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ABSTRACT
As the era of gravitational-wave astronomy has well and truly begun, gravitational radiation from rotating neutron stars remains
elusive. Rapidly spinning neutron stars are the main targets for continuous-wave searches since, according to general relativity,
provided they are asymmetrically deformed, they will emit gravitational waves. It is believed that detecting such radiation will
unlock the answer to why no pulsars have been observed to spin close to the break-up frequency. We review existing studies
on the maximum mountain that a neutron star crust can support, critique the key assumptions and identify issues relating to
boundary conditions that need to be resolved. In light of this discussion, we present a new scheme for modelling neutron star
mountains. The crucial ingredient for this scheme is a description of the fiducial force which takes the star away from sphericity.
We consider three examples: a source potential which is a solution to Laplace’s equation, another solution which does not act
in the core of the star and a thermal pressure perturbation. For all the cases, we find that the largest quadrupoles are between a
factor of a few to two orders of magnitude below previous estimates of the maximum mountain size.
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1 INTRODUCTION

Neutron stars have long been of interest in gravitational-wave astro-
nomy (Papaloizou & Pringle 1978; Wagoner 1984). This is owed to
their extreme compactness (rivalled only by black holes) and their
role in some of the most cataclysmic events in the Universe. There
are a variety of mechanisms through which neutron stars can radi-
ate gravitational waves. These include binary inspiral and merger
(Abadie et al. 2010), various modes of oscillation (and their cor-
responding instabilities; Andersson 1998; Andersson, Kokkotas &
Stergioulas 1999) and rotating neutron stars deformed away from
axial symmetry (Bildsten 1998). Recently, binary neutron stars have
been the subject of significant interest since their exciting, first detec-
tions with gravitational-wave interferometers (Abbott et al. 2017d;
Abbott et al. 2020b). This has reinvigorated the effort to explore other
neutron star gravitational-wave scenarios.
An open problem in the study of spinning neutron stars relates

to the fact that no neutron star has been observed that spins (even
remotely) close to the centrifugal break-up frequency – which is gen-
erally above ∼ 1 kHz for most equation-of-state candidates (Lattimer
& Prakash 2007). The fastest discovered spinning pulsar rotates at
716Hz (Hessels et al. 2006), well below this mass-shedding limit,
and the current theory predicts that these stars reach these high fre-
quencies through accretion, which should have no difficulty in spin-
ning the neutron stars up to this limit (Cook, Shapiro & Teukolsky
1994). It has been suggested that the lack of neutron stars spinning
at these high rates is due to the emission of gravitational radiation
which provides a braking torque that halts spin-up (Bildsten 1998;
Andersson et al. 1999; Gittins & Andersson 2019). The associated
(quadrupole) deformations are commonly referred to as mountains.

★ E-mail: f.w.r.gittins@soton.ac.uk

Rapidly rotating neutron stars have, in fact, enjoyed the attention
of a large number of searches using gravitational-wave data. These
searches have been split into two strategies: looking for evidence of
gravitational radiation for specific pulsars (Abbott et al. 2004, 2005b,
2007a, 2008b, 2010; Abadie et al. 2011a,b; Aasi et al. 2014, 2015a,b;
Abbott et al. 2017a,c,e,f, 2018b, 2019a,e; Abbott et al. 2019b) and
wide-parameter surveys for unobserved sources (Abbott et al. 2005a,
2007b, 2008a, 2009; Abadie et al. 2012; Aasi et al. 2013; Abbott
et al. 2016, 2017b, 2018a). There has also been a study looking for
gravitational waves from supernova remnants (Abbott et al. 2019d).
The recent wide-parameter search (Abbott et al. 2019c) has excluded
the presence of fast-spinning neutron stars within 100 parsecs with
ellipticities larger than 10−8 and, most recently, the ellipticities of a
number of observed pulsars have been constrained to less than 10−8
(Abbott et al. 2020a). For these reasons, it is of great interest to
calculate the largest mountain that a neutron star crust can sustain.
This would provide an upper limit on the magnitude of gravitational-
wave emission from these systems.

