becoming∑
n,j,k

εn+j [D̃j,kψ̃n,k(t̃, xa)]e−ikϕ =
∑
n,k

εnS̃n,k(t̃, xa)e−ikϕ.

(86)
If we restrict this equation to the submanifold t̃ = εt
and ϕ = ϕ(t, ε), then we are not guaranteed that we
can equate coefficients of explicit powers of ε or Fourier
coefficients in this equation. However, since we define ψ̃
to be the solution to Eq. (80) for all t̃ and ϕ, we are given
that guarantee. Hence, we have∑

j+n′=n

D̃j,kψ̃n′,k(t̃, xa) = S̃n,k(t̃, xa). (87)

This is a set of partial differential equations on the new
manifold charted by (t̃, xa). Solving these equations then
determines the amplitudes’ evolution with slow time. Re-
stricting back to the submanifold defined by t̃ = εt and
ϕ = ϕ(t, ε), we obtain the desired quasiperiodic solution

ψ(t, xa, ε) =
∑
n,k

εnψ̃n,k(εt, xa)e−ik
∫ t ω(εs,ε)ds. (88)

The description in this section is of the textbook
method of multiple scales. In our particular prob-
lem, an alternative approach is to perform an ex-
pansion at fixed ω instead of fixed t̃. The end re-
sult is then an expansion of the form ψ(t, xa, ε) =∑
n,k ε

nψ̃n,k(ω(εt, ε), xa)e−ik
∫ t ω(εs)ds. This is one step

less removed from the self-consistent method, as it treats
the system’s parameters nonperturbatively. We explore
this approach in Appendix A.

Ultimately, the validity of expansions such as these
should be established a posteriori by showing that (i) all
the equations (87) can be solved, and (ii) the coefficients

ψ̃n,k are uniformly order 1 on any interval t ∈ [T1, T2/ε];
i.e., limε→0 sup |ψn,k(εt)| < ∞. (ii) rules out behavior

like ψ̃n,k = 1/t̃, which would be very large when t� 1/ε.

IV. TWO-TIMESCALE EXPANSION OF THE
ORBITAL DYNAMICS

We now apply the two-timescale prescription to the
worldline zα and its equation of motion (42). Our pre-
sentation closely follows Sec. IVA of Ref. [35].

A. Parametrization of quasicircular orbits

Without loss of generality, we place the orbit in the
equatorial plane, parametrizing it as

zµ(t, ε) = (t, rp(t, ε), π/2, φp(t, ε)) . (89)

To specialize to quasicircular orbits, we assume that

the orbital radius rp and orbital frequency Ω :=
dφp
dt

evolve slowly, on the radiation-reaction timescale Ω/Ω̇ ∼
1/ε, with no oscillations on the orbital timescale 1/Ω ∼
ε0. More explicitly, we assume that they can be written
as slowly varying functions

rp(t, ε) = r0(εt) + ε r1(εt) +O(ε2), (90)

Ω(t, ε) = Ω0(εt) + εΩ1(εt) +O(ε2). (91)

Here we have introduced the natural slow time variable

t̃(t, ε) = εt. (92)

Our natural fast time variable is the orbital phase,

φp(t, ε) =

∫ t

0

Ω(s, ε)ds+ φp(0, ε). (93)

As one might expect, for quasicircular inspirals the or-
bital dynamics is independent of this fast time; we will
show this in later sections. However, the metric of the
full, evolving system will have a periodic dependence on
this phase, and it will play a critical role in the two-
timescale expansion of the field equations.

B. Equation of motion

We now substitute our expansion of the worldline into
the equation of motion (42). This will lead to a sequence
of equations for each rn and Ωn.

Written in terms of the non-affine parameter t, Eq. (42)
reads

d2zµ

dt2
+ U−1 dU

dt

dzµ

dt
+ Γµβγ

dzβ

dt

dzγ

dt
= U−2fµ, (94)

where U := ut, and where fµ is the self force per unit
mass, given by the right-hand side of Eq. (42).

To expand Eq. (94), we will require an expansion of U .

The normalization condition uµuνgµν = U2 dzµ

dt
dzν

dt gµν =

−1 gives us U−2 = −gµν dz
µ

dt
dzν

dt . Using dzµ

dt =

(1, drp/dt, 0,Ω), Eqs. (90) and (91), and d/dt = εd/dt̃,
we obtain the expansion

U−2 = 1− 3M/r0 − 2εr2
0Ω0Ω1 +O(ε2). (95)

This then yields

U = U0 + εU1 +O(ε2), (96)

where

U0 = (1− 3M/r0)
−1/2

, (97)

U1 = r2
0Ω0Ω1 (1− 3M/r0)

−3/2
. (98)

We also require an expansion of fµ. As we mentioned
above, the orbital dynamics is independent of the fast
time φp. We can hence write

fµ(t, ε) = εf̃µ1 (εt) + ε2f̃µ2 (εt) +O(ε3). (99)
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The explicit terms in this expansion are given by
Eq. (203) below. f̃µ1 (t̃) is the standard first-order self-
force on a circular orbit of radius r0(t̃), but with the
inclusion of terms proportional to M1(t̃) and S1(t̃). Sim-

ilarly, f̃µ2 (t̃) is specified by rn≤1(t̃), Mn≤2(t̃), and Sn≤2(t̃).
As mentioned in the introduction, dissipative and con-

servative pieces of the force contribute to the long-term
phase evolution at different orders. In the quasicircular
case, the division into dissipative and conservative pieces
is straightforward. The dissipative piece is the one that is
antisymmetric under the time reversal (t, φ)→ (−t,−φ)
(at fixed t̃):

f̃µn,diss = (f̃ tn, 0, 0, f̃
φ
n ). (100)

Analogously, the conservative piece is the one that is sym-
metric under that time reversal:

f̃µn,cons = (0, f̃rn, 0, 0). (101)

Finally, we substitute the expansions of zµ, U , and
fµ into the equation of motion (94). The result is a
sequence of equations for Ωn and rn, which take the form
of (i) algebraic equations for Ωn in terms of rn and (ii)
differential equations for the slow time evolution of rn(t̃).

At order ε0 the only nontrivial piece of Eq. (94) is the
r component, from which we derive the relation

Ω0 =
√
M/r3

0. (102)

This is just the standard expression for the orbital
frequency of a circular geodesic orbit of radius r0 in
Schwarzschild spacetime.

At linear order in ε, from the t component of Eq. (94)
we derive that

dr0

dt̃
=

2(r0 − 3M)2(r0 − 2M)

M(r0 − 6M)
f̃ t1(t̃). (103)

This tells us that at leading order, the slow evolution of
the radius is completely determined by f̃µ1,diss. We see
that the evolution diverges when the orbit reaches the
innermost stable circular orbit (ISCO), r0 = 6M , sig-
nalling the breakdown of our quasicircular ansatz. Phys-
ically, this corresponds to the fact that as the small object
approaches the ISCO, it transitions into a plunging or-
bit. The transition occurs over a new slow timescale [79],
and a complete treatment of the inspiral would utilize an
alternative approximation in the transition region. How-
ever, the transition to plunge should have a minimal im-
pact on LISA data analysis, since it adds relatively little
to the integrated SNR. So we expect that for the purpose
of matched filtering, we can simply abort the waveform
model at some time prior to the transition.

Next, still at linear order in ε, from the r component
of Eq. (94) we find that

Ω1 = − 1

2f0r0Ω0

(
U−2

0 f̃r1 +
3Mr1f0

r3
0

)
, (104)

where f0 := 1 − 2M/r0. This equation tells us how the

conservative piece of f̃µ1 affects the orbital frequency at
a given orbital radius.

Now moving to quadratic order in ε, from the t com-
ponent of Eq. (94), we obtain an equation for the slow
evolution of r1 and Ω1, given by

2M

r2
0f0

dr1

dt̃
+ r2

0U
2
0 Ω0

dΩ1

dt̃

= U−2
0 f̃ t2 +

8 (r0 − 3M)
2

(r0 −M)

r2
0 (r0 − 2M) (r0 − 6M)

r1f̃
t
1

−
(
r3
0 (r0 − 9M) f0

M (r0 − 6M)
+ 2r2

0

)
Ω0Ω1f̃

t
1. (105)

Substituting our result (104) for Ω1 then yields an equa-
tion for r1(t̃) alone:

dr1

dt̃
=

2r0f0(r0 − 3M)2

M(r0 − 6M)
f̃ t2 +

r3
0(r0 − 3M)

M(r0 − 6M)

df̃r1
dt̃

+
2r2

0(r0 − 3M)2
(
r2
0 − 6Mr0 + 6M2

)
M2(r0 − 6M)2

f̃r1 f̃
t
1

+
4(r0 − 3M)(r2

0 − 10Mr0 + 18M2)

M(r0 − 6M)2
r1f̃

t
1. (106)

We see here that the slow evolution of r1 and Ω1 is driven
by f̃µ2,diss, the rate of change ∂t̃f̃

µ
1,cons, and products of

f̃µ1,diss with first-order time-symmetric quantities.
We could next write a formula relating Ω2 to r2 and

f̃r2 ; this relation is contained in the order-ε2 term in the
r component of Eq. (94). However, without an equation
for dr2/dt̃, this relation would not contribute to a cal-
culation of the gravitational waveform. Our primary re-
quirement for that calculation is an accurate evolution of
the waveform phase. As we sketched in Fig. 3, the wave-
form phase is obtained directly from the orbital phase φp,
which in turn is obtained from the orbital frequency via
Eq. (93). Note that by changing the integration variable
in that equation, we can also write φp as an expansion of
the form (3),

φp(t, ε) =
1

ε

∫ εt

0

[Ω0(s̃) + εΩ1(s̃) +O(ε2)]ds̃

+ φp(0, ε) (107)

:=
1

ε

[
φ0(εt) + ε φ1(εt) +O(ε2)

]
+ φp(0, ε).

(108)

This equation, in combination with the above analysis,
provides a simple demonstration of what is required for
adiabatic and post-adiabatic accuracy:

1. The adiabatic approximation only requires Ω0(t̃).
According to Eqs. (102) and (103), the only neces-

sary input is f̃µ1,diss.

2. The post-adiabatic approximation requires Ω1(t̃)
(in addition to Ω0). According to Eqs. (104) and
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(106), the necessary input is f̃µ2,diss and both f̃µ1,diss

and f̃µ1,cons.

In the next section, we will see how our results here
link to the two-timescale expansion of the field equations.
However, before proceeding we make one comment. Pre-
vious treatments of eternal circular orbits have typically
expanded the orbit in powers of ε at fixed frequency [80].
This corresponds to setting Ω0 = Ω and Ωn = 0 for
n > 0. Equation (104) then becomes a formula for r1 in

terms of f̃r1 :

r1 = − r3
0 f̃

r
1

3MU2
0 f0

. (109)

However, in the two-timescale expansion presented in this
section, the relationship (109) can only be freely enforced
at a single value of t̃, say t̃0; Ωn(t̃0) = 0 is simply a choice
of initial condition for the evolution. After that initial
time, Ω1 changes with time in a uniquely determined
way, as dictated by Eqs. (104) and (106). An alterna-
tive approach, as noted several times above, would be to
perform all our expansions in powers of ε while holding
Ω, rather than t̃, fixed. Equation (109) would then au-
tomatically hold true throughout the evolution, with all
functions on the right of the equation becoming functions
of Ω. We detail this approach in Appendix A.

V. TWO-TIMESCALE EXPANSION OF THE
FIELD EQUATIONS

We now turn to the expansion of the metric perturba-
tion and its field equations. We first define our choice of
slow and fast time variables off the worldline; our defini-
tions are tailored to hyperboloidal slicings, but they are
sufficiently general to encompass t slicing and null slic-
ings. We then derive the two-timescale expansion of the
field equations with this generic slicing. We close with
discussions of transformations between modes on differ-
ent slicings and boundary conditions for the expanded
fields.

A. Choice of slow and fast times off the worldline

To perform a two-timescale expansion for the metric
perturbation, we need a suitable choice of fast and slow
variables. One option is to remain with the choice in
Eq. (92). But as shown in Ref. [35], an asymptotically
null slicing improves the behavior of the second-order
source and eliminate infrared divergences in the retarded
integral of that source. The advantage of such a judi-
cious choice was also highlighted by Mino and Price [52].
Since similar problems arise at the horizon, this suggests

taking our basic time variable to be [66] 7

s := t− k(r∗). (110)

Here, for suitable choices of height function k(r∗), sur-
faces of constant s foliate the spacetime with horizon-
penetrating hyperboloidal slices. Figure 1 shows an ex-
ample of a constant-s slice for a particular choice of height
function.

In the present section, for the purposes of expand-
ing the field and the field equations, we remain agnostic
about our choice of time variable. We instead denote by s
the generic time variable as defined in Eq. (110), leaving
k unspecified. This means our versions of the field equa-
tions can be specialized to t slicing (with k = 0), null
slicing (with k = ±r∗), or any choice of hyperboloidal
slicing.

Given our choice of basic time variable, we define our
slow time to be s̃ = εs. As for the fast variable, we use the
azimuthal phase φp, as given in Eq. (93), but extended
off the worldline such that it is constant on each slice of
constant s:

φp(s, ε) =

∫ s

0

Ω(z, ε)dz + φp(0, ε). (111)

The next subsection further motivates these choices of
slow and fast time based on the form of the source terms
in the field equations.

B. Tensor-harmonic decomposition

We now turn to the field equations (40)–(41). Before
performing the two-timescale expansion, we first slightly
modify the field equations and decompose them into a
basis of tensor spherical harmonics.

Our first step is to add a gauge-damping term to the
field equations, following Barack and Lousto [81, 82]. We
do this by replacing Eαβ with

Ĕαβ [h̄] := Eαβ [h̄] +
4M

r2
t(αZ̆β)[h̄], (112)

where tα = −δtα, Zα[h̄] := ∇βh̄αβ , and Z̆α’s components

in Schwarzschild coordinates are Z̆α = (Zr, 2Zr, Zθ, Zφ).
The field equations then become

Ĕαβ [h̄1R] = −Ĕαβ [h̄1P ] =: S̆1 eff
αβ , (113)

Ĕαβ [h̄2R] = 2δ2Gαβ [h1]− Ĕαβ [h̄2P ] =: S̆2 eff
αβ . (114)

The solutions to these equations slightly differ from the
solutions to the old ones because the individual fields do

7 For the height function k(r), to avoid confusion with the metric
perturbation we use a notation different from that of Ref. [66],
in which h(r) is used.
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not satisfy Zα[h̄n] = 0. However, when the fields are
summed, εh̄1

αβ + ε2h̄2
αβ does remain a solution to the

original relaxed Einstein equation (32) [or (69)] because
the fields do satisfy εZα[h̄1] + ε2Zα[h̄2] = O(ε3). This
step of altering the field equations is entirely nonessential
for our analysis; we perform it solely because, as pointed
out by Barack and Lousto, it partially decouples the field
equations after the tensor-harmonic decomposition, as we
review later in this section.

