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Abstract: We give strong numerical evidence for the existence of an instability afflicting

six-dimensional Reissner-Nordström de Sitter (RNdS) black holes. This instability is akin

of the Konoplya-Zhidenko instability present in RNdS black holes in seven spacetime di-

mensions and above. Moreover, we perform a detailed analysis of the near-horizon limit of

extremal RNdS black holes, and find that unstable gravitational modes effectively behave

as a massive scalar field whose mass violates the AdS2 Breitenlöhner-Freedman bound (if

and only if d ≥ 6), thus providing a physical argument for the existence of the instability.

Finally, we show that the frequency spectrum of perturbations of RNdS has a remarkable

intricate structure with several bifurcations/mergers that appears unique to RNdS black

holes.
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1 Introduction

Kodama and Ishibashi proved that Reissner-Nordström de Sitter (RNdS) black holes in

d = 4 and d = 5 spacetime dimensions are linearly-mode stable [1]. Therefore, the finding

by Konoplya and Zhidenko [2, 3], that RNdS black holes can be unstable to gravitational

perturbations if they live in d ≥ 7 spacetime dimensions (n = d− 2 ≥ 5) came with some

surprise. The existence of this instability was further confirmed in [4] where it was also

noted that there is a simple (necessary but not sufficient) criterion − originally due to

[5] − that predicts the existence of the instability. Essentially, [5] proposes that a system

should be unstable whenever an integral (between the event and cosmological horizons) of

the Schrödinger potential of the perturbation is negative. The instability of [2] is in these

conditions [4]. More recently, this RNdS instability was also studied in the framework of

the large d limit of general relativity [6].

There are however some fundamental questions that are left unanswered by [2, 4, 3, 6]

and that we address in this manuscript. Firstly, we would like to understand the physical

origin of this instability, and in particular why it only appears in higher-dimensions. This

is particularly important, since for d = 4 and d = 5 Kodama and Ishibashi proved linear-

mode stability [1]. It is also important in the context of recent studies on strong cosmic

censorship violation in RNdS black holes [7–18]. Secondly, [2, 4] find that the system is

unstable for d ≥ 7 but their analysis leaves the stability properties of the d = 6 case

undetermined. Again, stability is proven only for d = 4, 5 so could it be that there is an

instability also for d = 6?

In this paper we address these two questions. In section 2 we start by reviewing the

RNdS black holes and its relevant sector of perturbations that can be unstable. Then, in

section 3 we point out that there is a criterion for instability that predicts and, at the same

time justifies, an instability in RNdS black holes. This instability criterion was conjectured
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by Durkee and Reall [19] and later proved by Hollands and Wald [20]. Strictly speaking it

was proven only for non-positive cosmological constant backgrounds, Λ ≤ 0, but, as argued

in [20], it should also hold for de Sitter backgrounds (Λ > 0). Applied to our system,

this Durkee-Reall instability criterion essentially states that that one should take the near-

horizon limit of the gravitational perturbation master equation about the extremal RNdS

black hole. After the limit is taken, the gravitational master equation effectively reduces

to a Klein-Gordon equation for a massive scalar field in an AdS2 background. If this near-

horizon effective mass is smaller than the AdS2 Breitenlöhner-Freedman (BF) mass bound

then the full RNdS extremal geometry should be unstable. By continuity this instability

should extend away from extremality. As shown in section 3, this criterion predicts the

existence of an instability for RNdS black holes in d ≥ 6. In section 4, we numerically solve

the perturbation master equation and we confirm that the instability is indeed present for

RNdS black holes in d ≥ 6 dimensions. Therefore, the two main outcomes of our study

are: 1) we provide a physical origin of the Konoplya-Zhidenko instability (violation of the

AdS2 BF bound), and 2) we establish the presence of the instability in d = 6.

Adding to these two main results, we will also take the opportunity to explore in detail

the properties of the instability. For example, we will establish that the instability is present

in a broader region of the parameter space than originally reported in [2, 4, 3]. Indeed,

in one of our studies we will look for the instability directly in the extremal configuration

and will find that all extremal RNdS black holes are unstable for d ≥ 61. That is, [2, 4, 3]

identified the presence of the instability only for large values of r+/rc (where r+ and rc are

the event and cosmological horizons of RNdS) but we find that the instability is actually

present in the whole range r+/rc ∈]0, 1[ for extremal RNdS. Our findings are not in conflict

with the Durkee-Reall instability criterion, since the latter is known to be a sufficient, but

not necessary condition for the existence of an instability. Additionally, we will also analyse

the properties of the instability away from extremality and we will also look directly for

the onset of the instability. Finally, we will also study in some detail the quasinormal

mode structure of the perturbations as we span the two-dimensional parameter space of

RNdS black holes. We will find an intricate network of quasinormal mode branches with

interesting bifurcations/mergers that, to the best of our knowledge, seem to be unusual in

black hole perturbations (at least in Λ ≤ 0 backgrounds).

2 Reissner-Nordström de Sitter black hole and its perturbations

We work with the Einstein-Maxwell theory, in d = n + 2 spacetime dimensions (n ≥ 2),

with a positive cosmological constant Λ described by the action

S =
1

16πG

∫
dn+2x

√
−g
(
R− 2Λ− F 2

)
, with Λ ≡ n(n+ 1)

2L2
(2.1)

and where R is the Ricci scalar of the metric g, L is the de Sitter length scale, and F = dA

is the Maxwell field strength associated with the Maxwell potential A.

1For d = 6, the evidence is substantially weaker, as the instability growth rates are very small.
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A known solution of this theory is the Reissner-Nordström de Sitter (RNdS) black

hole. In static coordinates, the gravitational and electric fields of this solution with mass

M and charge q parameters are

ds2 = −f dt2 +
dr2

f
+ r2dΩ2

n , A = −q
r

dt , (2.2)

with dΩ2
n being the line element of a unit radius Sn and

f(r) = 1− r2

L2
− 2M

rn−1
+

Q2

r2(n−1)
, Q =

√
2 q√

n(n− 1)
. (2.3)

For an appropriate range of parameters, specified below, f has three real positive

roots r− ≤ r+ ≤ rc corresponding to the Cauchy horizon CH, event horizon H+ and

cosmological horizon HC respectively. We can express M and L in terms of r+, rc and

q. The temperature of the event and cosmological horizons are, respectively, given by

T+ = f ′(r+)
4π and Tc = −f ′(rc)

4π .