There have been a number of studies of the maximum quadrupole
deformation of a neutron star. The earliest of these was conducted
by Ushomirsky, Cutler & Bildsten (2000), who used the Cowling
approximation in Newtonian gravity to derive an integral expression
for the quadrupole moment. They introduced the argument that the
body will obtain its maximum mountain when the crust is strained
to its elastic yield point. This argument enabled them to straight-
forwardly find the strain tensor that ensures that every point in the
crust is maximally strained. Haskell, Jones & Andersson (2006) ob-
served that the approach of Ushomirsky et al. (2000) did not respect
the required boundary conditions at the base and top of the crust
and that the Cowling approximation could have a large impact on
the results. Therefore, they presented a perturbation formalism that
relaxed the Cowling approximation and enabled them to treat the
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phase transitions appropriately. However, there are inconsistencies
in their analysis which we explain later. The most recent estimates of
the maximum elastic deformation have been provided by Johnson-
McDaniel & Owen (2013), who carried out their calculation in full
relativity using a Green’s function method. However, since they used
the covariant analogue to the strain tensor from Ushomirsky et al.
(2000), their calculation also ignored the boundary conditions on the
crust. An important aspect of past studies is the fact the maximum
mountains they calculate are independent of the precise mechanisms
which sourced them. They do not consider the deforming forces or
evolutionary scenarios which lead to the formation of the mountains.
We return to this problem to address some of the assumptions

of the previous work and detail a formalism which enables one to
accurately compute the quadrupole deformation throughout the star.
As we show, in order to satisfy the necessary boundary conditions
of the problem, it is extremely helpful to characterise the source
of the perturbations. This has not been done in past calculations.
In addition, it is not clear whether strain configurations where the
majority of the crust ismaximally strained can actually be reached in a
real neutron star. The largest realistic mountain may be significantly
smaller. These points suggest that future progress on this subject
will rely on evolutionary calculations that consider the complete
formation of the mountains (Bildsten 1998; Ushomirsky et al. 2000;
Singh et al. 2020; Osborne & Jones 2020).
We begin, in Section 2, with an introduction to static perturba-

tions of neutron stars and a review of prior efforts on estimating the
maximum mountain. We summarise their approaches and the im-
portant assumptions, which provide the motivation for this work. In
Section 3, we consider the necessary components of a neutron star
mountain calculation. We provide a detailed discussion on the usual
method of calculating mountains and introduce our own scheme,
demonstrating the validity and equivalence of both approaches. We
detail the perturbation formalism for our mountain scheme in Sec-
tion 4 and pay particular attention to the boundary conditions of the
problem.We consider three sources for the deformations in Section 5
and provide the maximum quadrupoles for each scenario. Finally, we
conclude and discuss future work in Section 6.
We adopt the usual Einstein summation conventionwhere repeated

indices indicate a summation. We use Latin characters 𝑖, 𝑗 , ... to de-
note spatial indices and use primes for derivatives with respect to
the radial coordinate. We use 𝛿 and Δ to represent Eulerian and Lag-
rangian perturbations, respectively. These perturbations are related
by Δ = 𝛿 +L𝜉 , where L𝜉 is the Lie derivative along the Lagrangian
displacement vector, 𝜉𝑖 (Friedman & Schutz 1978).

2 CONTEXT

When a star is deformed away from perfect sphericity it develops
multipole moments. These are defined as

𝑄𝑙𝑚 ≡
∫ 𝑅

0
𝛿𝜌𝑙𝑚 (𝑟)𝑟𝑙+2𝑑𝑟, (1)

where (𝑙, 𝑚) denotes the harmonic mode of the density perturba-
tion, 𝛿𝜌𝑙𝑚 (𝑟), and 𝑅 is the stellar radius. Note, in order to describe
the full perturbative behaviour one would need to evaluate the sum
over all modes, 𝛿𝜌(𝑟, 𝜃, 𝜙) = ∑∞