We next decompose the fields into tensor spherical har-
monic modes, using the Barack-Lousto-Sago basis of har-
monics [81, 82]:

h̄nRαβ =
∑
i`m

ai`
r
h̄nRi`m(s, r, ε)Y i`mαβ (r, θA), (115)

and analogously for h̄nPαβ , where i = 1, . . . , 10, ` ≥ 0,

and m = −`, . . . , `. The harmonics Y i`mαβ , given explic-
itly in Appendix B, provide an orthogonal basis for sym-
metric rank-2 tensors, satisfying the orthogonality prop-
erty (B5). ai` is a convenient numerical factor defined in
Eq. (B8). Following Barack-Lousto-Sago, we have also
pulled out a factor of 1/r to simplify the field equations.
The orthogonality property implies

h̄ni`m =
r

ai`κi

∮
dΩ ηαµηβν h̄nαβY

i`m∗
µν , (116)

with
∮
dΩ :=

∫ 2π

0
dφ
∫ π

0
dθ sin θ, κi given by Eq. (B7), and

ηαβ given by Eq. (B6). The coefficients hni`m, if needed,
are related to h̄ni`m by the interchange i = 3 ↔ i = 6,
with all other coefficients unchanged.

We similarly expand the source terms S̆n eff
µν as

S̆n eff
µν =

∑
i`m

−4ai`
rf

Sn eff
i`m (s, r)Y i`mµν (r, θA), (117)

where we have again introduced a factor, −4ai`
rf , to sim-

plify later expressions. From the orthogonality condition
(B5), the coefficients are

Sn eff
i`m (s, r) =

−rf
4ai`κi

∮
dΩ ηαµηβν S̆n eff

αβ Y i`m∗µν , (118)

Here and below we define mode coefficients without
breves to lessen the notational load.

With these harmonic expansions, Eqs. (113) and (114)
each separate into a set of ten coupled partial differential
equations for the coefficients h̄ni`m [82], which read

Eij`mh̄
nR
j`m = Sn eff

i`m . (119)

Recall that the repeated basis label j is summed over.
The decomposed wave operator is given by

Eij`mh̄j`m := �2d
sc h̄i`m +Mij h̄j`m, (120)

where �2d
sc is the scalar-field wave operator ∂uv + V`, or

�2d
sc =

1

4

(
∂2
t − ∂2

r∗
)

+ V`, (121)

with potential

V`(r) =
f

4

(
2M

r3
+
`(`+ 1)

r2

)
, (122)

and Mij with i, j = 1, . . . , 10 are a set of matrices com-
prised of first-order differential operators that couple be-
tween the various h̄j`m’s. Note that the coupling is only
between different j’s; there is no coupling between modes
of different ` and m. Also note that the only effect of our
added gauge-damping term is to alter these coupling ma-
trices. The explicit form of the coupling matrices can be
found in Appendix A of [82].

In addition to these wave equations, we have the four
gauge constraints, ∇αh̄αβ = 0, which separate into four
conditions for h̄i`m. These also appear in Appendix A of
[82]. We delay discussion of them until after presenting
the two-timescale expansion of the wave equations.

To more easily justify our two-timescale ansatz, rather
than using the first-order field equation with an effective
source, we use the equivalent form

Eij`mh̄
1
j`m = −16πT 1

i`m, (123)

where the modes of the stress-energy tensor are defined
in analogy with Eq. (118). We can evaluate the integral
in the point-particle stress-energy (44) by changing to t
as the integration variable, yielding

T 1
αβ =

µuα(εt, ε)uβ(εt, ε)

U(εt, ε)r2
p(εt, ε)

× δ[r − rp(εt, ε)]δ(θ − π/2)δ[φ− φp(t, ε)]. (124)

The harmonic modes are then

T 1
i`m =

−rµf
4ai`κi

∮
dΩ ηαµηβν

uαuβ
Ur2

p

δ(r − rp)δ(θ − π/2)

× δ(φ− φp)Y i`m∗µν (rp, θ, φ)

= t1i`me
−imφpδ(r − rp), (125)

where

t1i`m :=
−rpµfp
4ai`κi

ηαµηβν
uαuβ
Ur2

p

Y i`m∗µν (rp, π/2, 0). (126)

Here ηαβ is evaluated at r = rp and θ = π/2, and all of rp,
fp := 1−2M/rp, U , and uα are evaluated at (εt, ε). Note,
however, that since s reduces to t in a neighborhood of
the worldline, we have s(t, rp) = t. Since the radial delta
function forces evaluation at r = rp, we can hence freely
treat all functions of t in Ti`m, including φp, as functions
of s. Each mode Ti`m is therefore proportional to the fast-
time phase factor e−imφp(s,ε). This motivates adopting
φp(s, ε) as our fast time in h̄1

αβ , as outlined above.
This feature extends to the second-order source as well.

The source term δ2Gi`m can be written in terms of the
first-order field modes as

δ2Gi`m =
∑
i1`1m1
i2`2m2

Gi`mi1`1m1i2`2m2
h̄1
i1`1m1

h̄1
i2`2m2

, (127)
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where Gi`mi1`1m1i2`2m2
is a bilinear differential operator

that acts linearly on h̄1
i1`1m1

and, separately, linearly on

h̄1
i2`2m2

. The explicit form of Eq. (127) will be presented
in Ref. [71]. Its only essential characteristic here is that
it enforces m = m1 + m2; this condition arises in the
usual way from the coupling of two spherical harmon-
ics, via δ2Gi`m ∝

∫
dφe−imφeim1φeim2φdφ ∝ δm,m1+m2 .

Since h̄1
i1`1m1

∝ e−im1φp(s,ε) and h̄1
i2`2m2

∝ e−im2φp(s,ε),

it follows that δ2Gi`m ∝ e−imφp(s,ε). Although we do
not explicitly calculate the modes of the puncture h̄2P

i`m
in this paper, they too inherit the fast-time dependence
of the orbit. Hence, we are again motivated to adopt
φp(s, ε) as our fast time in h̄2

αβ .
In summary, our mode-decomposed field equations are

Eij`mh̄
1
j`m = −16π t1i`me

−imφp(s,ε)δ(r − rp), (128a)

Eij`mh̄
2R
j`m = 2δ2Gi`m − Eij`mh̄2P

j`m, (128b)

where rp = rp(εs, ε), t1i`m = t1i`m(εs, ε) is given by
Eq. (126), and δ2Gi`m is given by Eq. (127). The first-
order source is a function of s̃, φp, and ε, periodic in φp
(with period 2π/m). If we assume h̄1

i`m inherits those
properties, then the second-order source δ2Gi`m does as
well.

C. Two-timescale expansion

Prompted by the form of the source, and following
the outline in Sec. III, we assume that h̄ni`m(s, r, ε) is
approximated (uniformly in s at fixed r) by a function
˜̄hni`m(εs, φp(s, ε), r, ε) that is periodic in φp. Expanding
that function in powers of ε gives us8

˜̄hni`m(s̃, φp, r, ε) = ˜̄hni`m(s̃, φp, r, 0)

+ ε∂ε
˜̄hni`m(s̃, r, φp, 0) +O(ε2). (129)

We then move the first subleading term from ˜̄h1
i`m into

˜̄h2
i`m, defining new first- and second-order fields

˜̄h1
i`m(s̃, φp, r) := ˜̄h1

i`m(s̃, φp, r, 0), (130)

˜̄h2
i`m(s̃, φp, r) := ˜̄h2

i`m(s̃, φp, r, 0)

+ ∂ε
˜̄h1
i`m(s̃, φp, r, 0). (131)

8 These expressions assume smooth functions of ε. However, in re-

ality, ln ε terms appear in ˜̄h2
i`m(s̃, φp, r, ε). Such logarithms arise

from two effects: the mass µ deforms the light cones on which
solutions propagate, potentially introducing ln(r/µ) terms into
the solution [30]; and the waves in h1

αβ introduce curvature that

falls off slowly at large distance, which in turn leads to heredi-
tary effects that introduce ln(εr/M) terms into the solution [35].
Here we blithely absorb these logarithms into the ‘ε-independent’
coefficients. Note that this is simply a choice to streamline the
notation; we do not discard logarithms from the solutions.

Given the 2π/m periodicity of the source, we also adopt
the ansatz

˜̄hni`m(s̃, φp, r) = Rni`m(s̃, r)e−imφp . (132)

Altogether, this means the two-timescale expansion of
the total (trace reversed) metric perturbation is

h̄µν =
∑
ni`m

εnai`
r

Rni`m(εs, r)e−imφp(s,ε)Y i`mµν (r, θA).

(133)
We assume analogous expansions of the puncture and
residual fields.

Next we must expand Eij`m and the sources Ti`m and
δ2Gi`m. We begin with Eij`m, applying the chain rule
for derivatives as described in Sec. III. In Eq. (121), we
expressed �2d

sc in terms of t derivatives at fixed r and
r∗ derivatives at fixed t. When acting on a function of
(εs, φp(s, ε), r), a t derivative at fixed r becomes(

∂

∂t

)
r

=
∂φp
∂t

∂

∂φp
+
∂s̃

∂t

∂

∂s̃

= Ω
∂

∂φp
+ ε

∂

∂s̃

= Ω0∂φp + ε
(
∂s̃ + Ω1∂φp

)
+O(ε2). (134)

Similarly, r∗ derivatives act according to(
∂

∂r∗

)
t

=

(
∂

∂r∗

)
s̃,φp

+
∂φp
∂r∗

∂

∂φp
+

∂s̃

∂r∗
∂

∂s̃

=

(
∂

∂r∗

)
s̃,φp

−HΩ0∂φp

− εH
(
Ω1∂φp + ∂s̃

)
+O(ε2), (135)

where we have defined

H(r∗) :=
dk

dr∗
(136)

and used ∂φp/∂r
∗ = (∂φp/∂s) (∂s/∂r∗) = −HΩ and

∂s̃/∂r∗ = −εH.
From Eq. (134), a t derivative acting on a Fourier series

of the form (132) becomes(
∂

∂t

)
r

→ −iωm + ε∂̃s̃ +O(ε2). (137)

where ωm := mΩ0 and

∂̃s̃ := ∂s̃ − imΩ1. (138)

Similarly, from Eq. (135), an r∗ derivative becomes(
∂

∂r∗

)
t

→ ∂r∗ + iωmH − εH∂̃s̃ +O(ε2), (139)

where the radial derivative is taken at fixed s̃ and φp.
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We are now ready to expand Eij`m. Substituting
Eqs. (137) and (139) into (121), we split the term �2d

sc

into �2d
sc = �0 + ε�1 +O(ε2), where

�0 = −1

4

[
∂2
r∗ + iωm (2H∂r∗ +H ′)

+
(
1−H2

)
ω2
m − 4V`(r)

]
, (140)

�1 =
1

4

[
(2H∂r∗ +H ′) ∂̃s̃

−
(
1−H2

) (
2iωm∂̃s̃ + iω̇m

) ]
. (141)

Here

H ′ :=
dH

dr∗
and ω̇m := mΩ̇0(s̃). (142)

In the same way the coupling matrices are expanded as
Mij =Mij

0 + εMij
1 +O(ε2). The leading-order matrices

Mij
0 are obtained from Mij in Appendix A of [82] with

the replacements h̄i → Ri, ∂r → ∂r + if−1ωmH and

∂v →
1

2
[f∂r − i (1−H)ωm]. We give the explicit forms

of Mij
0 and Mij

1 in Eqs. (C1) and (C2).
Combining these results we obtain

Eij`m → E0
ij`m + εE1

ij`m +O(ε2), (143)

where

Enij`m = δij�n +Mij
n . (144)

For H = 0 (i.e., t slicing), E0
ij`m is precisely the op-

erator that appears in the standard frequency-domain
Lorenz-gauge linearized field equations for a metric per-
turbation h̄µν =

∑
i`m

ai`
r Ri`m(r)Y i`mµν e−iωmt, as in

Refs. [34, 68]. For H 6= 0, E0
ij`m is precisely the opera-

tor that would appear in the frequency-domain Lorenz-
gauge linearized field equations for a metric perturbation
h̄µν =

∑
i`m

ai`
r Ri`m(r)Y i`mµν e−iωms.

We next expand the source terms in the field equa-
tions. The point-particle stress-energy modes (125) are
expanded as

T 1
i`m =

[
T̃ 1
i`m(s̃, r) + εT̃ 2

i`m(s̃, r) +O(ε2)
]
e−imφp , (145)

where

T̃ 1
i`m = t̃1i`m(s̃)δ[r − r0(s̃)], (146)

T̃ 2
i`m = t̃2i`m(s̃)δ[r − r0(s̃)]

+ t̃1i`m(s̃)r1(s̃)δ′[r − r0(s̃)]. (147)

t̃1i`m(s̃) := t1i`m(s̃, 0) and t̃2i`m(s̃) :=
∂t1i`m
∂ε (s̃, 0) are easily

written in terms of r0, r1, dr0/ds̃, and Ω1 using the ex-
plicit expression (126) and the expansions (90), (91), and
(96).

The leading term (146) is identical to the stress-energy
mode of a particle on a circular geodesic of radius r0. Its

exact form, also given in [68, 82], is

t̃1i`m = −1

4
E0αi`m

{
Y ∗`m(π/2, 0) i = 1, . . . , 7,

∂θY
∗
`m(π/2, 0) i = 8, 9, 10.

(148)

Here E0 = µf0U0, with f0 = 1 − 2M/r0 is the leading-
order orbital energy, and the αi`m’s are given by (sup-
pressing `m labels)

α1 = f2
0 /r0, α2,5,9 = 0, (149a)

α3 = f0/r0, α4 = 2if0mΩ0, (149b)

α6 = r0Ω2
0, α7 = r0Ω2

0[`(`+ 1)− 2m2], (149c)

α8 = 2f0Ω0, α10 = 2imr0Ω2
0, (149d)

with r0 = r0 (s̃). For this source the i = 2, 5, 9 equations
are sourceless.

The subleading term (147) in the stress-energy is also
straightforwardly calculated. However, rather than use
it directly, we will incorporate it into the field equations
through a redefinition of the puncture modes h̃2P

i`m. The
two-timescale expansion of the puncture will be presented
in the followup paper [72].

Finally, we perform the multiscale expansion of
δ2Gi`m,

δ2Gi`m = δ2G0
i`m(εs, r)e−imφp(s,ε) +O(ε). (150)

The leading-order term is

δ2G0
i`m =

∑
i1`1m1
i2`2m2

G(0)i`m
i1`1m1i2`2m2

R1
i1`1m1

R1
i2`2m2

, (151)

where G(0)i`m
i1`1m1i2`2m2

is given by Gi`mi1`1m1i2`2m2
with deriva-

tives that act on h̄1
i1`1m1

replaced by ∂t → −iωm1(s̃) and

∂r → ∂r + iωm1
(s̃)f−1H, and analogously for derivatives

of h̄1
i2`2m2

.
With all the necessary expansions in hand, we now ob-

tain the two-timescale form of the field equations. Sub-
stituting Eqs. (129), (132), (143), (145), and (150) into
the field equations (128), moving subleading terms from
the first-order equation into the second-order equation,
and treating s̃ and φp as independent variables, we find
the following equations for the mode amplitudes Rni`m:

E0
ij`mR

1
j`m = −16π t̃1i`mδ(r − r0), (152)

E0
ij`mR

2R
j`m = 2δ2G0

i`m − E0
ij`mR

2P
j`m

− E1
ij`mR

1
j`m, (153)

where Enij`m is given by Eq. (144), t̃1i`m by Eq. (148),

δ2G0
i`m by Eq. (151), and as mentioned above, we have

absorbed the effect of T̃ 2
i`m into a redefinition of R2P

i`m.