When T+ = 0 we have an extremal RNdS black hole. This happens for q = qext with

qext

rn−1c
= yn−1+

√
n(n− 1)

2

√
2yn+1

+ − (n+ 1)y2+ + n− 1

(n+ 1)y2n+ − 2nyn+1
+ + n− 1

, and y+ ≡
r+
rc
. (2.4)

The Einstein-Maxwell equations of motion are invariant under the scaling g → λ2g, A →
λA and L → λL, with λ ∈ R, which we can use to construct dimensionless quantities in

units of rc. Therefore, we choose to parametrize the RNdS solution using the dimensionless

parameters q/qext and y+.

We are interested on gravitoelectromagnetic perturbations of RNdS. These were stud-

ied in detail by Kodama-Ishibashi (KI) in [1]. Perturbations of (2.2) can be analysed ac-

cording to how they transform under diffeomorphisms of the Sn sphere. There are a total

of three families of perturbations that decouple from each other, namely the scalar, vector

and tensor perturbations. These perturbations are built from scalar, vector and tensor

harmonics on Sn, respectively. We are primarily interested in scalar perturbations, which

are built from spherical harmonics S`(~x), where ~x collectively parametrise coordinates on

the n− sphere. These harmonics are such that

2SnS`(~x) = λSS`(~x) (2.5)

with λS = `(` + n − 1) and ` ≥ 0 being an integer. Modes with ` = 0, 1 were shown to

be pure gauge in [1]. In particular, modes with ` = 0 describe changes in the mass of the

background RNdS black hole while ` = 1 modes represent translations. Onwards, we shall

take ` ≥ 2.

In the Schwarzschild limit, q = 0, ΦS −
` (t, r) and ΦS +

` (t, r) describe, respectively, purely

gravitational and purely electromagnetic perturbations [1]. However, when q 6= 0 the

gravito-electromagnetic perturbations are coupled. As described in [1], one can introduce

a separation anstaz of the form

ΦS −
` (t, r) = e−iωtS`(~x)Φ−ω`(r) (2.6)
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which introduces the frequency ω. One can then manipulate the Einstein and Maxwell

equation to find a decoupled ordinary differential equation for the radial master field Φ−ω`(r)

(see Eq. (5.59) of [1]), namely:

f
(
fΦ−ω`(r)

′)′ + (ω2 − V−
)

Φ−ω`(r) = 0 , (2.7)

where the potential V−(r;n, r+, rc, q, `) can be found in equations (5.61)-(5.63) of [1].

3 Near-horizon criterion for instability

As reviewed below, the near-horizon limit of an extremal RNdS black hole is described

by the direct product spacetime AdS2 × Sn. One of the main observations of the current

manuscript is that the existence of some instabilities of the full RNdS black hole can be

inferred from studying the behaviour of the perturbation equation in the near horizon limit.

More concretely, in the near-horizon limit the Kodama-Ishibashi master equation (2.7)

reduces to an equation that has the form of a Klein-Gordon equation for a massive scalar

field in AdS2. We will confirm that, according to the Durkee-Reall criterion [19, 20], when

this near-horizon effective mass violates the AdS2 Breitenlöhner-Freedman mass bound

then the full RNdS geometry is unstable.2 This happens for d ≥ 6 (n ≥ 4). We will find

that the AdS2 BF bound violation gives a sufficient (but not necessary) criterion for the

presence of an instability and also justifies its origin.

To get the near-horizon geometry of the extremal RNdS black hole, one first takes

(2.2) with q = qext and zooms in around the event horizon region by making the coordinate

transformations:

r = r+ + ερ, t = L2
2

τ

ε
;

with L2
2 =

r2+
[
2nyn+1

+ − (n+ 1)y2n+ − n+ 1
]

(n− 1)
[
−4nyn+1

+ + (n+ 1)
(
y2n+ + ny2+

)
− (n− 1)2

] . (3.1)

The near-horizon solution is then obtained by taking ε → 0 yielding (after a U(1) gauge

transformation)

ds2NH = L2
2

(
−ρ2dτ2 +

dρ2

ρ2

)
+ r2+dΩ2

n,

ANHµ dxµ = αρ dτ , α =
n− 1√

2
L2

√
1 + (n− 1)

L2
2

r2+
. (3.2)

This geometry is the direct product of AdS2×Sn and has a Maxwell potential that is linear

in the radial direction. This limiting solution is still a solution of the (n+ 2)-dimensional

Einstein-Maxwell-dS theory. On the other hand, the AdS2 metric solves the 2-dimensional

Einstein-AdS equations with AdS2 radius L2, Rµν = −L−22 gµν .

2Strictly speaking the Durkee-Reall conjecture was originally formulated and proved only for Λ ≥ 0

backgrounds [19, 20] but, as argued in [20] it should also hold for Λ > 0.
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One can now take the near-horizon limit (3.1), together with ω = εL−22 ω̃ directly on

the gravitational master equation (2.7). After taking ε→ 0 this yields(
22 − µ2L2

2

)
Φ−ω`(ρ) = 0 , (3.3)

where 22 is the d’Alembertian in AdS2 and µ2 = µ2(n, y+, `) is the near-horizon effective

mass of the system. Its particular expression is long and not enlightening so we do not

reproduce it here. It depends on the harmonic number `, on the dimension d = n+ 2 and

on y+. The keypoint is that this near-horizon analysis is expected to provide a criterion for

instability [19, 20]: whenever this mass is smaller than the AdS2 Breitenlöhner-Freedman

(BF), µ2BFL
2
2 = −1/4, one should have an instability of the full RNdS black hole. We

further expect this instability to be the one found in [2, 4, 6] (for d ≥ 7). If so, the

violation of the AdS2 BF bound effectively explains the origin of the instability found in

[2, 4, 6].

In Fig. 1 we set ` = 2 and plot
(
µ2 − µ2BF

)
L2
2 as a function of y+ = r+/rc for

n = 4, 5, 6, 7, 8, 9 (see plot legends). We conclude that for n ≥ 4 there are always values

of y+ where
(
µ2 − µ2BF

)
L2
2 < 0 and thus for which the AdS2 BF bound is violated and an

instability should be present. Note that this includes the d = 6 (n = 4) case, which was also

analysed in [2, 4], but for which no instability was found. For n = 2, 3, i.e. d = 4, 5, one

always has µ2 > µ2BF and we do not display these curves in Fig. 1. This result is consistent

with the fact that d = 4, 5 RNdS are stable to all linear-mode gravitational perturbations

[1].