𝑙=0
∑𝑙

𝑚=−𝑙 𝛿𝜌𝑙𝑚 (𝑟)𝑌𝑙𝑚 (𝜃, 𝜙), where
𝑌𝑙𝑚 (𝜃, 𝜙) are the usual spherical harmonics. However, since we are
considering the quadrupole moment, 𝑄22, which is the dominant
multipole in gravitational-wave emission, it is sufficient for the ana-

lysis to focus on the (𝑙, 𝑚) = (2, 2) mode. For this reason, we will
drop the mode subscript on our perturbation variables.1
In addition to the quadrupole moment, we will quote our results

using the fiducial ellipticity (Owen 2005),

𝜖 =

√︂
8π
15
𝑄22
𝐼𝑧𝑧

, (2)

where 𝐼𝑧𝑧 is the principal stellar moment of inertia, which we take to
have the fiducial value of 𝐼𝑧𝑧 = 1045 g cm2.2 We do this to facilitate
comparisons with observational papers.
In this paper, we restrict ourselves to Newtonian gravity. Because

of this, it is inappropriate to consider realistic equations of state and
we assume a simple polytropic equation of state (Section 5).
We consider perturbations of a non-rotating, fluid star with mass

density 𝜌, isotropic pressure 𝑝 and gravitational potentialΦ. A baro-
tropic fluid configuration, with velocity 𝑣𝑖 , is a solution (𝜌, 𝑝, 𝑣𝑖) to
the following equations:

𝜕𝑡 𝜌 + ∇𝑖 (𝜌𝑣𝑖) = 0, (3)

𝜌(𝜕𝑡 + 𝑣 𝑗∇ 𝑗 )𝑣𝑖 = −∇𝑖 𝑝 − 𝜌∇𝑖Φ, (4)
𝑝 = 𝑝(𝜌) (5)

and the gravitational potential is provided by Poisson’s equation,

∇2Φ = 4π𝐺𝜌. (6)

Since the star is in equilibrium, the time derivatives vanish and,
because it is static, we set 𝑣𝑖 = 0 – which means the continuity
equation (3) is trivially satisfied.
To capture how the fluid elements move due to an induced per-

turbation, we introduce the Lagrangian displacement vector, 𝜉𝑖 . This
is related to the Lagrangian perturbation of the velocity (Friedman
& Schutz 1978),

Δ𝑣𝑖 = 𝜕𝑡 𝜉
𝑖 . (7)

The equations which govern the perturbations in a fluid are obtained
by considering variations of equations (3)–(6). For a static back-
ground, 𝛿𝑣𝑖 = Δ𝑣𝑖 = 𝜕𝑡 𝜉

𝑖 and we have

𝛿𝜌 + ∇𝑖 (𝜌𝜉𝑖) = 0, (8)

𝜌𝜕2𝑡 𝜉𝑖 = −∇𝑖𝛿𝑝 − 𝛿𝜌∇𝑖Φ − 𝜌∇𝑖𝛿Φ, (9)

𝛿𝑝 = 𝑐2s 𝛿𝜌 (10)

and

∇2𝛿Φ = 4π𝐺𝛿𝜌, (11)

where 𝑐2s ≡ 𝑑𝑝/𝑑𝜌 is the squared sound speed. Since we focus on
static perturbations, we amend the perturbed Euler equation (9) by

0 = −∇𝑖𝛿𝑝 − 𝛿𝜌∇𝑖Φ − 𝜌∇𝑖𝛿Φ + 𝑓𝑖 , (12)

where 𝑓𝑖 is the density of a forcewhich sustains the perturbations. The
inclusion of this force enables us to produce non-spherical models
and will prove to be an important component of our analysis, since
it enables one to satisfy all the boundary conditions of the problem.
We note that 𝑓𝑖 does not correspond to a physical force acting on
the star. This force is a proxy for the (possibly quite complicated)
formation history that results in its non-spherical shape. To study

1 One should note that, although we restrict ourselves to the (𝑙, 𝑚) = (2, 2)
mode, other modes will contribute to the total strain, pushing the crustal
lattice closer to the breaking strain, while not adding to the quadrupole.
2 The fiducial principal moment of inertia can be different to the star’s actual
principal moment of inertia by a factor of a few.
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Modelling neutron star mountains 3

neutron stars with an elastic crust, we must modify (12) to include
the shear stresses,