D. Expanded gauge condition

To satisfy the Einstein equations, the solutions to the
wave equations also have to satisfy the gauge condition
Zµ := ∇ν h̄µν = 0.
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We expand this condition in the same way we did
the wave equation. After substituting the decomposition
(133), we obtain an expansion (suppressing `,m labels)

εZ0
kjR

1
j + ε2(Z0

kjR
2
j + Z1

kjR
1
j ) = O(ε3), (154)

k = 1, 2, 3, 4, where

Z0
1jRj = iωm (R1 + fR3 +HR2)

+
f

r
(rR2,r +R2 −R4) , (155a)

Z0
2jRj = iωm (R2 +HR1 −HfR3) + f

(
R1,r − fR3,r

+
1

r

[
R1 −R5 − fR3 − 2fR6

])
, (155b)

Z0
3jRj = iωm (R4 +HR5)

+
f

r
[rR5,r + 2R5 + `(`+ 1)R6 −R7] , (155c)

Z0
4jRj = iωm (R8 +HR9)

+
f

r
(rR9,r + 2R9 −R10) , (155d)

and

Z1
1jRj = −∂̃s̃(R1 + fR3 +HR2), (156a)

Z1
2jRj = −∂̃s̃(R2 +HR1 − fHR3), (156b)

Z1
3jRj = −∂̃s̃(R4 +HR5), (156c)

Z1
4jRj = −∂̃s̃(R8 +HR9). (156d)

Hence, at first order, the conditions are

Z0
kjR

1
j = 0. (157)

At second order, the conditions are

Z0
kjR

2
j = −Z1

kjR
1
j . (158)

It is easily checked that Eqs. (157) are identical to the
gauge constraints in [82] with ∂t → −iωm and ∂r →
∂r + iωmf

−1H.
In Sec. VI we discuss how these gauge conditions com-

bine with the field equations (152)–(153) and the equa-
tions of motion (102), (103), (104), and (106) to deter-
mine (i) the mode amplitudes at fixed values of slow time,
and (ii) the slow evolution of the system.

E. Hierarchical structure

The wave equations (152) and (153) each comprise 10
coupled ODEs for each value of ` and m. However, sev-
eral properties reduce the level of coupling.

First, as is true in any gauge in Schwarzschild space-
time, the seven equations for the even-parity modes
(i = 1, . . . , 7) decouple from the three equations for the
odd-parity modes (i = 8, 9, 10): we haveMij = 0 for any
i = 1, . . . , 7 with j = 8, 9, 10, and for any i = 8, 9, 10 with

j = 1, . . . , 7. (Note, however, that even- and odd-parity
first-order modes do couple in the second-order source.)

Second, thanks to the gauge-damping terms added to
the wave equations in Eqs. (113) and (114), the wave
equations (152) and (153) partially decouple into a hier-
archical structure. The equations for the i = 1, 3, 5, 6, 7
modes decouple from the i = 2, 4 modes, and the equa-
tions for the i = 9, 10 modes decouple from the i = 8
mode. Because of this partial decoupling, one can first
solve for the i = 9, 10 modes and then solve for the
i = 8 mode (in the odd sector), and first solve for the
i = 1, 3, 5, 6, 7 modes and then solve for the i = 2, 4
modes (in the even sector).

Third, as again is always true, the field equations are
overdetermined: we have 14 equations (10 wave equa-
tions and 4 gauge conditions) for our 10 variables. (For
` = 0 this reduces to 6 equations for 4 variables, and for
` = 1 it reduces to 10 equations for 8 variables.) This ex-
cess of equations allows us to use the gauge condition to
solve for some modes, rather than using the wave equa-
tions. For example, if m 6= 0, one can use the gauge
condition (157) or (158) to compute these modes alge-
braically from the other seven modes, specifically utiliz-
ing the form of (155b) to obtain the i = 2 mode, (155d)
to obtain the i = 8 mode, and either (155a) or (155c) to
obtain the i = 4 mode.

If m = 0, the frequency ωm vanishes, making that
procedure impossible. However, one can still utilize the
gauge condition to further decouple the equations. For
example, in the even sector, one can use the gauge con-
ditions to solve for the i = 6, 7 modes in terms of the
i = 1, 3, 5 modes, and the i = 4 in terms of the i = 2.
Substituting those results into the wave equations yields
a coupled set of wave equations for the 1, 3, 5 modes. The
solutions for the i = 4, 6, 7 modes can then be substituted
into the wave equation for the i = 2 mode.

For ` = 0 or 1, some modes do not appear, but the
decoupling procedure is otherwise the same.

There are also two additional properties that reduce
the number of modes that need to be calculated. Be-
cause h̄αβ is real, the amplitudes satisfy Rni`,−m =

(−1)mRn∗i`m, meaning we need only calculate modes with
m ≥ 0. This property follows from the identity Y i`m∗αβ =

(−1)mY i`,−mαβ . Because the system is symmetric under

reflection through the equatorial plane (R : θ 7→ π − θ),
we also have that the even-parity modes vanish for odd
values of ` + m, and that odd-parity modes vanish for
even values of ` + m. This follows from the property
RY i`mαβ = −(−1)`+mY i`mαβ for even-parity harmonics and

RY i`mαβ = (−1)`+mY i`mαβ for odd-parity harmonics.

Putting all of these properties together, in Table I we
summarize how each mode can be calculated.

Once one has obtained all the modes, as a consistency
check one can verify that they satisfy whichever wave
equations or gauge conditions were not used in obtaining
them. Since the wave equations and gauge conditions are
only consistent with each other if the source in the field
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Sector Coupled
ODES

Gauge
condition

Hierarchical
ODEs

` ≥ 2, `+m odd, m 6= 0 i = 9, 10 i = 8

` ≥ 2, `+m even, m 6= 0 i = 1, 3, 5, 6, 7 i = 2, 4

` = 1, m = ±1 i = 1, 3, 5, 6 i = 2, 4

` ≥ 2 odd, m = 0 i = 9, 10 i = 8

` ≥ 2 even, m = 0 i = 1, 3, 5 i = 4, 6, 7 i = 2

` = 1, m = 0 i = 9 i = 8

` = 0 i = 1, 3 i = 6 i = 2

TABLE I. Summary of how the solutions for nonvanishing
modes are obtained. The first column displays the different
sectors into which the modes are divided. The second column
lists the modes Rni`m that are calculated by directly solving a
coupled subset of the wave equations (152) or (153). The third
column lists the modes that can be extracted algebraically
from the coupled modes using the gauge condition (157) or
(158). The fourth column lists the modes that must be ex-
tracted from the coupled modes using the remaining, hier-
archically decoupled subset of the wave equations (152) or
(153). All unlisted modes identically vanish.

equations is conserved, this consistency check serves as a
check on the source.

F. Transformations between slicings

If |r∗| & M/ε, then t and s can differ by a large
amount, of order & 1/ε. Hence, at large distances, the
two-timescale expansion of the metric in one slicing can
differ significantly from the two-timescale expansion of it
in another slicing. This is related to the fact that the
two-timescale expansion breaks down at large distances,
as described in Ref. [35]. This breakdown is minor in
hyperboloidal slicing but dramatic in t slicing.

However, within the region |r∗| . M/ε, the choice of
slicing should be free. Given the results in one slicing,
we should be able to recover the fields in another. In
fact, we can straightforwardly determine the relationship
between them. To eliminate ambiguities in the resulting
equations, we introduce labels in square brackets, such
as [t] and [s], to denote quantities defined with respect

to a given a slicing. For example, R
[s]n
i`m(s̃, r) will denote

a coefficient in the two-timescale expansion based on s

slicing. R
[s]n
i`m(t̃, r) denotes that same function evaluated

at t̃; this differs from R
[t]n
i`m(t̃, r) because if k 6= 0 then

R
[s]n
i`m and R

[t]n
i`m are different functions of r (and for n > 1,

also different functions of their first argument, as we see
below).

The transformations between slicings follow from s̃ =
t̃ − εk(r∗) and φp(s, ε) = φp(t, ε) − Ω(t̃, ε)k(r∗) +
1
2εΩ̇(t̃)k2(r∗) + O(ε2). Using these expansions to re-

expand Rni`m(s̃, r)e−imφp(s,ε) at fixed t̃ and φp(t, ε), we

find

R
[s]n
i`me

−imφp(s,ε) = eimΩ0(t̃)k

{
1− εk

[
∂̃t̃ +

1

2
imΩ̇0(t̃)k

]
+O(ε2)

}
R

[s]n
i`m(t̃, r)e−imφp(t,ε). (159)

For a sufficiently well-behaved metric, the reex-

pansion of
∑
n ε

nR
[s]n
i`m(s̃, ε)e−imφp(s,ε) must agree with∑

εnR
[t]n
i`m(t̃, ε)e−imφp(t,ε) at each order in ε at fixed t̃

and φp(t, ε). This equality gives us

R
[t]1
i`m = eimΩ0(t̃)k(r∗)R

[s]1
i`m(t̃, r), (160)

R
[t]2
i`m = eimΩ0(t̃)k(r∗)

{
R

[s]2
i`m(t̃, r)− εk(r∗)

[
∂̃t̃

+
1

2
imΩ̇0(t̃)k(r∗)

]
R

[s]1
i`m(t̃, r)

}
. (161)

If we first calculate the metric perturbations in hyper-
boloidal slicing, these relationships allow us to transform
those results into t slicing. The inverse relationships are
also easily derived.

These transformations also affect the second-order
source terms δ2G0

i`m and E1
ij`mR

1
j`m. In particular, they

alter the asymptotic behavior of E1
ij`mR

1
j`m. We will re-

turn to this issue in Sec. V H.

G. Boundary conditions

For any given boundary conditions we can solve the
frequency-domain field equations (152)–(153) using the
method of variation of parameters, as done at first or-
der in Refs. [34, 60]. We will provide additional details
about the application of this method at second order,
with hyperboloidal slicing, in Ref. [70].

The boundary conditions themselves are also seem-
ingly obvious: our solutions should satisfy retarded
boundary conditions, with no radiation coming into the
system from infinity and none coming out of the black
hole’s past horizon. However, determining the form of
these boundary conditions in the two-timescale expan-
sion is nontrivial because, as alluded to above, the two-
timescale expansion breaks down at large r and near the
horizon. Here we sketch the form of the boundary con-
ditions for (i) homogeneous solutions, which are required
to obtain inhomogeneous solutions in the method of vari-
ation of parameters, (ii) first-order inhomogeneous solu-
tions, and (iii) second-order inhomogeneous solutions.

For homogeneous solutions, we construct a complete
basis. For nonstationary (m 6= 0) modes, half of the ba-
sis solutions represent regular, purely outgoing waves at
infinity, behaving like ∼ e−iωmu as r → ∞; the other
half represent regular, purely ingoing waves at the hori-
zon, behaving like ∼ e−iωmv as r → 2M . For stationary
(m = 0) modes, half of the basis solutions are regular at
infinity, and half are regular at the future horizon.
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Here by regularity at the horizon we mean regularity of
each component in ingoing Eddington-Finkelstein coordi-
nates (v, r, θA). By expressing the Eddington-Finkelstein
components of a generic (symmetric) tensor Aµν in terms
of its tensor-harmonic coefficients Ai`m, we find the fol-
lowing: Aµν is smooth at the future horizon if and only
if

all Ai`m(v, r) are smooth at r = 2M, (162a)

A2`m(v, r) = A1`m(v, r) +O(f2), (162b)

Ai`m(v, r) = Ai+1,`m(v, r) +O(f)

for i = 4, 8. (162c)

Here the mode amplitudes are defined without overall
factors, by Ai`m := 1

κi

∮
dΩ ηαµηβνAαβY

i`m∗
µν ; this im-

plies that the conditions (162) are slightly modified for
the source modes defined by Eq. (118), for example.
Since the conditions describe the behavior of the mode
coefficients as functions of v and r, not as functions of

t, and r, they also do not quite apply for R
[t]n
i`m, but

they do apply to the combined quantities R
[t]n
i`me

−iωmt =(
R

[t]n
i`me

iωmr
∗
)
e−iωmv. Given smooth mode coefficients,

the Lorenz-gauge field equations tend to enforce the re-
maining two conditions in (162).

For each `m mode there are 2d independent homoge-
neous solutions, where d is the number of coupled equa-
tions to be solved for the given `m mode, as per the
second column in Table I. We write these basis solutions
as Rk−i`m and Rk+

i`m, with k = 1, . . . , d. For the nonsta-
tionary modes in [t] slicing, these satisfy the boundary
conditions

R
[t]k+
i`m (r) = eiωmr

∗
∞∑
n=0

ak,ni`mr
−n, (163)

R
[t]k−
i`m (r) = e−iωmr

∗
∞∑
n=0

bk,ni`m (r − 2M)
n
, (164)

for any value of r near infinity or near r = 2M , respec-

tively. Here both ωm and the coefficients ak,ni`m and bk,ni`m
implicitly depend on slow time. For the stationary modes
(m = 0), the solutions satisfy

R
[t]k+
i`0 (r) =

∞∑
n=`

(
ak,ni`m + āk,ni`m ln r

)
r−n, (165)

R
[t]k−
i`0 (r) =

∞∑
n=0

bk,ni`m (r − 2M)
n
, (166)

near the respective boundaries; in this case because the

field equations do not depend on Ω0, the coefficients ak,ni`m,

āk,ni`m, and bk,ni`m do not depend on slow time. In both cases
the coefficients are different for each i`m and are deter-
mined from recurrence relations derived by substituting
the ansatzes into the field equations. These can be found
in Appendix A of Ref. [68]. That reference also describes

how to choose the leading coefficients, ak,0i`m, āk,0i`m, and

bk,0i`m, to generate the 2d independent solutions. For the
stationary modes, the homogeneous solutions are known
analytically [61]. For the nonstationary modes, the ho-
mogeneous solutions can be obtained numerically, enforc-
ing the boundary condition (163) or (164) exactly at some
radius rin near the horizon or rout near infinity.

The boundary conditions on s slices are easily obtained
from those on t slices using the transformation (160).

That transformation implies R
[s]k+
i`m = R

[t]k+
i`m e−iωm(t̃)k(r∗)

for m 6= 0, and R
[s]k+
i`m = R

[t]k+
i`m for m = 0. If the bound-

aries are placed sufficiently near r = 2M or r → ∞,
where s is sufficiently close to v or u, then for the m 6= 0
modes this amounts to using the same boundary condi-
tions as in (163) and (164), but without the plane-wave
factor e±iωmr

∗
in front of the sum. In that case, all

modes, nonstationary and stationary, behave as simple
power series near the boundaries (modulo the logarithms
at large r in the stationary modes).

Now moving onto the first-order inhomogeneous solu-
tions, we note that these solutions are homogeneous at
all points away from r0. Hence, at the future horizon
they should be a linear combination of the basis solutions
Rk−i`m, and at large r they should be a linear combina-

tion of the basis solutions Rk+
i`m. The analysis in Ref. [35]

showed that this is true despite the breakdown of the two-
timescale expansion at large r, and a similar analysis, to
be presented elsewhere, shows the same at the horizon.
In other words, at first order the correct boundary con-
ditions in the two-timescale expansion are the standard
ones imposed in the literature on the first-order solution
in the frequency domain.

At second order, the situation is more complicated.
The sources are now non-compact, extending all the way
to the boundaries. This means that the solutions are
not homogeneous anywhere. One might guess that inte-
grating the source against a frequency-domain retarded
Green’s function would still yield the correct result, but
Ref. [35] showed that this is not the case. For some
modes, the retarded integral fails to converge. Even when
it does converge, one can show that it does not neces-
sarily give the physically correct result; the companion
paper [70] derives the necessary and sufficient conditions
under which it does give the correct solution.