In the next section we will confirm that the AdS2 BF bound violation observed in Fig.

1 (for n ≥ 4) indeed gives a sufficient criterion for the presence of an instability and also

justifies its origin. But we will also show that this condition is not a necessary condition.

��� ��� ��� ��� ��� ���
-����

-����

-����

-����
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Figure 1. Difference between the effective near-horizon AdS2 mass µ2L2
2 and the AdS2 BF bound

µ2
BFL

2
AdS2

= −1/4 as a function of r+/rc. When this quantity is negative one should expect an

instability [19, 20].
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So far we discussed only harmonics with ` = 2. But we can also ask what happens if

we consider modes with ` ≥ 3. Typically, we find that as the integer ` increases it becomes

harder to get negative
(
µ2 − µ2BF

)
L2
2. For example, in n = 4 or n = 5 dimensions, for ` ≥ 3

the AdS2 BF bound is no longer violated for any y+. As another example, for n = 6, 7

the harmonics ` = 2, 3 generate a violation of the AdS2 BF bound but this is no longer

the case for ` ≥ 4. As a final example, for n = 8, 9 the harmonics ` = 2, 3, 4 generate a

violation of the AdS2 BF bound but this is no longer the case for ` ≥ 5.

4 Numerical results for the instability

4.1 Setup of the problem

Our aim is to solve the KI linear ODE (2.7), subject to relevant boundary conditions, to

find the properties of linear mode perturbations in RNdS. More concretely, we want to

fix the spacetime dimension n and the RNdS black hole − described by the dimensionless

quantities {y+, q/qext} − as well as the harmonic quantum number ` and look for modes

that are unstable.

To achieve our aims we have followed a strategy that is anchored on three main studies:

I. Generically, we have a non-extremal RNdS black hole with q/qext < 1. We can solve

(2.7) as a quadratic eigenvalue problem for ω to find the eigenvalue/eigenfunction

pair
(
ωrc,Φ

−
ω`

)
for a given set of {n, y+, q/qext, `}. For a fixed {n, `} we can then

repeat the analysis and scan the full 2-dimensional parameter space of RNdS black

holes.

II. As argued in section 3 the instability has a near-horizon/extremal origin. So, when

present, it should make its appearance at extremality and then extend away from

extremality until it eventually shuts down. Therefore, we first consider the RNdS

with q = qext and solve (2.7) as a quadratic eigenvalue problem for the frequency to

find the eigenpair
(
ωrc,Φ

−
ω`

)
, for a given {n, y+, `} directly at extremality.

III. Alternatively, instead of looking for the instability timescale, we can search directly

for the onset of the instability whereby the frequency vanishes, ω = 0. To find this

instability threshold, we solve (2.7) as a nonlinear eigenvalue problem for the black

hole charge to find the onset charge q = qonset above which RNdS is unstable.

The above three strategies are complementary. In particular, the 2-dimensional surface

in the plot {y+, q/qext, Im(ωrc)} generated using the first study must: i) have the extremal

curve with q/qext = 1 obtained in the second study as a boundary line, and ii) intersect

the onset curve ω = 0 of the third study when Im(ωrc) = 0. So the three complementary

studies also provide non-trivial independent checks of the numerical results we obtain.

To proceed, one needs to use a numerical scheme to solve our boundary value problems.

For that it is good to first introduce a new compact radial coordinate, namely

y =

√
1−

√
rc − r
rc − r+

, (4.1)

– 6 –



such that y = 0 describes the black hole horizon, r = r+, and y = 1 marks the location of

the cosmological horizon, r = rc.

Next, one needs to discuss the issue of the boundary conditions. These boundary

conditions are different for the three eigenvalue problems I−III listed above and we discuss

them separately.

Consider first the eigenvalue problem I. We have a non-extremal black hole and de-

formations propagate between the event and cosmological horizons where we impose as

boundary conditions that the perturbations are regular in Eddington-Finkelstein coordi-

nates. In particular, we take the modes to be ingoing at the event horizon and outgoing

at the cosmological horizon. To find these boundary conditions we first do a Frobenius

analysis about y = 0 to find that

Φ−ω`(y) ' y
± i ω̃

2πT̃+
[
1 +O(y)

]
, (4.2)

where T+ is the event horizon temperature (its surface gravity divided by 2π) as defined

below (2.3) and the tilde (here and in other expressions) is used to state that the quantities

are measured in units of rc, e.g.,

ω̃ ≡ ω rc , T̃+ ≡ T+ rc, , T̃c ≡ Tc rc . (4.3)

Ingoing boundary conditions at the black hole horizon requires choosing the lower sign in

(4.2). A similar analysis around the cosmological horizon, y = 1, yields

Φ−ω`(y) ' (1− y)
± i ω̃

2πT̃c

[
1 +O(1− y)

]
, (4.4)

where T̃c is the (dimensionless) cosmological horizon temperature defined below (2.3). Im-

posing outgoing boundary conditions at the cosmological horizon demands choosing the

lower sign in (4.4). We will use a Chebyshev collocation scheme to numerically solve for(
ωrc,Φ

−
ω`

)
(see [21] for a review on the subject). Hence, we want to perform a field re-

definition that automatically enforces the above boundary conditions. This motivates the

wavefunction redefinition

Φ−ω`(y) = y
− i ω̃

2πT̃+ (2− y2)
− i ω̃

4πT̃+ (1− y2)−
i ω̃

2πT̃cQω`(y) , (4.5)

where, for our choice of boundary conditions, Qω`(y) is a smooth function of y with a

regular Taylor series expansion at both y = 0 and y = 1. The boundary conditions for

Qω`(y) are then of the Neumann type, i.e. ∂yQω`(y)
∣∣
y=0,1

= 0.