0 = −∇𝑖𝛿𝑝 − 𝛿𝜌∇𝑖Φ − 𝜌∇𝑖𝛿Φ + ∇ 𝑗 𝑡𝑖 𝑗 + 𝑓𝑖 , (13)

where 𝑡𝑖 𝑗 is the shear-stress tensor, assumed to enter at the perturbat-
ive level. Here, we have used the same sign for the shear-stress tensor
as in Ushomirsky et al. (2000).
As we discuss in detail in Section 4.3, in order to connect the

elastic crust of the star with the fluid regions, one needs to consider
the traction vector. This must be continuous throughout the star.
We turn our attention to past work on estimating the maximum

mountain, which we now summarise. We do this to critique some
of the assumptions made and set the stage for our new calculation.
A convenient simplification that this body of work makes is to not
(explicitly) consider the perturbing force. This is the main conceptual
difference in our approach.We show how the force enters the problem
in Section 3 and demonstrate that the formulation is consistent.

2.1 Ushomirsky, Cutler & Bildsten

The first (and perhaps most well known) maximum-mountain calcu-
lation was performed by Ushomirsky et al. (2000). They tackled the
problem in Newtonian gravity and adopted the Cowling approxim-
ation – neglecting perturbations of the star’s gravitational potential,
𝛿Φ = 0. The Cowling approximation means one can ignore perturb-
ations in the fluid regions of the star, since the absence of shear
stresses means there is no support for the pressure perturbations by
the fluid [see (12) with 𝑓𝑖 = 0]. Therefore, only perturbations in the
crust contribute to the quadrupole moment.
As is the current standard approach, Ushomirsky et al. (2000)

assumed that the crust manifests itself only at the perturbative level
and, therefore, does not affect the equilibrium structure. From the
perturbed Euler equation for an elastic solid [(13) with 𝑓𝑖 = 0],
they obtained an integral expression for the quadrupole moment of
the star which depends on the shear stresses in the crust. In order
to find an expression for these stresses, they conjectured that a star
will attain its maximum quadrupole deformation when the crust is
strained everywhere to the breaking point. To define the elastic yield
limit, Ushomirsky et al. (2000) used the von Mises criterion and
further assumed that all the strain is in the (𝑙, 𝑚) = (2, 2) multipole.
Thus, they analytically obtained the strain tensor which corresponds
to the star being maximally strained.
For a star with mass 𝑀 = 1.4𝑀� and radius 𝑅 = 10 km,

Ushomirsky et al. (2000) reported a maximum quadrupole moment
of

𝑄max22 ≈ 1.2 × 1039
(
𝜎̄max
10−1

)
g cm2, (14)

where 𝜎̄max is the breaking strain of the crust, which we take to
have the canonical value, 𝜎̄max = 10−1 (Horowitz & Kadau 2009).
In terms of the fiducial ellipticity, this result corresponds to 𝜖max ≈
1.6 × 10−6 (𝜎̄max/10−1).
This approach, while elegant, does not enforce the continuity of

the traction vector at the boundaries of the crust. At the base of the
crust, there is a transition between the fluid core and the elastic crust.
At the top, there is a transition between the elastic region and the
fluid ocean. At these interfaces, there is expected to be a first-order
phase transition where the crust sharply obtains a non-zero shear
modulus. Since the fluid has a vanishing shear modulus, the traction
can only be continuous if the appropriate strain components go to
zero at these boundaries. However, due to the fact that Ushomirsky
et al. (2000) demanded that the crust be maximally strained at every

point, the strain components have finite values at the interfaces and,
therefore, one cannot ensure continuity of the traction.
In defence of the Ushomirsky et al. (2000) approach, one might

argue that the shear modulus may be assumed to smoothly go to
zero at the phase transitions. However, this is still problematic. As
we show in Section 4.3, such an assumption means that one does not
have enough equations to uniquely determine the displacement, in the
case where one does not know the strain. Amore realistic assumption
might be to take almost the entire crust to be at breaking strain, with
the exception of an infinitesimally small region at the boundaries
where the displacement is adjusted to satisfy the continuity of the
traction.
Ultimately, the estimate (14) may give us an idea of the likely

maximummountain, but the calculation is not completely consistent.