Ref. [35] showed, in a scalar toy model, how to obtain
physical boundary conditions by using a retarded time-
domain post-Minkowski solution at large r. This solution
is obtained analytically, using a time-domain retarded
Green’s function in the asymptotic region, up to some de-
sired post-Minkowskian order. It is then re-expanded in
the two-timescale form to determine the physical bound-
ary conditions for the two-timescale solution. A similar
iterative, analytical, time-domain method can be used
to generate physical boundary conditions near the future
horizon. These methods were used in the calculation in
Ref. [39]. Their full details will be presented in followup
papers [64] [65].
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Near future null infinity and the future horizon, the
analytical time-domain solutions take the form

h̄1±
i`m(s, r, ε) = h̄1H±

i`m (s, r, ε), (167)

h̄2±
i`m(s, r, ε) = h̄2P±

i`m (s, r, ε) + h̄2H±
i`m (s, r, ε), (168)

where ‘+’ is the solution near future null infinity and ‘−’
is the solution near the future horizon. The terms h̄nH±i`m
are homogeneous solutions satisfying retarded boundary
conditions: h̄nH+

i`m is an outgoing, regular wave at infin-

ity, and h2H−
i`m is an ingoing, regular wave at the future

horizon. These homogeneous solutions are not deter-
mined internally within the analytical time-domain cal-
culations; instead they are determined by matching the
time-domain solution to the two-timescale solution.
h̄2P±
i`m is an analytically known particular solution to

the second-order field equations (35), fully determined by

the first-order modes h̄1H±
i`m . h̄2P+

i`m may or may not be reg-

ular at future null infinity, and h̄2P−
i`m may or may not be

regular at the future horizon, but they are (by construc-
tion) physical, causal solutions. Any irregularity arises
from the choice of gauge. For example, outgoing waves
at nonlinear orders in the Lorenz gauge contain loga-
rithms at large r, as is well known from post-Minkowski
theory in the harmonic gauge [83, 84]. As another ex-
ample, at second order every single mode is impacted
(through the source δ2Gi`m) by the known pathologies
of the first-order ` = 0 mode in the Lorenz gauge, re-
viewed in Appendix D.

To match the time-domain solutions at the boundaries
to the two-timescale solution in the bulk of the space-
time, Eqs. (167)–(168) are re-expanded for ε� 1 at fixed
(s̃, φp(s, ε), r), as in Eq. (129). This re-expansion can
be highly nontrivial due to the complexity of the time-
domain solution (as described in Ref. [35]), but once it is
complete, the results must agree term by term with the
two-timescale expansion (133). This provides the match-
ing conditions

R1
i`me

−imφp = ˜̄h1H±
i`m (s̃, φp, r, 0), (169)

R2
i`me

−imφp = ˜̄h2P±
i`m (s̃, φp, r, 0) + ∂ε

˜̄h1H±
i`m (s̃, φp, r, 0)

+ ˜̄h2H±
i`m (s̃, φp, r, 0), (170)

where the ‘+‘ refers to the matching condition at large
r, and the ‘−’ to the matching condition near the hori-
zon. Equation (169) is used to match ‘outward’: the
output of the leading-order two-timescale solution, R1

i`m,

fixes the homogeneous solutions h̄1H±
i`m . That in turn fixes

the particular solutions h̄2P±
i`m . Equation (170) is then

used to match ‘inward’, providing boundary conditions
for the second-order two-timescale solution R2

i`m. To en-
force those conditions, one can treat the first two terms
on the right as a puncture R2P±

i`m , which is utilized in the
same manner as the puncture on zµ. The residual field
R2R±
i`m = R2

i`m − R2P±
i`m must then be the homogeneous

solution ˜̄h2H±
i`m (s̃, φp, r, 0). This implies that, just like the

first-order field R1
i`m, R2R±

i`m must reduce to a linear com-

bination of the basis solutions Rk+
i`m at large r and of the

basis solutions Rk−i`m near r = 2M . Numerically solving
for the residual field then fixes the homogeneous solutions
h̄2H±
i`m , fully determining the full, physical fields (168) at

the future horizon and future null infinity.

H. Asymptotics of the second-order source

Finally, we consider the behavior of the second-order
source at large r and near the horizon. Our analysis
will verify the expectation that the source is significantly
better behaved with hyperboloidal slicing.

We focus our attention on the term E1
ij`mR

1
i`m in the

source; we will briefly discuss δ2G0
i`m at the end of the

section.
First we look at the large-r behavior. In t slicing,

the first-order field behaves as R
[t]1
i`m ∼ eiωm(t̃)r∗, from

Eq. (163). When a slow time derivative acts on this field,

it yields ∂t̃R
[t]1
i`m ∼ iω̇mr∗eiωmr

∗
. According to Eqs. (141)

and (C2), the terms in E1
ij`mR

1
i`m then behave as

�1R
[t]1
i`m =

[
ωmω̇m

2
r∗ +O(r0)

]
R

[t]1
i`m, (171)

Mij
1 R

[t]1
j`m =

[
iω̇mr

∗

r2
+O(r−2)

]
CijR

[t]1
j`m, (172)

where Cij is an r-independent coupling matrix. There-
fore

E1
ij`mR

[t]1
j`m =

[
ωmω̇m

2
r∗ +O(r0)

]
R

[t]1
i`m, (173a)

∼ r∗eiωmr
∗
. (173b)

We provide a further discussion of this behavior toward
the end of the section.

Next consider the large-r behavior in s slicing. Assume
r is sufficiently large that s = u. From the discussion in

the previous section, R
[u]1
i`m is a simple power series in 1/r

at large r, with coefficients that depend on ũ. According
to Eqs. (141) and (C2), the terms in E1

ij`mR
1
i`m then

behave as

�1R
[u]1
i`m ∼

1

r2
R

[u]1
i`m, (174)

Mij
1 R

[u]1
j`m ∼

1

r2
CijR

[u]1
j`m, (175)

and so

E1
ij`mR

[u]1
j`m ∼

1

r2
. (176a)

This is an improvement over Eq. (173b) by three orders
in 1/r.

Now we look at the behavior near the horizon. In t
slicing, the first-order field behaves as R

[t]1
i`m ∼ e−iωm(t̃)r∗,
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from Eq. (164). When a slow time derivative acts on this

field, it yields ∂t̃R
[t]1
i`m ∼ iω̇mr

∗e−iωmr
∗
. According to

Eqs. (141) and (C2), the terms in E1
ij`mR

1
i`m then behave

as

�1R
[t]1
i`m =

[
−ωmω̇m

2
r∗ +O(f0)

]
R

[t]1
i`m, (177)

Mij
1 R

[t]1
j`m =

[
− iω̇mr

∗

r2
+O(f0)

]
CijR

[t]1
j`m, (178)

and so

E1
ij`mR

[t]1
j`m =

[
−ωmω̇m

2
r∗ +O(f0)

]
DijR

[t]1
j`m, (179a)

∼ r∗e−iωmr
∗
. (179b)

where we have used f = (r−2M)/r to count orders, and
Dij is an O(f0) coupling matrix.

Next consider the near-horizon behavior in s slicing.
Assume r is sufficiently near 2M that s = v. From the

discussion in the previous section, R
[v]1
i`m is a simple power

series in (r−2M) near the horizon, with coefficients that
depend on ṽ. According to Eqs. (141) and (C2), the
terms in E1

ij`mR
1
i`m then behave as

�1R
[v]1
i`m ∼ f, (180)

Mij
1 R

[v]1
j`m ∼ f. (181)

In the first equation, we have used ∂r∗ = f∂r. In the sec-
ond, we have used the regularity conditions (162). Hence,

E1
ij`mR

[v]1
j`m ∼ f. (182)

This is an improvement over Eq. (179b) from a logarith-
mic divergence to something that vanishes at the horizon.

What is the physical cause of these wildly differing be-
haviors between the different slicings? In t slicing, our
choice of slow and fast time has left rapid oscillations in r
in the wave zones. Because the frequencies of those oscil-
lations vary with slow time, varying the slow time a small
amount can actually change the field by a large amount,
leading to slow time derivatives having large effects. On
the other hand, in s slicing, our choice of slow and fast
time in this case has correctly factored out rapid oscil-
lations not only in t at fixed r, but also in r at fixed t.

The amplitudes R
[s]1
i`m are hence genuinely slowly varying

functions in spacetime.
On the other hand, different slicings have only a trivial

effect on δ2G0
i`m. The reason is that this source term con-

tains no slow time derivatives. As a consequence, δ2G0
i`m

transforms in the same way as R1
i`m:

δ2G
[t]0
i`m = δ2G

[s]0
i`m(t̃, r)eimΩ0(t̃)k(r∗). (183)

To assess the behavior at large r, we can use the facts

that (i) h1
αβ ∼ e−imφp(u,ε)

r , (ii) δ2Gαβ ∼ ∂h1∂h1+h1∂2h1,

and (iii) for first-order modes with mode numbers m1 and

m2, the mode number of δ2Gi`m is m = m1 +m2. From
these facts, we see that at large r,

δ2G
[t]0
i`m ∼ (rf)

eiωmr
∗

r2
(184)

and

δ2G
[s]0
i`m ∼ (rf)

1

r2
. (185)

The factor (rf) arises from the overall factor introduced

in the definition (118); the behaviors eiωmr
∗

r2 and 1/r2 are
the ‘natural’ behaviors in the two slicings. These scalings
hold even for m = 0 modes, due to the beating of first-
order waves against each other (i.e., the combination of
modes with m2 = −m1).

At the horizon, we can appeal to the fact that for a
horizon-regular first-order metric perturbation, δ2Gαβ is
necessarily horizon-regular as well. The regularity con-
ditions (162) then apply, up to the overall factor of (rf)
in the definition (118). So

δ2G
[t]0
i`m ∼ (rf)e−iωmr

∗
(186)

and

δ2G
[s]0
i`m ∼ (rf). (187)

We summarize with two points. First, hyperboloidal
slicing dramatically increases the falloff of the source
term E1

ij`mR
1
j`m near the boundaries. This lessens the

numerical burden of solving the second-order field equa-
tion and simplifies the task of finding physical boundary
conditions. We will show this in more detail in Ref. [70].
Our second point is that hyperboloidal slicing has no sig-
nificant impact on the nonlinear source δ2G0

i`m. For this
source term, we must derive boundary conditions as de-
scribed in the previous section, and as derived explicitly
in the scalar model of Ref. [35]. This was the proce-
dure used to compute the second-order binding energy
in Ref. [39].

VI. STRUCTURE OF THE SOLUTION:
COMBINED EVOLUTION OF THE FIELD AND

THE TRAJECTORY

Collecting the expanded equation of motion and the
expanded field equations, we end up with the coupled
set (102), (103), (104), (106), (152), (153), (157), and
(158). Here we outline in some detail how they combine
to provide the adiabatic and post-adiabatic waveform-
generation schemes displayed in Fig. 3.

A. Adiabatic order

At first order, the solution is fully determined by the
values of r0, M1, and S1 (together with the boundary
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conditions and the relation Ω0 =
√
M/r3

0). However,
M1 and S1 are not relevant for the evolution equations at
this order, and unless one is interested in post-adiabatic
evolution, one can freely set them to zero. In this section
we outline how this structure emerges.

For ` ≥ 2, and for ` = 1,m = ±1, we use the same so-
lutions as in Refs. [34, 68]. These solutions are uniquely
determined by the source (146) and the retarded bound-
ary conditions described above. Hence, once boundary
conditions are selected, each of these mode amplitudes
is fully determined by the value of r0. Following the
notation in the introduction, we write the ` ≥ 2 and
` = 1,m = ±1 solutions as

R1
i`m(s̃, r) = Rpp

i`m(r0(s̃), r). (188)

However, for ` = 0 and for ` = 1,m = 0, our solutions
differ from the traditional ones. For these modes, the
solution is not uniquely determined by regularity condi-
tions: to any linear perturbation of Schwarzschild space-
time, one can always freely add a linear perturbation
toward a Kerr spacetime with mass M + εM1 and spin
εS1. In standard linear perturbation theory, the correc-
tions M1 and S1 must be constants; if they were not,
they would violate the linearized Einstein equation. But
in the two-timescale expansion, at first order they can
have arbitrary dependence on slow time. This is because
regardless of their slow time dependence, they will still
satisfy the leading-order field equations, in which no slow-
time derivatives appear. Their dependence on s̃ is only
determined by the second-order field equations. Hence
our total first-order solution for these modes is

R1
i00(s̃, r) = Rpp

i00(r0(s̃), r) + x̄i00(M1(s̃), r), (189)

R1
i10(s̃, r) = Rpp

i10(r0(s̃), r) + x̄i10(S1(s̃), r), (190)

for some yet-to-be-determined functions M1(s̃) and
S1(s̃). We present Rpp

i00, Rpp
i10, x̄i00, and x̄i10 explicitly

in Appendix D.

The mode amplitudes at a given value of slow time
feed into the evolution equations that drive the system to
future slow times. To evolve the system, we require evo-
lution equations for r0, M1, and S1. The first of these is
given by Eq. (103), for which we require the two-timescale
expansion of the self-force.

To assist in writing this expansion, we first write the
two-timescale expansions of zµ, żµ = dzµ/dt, uµ, and
hRαβ :

zα = zα0 (t, t̃, φp) + εzα1 (t̃, φp) +O(ε2), (191)

żα = żα0 (t̃, φp) + εżα1 (t̃, φp) +O(ε2), (192)

uα = uα0 (t̃, φp) + εżα1 (t̃, φp) +O(ε2), (193)

hRαβ =
∑
n

εnh̃nRαβ (s̃, φp, r, θ
A), (194)

where

zα0 = (t, r0, π/2, φp), (195)

zα1 = (0, r1, 0, 0), (196)

żα0 = (1, 0, 0,Ω0), (197)

żα1 = (0, dr0/dt̃, 0,Ω1), (198)

uα0 = U0ż
α
0 , (199)

uα1 = U1ż
α
0 + U0ż

α
1 . (200)

The quantity h̃nRαβ here is given by the trace reversal of

the coefficient of εn in Eq. (133) (or more precisely, the
analogue of that equation for the residual field), summed
over i`m. It can be calculated from the solutions to
Eqs. (152)–(153) as

h̃nRαβ =
∑
i`m

ai`
r
RnRi`m(s̃, r)eim[φ−φp(s,ε)]Y i`mαβ (r, θ, 0),

(201)
where the trace reversal is achieved with

i =


6 if i = 3,

3 if i = 6,

i otherwise.

(202)

The amplitudes R1R
i`m can be computed from the solution

to Eq. (152) as R1
i`m−R1P

i`m, or directly, using a puncture
scheme. In Eq. (201), we have pointedly pulled out the

factor eimφ from Y i`mαβ ; this makes manifest that h̃nRαβ only
depends on φp and φ in the combination φ − φp. When
evaluated on zα0 , where φ = φp, the residual field hence
becomes independent of fast time. The same statement
naturally applies to all derivatives of the residual field,
which confirms that the self-force is independent of φp,
as assumed in the expansion (99).