Consider now the eigenvalue problem II listed above. This time we have an extremal

black hole, meaning that at the event horizon f vanishes quadratically. It follows that,

instead of (4.2), this time a Frobenius analysis about y = 0 yields

Φ−ω`(y) ' e±i ω̃
α
y2 y± i ω̃β

[
1 +O(y)

]
, (4.6)

where

α ≡
y2+

2(n− 1)(1− y+)

(n+ 1)y2n+ − 2nyn+1
+ + n− 1

4nyn+1
+ − (n+ 1)

(
y2n+ + ny2+

)
+ (n− 1)2

, (4.7)

β ≡ 2ny+
[
(n+ 1)y2n+ − 2nyn+1

+ + n− 1
] 4(1− 2n)yn+1

+ + (n+ 1)
[
y2n+ + (3n− 2)y2+

]
− 3(n− 1)2

3(n− 1)
[
4nyn+1

+ − (n+ 1)
(
y2n+ + ny2+

)
+ (n− 1)2

]2 .
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Requiring ingoing boundary conditions at the event horizon of the extremal RNdS black

hole amounts to choose the upper sign in (4.6). For the extremal RNdS, a Taylor expansion

about the cosmological horizon still yields (4.4) and choosing the lower sign in (4.4) still

amounts to impose outgoing boundary conditions at the cosmological horizon, alike in the

non-extremal case. Much like in the non-extremal case, since we use a pseudospectral

collocation scheme, these boundary conditions are best implemented if we introduce the

field redefinition

Φ−ω`(y) = e
i ω̃α

y2(2−y2) yi ω̃β(1− y2)−
i ω̃

2πT̃c Qω`(y) , (4.8)

such that the above boundary conditions simply translate into Neumann conditions, namely

∂yQω`(y)
∣∣
y=0,1

= 0 for the smooth function Qω`(y).

Finally, let us consider the nonlinear eigenvalue problem III listed above. In this case

we want to find the eigenpair
(
q/qext,Φ

−
ω`

)
that describes the onset of the instability in

the non-extremal RNdS as we scan the y+ parameter. The boundary conditions for this

problem are straighforward: a Frobenius analysis about y = 0 (y = 1) indicates that

we have a term that diverges as A log y (a log(1 − y)). We impose boundary conditions

that eliminate these divergent terms: A ≡ 0, a ≡ 0 by taking pure Neumann boundary

conditions for Φ−0 `(y).

4.2 Numerical results

The near horizon analysis of the extremal RNdS black hole and associated Durkee-Reall

criterion [19, 20] discussed in section 3 suggests that near-extremal black holes should be

unstable for n ≥ 4. To confirm this is indeed the case, we first search for unstable modes

directly in the extremal RNdS black hole using the numerical scheme II outlined in the

previous section 4.1. We find three main results:

1. The gravitational instability in the RNdS black hole is present when the spacetime

dimension satisfies n ≥ 4 (d ≥ 6) and ` = 2. In particular, it is present for d = 6

(n = 4), as predicted by the near horizon criterion, which is a result that was not

established in previous literature. This is explicitly shown for n ≥ 5 in the right panel

of Fig. 2 and for n = 4 in left panel of Fig. 2. These plots display the imaginary part

of the dimensionless frequency, Im(ωrc) as a function of y+ = r+/rc (the real part of

the frequency of the unstable modes vanishes).

2. At extremality, q/qext = 1, the instability is present for any value of y+ = r+/rc i.e.

for y+ ∈ [0, 1] (when n ≥ 4 and ` = 2) with Im(ωrc) → 0 as y → 0 or y → 1 and

attaining a maximum in between. This is explicitly shown for n ≥ 5 in the right panel

of Fig. 2. For n = 4 it is computationally much harder to generate the associated

numerical data but we believe this case should behave much like the n ≥ 5 cases.

Note that in previous literature [2, 4], the presence of the instability was established

only for large values of r+/rc (and n ≥ 5) and later it was (incorrectly) claimed that

the instability is present only above a critical value of y+ [3].

3. The near horizon Durkee-Reall criterion [19, 20] discussed in section 3 provides a

sufficient but not necessary condition for the instability. That is to say, our numerical

– 8 –



��� ��� ��� ��� ��� ���
�

��×��-��

��×��-��

���×��-��

��×��-��

���×��-��

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●■■■■■■■■■■■■■■■■■■■■■■■
■■■■

■■■
■■
■■
■■
■■
■■
■■
■■
■■
■■
■■
■■
■■
■■
■■
■■■

■■■■■■■■■■■■■■■■■■■■■■■■■
■
■
■
■
■
■
■
■
■
■
■
■
■◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆
◆◆◆

◆◆
◆◆
◆◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆◆
◆◆
◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆

▲▲▲▲▲▲▲▲▲▲▲
▲▲▲

▲▲
▲▲
▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲
▲▲
▲▲▲

▲▲▲▲▲▲▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▼▼▼▼▼▼▼▼
▼▼▼

▼▼
▼▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼▼
▼▼▼

▼▼▼▼▼▼▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

��� ��� ��� ��� ��� ���

����

����

����

����

����

●

■

◆

▲

▼

Figure 2. Instability timescale at extremality, q = qext as a function of r+/rc (the real part of the

frequency of these unstable modes vanishes). Left panel: The d = 6 (n = 4) case: the Durkee-Reall

criterion is satisfied in between the two black dashed vertical lines. Right Panel: The distinct curves

describe different spacetime dimensions, d = n+ 2 ≥ 5 (see legend). The instability is stronger for

higher n but, at extremality, it is always present for any value of r+/rc in the allowed range ]0, 1[.

results show that the system is indeed always unstable whenever the AdS2 BF bound

is violated. But the instability also extends to values of the parameter space where

the near-horizon criterion does not signal an instability. This is best seen comparing

the analytical near-horizon predictions of Fig. 1 with the actual numerical results

of Fig. 2. Recall that both these plots are for ` = 2 and q = qext. Typically, the

near-horizon analysis of Fig. 1 predicts instability for a finite range of y+. However,

we find that, at extremality, the system is unstable in the full range y+ ∈ [0, 1]. This

is certainly the case for n ≥ 5 (see right panel of Fig. 2) and should also be true for

n = 4.

Having established that all, 0 ≤ y+ ≤ 1, extremal RNdS black holes are unstable for

n ≥ 4 we might then ask how far away from extremality does the instability extend into.

To address this question we first search directly for the onset of the instability using the

numerical scheme III outlined in the previous section 4.1. This critical charge qonset above

which the RNdS solution is unstable is shown in Fig. 3 for n = 5, 6, 7, 8, 9 and ` = 2.

The left panel shows 1 − qonset/qext as a function of y+ while the right panel shows the

logarithmic plot of the same quantity to zoom the details of the small y+ region. We see

that for a given dimension n, qonset/qext decreases as y+ grows from 0 into 1: the instability

extends further away from extremality for high y+. On the other hand, for a given y+ we

see that increasing the dimension n favours the instability in the sense that qonset/qext
becomes smaller as n grows.