2.2 Haskell, Jones & Andersson

Haskell et al. (2006) set out to relax some of the assumptions made
by Ushomirsky et al. (2000). This included dropping the Cowling ap-
proximation and ensuring the traction is continuous at the appropriate
boundaries. They also noted that, by insisting the star is strained to
the maximum throughout the crust, one loses the freedom to impose
the boundary conditions of the problem.
Haskell et al. (2006) derived a system of coupled ordinary differ-

ential equations which describe the perturbations in the elastic crust
and the fluid core relative to a spherically symmetric background star.
They numerically integrated the perturbation equations and fixed the
perturbation amplitude to the maximum necessary to begin to break
the crust at a point, according the von Mises criterion. In their study,
Haskell et al. (2006) obtained the largest mountain when they as-
sumed the core to be unperturbed, thus, allowing them to use a fully
relativistic core combined with Newtonian perturbations in the crust.
They reported a maximum quadrupole for a star with 𝑀 = 1.4𝑀� ,
𝑅 = 10 km of

𝑄max22 ≈ 3.1 × 1040
(
𝜎̄max
10−1

)
g cm2, (15)

which corresponds to an ellipticity of 𝜖max ≈
4.0 × 10−5 (𝜎̄max/10−1). This result is approximately an or-
der of magnitude above that of Ushomirsky et al. (2000).
The calculation ofHaskell et al. (2006) correctly treated the bound-

ary condition at the crust-core interface by demanding that the trac-
tion was continuous. However, their calculation assumed the relaxed
shape – the strain is taken with respect to – to be spherical. In gen-
eral, the relaxed shape must be non-spherical, to give an equilibrium
solution with a non-zero mountain. They did however stipulate that
the surface shape of the star was deformed in an (𝑙, 𝑚) = (2, 2) way.
This effectively meant using an outer boundary condition where a
traction-like force (i.e., a force per unit area) acts at the very surface
of the star. Because of this, the maximum quadrupoles calculated in
this framework turn out to be insensitive to the shear modulus of the
crust, as they are sustained by this applied surface force. The lack of
inclusion of a body force (i.e., a force per unit volume) in building
the mountain meant that their formalism did not have the necessary
freedom to ensure that the perturbed potential in the interior matches
to the exterior solution. We discuss this particular subtlety further in
Section 4.1.
By comparing with our new analysis we also note a number of

typographical errors in their elastic perturbation equations. These
errors turn out to have a surprisingly dramatic effect. Once they
are corrected the maximum quadrupole increases by three orders

MNRAS 000, 1–13 (2020)
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of magnitude, in sharp contrast with other estimates. This, in turn,
highlights the conceptual problem with the formulation.

2.3 Johnson-McDaniel & Owen

Themost recent estimates for the largest possible mountain on a neut-
ron star were provided by Johnson-McDaniel & Owen (2013). They
generalised the Ushomirsky et al. (2000) argument to relativistic
gravity while relaxing the Cowling approximation. They evaluated
the required integral by employing a Green’s function. For a 1.4𝑀�
star, described by the SLy equation of state (Douchin & Haensel
2001), they obtained the result,

𝑄max22 ≈ 2 × 1039
(
𝜎̄max
10−1

)
g cm2, (16)

corresponding to 𝜖max ≈ 3 × 10−6 (𝜎̄max/10−1).
In following the Ushomirsky et al. (2000) approach, the crust was

taken to be strained to the maximum at every point, which means
that the traction vector cannot be continuous at the crust boundaries.
Furthermore, they do not use the correct expression for the perturbed
stress-energy tensor, since it does not include variations of the four-
velocity. This may be a minor detail, but it should still be noted.
In summary, although some of the above points may have a negli-

gible impact on the maximum quadrupole estimates, there are issues
with all previous studies of the maximum-mountain problem.