Substituting the above expansions into the self-
force (42), we find that the first- and second-order terms
in the expansion (99) are given by

f̃α1 (t̃) =
1

2
gαβh̃1R

u0u0,β , (203a)

f̃α2 (t̃) =
1

2
gαβh̃2R

u0u0,β +
1

2

[
r1(∂rg

αβh̃1R
u0u0,β + gαβh̃1R

u0u0,rβ)

+ 2gαβh̃1R
u0u1,β + Pαβ0 (2Γγ h̃1R

βγ − 2U0u
γ
0∂t̃h̃

1R
βγ

− h̃1R
β

γ h̃1R
u0u0,γ)

]
. (203b)

Here a comma denotes a derivative at fixed slow time, all

fields are evaluated on zα0 , h̃nRu0u0,β···γ := h̃nRµν,β···γ

∣∣∣
zα0

uµ0u
ν
0 ,

Pαβ0 := gαβ+uα0u
β
0 , and Γα := U2

0 (2Γαż0ż1−3Ω2
0f0r1δ

α
r ) is

the leading nonzero term in the two-timescale expansion
of Γαβγ(zµ)uβuγ .

In the evolution equation for r0, (103), we require f̃ t1.
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From Eq. (203a), this evaluates to

f̃ t1 = −1

2
f−1

0 Ω0h̃
1R
u0u0,φp , (204a)

=
1

2r0f0

∑
i`m

ai`iωm(s̃)R1R
i`m(s̃, r0)

× Y i`mαβ (r0, π/2, 0)uα0u
β
0 . (204b)

Since this formula only involves m 6= 0 modes, x̄i`m does
not contribute. Therefore, the entirety of the right-hand
side is fully determined by the value of r0, and we can
write f̃ t1 = f̃ t1(r0). Again because it has no fast time
dependence, we also need not include x̄i`m in the leading-
order waveform.

Once the evolution of r0 is determined, it determines
Ω0 and hence the adiabatic phase

∫
Ω0dt. Therefore this

collection of results provides us with the adiabatic evolu-
tion scheme outlined in the introduction and summarized
in the upper box of Fig. 3. In this scheme, we can entirely
neglect M1 and S1.

B. Post-adiabatic order

Before moving onto the second-order field equations,
we can extract more from the first-order solutions.
Specifically, if we know the values of M1 and S1, we can
compute the other independent component of f̃α1 :

f̃r1 =
1

2
f0h̃

1R
u0u0,r (205a)

=
1

2
f0

∑
i`m

ai`∂r0 [R1R
i`m(s̃, r0)Y i`mαβ (r0, π/2, 0)]uα0u

β
0 .

(205b)

This gets contributions from both m 6= 0 and m = 0
modes, meaning it depends on x̄i`m(M1, S1, r). We can

therefore write it as f̃r1 = f̃r1 (r0,M1, S1). (If we were
interested in conservative effects on an orbit around a
nonspinning black hole on a given slice of slow time, we
would evaluate this with S1 set to zero.)

Next we turn to the second-order field equations (153)
and (158). In the source term δ2G0

i`m in Eq. (153), the
only required input is Ω0 and the first-order amplitudes.
In the source term E0

ij`mR
2P
j`m, we require h1R

αβ evaluated

on zµ0 , as we see from Eq. (39) (derivatives of h1R
αβ are

also required for higher-order terms in that equation). As
mentioned below Eq. (149), we also transfer the effect of

T̃ 1
i`m into R2P

i`m. These terms are proportional to r1, Ω1,
and ṙ0. r1 we can consider freely specified until we begin
to evolve it; Ω1 is then determined from r1 and f̃r1 via

Eq. (104); and ṙ0 is determined from f̃ t1 via Eq. (103).

The final source term, E1
ij`mR

1
j`m, given by Eq. (144)

with (141) and (C2), requires as input the slow time
derivative of the mode amplitudes R1

i`m. From the form

of R1
i`m in Eqs. (188)–(190), this derivative is given by

∂s̃R
1
i`m = ṙ0

∂

∂r0
Rpp
i`m + Ṁ1

∂

∂M1
x̄i`m

+ Ṡ1
∂

∂S1
x̄i`m. (206)

∂
∂M1

x̄i`m and ∂
∂S1

x̄i`m are easily calculated analytically

from the formulas for xi`m in Appendix D. In Ref. [70]
we present a method of calculating ∂

∂r0
Rpp
i`m at a given

value of r0 (without taking a numerical derivative, which
would require Rpp

i`m in a range of neighboring r0 values).

ṙ0 is computed from Eq. (103). We will return to Ṁ1 and

Ṡ1 momentarily.
For ` ≥ 2, and for ` = 1,m = ±1, the Ṁ1 and Ṡ1 terms

in Eq. (206) are not involved, and additional corrections
to the black hole’s mass and spin cannot appear. Given
the form of the source described above, the solution to
Eqs. (153) and (158) for these modes hence takes the
form

R2
i`m(s̃, r) = R̂2

i`m(r0, r1,M1, S1, r), (207)

where r0, r1, M1, and S1 are functions of s̃. Note that M1

and S1 appear because the second-order source for any
given `m gets contributions from every first-order mode.
Concretely, x̄i`m(M1, S1, r) contributes to every mode of
δ2G0

i`m by coupling to other modes, and it contributes to

R2P
i`m through its contribution to h̃1R

αβ and f̃r1 .
For the ` = 0 and ` = 1,m = 0 modes, two things

change: mass and spin perturbations, x̄i`m(M2, S2, r),

appear exactly as at first order, and Ṁ1 and Ṡ1 appear
as sources. Just as we can neglect x̄i`m(M1, S1, r) in an
adiabatic evolution, we can neglect x̄i`m(M2, S2, r) in a
first post-adiabatic evolution. In fact, we can neglect the
second-order ` = 0 and ` = 1,m = 0 modes entirely.
However, we do require Ṁ1 and Ṡ1 regardless, as they
determine the evolution of x̄i`m(M1, S1, r), which must

be included in f̃r1 , R2P
i`m, and δ2G0

i`m.

Ṁ1 and Ṡ1 are determined directly from the ` = 0 and
` = 1,m = 0 field equations. The wave equation (153)

with ` = 0 can be solved with an arbitrary value of Ṁ1,
and the wave equation with ` = 1,m = 0 can be solved
with an arbitrary value of Ṡ1. However, the gauge con-
dition (158) then uniquely fixes the values of Ṁ1 and

Ṡ1. The result is unsurprising: these quantities grow at
precisely the rate that gravitational-wave energy and an-
gular momentum enter the black hole,

Ṁ1 = ĖH , and Ṡ1 = L̇H , (208)

where the energy and angular momentum fluxes down the
horizon, ĖH and L̇H , are obtained from the ` ≥ 2 ampli-
tudes Rpp

i`m; see, for example Eq. (76) of Ref. [68]. This is
in agreement with traditional analyses of the slow evolu-
tion of the central black hole [77, 78]. But we emphasize
here that the results are obtained directly from the vac-
uum Einstein equations, rather than from the dynamics
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of the horizon generators as in those traditional analyses.
In fact, the results do not even requre any knowledge of
the metric anywhere near the horizon. (Physically, this
is a consequence of the fact that the total flux through
a surface of constant r is the same for all r < r0.) We
present the complete derivation in the next section.

Once the mode amplitudes R2R
i`m are known, one can

calculate f̃ t2, the principal input for ṙ1 in Eq. (106). From
Eq. (203b), it is given by

f̃ t2(t̃) = −1

2
f−1

0 Ω0h̃
2R
u0u0,φp − f

−1
0 Ω0h̃

1R
u0u1,φp

+
1

2
f−2

0 Ω0r1

(
f ′0h̃

1R
u0u0,φp − f0h̃

1R
u0u0,rφp

)
+

1

2

(
−f−1

0 δβt + U0u
β
0

)(
2Γγh1R

βγ − 2U0u
γ
0∂t̃h̃

1R
βγ

+ f−1
0 Ω0h̃

1R
βt h̃

1R
u0u0,φp − f0h̃

1R
βr h̃

1R
u0u0,r

+ r−2
0 h̃1R

βφ h̃
1R
u0u0,φp

)
. (209)

The notation here is as described below Eq. (203b).
f ′0 = 2M/r2

0, and derivatives are evaluated following the
examples of Eqs. (204) and (205). We have used the facts

that h̃1R
u0u0,φ

= −h̃1R
u0u0,φp

and h̃1R
u0u0,θ

= 0; the latter fol-

lows from the system’s up-down symmetry. Note that
because of the fast time derivative in the first term, to
evaluate f̃ t2 we only require the m 6= 0 modes of h̃2R

αβ .

Both in f̃ t2(t̃) and in df̃r1 /dt̃, which appears in Eq. (106),

we require the slow-time derivative of h̃1R
αβ ; this is calcu-

lated as in Eq. (206).

With ṙ1 determined, one can evolve r1 and hence
evolve Ω1 [through Eq. (104)] and the post-adiabatic
phase

∫
(Ω0 + εΩ1)dt. Therefore this collection of results

provides us with the post-adiabatic evolution scheme out-
lined in the introduction and summarized in Fig. 3. In
this scheme, we can entirely neglect M2 and S2. The
leading-order waveform amplitudes Rpp

i`m are also inde-
pendent of M1 and S1, but M1 and S1 do contribute
to the post-adiabatic phase in the numerous ways men-
tioned above.

VII. APPLICATION: LEADING-ORDER
BALANCE LAWS

As a first demonstration of our scheme, in this sec-
tion we derive the standard balance laws relating the
system’s evolution to the flux of energy and and an-
gular momentum carried out to infinity and into the
black hole. The end result has been well established for
decades [17, 19, 85], but our derivation, a slight variant of
the one sketched in Ref. [39], is novel in that it proceeds
directly from the two-timescale field equations.

A. Evolution of mass and orbital energy

We begin with the evolution of the mass M1 and
leading-order orbital energy E0 = µf0U0. These evolu-
tion equations follow specifically from the field equations
for the i = 2, ` = 0 field R2

200; this corresponds to the
angle-averaged t-r component of the field equations.

Before writing down the field equations, let us motivate
their connection to energy fluxes. Note that if we con-
sider − 1

8π δ
2G0

αβ as an effective stress-energy tensor that

sources h̃2
αβ , then the energy crossing outward (toward

larger radii) through a surface of constant r is

∆ESr =
1

8π

∫
Sr
δ2G0

αβt
βdSα (210a)

=
1

8π

∫
δ2G0

αβt
βrαr2dtdΩ. (210b)

Here tα = δαt and rα = ∂αr. The average rate of energy
transfer across the surface is therefore

ĖSr =
1

8π
fr2

∫
δ2G0

trdΩ (211a)

= − r√
4πf

δ2G0
200, (211b)

where we have used Eq. (118). This demonstrates the
connection between the energy flux and the i = 2, ` = 0
mode of the source.

We can make the connection to the specific fluxes ĖH
and Ė∞ by appealing to the concrete form of δ2G200. At
any vacuum point (i.e., at all points off the worldline), the
contracted Bianchi identity reads ∇βδ2Gαβ = 0.9 The
mode decomposition of this is identical to the mode de-
composition of ∇βh̄αβ = 0, and the analog of Eq. (155a),
specialized to ` = 0, is

r∂r(f
−1δ2G0

200) + f−1δ2G0
200 = 0. (212)

This applies for all r 6= r0. The extra factors of f−1,
relative to Eq. (155a), arise from the differing factors in
the decompositions (115) and (117) of h̄αβ and δ2G0

αβ .

The solution to Eq. (212) is

δ2G0
200 =

fs−200

r
θ(r0 − r) +

fs+
200

r
θ(r − r0) (213)

9 This equality holds at fixed slow time for the coefficient of
e−imφp in∇βδ2Gαβ ; we do not need to include slow-time deriva-

tives from ∇βδGαβ = 0, as one might expect from performing
a two-timescale expansion of the Bianchi identity. The reason
is that the coefficient of each e−imφp in the first-order field is
identical to what the coefficient of e−iωms would be in ordinary
perturbation theory. It follows that if we omit all slow time
derivatives, the coefficient of each e−imφp in ∇βδ2Gαβ is also
identical to what the coefficient of e−iωms would be in ordinary
perturbation theory, and therefore it satisfies the same identities.
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for some constants s±200. Together with Eq. (211), this

result implies that ĖSr = −s+
200/
√

4π for all r > r0,

and ĖSr = −s−200/
√

4π for all r < r0. Therefore, for

all radii smaller than r0, we have ĖSr = −ĖH , and for

all radii larger than r0, we have ĖSr = Ė∞. (The mi-

nus sign appears in front of ĖH because we define ĖH
to be an inward flux, toward smaller radii.) Combining
these results, we obtain the following simple expression
for δ2G0

200:

δ2G0
200 =

√
4πf

r

[
ĖHθ(r0 − r)− Ė∞θ(r − r0)

]
. (214)

A more detailed analysis is required, starting from the
form of the puncture field, to establish that no term pro-
portional to δ(r − r0) appears. For the purpose of our
simple demonstration, we omit those details here.

Because δ2G0
200 is manifestly integrable, we can sim-

plify the field equations by using the second-order De-
tweiler stress-energy (47) instead of a puncture. That
stress-energy is proportional to µuαuβ , meaning the t-r
component is proportional to µur ∼ ε2. Explicitly, the
t-r component has the simple form

Ttr = µ
U0ṙ0

r2
0

δ(r−r0)δ(θ−π/2)δ(φ−φp)+O(ε3); (215)

corrections due to hRµν and r1 appear only at third or-
der. From this we can straightforwardly read off T200 =
ε2t̃2200δ(r−r0), following the notation in Eq. (145), where

t̃2200 = −E0f0ṙ0

4
√
πr0

. (216)

We have used E0 = µf0U0 to express the source in terms
of the orbital energy.

Now, there are two field equations involving R2
200: the

wave equation (153) with i = 2 and ` = 0, which reads

−1

4
(∂2
r∗ − 2Mf/r3)R2

2 +M2j
0 R

2
j

= −16πt̃2200δ(r − r0) + 2δ2G0
200

+
M

r2

[
fHṘ1

3 + (1−H)Ṙ1
1

]
, (217)

and the gauge condition (158) with k = 1 and ` = 0,
which reads

L2R
2
2 = Ṙ1

1 + fṘ1
3, (218)

where L2 = f(∂r + 1/r). Here and below we omit the
`m label on Rni`m, and we adopt a first-order monopole

solution in which R1
200 = 0 (implying Ṙ1

200 = 0). The

term M2j
0 R

2
j in the field equation couples R2

2 to R2
1, R2

3,

and R2
6, but we can eliminate that coupling by substitut-

ing the gauge condition (158) with k = 2, which reduces

M2j
0 R

2
j to

M2j
0 R

2
j =

ff ′

2
∂rR

2
2 +

f2

2r2
R2

2 −
f ′

2
H(Ṙ1

1 − fṘ1
3). (219)

Equation (217) then becomes

D2R
2
2 = S2

2 , (220)

where D2 =
(
f2∂2

r − ff ′∂r −
ff ′

r −
2f2

r2

)
and

S2
2 =

16
√
πE0f0ṙ0

r0
δ(r − r0)− 4M

r2
Ṙ1

1

− 16
√
πf

r

[
ĖHθ(r0 − r)− Ė∞θ(r − r0)

]
. (221)

Note that the dependence on the height function has now
vanished, implying that the evolution equations will be
independent of the choice of slow-time slicing.