To have a broader perspective of the properties of the instability, next we search directly

for the instability timescale in the non-extremal RNdS black hole. For this discussion we

fix the dimension to be n = 5 and the associated data is shown in Fig. 4 (for other

dimensions the plot is qualitatively similar). Recall that non-extremal RNdS black holes

– 9 –



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●●
●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■

■■■■■■■■■■■
■■■■■■■■■

■■■■■■■■
■■■■■■■

■■■■■■■
■■■■■■
■■■■■■
■■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■■
■■■■
■■■■
■■■■
■■■■
■■■■
■■■■
■■■
■■■
■■■
■■■
■■■
■■■
■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆
◆◆◆◆◆◆◆

◆◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼▼
▼▼▼▼▼
▼▼▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼
▼▼▼

��� ��� ��� ��� ���
���

���

���

���

���

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

■■
■■
■■
■■
■■
■■
■■
■■
■■
■■■
■■■
■■■
■■■
■■■
■■■■
■■■■
■■■■
■■■■
■■■■■
■■■■■
■■■■■■
■■■■■■
■■■■■■■

■■■■■■■
■■■■■■■■

■■■■■■■■■
■■■■■■■■■■

■■■■■■■■■■■■
■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■

◆◆
◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆
◆◆◆◆◆◆
◆◆◆◆◆◆
◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆

▲▲▲
▲▲▲
▲▲▲
▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲
▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼
▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼▼
▼▼▼▼▼
▼▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼▼▼
▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

��� ��� ��� ��� ���

-��

-��

-�

-�

-�

-�

�

●

■

◆

▲

▼

Figure 3. Instability onset. For given r+/rc, RNdS black holes with q > qonset are unstable. The

right panel is simply a log plot of the left panel to better see what happens for small y+.

are parametrized by q/qext and r+/rc and these are the two horizontal axes of Fig. 4. On the

other hand the vertical axis is the imaginary part of the dimensionless frequency, Im(ωrc)

(the real part of the frequency of the unstable modes vanishes). In this 3-dimensional

Figure 4. Instability timescale for n = 5: imaginary part of the frequency Im(ωrc) as a function

of r+/rc and q/qext (only shown the parameter space region where the instability is present, i.e.

that has Im(ωrc) ≥ 0). The brown dots in the plane q/qext = 1 represent instability data collected

independently using a numerical code at extremality. The green dots with Im(ωrc) = 0 represent

data collected independently using a numerical code for the onset of the instability.
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plot we also show the extremal (brown) curve already displayed in Fig. 2 and the onset

(green) curve already shown in Fig. 3 (for n = 5). The fact that the 2-dimensional surface

describing the regime where RNdS is unstable ends on the extremal and onset curves

obtained using independent numerical codes provides a non-trivial check of our numerical

results. This plot reveals the following properties (some were already discussed above):

• At extremality, q/qext = 1, the instability is present in the whole range 0 ≤ y+ ≤ 1.

• As we move away from extremality, we see that for a given (large) charge, namely

in the range 0.9128 . q/qext ≤ 1 (when n = 5) the system is unstable only for y+
above a (non-vanishing) critical value. For smaller charges q the system is stable.

In equivalent words, for a given y+, RNdS black holes are unstable if their charge is

above qonset, with qonset approaching qext as y+ → 0.

• The maximum strength of the instability is attained for black holes that are close

to extremality, but not at extremality. This is better seen in Fig. 5 where we show

the instability timescale for three families of RNdS solutions at constant y+ (namely

y+ = 0.70, 0.95, 0.99) as a function of the dimensionless charge ratio q/qext. We see

that typically Im(ωrc) grows as q/qext increases but its maximum occurs slight before

one reaches the extremal configuration q/qext = 1.
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Figure 5. Frequency spectrum (imaginary part) for RNdS black hole families with y+ = 0.70

(•), y+ = 0.95 (◦) and y+ = 0.99 (⊗) and n = 5, ` = 2. The brown disks with q/qext = 1were

obtained using the independent code II for the extremal solution. The onset of the instability

(where Im(ωrc) = 0) occurs at the critical values {y+, q/qext} also obtained using the independent

numerical code III used to generate the onset curve of Fig. 3.

Up until now we have discussed only modes with ` = 2. This is because for each

dimension n ≥ 4 this is either: i) the only harmonic for which the instability is present or

ii) the harmonic mode where the instability is stronger. But we can also discuss briefly

other harmonics. As discussed in section 3, the near-horizon analysis shows that as `
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increases it becomes harder to get negative
(
µ2 − µ2BF

)
L2
2. For example, in n = 4 or n = 5

dimensions, for ` ≥ 3 the AdS2 BF bound is no longer violated for any y+. As another

example, for n = 6, 7 the harmonics ` = 2, 3 generate a violation of the AdS2 BF bound

but this is no longer the case for ` ≥ 4. As a final example, for n = 8, 9 the harmonics

` = 2, 3, 4 generate a violation of the AdS2 BF bound but this is no longer the case for

` ≥ 5. The full numerical analysis confirms these analytical predictions to be correct. In

particular, the numerical analysis also concludes that when the instability is present for

more than the ` = 2 harmonic, modes with lower ` are more unstable. To illustrate this,

in Fig. 6 we take an extremal RNdS BH in n = 9 and compare the instability timescale of

` = 2 and ` = 3 modes. We see that the ` = 3 instability timescale is typically two orders

of magnitude smaller than the ` = 2 timescale. We have also explicitly checked that for

n = 9 the ` = 4 harmonic (but not higher `’s) is also unstable but with a strength that is

∼ 5 orders of magnitude smaller than the ` = 2 instability. For example, for y+ = 1/2 the

timescale of three harmonics are:

` = 2 : ωrc ' 1.60×10−1 i , ` = 3 : ωrc ' 9.78×10−3 i , ` = 4 : ωrc ' 1.37×10−6 i .

(4.9)
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Figure 6. Instability timescale at extremality, q = qext, for n = 9 as a function of r+/rc for the

` = 2 (blue H) and ` = 3 (red O) harmonics. The ` = 2 curve was already shown (with same

colour/shape code) in Fig. 2.

So far we have focused our attention on describing key properties of the instability

present in RNdS black holes and confirming that we can understand its origin as being due

to the violation of a relevant AdS2 BF bound discussed in section 3. The relevant modes

become unstable close to extremality.