3 BUILDING MOUNTAINS

In this section, we examine what must go into a consistent moun-
tain calculation and discuss two methods for modelling mountains
on neutron stars. The first approach, introduced in Ushomirsky et al.
(2000), involves specifying the strain field associated with the moun-
tain. We present a second method which, instead of starting with
the strain, starts with a description of the perturbing force. Both
approaches are valid and we demonstrate how they are equivalent.
To help develop intuition, we will start by briefly discussing the

case of strains built up in a spinning down star. We will therefore be
considering the case of (𝑙, 𝑚) = (2, 0) perturbations relevant for rota-
tional deformations, not the (𝑙, 𝑚) = (2, 2) relevant to the mountain
case. Suppose a young neutron star with a molten crust spins at an
angular frequency,Ω. At this rotation rate, the star cools and the crust
solidifies. The star then begins to spin down to frequency, Ω̃ < Ω.3
Because the star has spun down, it changes shape according to the
difference in the centrifugal force, ∝ (Ω2− Ω̃2). This builds up strain
in the crust as the shear stresses resist the change in shape. Should the
star spin down sufficiently, the crust may fracture as stresses get too
large. In fact, it has been suggested that the elastic yield of the crust in
this process may be associated with the glitch phenomenon observed
in some rotating pulsars (Baym & Pines 1971; Keer & Jones 2015).
Motivated by this example, which does not represent a neutron

star mountain, we consider neutron star models forced away from
sphericity by a perturbing force 𝑓𝑖 , which we will choose to give
mountain-like (𝑙, 𝑚) = (2, 2) perturbations. The elastic Euler equa-
tion (13) then becomes

0 = −∇𝑖 𝑝 − 𝜌∇𝑖Φ + ∇ 𝑗 𝑡𝑖 𝑗 + 𝑓𝑖 , (17)

We regard this equation as exact, and will consider perturbations of

3 This spin-down could be due to the usual radio emission that pulsars are
well known for.

it below. In the fluid regions of the star, which cannot support shear
stresses, the shear modulus goes to zero so the shear-stress tensor
vanishes. To condense the notation, we define

𝐻𝑖 ≡ ∇𝑖 𝑝 + 𝜌∇𝑖Φ, (18)

which captures the familiar equation of hydrostatic equilibriumwhen
𝐻𝑖 = 0. Therefore, the Euler equation (17) can be expressed as

𝐻𝑖 = 𝑓𝑖 + ∇ 𝑗 𝑡𝑖 𝑗 . (19)

By considering a variation of 𝐻𝑖 , we may write

𝛿𝐻𝑖 = ∇𝑖𝛿𝑝 + 𝛿𝜌∇𝑖Φ + 𝜌∇𝑖𝛿Φ, (20)

where the perturbed quantities will need to be carefully defined in
what follows.
We nowconsider a family of four closely-related, equilibrium stars,

illustrated in Fig. 1:

• Star S – A spherical, fluid star with (𝜌S, 𝑝S,ΦS):

𝐻S𝑖 = 0. (21)

• Star A – A force is applied to star S, which produces a non-
spherical, fluid star with (𝜌A, 𝑝A,ΦA):

𝐻A𝑖 = 𝑓𝑖 . (22)

• Star Ã – The crust of star A solidifies while the force is main-
tained. This gives rise to a non-spherical, relaxed star with the same
structure as star A, although (formally) with a non-zero shear mod-
ulus. The star has (𝜌Ã = 𝜌A, 𝑝Ã = 𝑝A,ΦÃ = ΦA):

𝐻Ã𝑖 = 𝐻A𝑖 = 𝑓𝑖 . (23)

Note that, because star A and star Ã have the same shape, in general,
we only need to refer to star A in the following discussion when
specifying the values of perturbed quantities.

• Star B – The force on star Ã is removed, which builds up strain
in the crust. The associated deformation between these two stars is
described by the Lagrangian displacement vector field, 𝜂𝑖 . The star
is non-spherical and strained with (𝜌B, 𝑝B,ΦB):

𝐻B𝑖 = ∇ 𝑗 𝑡𝑖 𝑗 (𝜂). (24)

Note that it is this star, star B, that we are ultimately interested in:
this is the star with a mountain supported in a self-consistent way by
elastic strains, with no external force acting.