In the field equation (220), Ė0 (or equivalently, ṙ0) and

Ṁ1 act as sources for R2
2. We could solve this field equa-

tion for arbitrary values of those sources. The gauge
condition (218) would then determine the relationships

between Ė0, Ṁ1, ĖH , and Ė∞. That was the general
method sketched in Ref. [39], and it is in line with the
general descriptions in Sec. II.

However, the explicit analytical solution to Eq. (220) is
distractingly lengthy. For compactness, we take another
approach. It is well known that a solution to Eαβ [h̄] =
Sαβ satisfies ∇βh̄αβ = 0 if and only if ∇βSαβ = 0; this
follows from ∇βSαβ = ∇βEαβ [h̄] = �∇βh̄αβ . So any in-
formation about the system’s evolution that we can glean
from the gauge condition, we can equally well extract di-
rectly from the source. Inspired by that, we will derive a
differential equation for the source, which will yield the
desired evolution equations.

We first note the commutation relation

L2D2 −D2L2 =
2f

r2
L2. (222)

Applying L2 to the field equation (220), using this com-
mutation relation, and substituting Eq. (218) for L2R

2
2,

we obtain (
D2 +

2f

r2

)
(Ṙ1

1 + fṘ1
3) = L2S

2
2 . (223)

We write each side of this equation in the form a(r0)δ′(r−
r0) + b(r0)δ(r − r0) + c+(r)θ(r − r0) + c−(r)θ(r0 − r),
allowing us to equate the coefficients of δ′, δ, and θ[±(r−
r0)]. The coefficients of δ′ yield

[Ṙ1
1 + f0Ṙ

1
3] =

16
√
πE0ṙ0

r0
, (224)

where [x] := lim
r→r+0

x− lim
r→r−0

x. The coefficients of δ yield

[(∂r − f ′f−1)(Ṙ1
1 + fṘ1

3)] = − 4M

r2
0f0

[Ṙ1
1] +

16
√
πE0ṙ0

r2
0f0

+
16
√
π

r0
(ĖH + Ė∞), (225)
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and the coefficients of the Heaviside functions yield(
D2 +

2f

r2

)
(Ṙ1±

1 + fṘ1±
3 ) = L2S

2±
2 , (226)

where the + applies for r > r0 and the minus for r < r0.
The two equations (226) suffice to determine Ṁ1 and

Ė0. Substituting the first-order monopole field R1
i00 =

Rppi00 + x̄i00(M1) given in Appendix D 2 b, and using Ė0 =
(dE0/dr0)ṙ0, we quickly obtain10

Ṁ1 = ĖH (227)

from the r < r0 equation, and

Ė0 + Ṁ1 = −Ė∞ (228)

from the r > r0 equation. The first of these, as discussed
in previous sections, tells us that the black hole’s mass
grows at the rate that energy flows down the horizon.
The second tells us that the system’s total energy changes
at the rate that energy is carried out of it. We can also
combine the two equations to write

Ė0 = −(Ė∞ + ĖH), (229)

which says that at leading order, all the energy leaving
the region 2M < r <∞ comes from the particle’s orbital
energy. We stress that obtaining these equations for Ė0
and Ṁ1 does not require evaluating Eqs. (226) at any
particular values of r; Eqs. (229) and (227) ensure that
Eqs. (226) are satisfied at all r.

Although we can also solve Eqs. (224) and (225), they
do not contain any additional information. Eq. (224) is
satisfied for any of the solutions R1

i00 = Rppi00 + x̄i00(M1)
in Appendix D 2, regardless of the value of ṙ0, while
Eq. (225) again yields Eq. (229). x̄i00(M1) does not en-
ter into either of the equations because it is smooth at
r = r0.

We have already emphasised that our derivation pro-
ceeds directly from the field equations, but there is
one other aspect worth drawing attention to: it shows
that − 1

8π δ
2G0

αβ provides a meaningful notion of gravi-
tational stress-energy throughout the spacetime, in the
sense that it defines appropriate fluxes of gravitational
energy (and in the next section, of gravitational angu-
lar momentum). This may appear obvious, since the
Isaacson gravitational-wave stress-energy is derived from
δ2Gαβ [86]. However, earlier analyses of the evolution
of a black hole (e.g., Refs. [77, 78]) have stressed that
Isaacson’s derivation does not apply at the horizon, and

10 The same result is also obtained if we use the monopole solu-
tion discussed in Appendix D 2 b. On the other hand, if instead
we use the Berndtson solution R1

i00 = RBern
i00 + x̄i00(M1), then

we still obtain Eq. (229), but (227) is replaced by Eq. (D30),
corresponding to the fact that the black hole’s mass is MBH =
M + ε(MBern +M1) in this solution.

they have instead derived the black hole’s evolution from
the shear of the horizon generators. The “fluxes” that
emerge from such a derivation are then directly the rates
of change of the black hole parameters rather than sur-
face integrals of a stress-energy. To our knowledge, our
derivation provides the first demonstration that the rel-
evant physical fluxes are precisely those defined from
− 1

8π δ
2G0

αβ . Reference [87] will extend this result to

generic bound orbits around a Kerr black hole (and to
post-adiabatic order).

B. Evolution of spin and orbital angular
momentum

We next derive the evolution of the spin S1 and
leading-order orbital angular momentum L0 = µr2

0Ω0U0.
These evolution equations follow specifically from the
field equations for the i = 9, ` = 1,m = 0 field R2

910;
this corresponds to the angle-averaged r-φ component of
the field equations.

The analysis is much the same as in the preceding sec-
tion, and our presentation will be terse. The angular
momentum carried outward across a surface of constant
r is

∆LSr = − 1

8π

∫
δ2G0

αβφ
βdSα, (230)

where φβ = δβφ , implying that the average rate of angular
momentum transfer is

L̇Sr = − 1

8π
fr2

∫
δ2G0

rφdΩ (231a)

=
r2

2
√

3πf
δ2G0

910. (231b)

Here we have again used Eq. (118).
The contracted Bianchi identity implies

∂r(f
−1δ2G0

910) +
2

rf
δ2G0

910 = 0 (232)

for all r 6= r0; c.f. Eq. (155d), specialized to ` = 1,m = 0.
The solution for r 6= r0 is

δ2G0
910 =

s−910f

r2
θ(r0 − r) +

s+
910f

r2
θ(r − r0) (233)

for constants s±910. Substituting this into Eq. (231), we

see that L̇Sr =
s±910

2
√

3π
, where the + applies for all r > r0

and the minus for all r < r0. Therefore, writing L̇Sr>r0 =

L̇∞ and L̇Sr<r0 = −L̇H , we have

δ2G0
910 = −2

√
3πf

r2

[
L̇Hθ(r0 − r)− L̇∞θ(r − r0)

]
.

(234)
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We once again use the Detweiler stress-energy (47) in-
stead of a puncture. The r-φ component is

Trφ = µf−1
0 U0ṙ0Ω0δ(r − r0)δ(θ − π/2)δ(φ− φp)

+O(ε3), (235)

from which we read off T910 = ε2t̃2910δ(r − r0), where

t̃2910 = −1

4
µ

√
3

π
f0U0ṙ0Ω0. (236)

With these sources in hand, we can write down the
two field equations involving R2

910: First, the wave equa-
tion (153) with i = 9, ` = 1,m = 0, which reads

D9R
2
910 = S2

9 , (237)

where D9 = f2∂2
r + ff ′∂r − 2f

r3 (3r − 8M) and

S2
9 = 64πt̃2910δ(r − r0)− 8δ2G0

910

+ 2fH∂rṘ
1
910 +H ′Ṙ1

9. (238)

Second, the gauge condition (158) with k = 4, ` = 1,m =
0, which reads

L9R
2
910 = Ṙ1

810 +HṘ1
910, (239)

where L9 = f(∂r + 2/r). Here we have suppressed `m
indices as in the previous subsection.

The operators L9 and D9 satisfy the commutation re-
lation

L9D9 −D9L9 =
4

r3
f(r − 4M)L9. (240)

Applying L9 to Eq. (237), using this relation, and sub-
stituting Eq. (239), we obtain an equation that relates

L̇0 and Ṡ1 to L̇H and L̇∞:(
D9 +

4f

r3
(r − 4M)

)
(Ṙ1

810 +HṘ1
910) = L9S

2
9 . (241)

This can again be divided into one equation for the co-
efficients of δ′, one for the coefficients of δ, and one each
for the coefficients of θ[±(r − r0)]. As with the energy
balance laws, all the information can be obtained from
the two equations in the regions r < r0 and r > r0. The
former yields

Ṡ1 = L̇H , (242)

and the latter yields

L̇0 + Ṡ1 = −L̇∞. (243)

Substituting the first into the second, we obtain

L̇0 = −(L̇∞ + L̇H). (244)

We note that once again, the results are independent of
the choice of height function in our slow time slicing.

VIII. CONCLUSION AND OUTLOOK

Since the seminal work of Hinderer and Flanagan [13],
the two-timescale approach has provided a common lan-
guage for discussions of the long-term evolution of EM-
RIs. However, it has never actually been implemented,
nor has any attempt been made (until now) to apply it to
the full system of equations in an EMRI, which involve
not only the small companion’s equation of motion, but
also the perturbed Einstein equations.

In this paper, we have taken a first step toward a com-
plete two-timescale treatment of EMRIs. Our analysis
is restricted to the narrow case of quasicircular orbits
around a Schwarzschild black hole, but it suffices to high-
light many of the key features of the full problem:

1. The gravitational field is written as a sum of
modes (133), each with a slowly varying amplitude,
which evolves on the radiation-reaction time scale,
and a rapidly oscillating phase, which varies on the
orbital time scale.

2. The field equations split into two sets. One set,
given by Eqs. (152) and (153), take the form of
standard frequency-domain equations for the mode
amplitudes at fixed values of slow time. The other
set, given by Eqs. (103), (106), and (208), take the
form of evolution equations, determining how the
field evolves as a function of slow time.

3. Slow-time derivatives of the first-order field ampli-
tudes also appear as source terms in the second-
order field equation (153). The asymptotic behav-
ior of these sources, near infinity as well as near
the future horizon, depend strongly on the choice
of time foliation.

Our formulation in this restricted case should therefore
provide a guide to the full problem.

As part of our two-timescale expansion, we have also
introduced a frequency-domain formulation of the field
equations with hyperboloidal slicing. Although we have
cast our field equations in the language of a two-timescale
expansion, the equations (152) apply equally well in an
ordinary frequency-domain calculation, with a metric
perturbation h̄αβ =

∑
i`m

ai`
r Ri`m(r)e−iωmsY i`mαβ . Such

hyperboloidal slicing in the frequency domain has been
considered in the past for the Teukolsky equation [66, 67],
but this is the first time, to our knowledge, that it has
been used for the full linearized Einstein equation. A
companion paper will present a practical method of solv-
ing these equations with various choices of hyperboloidal
slicing [70]. That paper will also apply the same method
to calculate the slow-time derivatives of the first-order
field.

Our expansions in the body of the paper were formu-
lated in terms of series in εn at fixed values of a slow time
variable. In Appendix A, we also presented an equiva-
lent method based on expansions at fixed values of the
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orbital frequency, which works with a nonperturbative Ω
rather than the series Ω0 + εΩ1 + . . .. This alternative
provides slightly neater equations, and it may look more
familiar to researchers working on waveform generation
in other regimes of the two-body problem, such as post-
Newtonian theory [88].

In sequel papers, we will present several extensions
and applications of this work. Still considering quasi-
circular orbits in Schwarzschild, we will present the com-
plete calculation of the second-order source, including the
second-order Einstein tensor and punctures at the par-
ticle [71, 72]; the formulation of physical boundary con-
ditions for the second-order field, obtained from a post-
Minkowskian expansion near future null infinity and an
analogous expansion near the future horizon; the calcu-
lation of quasistationary quantities such as the Detweiler
redshift [80]; and the post-adiabatic inspiral and emit-
ted waveforms. Going beyond the quasicircular case, we
will present a two-timescale expansion for the full prob-
lem of generic orbits in Kerr spacetime [62, 63], along
with accompanying treatments near the horizon and in-
finity [64, 65].

This two-timescale expansion will ultimately provide
a complete, flexible wave-generation framework, as out-
lined in the quasicircular case in Sec. I C and Fig. 3. For a
generic orbit in Kerr spacetime, the system is character-
ized by a set of adiabatic-order mechanical parameters
Ja0 = (E0,L0,Q0,M, S) and post-adiabatic ones Ja1 =
(E1,L1,Q1,M1, S1), where S = aM is the central black
hole’s leading-order spin, L is the orbital angular momen-
tum around the black hole’s spin axis, andQ is the Carter
constant. With the exception of the background quanti-
tites M and S, each of these evolves as a function of slow
time (after eliminating any fast-time dependence using
near-identity averaging transformations [48]). One can

pre-compute the rates of change
dJa0
dt̃

(Jb0) and
dJa1
dt̃

(Jb0 , J
b
1),

along with the waveform amplitudes hωmknαβ (JB0 ), across
the parameter space. One can then quickly evolve
through the parameter space by integrating simple
ODEs. The trajectory through parameter space then
determines the post-adiabatic evolution of the frequen-

cies ωmkn = ω
(0)
mkn(Jb0) + εω

(1)
mkn(Jb0 , J

b
1) and the wave-

form
∑
mkn h

ωmkn
αβ (Jb0(εt))e−i

∫
ωmkn(Jb0(εt),Jb1(εt))dt. This

framework is described by one of us in Ref. [38] (which
was submitted some time after the present paper). It
is easily extended to include additional effects, such as
the small object’s spin, in a modular way; such effects
can again be precomputed before simulating an evolu-
tion. In principle this framework can stand alone, but to
cope with the very large parameter space, its outputs can
also be used as input for effective-one-body and surrogate
models or as training data for neural networks [89–91].
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Appendix A: Two-timescale expansion with
nonperturbative mechanical degrees of freedom

In Sec. II’s description of the self-consistent framework,
the governing philosophy is to express the metric pertur-
bations as functionals of the system’s mechanical degrees
of freedom, and then to obtain approximate evolution
equations for those degrees of freedom. While the evolu-
tion equations are approximate, the mechanical degrees
of freedom themselves are treated nonperturbatively (i.e.,
never expanded in an asymptotic series).

In the two-timescale framework developed in the body
of the paper, and summarized in Fig. 3, we abandon that
nonperturbative treatment and treat the metric and me-
chanical parameters on an equal footing: all quantities
are expanded in powers of ε at fixed s̃ and φp.

In this appendix, we present a slightly different formu-
lation of the two-timescale expansion that preserves more
of the spirit of the self-consistent expansion. We do so by
expanding all quantities at fixed Ja := (Ω, δM, δS) in-
stead of at fixed s̃. Here we have introduced the order-1
quantities δM := δM/ε and δS := δS/ε. The concep-
tual distinction is that rather than solving fast-time field
equations to find the state of the system at a given value
of slow time, and then evolving to the next slow time,
here we will solve equations to find the state of the sys-
tem for a given set of mechanical parameters, and then
evolve to new values of those parameters. However, we
stress that both expansions yield solutions that are uni-
formly accurate on the slow time scale. They differ only
in details of implementation.