Next, we give a broader view of the properties of these perturbations and follow the

unstable modes as we move away from extremality all the way down to the Schwarzschild-
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dS black hole with q = 0. This analysis turns out to reveal an interesting quasinormal

mode structure with properties that, to the best of our knowledge, no other known black

hole quasinormal mode spectrum exhibits. In our scan of solutions we have found three

main regimes that are distinct from each other and thus deserve a separate discussion.

Illustrative examples of each of these three cases are the RNdS black holes with y+ = 0.70,

y+ = 0.95 and y+ = 0.99 (and n = 5, ` = 2). The main instability properties near

extremality of these three cases were already discussed in Fig. 5. Next we extend the

analysis of these modes all the way towards q = 0, i.e. well away from the region where

the solutions are unstable and we also discuss “secondary” (less unstable or stable) modes

that are nevertheless relevant to have a good overview of the quasinormal mode structure.

The key properties of these three families can be summarized as follows:

1. The case y+ = 0.99 represents what typically happens for RNdS black holes that

have very large y+ (i.e. close to unit). The relevant frequency spectrum for this case

is displayed in Fig. 7 (imaginary part) and Fig. 8 (real part of the frequency). In

Fig. 7 we identify the dark red disk (•) curve that describes the (most) unstable

mode that was already identified in Fig. 5 with red ⊗ (and in Fig. 4) and that has

Re(ωrc) = 0. In particular, the brown disk with q/qext = 1 in this curve describes the

extremal solution also identified in Fig. 2. We see that this curve has a maximum

close to extremality (as discussed previously) and, decreasing q/qext we find that the

mode first becomes stable at q/qext ∼ 0.92 (consistent with Fig. 3) and then reaches

a bifurcation point A at q/qext ∼ 0.861 where it joins the light blue lozenge (♦) and

blue diamond (�) curves. As seen in the inset plot of the left panel, the light blue ♦
branch extends all the way from A down to q = 0. As shown in the companion Fig.

8, the real part of the frequency of this branch is always non-vanishing (Re(ωrc) 6= 0)

and it decreases monotonically as q increases from zero towards the bifurcation point

A with q/qext ∼ 0.861. At this point A, the light blue ♦ branch bifurcates into the

dark red • curve (upper branch) already discussed above and into the blue � curve

(lower branch). These two branches (• and �) both have Re(ωrc) = 0. That is to

say, a complex eigenvalue3 bifurcates into two branches that have purely imaginary

eigenvalues. Now let us follow the blue diamond � branch. We see that it extends

from point A with q/qext ∼ 0.861 up to point B with q/qext ∼ 0.902. At this point

B it merges with the brown inverted triangle H curve (that also approaches point

B but coming from point D) and the solution now extends for higher q/qext along

the light blue ♦ branch that again has Re(ωrc) 6= 0 (see the half-circle BC section

of Fig. 8) up to point C with q/qext ∼ 0.934. At this point C we have again a new

bifurcation into two branches: the upper branch with orange triangles (N) and the

lower branch with blue diamonds (�). Both these branches then extend independently

towards extremality (q/qext = 1) in such a way that Im(ωrc) grows monotonically

from negative into positive values (moreover Re(ωrc) = 0 for both branches). This

is best seen in the zoomed right panel of Fig. 7. For completeness we should also

3Since RNdS is a static background with Killing vector ∂t, if ω = ωR + i ωI is an eigenvalue then

−ω∗ = −ωR + i ωI is also an eigenvalue of the frequency spectrum.
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Figure 7. Frequency spectrum (imaginary part) for y+ = 0.99 and n = 5, ` = 2 with zooms in the

relevant regions where instability is present.
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Figure 8. Frequency spectrum (real part) for y+ = 0.99 and n = 5, ` = 2. The right panel zooms

in the near-extremal region where the instability is present. The green, red, dark red and orange

sections of Fig. 7 are not shown: they all have Re(ωrc) = 0.

mention the turning point D seen in the left panel of Fig. 7 where the brown inverted

triangle H curve continues as the green square (�). Both curves have Re(ωrc) = 0.

The green square curve extends away from D to higher q/qext where it has a new

turning point but we do not analyse/discuss this further.

Although we have not done an exhaustive scan of the parameter space, we have

collected enough evidence that the frequency spectrum for RNdS black holes with y+
close to 1 has a bifurcation/merger structure qualitatively similar to the one shown

in Fig. 7 and Fig. 8 (some of this evidence comes from Figs. 12-13, 14-15 and 16-17

to be discussed later). It is also important to point out that a bifurcation structure
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similar to the one seen around point A of Figs. 7-8 also emerges from a large d

analysis of the instability: see Fig. 1 of [6]. However, at least for finite values of the

dimension, the system seems to have a more complicated bifurcation structure than

the one reported in [6]: there are further bifurcations/mergers like B and C in Figs.

7-8.

2. Next we consider the case y+ = 0.95 which represents RNdS that have moderately

large y+ that is however not large enough to be close to unit. The relevant frequency

spectrum for this case is displayed in Fig. 9 (imaginary part) and Fig. 10 (real part

of the frequency). This case distinguishes from the previous case mainly because the

bifurcations/mergers (like A and C of Fig. 7) cease to exist. Instead they are replaced

by crossovers of quasinormal mode branches. Take the left panel of Figs. 9 and 10.

As before, the light blue lozenge (♦) curve starts at q = 0 and has Re(ωrc) 6= 0.

This curve extends all the way to extremality (although it becomes very difficult to

compute the properties of this curve for q/qext above 0.98) with an intricate structure

best seen in the zoom plots of the right panel of Figs. 9 and 10. Indeed, in the Im(ωrc)

plot the light blue lozenge (♦) curve has some zig-zagged regions that correspond to

minima cusp points in the Re(ωrc) plot: these are regions A, C, E, · · · in Figs. 9 and

10). These regions coincide with the points where the dark red disk (•) and orange

triangle (4) curves (that have both Re(ωrc) = 0) crossover the light blue lozenge (♦)

curve (note that the red disk curve describing the most unstable mode is precisely

the one already displayed in Fig. 5 as a dark-red ◦). It is important to emphasize

that A and C describe crossover not intersection points (since the eigenfunctions of

the branches that intersect are distinct and points A, C and E in the light blue ♦
curve have Re(ωrc) 6= 0 unlike in the • and 4 curves). Comparing with the situation

of Fig. 7 and Fig. 8 we can say that the bifurcation/merger points A and C of Fig.
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Figure 9. Frequency spectrum (imaginary part) for y+ = 0.95 and n = 5, ` = 2 with zooms in the

relevant regions where instability is present.
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Figure 10. Frequency spectrum (real part) for y+ = 0.95 and n = 5, ` = 2 with zooms in the

relevant regions where instability is present. The dark red and orange sections of Fig. 9 are not

shown: they both have Re(ωrc) = 0.