In the new expansion considered here, in place
of Eq. (89), the worldline becomes zµ(t, ε) =
(t, rp(J

a(t, ε), ε), π/2, φp(t, ε)), where

rp(J
a, ε) = r0(Ω) + εr1(Ja) +O(ε2), (A1)

using the fact that δM and δS do not appear in the
adiabatic-order term r0. Put another way, we expand
the worldline as

zµ = zµ0 (t,Ω, φp) + εzµ1 (Ja) +O(ε2), (A2)

where zµ0 (t,Ω, φp) = (t, r0(Ω), π/2, φp) and zµ1 =
(0, r1(Ja), 0, 0). Rather than a nonperturbative trajec-
tory zµ, as in the self-consistent expansion, here Ja and
φp are our exact mechanical degrees of freedom.
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Similarly, in place of (133) the metric is expanded as

h̄µν =
∑
ni`m

εnai`
r

Rni`m(Ja(s̃, ε), r)e−imφp(s,ε)Y i`mµν (r, θA).

(A3)
The metric’s time dependence is entirely encoded in Ja

and φp.

Finally, because all functions are expanded at fixed Ja,
we also expand the functions J̇a := dJa/ds̃:

J̇a(Jb, ε) = F a0 (Ω) + εF a1 (Jb) +O(ε2), (A4)

again using the fact that δM and δS do not appear
at adiabatic order. The terms on the right are re-

lated to (but not identical to) J̇an =
dJan
ds̃ , the derivative

of the nth-order term in the expansion of Ja at fixed
s̃. The two quantities can be related by re-expanding
the right-hand side of Eq. (A4) at fixed s̃ and com-
paring the result to d

ds̃ [Ja0 (s̃) + εJa1 (s̃) + O(ε2)]. This

yields the relationships J̇a0 (s̃) = F a0 (Ω0(s̃)) and J̇a1 (s̃) =
F a1 (Jb0(s̃)) + Ω1∂Ω0

F a0 (Ω0(w̃)).

Equation (A4) is precisely what governs the system’s
slow evolution from one state to the next. Its form, an
approximate equation for the exact state variables Ja, is
akin to the treatment of the motion in the self-consistent
expansion, in which we write an approximate equation
D2zα

dτ2 = εfα1 + ε2fα2 +O(ε3) for the exact worldline zα.

Given the above expansions, the equation of motion
and field equations are solved just as in Secs. IV and
V. We substitute the expansions, apply the chain rules(
∂
∂t

)
r

= εJ̇a∂a + Ω∂φp and
(
∂
∂r∗

)
t

= ∂r∗ − εH(J̇a∂a +

Ω∂φp), and then solve the resulting equations while treat-
ing Ja and φp as independent variables.

We will merely summarize the results here. Substitut-
ing the expansions (A2), (A4), U = U0(Ω) + εU1(Ja) +
O(ε2), and

f t = εf̃ t1(Ω) + ε2f̃ t2(Ja) +O(ε3), (A5)

fr = εf̃r1 (Ja) +O(ε2), (A6)

into the normalization condition gαβu
αuβ = −1 and

equation of motion D2zα

dτ2 = fα, we obtain a sequence
of equations for Un (from the normalization condition),
rn (from the radial component of the equation of mo-
tion), and FΩ

n (from the time component). The solutions
are

U0 =
1√

1− 3(MΩ)2/3
, U1 = 0, (A7)

r0 =
M

(MΩ)2/3
, r1 =

f̃r1
3U2

0 f0Ω2
, (A8)

with f0 = 1− 2(MΩ)2/3, and

FΩ
0 = − 3f0Ωf̃ t1

(MΩ)2/3U4
0 [1− 6(MΩ)2/3]

, (A9)

FΩ
1 = − 3f0Ωf̃ t2

(MΩ)2/3U4
0 [1− 6(MΩ)2/3]

− 2J̇a0 ∂af̃
r
1

MU4
0 [(MΩ)1/3 − 8MΩ + 12(MΩ)5/3]

− 4[1− 6(MΩ)2/3 + 12(MΩ)4/3]f̃r1 f̃
t
1

MΩU6
0 f0[1− 6(MΩ)2/3]2

. (A10)

Note that the expressions for U0, U1, r0, and r1 here are
identical to Eqs. (97), (98), (102), and (104) with Ω0 = Ω
and Ω1 = 0.

Next, the expansion of the field equations proceeds just
as in Sec. V, and the results in that section apply with
only small changes. ∂̃s̃ = ∂s̃ − imΩ1 becomes ∂s̃ = F a0 ∂a
(= J̇a0 ∂a). ωm = mΩ0 becomes ωm = mΩ. ω̇m becomes

mFΩ
0 (= mΩ̇0). The two-timescale expansion of T 1

i`m (or
equivalently, of the puncture) is slightly altered by the
condition Ω1 = 0, but we leave a concrete description to
a sequel paper.

This naturally provides us with a wave-generation
scheme that differs slightly from the one in Fig. 3:

1. Start with initial values of Ω, δM , and δS (along
with µ and M).

2. Calculate r0(Ω) from Eq. (A8).

3. Calculate T̃ 1
i`m(Ω) from r0(Ω).

4. Solve the field equations for the mode amplitudes
R1
i`m(Ja, r) [and, separately, for ∂aR

1
i`m(Ja, r), as

will be described in Ref. [70]].

5. From R1
i`m(Ja, r) and ∂aR

1
i`m(Ja, r), calculate

δ2G0
i`m(Ja), f̃α1 (Ja), F δM0 = ĖH(Ω), and F δS0 =

L̇H(Ω). From f̃ t1(Ω) in (A9), calculate FΩ
0 .

6. From δ2G0
i`m(Ja), E1

i`m ∼ F a0 ∂aR
1
i`m, and the

puncture, construct the second-order source.

7. Solve the second-order field equations for the mode
amplitudes R2

i`m(Ja, r).

8. From R2
i`m(Ja, r), calculate f̃ t2(Ja), and from

f̃ t2(Ja) in (A10), calculate FΩ
1 .

9. Use the post-adiabatic approximations dΩ/ds̃ =
FΩ

0 (Ω) + εFΩ
1 (Ja), d(δM)/ds̃ = F δM0 (Ω), and

d(δS)/ds̃ = F δS0 (Ω) to evolve forward to new values
of Ja.

10. Repeat the above steps for as long as desired.

11. Once the evolution of the frequency is known, ob-
tain the orbital phase from φp = 1

ε

∫
Ω(s̃)ds̃ and

construct the waveform from Eq. (A3).
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Appendix B: Barack-Lousto-Sago tensor spherical harmonics

The Barack-Lousto-Sago harmonics are given in Schwarzschild coordinates by

Y 1`m
αβ =

1√
2

 1 0 0 0
0 f−2 0 0
0 0 0 0
0 0 0 0

Y `m, Y 2`m
αβ =

f−1

√
2

 0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

Y `m, Y 3`m
αβ =

1√
2

 f 0 0 0
0 −f−1 0 0
0 0 0 0
0 0 0 0

Y `m,

(B1a)

Y 4`m
αβ =

r√
2λ1

 0 0 ∂θ ∂φ
0 0 0 0
∂θ 0 0 0
∂φ 0 0 0

Y `m, Y 5`m
αβ =

rf−1

√
2λ1

 0 0 0 0
0 0 ∂θ ∂φ
0 ∂θ 0 0
0 ∂φ 0 0

Y `m, (B1b)

Y 6`m
αβ =

r2

√
2

 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 s2

Y `m, Y 7`m
αβ =

r2

√
2λ2

 0 0 0 0
0 0 0 0
0 0 D2 D1

0 0 D1 −s2D2

Y `m, (B1c)

Y 8`m
αβ =

r√
2λ1

 0 0 s−1∂φ −s ∂θ
0 0 0

s−1∂φ 0 0 0
−s ∂θ 0 0 0

Y `m, (B2a)

Y 9`m
αβ =

rf−1

√
2λ1

 0 0 0 0
0 0 s−1∂φ −s ∂θ
0 s−1∂φ 0 0
0 −s ∂θ 0 0

Y `m, (B2b)

Y 10`m
αβ =

r2

√
2λ2

 0 0 0 0
0 0 0 0
0 0 s−1D1 −sD2

0 0 −sD2 −sD1

Y `m, (B2c)

where s := sin θ, λ1 := `(`+ 1), λ2 := (`− 1)`(`+ 1)(`+
2), Y `m = Y `m(θ, φ) are the standard scalar spherical
harmonics, and

D1 := 2(∂θ − cot θ)∂φ, (B3)

D2 := ∂θθ − cot θ ∂θ − s−2∂φφ. (B4)

The radial factors involving r and f are introduced to
make the modes h̄ilm dimensionless and to ensure that if
the components h̄αβ are regular at the future horizon in
horizon-penetrating coordinates, then each of the modes
h̄ilm is as well.

This basis is orthogonal with respect to a certain inner
product, satisfying∮

dΩ ηαµηβνY i`mµν Y ∗j`
′m′

αβ = κiδijδ``′δmm′ , (B5)

where dΩ = sin θdθdφ is the surface element on the unit

sphere,

ηαβ := diag
(
1, f2, r−2, r−2 sin−2 θ

)
, (B6)

and

κi :=

{
f2 if i = 3,

1 otherwise.
(B7)

Note that our expression for ηαβ corrects a typo in the
original formula in Ref. [81] (also corrected in Ref. [34]).

The coefficients ai` are introduced in Eq. (115) for the
purpose of simplifying the field equations. They are de-
fined to be

ai` =
1√
2
×


1 for i = 1, 2, 3, 6,

1/
√
λ1 for i = 4, 5, 8, 9,

1/
√
λ2 for i = 7, 10,

(B8)

where λ1 and λ2 are as defined above.
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Appendix C: Field equations

We give here explicit expressions for the matrix ele-
ments Mij

n appearing in the wave operators (144) and

field equations (152)–(153). For brevity, we omit the la-
bels n, `,m and the arguments s̃, r of the fields Rni`m(s̃, r).
For the same reason, we use λ1 = `(` + 1), as in Ap-
pendix B, and introduce λ := λ2/λ1 = (` + 2)(` − 1).
The partial derivative ∂r is taken with fixed s̃.

With those shorthand notations, the quantities Mij
0 Rj in Eqs. (152) are given by

M1j
0 Rj =

f2f ′

2

(
∂rR3 +

iωmH

f
R3

)
+
f
(
1− 4M

r

)
2r2

(R1 −R5 − fR3)− f2

2r2

(
1− 6M

r

)
R6, (C1a)

M2j
0 Rj =

f2f ′

2

(
∂rR3 +

iωmH

f
R3

)
+
ff ′

2
∂r (R2 −R1)− iωm

2
(1−H) f ′ (R2 −R1)

+
f2

2r2
(R2 −R4)− ff ′

2r
(R1 −R5 − fR3 − 2fR6) , (C1b)

M3j
0 Rj = − f

2r2

[
R1 −R5 −

(
1− 4M

r

)
(R3 +R6)

]
, (C1c)

M4j
0 Rj =

ff ′

4
∂r (R4 −R5)− iωm (1−H) f ′

4
(R4 −R5)− λ1

2

f

r2
R2 −

ff ′

4r
(3R4 + 2R5 −R7 + λ1R6) , (C1d)

M5j
0 Rj =

f

r2

[(
1− 9M

2r

)
R5 −

λ1

2
(R1 − fR3) +

1

2

(
1− 3M

r

)
(λ1R6 −R7)

]
, (C1e)

M6j
0 Rj = − f

2r2

[
R1 −R5 −

(
1− 4M

r

)
(R3 +R6)

]
, (C1f)

M7j
0 Rj = − f

2r2
(R7 + λR5) , (C1g)

M8j
0 Rj =

ff ′

4
∂r (R8 −R9)− iωm (1−H) f ′

4
(R8 −R9)− ff ′

4r
(3R8 + 2R9 −R10) , (C1h)

M9j
0 Rj =

f

r2

(
1− 9M

2r

)
R9 −

f

2r2

(
1− 3M

r

)
R10, (C1i)

M10j
0 Rj = − f

2r2
(R10 + λR9) , (C1j)

where f ′ = ∂f/∂r = 2M/r2.

The quantitiesMij
1 R

j in Eqs. (144) and (153) are given
by

M1j
1 Rj = −1

2
ff ′H∂̃s̃R3, (C2a)

M2j
1 Rj = −f

′

2

[
fH∂̃s̃R3

− (1−H) ∂̃s̃ (R2 −R1)
]
, (C2b)

M4j
1 Rj =

f ′

4
(1−H) ∂̃s̃ (R4 −R5) , (C2c)

M8j
1 Rj =

f ′

4
(1−H) ∂̃s̃ (R8 −R9) , (C2d)

Mij
1 Rj = 0 for i = 3, 5, 6, 9, 10. (C2e)

Appendix D: Analytic solutions for the ` = 0 and
` = 1,m = 0 first-order modes

In this appendix we present the explicit analytical for-
mulas for the solutions (189) and (190)

1. Dipole solution

We first consider ` = 1,m = 0, which only has an
odd-parity contribution. For Rpp

i10 we use

Rpp
810 = −16

√
π

3
L0

{
r2/r3

0 for r ≤ r0,

1/r for r ≥ r0,
(D1a)

Rpp
910 = −

√
π

3

256M4L0

r3
0r

2
, (D1b)

where L0 = µr2
0U0Ω0 is the zeroth-order orbital angular

momentum. Note that our solution (D1) differs from the
one that has been used historically. The historical so-
lution, dating back to Zerilli’s classic paper [92], agrees
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with our Rpp
810 but sets Rpp

910 = 0; though this solution
is often assumed to be horizon regular, it actually vio-
lates the regularity condition (162c), leading to divergent
behavior of the second-order source term δ2G0

i`m at the
horizon. The addition of an i = 9 mode (which is pure
gauge) satisfying Eq. (162c) cures this ill behavior.11 In
components, the perturbation at large r reads

hpp,`=1,m=0
tφ = −2L0 sin2 θ

r
+O(1/r4), (D2)

the expected asymptotic form of the metric in a space-
time with angular momentum L0. One can straightfor-
wardly verify, using Komar or Abbott-Deser integrals [93]
over surfaces of constant r (at fixed slow time), that the
spacetime gαβ +εhpp

αβ has zero angular momentum inside
every sphere of radius r < r0, corresponding to a non-
spinning central black hole, and angular momentum εL0

inside every sphere of radius r > r0.
On top of Rpp

i10, we can freely add a perturbation gen-
erated by the central black hole’s small, evolving spin S1,
given by

x̄810 = −
√
π

3

16S1

r
, (D3a)

x̄910 = −
√
π

3

32MS1

r2
. (D3b)

The i = 9 mode is again added to ensure regularity at the
future horizon. x̄i`m corresponds to a metric perturba-

tion with tφ component x`=1,m=0
tφ = − 2S1 sin2 θ

r +O(1/r4),
and one can verify that the spacetime gαβ+εxαβ contains
angular momentum εS1 for all r > 2M .

2. Monopole solutions

Next, we consider ` = 0. The analysis of this mode
is complicated by a well-known pathology of the Lorenz
gauge: in the Lorenz gauge, there is no globally regu-
lar homogeneous solution with nonzero mass. A homo-
geneous solution with nonzero mass is always irregular
at either the horizon or at infinity (or both) [60, 93].
These singularities are purely a gauge artefact; outside
the Lorenz gauge, it is easy to find mass perturbations
that are regular at the future horizon and at infinity.
For example, in an ‘Eddington-Finkelstein gauge’, a ho-
mogeneous perturbation with mass M1 has the simple,
manifestly regular form

xEF
αβ =

2M1

r
δvαδ

v
β (D4)

11 This longstanding error was discovered in collaboration with Leor
Barack, Niels Warburton, and Barry Wardell. We thank Leor
Barack for deriving the correct, nonzero Rpp

910.

(obtained by replacing M with M + εM1 in the
Eddington-Finkelstein components of the exact
Schwarzschild metric). However, here we restrict
our attention to Lorenz-gauge solutions. We consider
several solutions and their relative merits.

a. Basis of homogeneous solutions

All possible solutions to Eq. (152) are eas-
ily constructed from the complete basis of ho-
mogeneous solutions provided by Dolan and
Barack [93], the main members of which we denote{
h

(A)
αβ , h

(B)
αβ , h

(C)
αβ , h

(D)
αβ

}
, following Dolan and Barack’s

labelling. With the metric perturbation written as
hαβ = diag(htt, hrr, Hr

2, Hr2 sin2 θ), these are given by

h
(A)
αβ = gαβ , (D5)

h
(B)
tt = −2MfP (r)

r3
, h(B)

rr =
2Q(r)

fr3
, (D6)

H(B) =
2fP (r)

r2
, (D7)

h
(C)
tt = −2M4

r4
, h(C)

rr = −2M3(2r − 3M)

f2r4
, (D8)

H(C) =
2M3

r3
, (D9)

h
(D)
tt = − 2

3r4

[
rW (r) +MrfP (r) ln f

− 8M4 ln(r/M)
]
, (D10)

h(D)
rr =

2

3r4f2

[
L(r) ln f − rK(r)

+ 8M3(2r − 3M) ln(r/M)
]
, (D11)

H(D) =
2

3r3

{
(r3 − 8M3) ln f − r[P (r)−Mr]

− 8M3 ln(r/M)
}
, (D12)

where

P := r2 + 2rM + 4M2, (D13)

Q := r3 − r2M − 2rM2 + 12M3, (D14)

W := 3r3 − 7r2M − rM2 − 4M3, (D15)

K := r3 − 5r2M − 5rM2 + 12M3, (D16)

L := r4 − 3r3M + 16rM3 − 24M4. (D17)

(The H here should not be confused with H = dk/dr∗.)
There is also a fifth independent solution, consisting
solely of a t-r component,

h
(E)
tr =

M2

fr2
. (D18)

This was not identified by Dolan and Barack, but it ap-
pears as part of one of the solutions they consider. We
will not require explicit use of it.
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Given the metric components, the Barack-Lousto-Sago
amplitudes are

R100 =
√

4πr
(
h`=0
tt + f2h`=0

rr

)
, (D19a)

R200 =
√

16πrfh`=0
tr , (D19b)

R300 =
√

16πrH`=0, (D19c)

R600 =
√

4πrf−1
(
h`=0
tt − f2h`=0

rr

)
. (D19d)

Together, h
(A)
αβ through h

(E)
αβ form a complete basis.

From Table I, we see that for ` = 0 there are two coupled
field equations for i = 1, 3, plus the hierarchically decou-
pled field equation for i = 2, with the i = 6 mode recov-
ered algebraically from the gauge condition (157) with
(155b). The i = 1, 3 equations should have a total of
four independent homogeneous solutions; these are pro-
vided by the (A)–(D) solutions. When these solutions are
substituted into the i = 2 field equation, one finds that
the i 6= 2 modes cancel one another inMij

0 Rj`m, leaving
a fully decoupled equation for i = 2. The gauge condi-
tion (157) with (155a) also provides a decoupled equation
for i = 2, and it is easy to verify that the sole solution
to the gauge condition automatically satisfies the field
equation; this is the (E) solution

h
(A)
αβ is the only one of the five solutions to contain

mass, equal to M/2; all others are pure gauge. It is reg-
ular at the future horizon but irregular at infinity (where
its components go to constants instead of decaying to

zero). h
(B)
αβ is regular at the future horizon but irregular

at infinity. h
(C)
αβ and h

(E)
αβ are regular at infinity but not at

the future horizon. h
(D)
αβ is irregular at both boundaries.

b. Asymptotically regular, horizon-irregular solution

We first consider solutions that are asymptotically flat
and in which x̄i00(M1, r) contains the full perturbation
to the black hole’s mass.

An inhomogeneous solution to Eq. (152) that is regular
at infinity, contains no mass in the region r < r0 (and
therefore no correction to the black hole’s mass), and is
maximally regular at the horizon is given by

hpp,`=0
αβ =

(
2E0h(A)

αβ + a
(B)
+ h

(B)
αβ + a

(C)
+ h

(C)
αβ + a

(D)
+ h

(D)
αβ

)
θ+

+
(
a

(B)
− h

(B)
αβ + a

(C)
− h

(C)
αβ + a

(D)
− h

(D)
αβ

)
θ−,

(D20)

where θ± := θ[±(r − r0)] and

a
(B)
+ = −4

3
E0, (D21a)

a
(C)
+ = − E0

3Mr0f0

[
M2(8 ln 2− 44) + r2

0

+8M(r0 − 3M) ln(r0/M) + 20Mr0] , (D21b)

a
(D)
+ = −E0, (D21c)

a
(B)
− = − (r0 − 3M) ln(f0)E0

3r0f0
, (D21d)

a
(C)
− = −4M(5 + 8 ln 2)E0

3r0f0
, (D21e)

a
(D)
− = −ME0

r0f0
. (D21f)

The mode amplitudes are then given by Eq. (D19). Since

only h
(A)
αβ contains mass, we can read off that in the space-

time gαβ + εhpp
αβ , a sphere of radius r < r0 contains mass

M , and a sphere of radius r > r0 contains mass M +εE0.
This describes the spacetime of a particle of mass µ or-
biting a black hole of mass M .

The perturbation is regular at large r, where

hpp,`=0
αβ =

2E0
r

diag(1, 1, r2, r2 sin2 θ) +O(1/r2), (D22)

and

Rpp
100 = 8

√
πE0 +O(1/r), (D23a)

Rpp
200 = 0, (D23b)

Rpp
300 = 8

√
πE0 +O(1/r), (D23c)

Rpp
600 = O(1/r). (D23d)

But it diverges logarithmically at the horizon, where

Rpp
100 = O(f2), (D24a)

Rpp
200 = 0, (D24b)

Rpp
300 = O(f), (D24c)

Rpp
600 =

8
√
π

r0f0

[
(r0 − 3M) ln f0

+M ln
( r

2M
− 1
)]

+O(f ln f). (D24d)

One can construct other inhomogeneous solutions with
the same properties by adding perturbations propor-

tional to h
(E)
αβ . But it is straightforward to check that

no such solution can improve upon the above solution’s
regularity at the horizon without sacrificing regularity at
infinity.

Next, an asymptotically flat mass perturbation with
maximal regularity at the horizon is given by

x`=0
αβ (M1, r) = 2M1h

(A)
αβ −

4

3
M1h

(B)
αβ −

4

3
(5 + ln 4)M1h

(C)
αβ

−M1h
(D)
αβ . (D25)
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At large r, it behaves as in Eq. (D23) with the replace-
ment E0 →M1. Near the horizon it behaves as

x̄100 = O(f2), (D26a)

x̄200 = 0, (D26b)

x̄300 = 8
√
πM1

[
2 + ln

( r

2M
− 1
)]

+O(f), (D26c)

x̄600 = 16
√
πM1 +O(f). (D26d)

Again, one can easily check that this is the maximal regu-
larity that an asymptotically flat Lorenz-gauge mass per-
turbation can have at the horizon.

The perturbation hpp,`=0
αβ + x`=0

αβ (M1, r) in Eqs. (D20)

and (D25) fits neatly into Sec. VI’s description of the full
two-timescale solution and its evolution. In particular,
the black hole’s total mass is MBH = M + εM1, and it
satisfies the flux equation dMBH/ds̃ = εdM1/ds̃ = εĖH .

The disadvantage of this solution is obvious. Because
it is singular at the horizon, it makes the second-order
source term δ2G0

i`m also singular there. And because the

` = 0 mode of h̃1
αβ contributes to every mode δ2G0

i`m,
this irregularity spreads into every second-order mode.
Of course once the solution is obtained, the singularity
can be eliminated with a gauge transformation. But one
must first carefully obtain the correct (singular) bound-
ary conditions for each mode.

c. Berndtson solution

We next consider asymptotically flat solutions in which
x`=0
αβ (M1, r) does not contain the full perturbation to the

black hole’s mass. This implies that the inhomogeneous

solution hpp,`=0
αβ contains part of the correction to the

black hole mass, which turns out to allow it to be regular
at both boundaries.

The relevant regular inhomogeneous solution was first
derived by Berndtson [94]. Denoting it by hBern

αβ to dis-

tinguish it from the hpp,`=0
αβ of Eq. (D20), we can write it

as

hBern
αβ =

[
2M>h

(A)
αβ + b

(B)
+ h

(B)
αβ + b

(C)
+ h

(C)
αβ

+ b
(D)
+ h

(D)
αβ

]
θ+ +

[
2M<h

(A)
αβ + b

(B)
− h

(B)
αβ

+ b
(C)
− h

(C)
αβ + b

(D)
− h

(D)
αβ

]
θ−, (D27)

where

b
(B)
± = a

(B)
± − 4

3
M<, (D28a)

b
(C)
± = a

(C)
± − 4

3
(5 + ln 4)M<, (D28b)

b
(D)
± = a

(D)
± −M<. (D28c)

Here

M< = − E0
r0f0

=: MBern (D29)

is the mass contained in a sphere of radius r < r0, and
M> = (MBern + E0) is the mass contained in a sphere of
radius r > r0.
hBern
αβ is regular at both future null infinity and the

future horizon, satisfying all the conditions of (162), as
desired. If we exclude any nonzero t-r components, hBern

αβ
is in fact the unique Lorenz-gauge solution that is regu-

lar at both boundaries. (If we include h
(E)
αβ , we can con-

struct other regular solutions, but none of them improve
upon the Berndtson solution.) hBern

αβ also differs from

Eq. (D20) in that it contains mass, MBern, in the region
r < r0; this corresponds to a perturbation to the black
hole’s mass. Contrary to statements in Refs. [60, 93], this
does not suggest hBern

αβ is an unphysical solution. It tells

us that hBern
αβ describes the physical spacetime of a point

mass µ, with specific energy E0, on a circular geodesic or-
bit around a black hole with mass MBH = M + εMBern.

A minor drawback of the Berndtson solution is that it
does not fit quite so cleanly into the evolution scheme in
Sec. VI. If we take our total first-order ` = 0 solution to
be hBern

αβ +x`=0
αβ (M1), with x`=0

αβ (M1) as in Eq. (D25), then

the total black hole mass is MBH = M + ε(MBern +M1).

Since dMBH/ds̃ = εĖH , this implies that the evolution
equation for M1 becomes

dM1

ds̃
= ĖH −

dMBern

ds̃
, (D30)

where dMBern

ds̃ = dr0
ds̃

dMBern

dr0
.

Of course, since x`=0
αβ is irregular in any case, the total

solution hBern
αβ + x`=0

αβ is just as irregular as the solution

hpp,`=0
αβ + x`=0

αβ from the previous subsection. The only
potential advantage it might have over the previous solu-
tion is if the changes in M1 were numerically negligible; in
that case, we could simply neglect M1, and hBern

αβ would
provide a well-behaved first-order field at the boundaries,
leading in turn to a second-order Einstein tensor δ2G0

i`m
that is maximally well behaved at the boundaries. This
may in fact be the case, since changes in the black hole
parameters are typically extremely small over an inspi-
ral [95].

A major advantage of the Berndtson solution lies in
cases where we are not actually concerned with evolv-
ing the system but only with calculating some physical
quantity at a fixed value of slow time. In that case we
can freely omit xαβ , and the Berndtson solution pro-
vides a first-order field that is regular at both bound-
aries, leading to a second-order source that is maximally
well-behaved at the boundaries. This was the approach
taken in Ref. [39].

As a final comment on the Berndtson solution, we note
that if one leaves the Lorenz gauge, it provides a simple
way to construct a solution that is continuous at r =
r0, regular at both boundaries, has zero mass for r <
r0, and has mass E0 for r > r0. To find this solution,
start with the Berndtson solution and add an Eddington-
Finkelstein solution (D4) with mass M1 = −MBern.
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d. Asymptotically irregular, horizon-regular solution

In most Lorenz-gauge calculations, neither the solu-
tion (D20) nor the Berndtson solution has been used.
Instead, to our knowledge, all authors have adopted a

solution for hpp,`=0
αβ that is regular at the horizon but not

at infinity. Since this solutions is displayed frequently,
we do not repeat it here; it can be found in Eq. (114) of
Dolan and Barack, for example. It satisfies the horizon-
regularity conditions (162), but at infinity it goes to a
constant:

lim
r→∞

hpp,`=0
αβ = 2MBernδ

t
αδ
t
β . (D31)

Here MBern is not the mass in the solution; instead, it
appears as a measure of the mismatch between intervals
of coordinate time t in the perturbed spacetime and in-
tervals of proper time for asymptotic observers.

A simple mass perturbation that is horizon-regular and
minimally asymptotically irregular is given by

x`=0
αβ (M1, r) = 2M1h

(A)
αβ −M1h

(B)
αβ . (D32)

At large r, it behaves as

lim
r→∞

x`=0
αβ = −2M1δ

t
αδ
t
β . (D33)

Just as the solutions in the previous two sections made
the second-order source ill behaved at the horizon, the

solution hpp,`=0
αβ + x`=0

αβ in this section makes the source
ill behaved at infinity, decaying slowly as r → ∞. That
slow decay is numerically burdensome to integrate over,
and it complicates the procedure of deriving boundary
conditions.

This solution also requires special considerations in or-
der to obtain useful results. In practice we are almost
always interested in calculating quantities in gauges that
admit the same preferred asymptotic reference frame as
the background. As a consequence, in a typical first-
order calculation, after computing a physical quantity in
the asymptotically irregular Lorenz gauge, one performs
a gauge transformation to find the value of that quantity

in an asymptotically flat gauge [15]. With the transfor-
mation written in the form xα → xα − εξα, it requires
the linearly growing gauge vector

ξα = δαt MBern t, (D34)

which corresponds to a rescaling of time,

t→ (1− εMBern)t (D35)

and also consequently a rescaling of the frequencies,

ωm → (1 + εMBern)ωm. (D36)

In the first-order context, this transformation only af-
fects the monopole mode of the metric perturbation, and
it leaves that perturbation static. But at second order,
such a transformation would affect every mode and lead
to spurious, growing solutions in the second-order field,
violating the presumed form of the two-timescale expan-
sion.

We can recast the linearly growing transformation in a
form consistent with the two-timescale form of the field
by writing it as

ξt =

∫
MBern(εt)dt =

1

ε

∫
MBern(t̃)dt̃; (D37)

if reexpanded at fixed t, this reduces to the form above.
It is a large, O(1) transformation of t, but it is better
understood as a small transformation of the slow time,

t̃→ t̃− ε
∫
MBern(t̃)dt̃. (D38)

Such a transformation filters through the entire two-
timescale expansion, altering the frequencies ωm as
above, the field equations in which ωm appears, and the
fast time φp =

∫
Ωdt. It also requires additional care if

we use s̃ instead of t̃ as our slow time.
Ref. [62] will discuss the gauge freedom in the two-

timescale expansion in greater generality, including this
freedom to transform the slow time.
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