7 become crossover points in Fig. 9. Further note that, although not shown in Fig.

9, there should exist at least another family of modes to the right of the orange 4
curve and “parallel” to it that should crossover the ♦ curve in region E. Finally, we

should pointed out that the orange empty (4) triangle modes of Fig. 9 are not the

extension of the orange filled triangle (N) modes of Fig. 7: this will become clear

later when we discuss the curves N and 4 of Fig. 12.

3. Finally, we consider the case with y+ = 0.70 which is a representative case of what

happens with RNdS black holes that have intermediate and small values of y+. The

relevant frequency spectrum for this case is displayed in Fig. 11 (imaginary part in

left panel and real part in the right panel). This case distinguishes from the previous

case because the structure of the spectrum is now very simple: the ziz-zag regions on

the Im(ωrc) plots of Fig. 9, i.e. the cusps in the Re(ωrc) plots of Fig. 10, have now

flatten out completely and we simply have very simple crossovers A and C between

the light blue lozenge (♦) (which has Re(ωrc) 6= 0) and, respectively, the red disk

(•) curve that is unstable (already shown in Fig. 5 as a dark-red •) and the orange

triangle (4) curve.

As observed before the RNdS family of black holes spans a 2-dimensional parameter

space that we are taking to be the dimensionless ratios y+ = r+/rc and q/qext. In the

sequence of Figs. 7-8, 9-10 and 11 we have always fixed y+ and analysed how the fre-

quency spectrum changes as the charge of the RNdS black hole changes. Next, to have a

3-dimensional perspective of the system, we complement this analysis: we choose some rel-

evant RNdS solutions with a fixed charge q/qext and discuss how their frequency changes as

y+ changes (we take again n = 5 and ` = 2). Particularly illustrative cases that further help
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Figure 11. Frequency spectrum (left panel: imaginary part, right panel: real part) for y+ = 0.70

and n = 5, ` = 2 with zooms in the relevant regions where instability is present. Right panel:

Real part of the frequency. The dark red • and orange 4 branches of the left panel have with

Re(ωrc) = 0 and are not shown.

revealing the properties of the system are q/qext = 0.95, q/qext = 0.88 and q/qext = 0.85.

The analysis of these three cases unveils the following properties:

1) We start with a RNdS black hole with q/qext = 0.95. In Fig. 12 (imaginary part) and

Fig. 13 (real part) we show how the frequency ωrc changes as we vary y+. The curve

on the top of Fig. 12 with dark red disks (•) is the branch that is unstable for large

y+. It confirms, as already seen in Fig. 3, that RNdS with q/qext = 0.95 become
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Figure 12. Left and right panels: Frequency spectrum (imaginary part) for q/qext = 0.95 and

n = 5, ` = 2 with zooms in relevant regions. We use the same shape/colour code (•, ♦, N, �, 4)

used in Figs 7-8, 9-10 and 11.
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Figure 13. Frequency spectrum (real part) for q/qext = 0.95 and n = 5, ` = 2 with zooms in

relevant regions. The dark red • and orange N,4 branches of Fig. 12 are not shown because they

simply have Re(ωrc) = 0.

unstable for y+ & 0.881 (see left panel of Fig. 12). Additionally, out of an infinite

family of modes with Im(ωrc) < 0 for any y+, we further show the two families of

modes that have the smallest |Im(ωrc)|. These are: i) the light blue ♦ branch (that

has Re(ωrc) 6= 0; see Fig. 13) that bifurcates at q/qext ∼ 0.977 into two branches

with Re(ωrc) = 0, namely the orange triangle (N) branch and the solid blue diamond

(�) branch, and ii) the orange empty triangle (4) branch. A zoom in of the region

close to y+ = 1 is displayed in the right panel of Fig. 12. This plot at constant

q/qext = 0.95 complements well those plots at constant y+ shown previously (namely

Figs. 7, 9, 11). For example, in the right panel of Fig. 12, we identify the upper

three points •, N, � with y+ = 0.99. These three points are the three points with

the same shape/colour code •, N, � with q/qext = 0.95 of Fig. 7 (which describes

RNdS solutions with y+ = 0.99). As another example, in the left panel of Fig. 12,

we identify the three points •, �, 4 with y+ = 0.95 that are the three points •, �,

4 with q/qext = 0.95 of Fig. 9 (which describes RNdS solutions with y+ = 0.95).

This is a good moment to pause and note, as observed in the end of the discussion of

Fig. 9, that the orange N (first introduced in Fig. 7) and 4 modes (first introduced

in Fig. 9) are indeed distinct. As a final example, in the left panel of Fig. 12, we

further identify the three points •, 4, � with y+ = 0.70 that are the three points •,
4, � with q/qext = 0.95 of Fig. 11 (which describes RNdS solutions with y+ = 0.70).

2) Next consider RNdS black holes with q/qext = 0.88. In Fig. 14 (imaginary part)

and Fig. 15 (real part) we show the variation of the frequency as we vary y+. From

Fig. 3 (green � curve) such black holes are stable for all values of y+. It follows

that the curve on the top of Fig. 14 with dark red disks (•) has Im(ωrc) < 0 for any

y+: this is the family of modes that become unstable but only for q/qext & 0.881.

Additionally, out of an infinite family of modes with Im(ωrc) < 0 for any y+, we

– 18 –



further show the families of modes that have the smallest |Im(ωrc)|. This is the light

blue ♦ branch (with Re(ωrc) 6= 0; see Fig. 15) that bifurcates at q/qext ∼ 0.971 into

two branches with Re(ωrc) = 0, namely the blue diamond (�) branch and the brown

inverted triangle (H) branch. A zoom in of the region close to y+ = 1 is displayed in

the right panel of Fig. 14. This plot complements previous plots at constant y+ (of

Figs. 7, 9, 11). For example, in the right panel of Fig. 14, we identify the upper three

points •, �, H with y+ = 0.99 which are the three points •, �, H with q/qext = 0.88

in the left panel of Fig. 7 (which describes RNdS solutions with y+ = 0.99; we do not

show the green square family in Fig. 14). As another example, still in the right panel

of Fig. 14, we identify the two points •, ♦ with y+ = 0.95 that are the two points

•, ♦ with q/qext = 0.88 of Fig. 9 (which describes RNdS solutions with y+ = 0.95;

we do not show the orange triangle family in Fig. 14). As a final example, in the

left panel of Fig. 14, we also identify the two points •, ♦, this time with y+ = 0.70,

that are the two points •, ♦ with q/qext = 0.95 of Fig. 11 (which describes RNdS

solutions with y+ = 0.70).
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Figure 14. Left and right panels: Frequency spectrum (imaginary part) for q/qext = 0.88 and

n = 5, ` = 2 with zooms in relevant regions. We use the same shape/colour code (•, ♦, �, H) used

in Figs 7-8, 9-10 and 11.

3) Finally, we considered RNdS black holes with q/qext = 0.85. In Figs. 16 and 17 we

display the three family of modes with the lowest |Im(ωrc)| for this RNdS family.

Such black holes are stable for all values of y+ (see green � curve in Fig. 3). In the

main plot of the right panel, we identify the blue ♦ point with y+ = 0.99 which is

also the blue ♦ point with q/qext = 0.85 in the left panel of Fig. 7 (which describes

solutions with y+ = 0.99). Also in the main plot of the right panel, we further

identify the two points (blue ♦ and dark red •) with y+ = 0.95 which are also the

two points (blue ♦ and dark red •) with q/qext = 0.85 in the right panel of Fig. 9

(which describes solutions with y+ = 0.95). Finally, in the left panel, we identify the

two points (dark red • and blue ♦) with y+ = 0.7 which are the two points (dark red •
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Figure 15. Frequency spectrum (real part) for q/qext = 0.88 and n = 5, ` = 2. The dark red • and

brown inverted triangle H branches of Fig. 14 are not shown because they simply have Re(ωrc) = 0.

and blue ♦) with q/qext = 0.85 of Fig. 11 (which describes solutions with y+ = 0.70).

Note that one of the two branches (blue ♦ and dark red •) has the lowest timescale

depending on the window of y+.
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Figure 16. Frequency spectrum (imaginary part) for q/qext = 0.85 and n = 5, ` = 2 (left panel)

with zooms in relevant regions (right panel).

5 Discussion

We believe that our study reveals key aspects of the gravitational instability of Reissner-

Nordström de Sitter black holes originally found in [2] and further studied in [4, 6]. The

fundamental novel results that we establish can be summarized as follows:
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Figure 17. Frequency spectrum (real part) for q/qext = 0.85 and n = 5, ` = 2. The dark red ◦
and green � branches of Fig. 16 are not shown because they simply have Re(ωrc) = 0.

• RNdS black holes are unstable when d ≥ 6 (see e.g. Fig. 2). For d ≥ 7 this

instability was first established in [2, 4, 6]. In addition, we find it is also present for

d = 6 (although with a much lower timescale).

• We have established the physical origin of the instability: it is present because in the

near-horizon limit of extremal RNdS, the unstable gravitational modes effectively be-

have as a massive scalar field whose mass violates the AdS2 Breitenlöhner-Freedman

bound (if and only if d ≥ 6; see Fig. 1). By continuity, the instability then extends

away from extremality.

• The instability criterion of the previous item is known as the Durkee-Reall conjecture

[19] later proved by Hollands and Wald [20] when Λ ≤ 0. Our findings provide

good numerical evidence for the Durkee-Reall conjecture with de Sitter asymptotics

(Λ > 0), as already argued in [20]. It would be interesting to formally prove this

result for Λ > 0 using the methods of [20].

• Our results also confirm that the Durkee-Reall instability criterion [19, 20] provides a

sufficient but not necessary condition for instability. For example, for extremal black

holes the instability criterion typically predicts instability only for certain windows

of the dimensionless horizon radii ratio r+/rc (see Fig. 1) but we find that actually

the instability is present for any value of this ratio (at extremality and for d ≥ 6):

see e.g. Fig. 2. In particular, this also means that there is no critical minimum value

of y+ for the existence of the instability unlike it was claimed in [3].

• RNdS black holes are parametrized by the dimensionless ratios y+ ≡ r+/rc and

q/qext. For a given dimension n and y+, we have found the onset charge qonset/qext
above which RNdS becomes unstable: see Fig. 3.
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• In addition to finding the instability timescale at extremality (Fig. 2) and the onset

charge (Fig. 3) we have spanned the 2-dimensional parameter space of RNdS to

produce the 3-dimensional plot of Fig. 4 that displays the instability timescale as

a function of y+ ≡ r+/rc and q/qext. In particular, as best seen in Fig. 5, after

its onset the instability first increases as we approach extremality until it reaches a

maximum near but before extremality. Then its strength decreases slightly as we

approach further and reach extremality.

• The instability is present for d ≥ 6 for the harmonic mode ` = 2. Typically, the

instability then tends to get weaker and even disappear as the harmonic number `

grows (see Fig. 6). For example: in d = 6, 7 only the ` = 2 mode is unstable; in

d = 8, 9 ` = 3 is also unstable; and in d = 10, 11 ` = 2, 3, 4 modes are unstable but

not ` ≥ 5.

• If we follow the unstable modes to regions of the parameter space where the instability

shuts down and if we include the second and/or third families of quasinormal modes

with lowest |Im(ωrc)| we find an intriguing network of mode bifurcations/mergers

that seems to be absent in black holes with Λ ≤ 0. This spectrum seems so unique

and intriguing that we dedicated a special study to it. In the sequence of Figs. 7-8,

9-10 and 11 we have fixed representative values of y+ and analysed how the frequency

spectrum changes as the charge of the RNdS black hole varies. On the other hand,

in Figs. 12-13, 14-15 and 16-17 we fixed some values of q/qext and changed y+.

There are quite a few natural extensions of our work. In particular, it would be

interesting to frame the quasinormal mode structure we found in this manuscript in light

of the three families of quasinormal modes used to study the strong cosmic censorship

conjecture [7] for initial data close to RNdS black holes [8–18]. We should note, however,

that once the instability sets in, a novel black hole geometry is likely to form [22]. Strong

cosmic censorship should then be studied by investigating how slowly generic perturbations

decay around the new hypothetical background geometry. Away from extremality, we

should be able to settle this issue by studying the quasinormal mode spectrum of the

relevant RNdS black hole.
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