Note that the force 𝑓𝑖 has a simple physical interpretation: it is the
force that, when applied to our equilibrium star with the mountain
(star B), takes us to the corresponding unstrained star (star A, or
equivalently Ã). Note, however, that there is no requirement whatso-
ever that, in the real world, this force ever acted upon our star. For
a realistic situation, the elastic strains that support the deformation
of star B will likely have evolved through some complex process of
plastic flow and cracking, possibly combined with whatever agent
causes the asymmetry to develop. The usefulness of 𝑓𝑖 is two-fold.
Firstly, it allows us to explicitly identify the unstrained configuration.
Secondly, the explicit introduction of the force into the Euler equa-
tion provides the necessary freedom to determine the displacement
vector and satisfy all the boundary conditions.
It is useful to consider the differences between the stellar models

described above. Thus, we introduce the notation,

𝛿𝐻AB𝑖 = 𝐻B𝑖 − 𝐻A𝑖 , (25)

i.e., 𝛿𝐻AB
𝑖
is the quantity that must be added to 𝐻A

𝑖
to obtain 𝐻B

𝑖
.

MNRAS 000, 1–13 (2020)
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S

A

B

Spherical

Non-spherical

Apply force

Remove applied force

Non-spherical, strained

ηi

Ã

Non-spherical, relaxed

Crust solidifies

Figure 1. A schematic illustration showing the configurations involved in
mountain calculations. Note that previous calculations have typically con-
sidered stars S and B, but not (explicitly) A or Ã.

The difference between star B (24) and star S (21) is

𝛿𝐻SB𝑖 = ∇ 𝑗 𝑡𝑖 𝑗 (𝜂). (26)

Expression (26) relates perturbations between the strained star –
with a mountain – and the spherical, reference star to the shear
stresses induced when the relaxed star is deformed according to
the displacement, 𝜂𝑖 . This is the standard picture for understanding
neutron star mountains and, indeed, it is this expression that is used to
estimate the maximum quadrupole in Ushomirsky et al. (2000) and
Johnson-McDaniel & Owen (2013). It is important to note that in
these calculations one does not have to determine the relaxed shape
and, indeed, stars A and Ã did not appear explicitly in previous
calculations. However, we demonstrate that the relaxed shape is, in
principle, calculable in Appendix A.
As we discuss in more detail below, for a fully consistent calcu-

lation that satisfies all the boundary conditions of the problem it is
not convenient to use (26) alone. Rather, we present an alternative
strategy which makes explicit use of the deforming force. To this end,
we introduce two additional stars shown in Fig. 2:

• Star S̃ – The crust of star S solidifies. This star has the same
shape as star S with a non-zero shear modulus and (𝜌S̃ = 𝜌S, 𝑝S̃ =

𝑝S,ΦS̃ = ΦS):

𝐻S̃𝑖 = 𝐻S𝑖 = 0. (27)

• Star C – A force is applied to star S̃. This induces stress in the
crust, described by the Lagrangian displacement, 𝜉𝑖 , and produces a
non-spherical, strained star with (𝜌C, 𝑝C,ΦC):

𝐻C𝑖 = 𝑓𝑖 + ∇ 𝑗 𝑡𝑖 𝑗 (𝜉). (28)

We can then consider the difference between stars A and C. By
using (22) and (28), we obtain

𝛿𝐻AC𝑖 = ∇ 𝑗 𝑡𝑖 𝑗 (𝜉). (29)

We can note the similarity of (29) to (26). Indeed, comparing
Figs. 1 and 2, we note the following. In Fig. 1, the addition of force

S

Spherical

Apply force

Apply force

ξi

S̃

Spherical, relaxed

A

Non-spherical

C

Non-spherical, strained

Subtract star A from star C

Figure 2. A schematic illustration showing the configurations in the force-
based mountain scheme.

𝑓𝑖 maps star B to star A, generating a displacement −𝜂𝑖 , while in
Fig. 2, the addition of the force 𝑓𝑖 maps star S̃ to star C, generating a
displacement field 𝜉𝑖 . It follows that, to a good approximation, these
vector fields are related by

𝜂𝑖 = −𝜉𝑖 . (30)

Comparing (29) to (26) then gives the corresponding relation between
the associated scalar perturbations,

𝛿𝐻SB𝑖 = −𝛿𝐻AC𝑖 . (31)

These relations are not exact, as in Fig. 1 the force 𝑓𝑖 acts upon star
B, while in Fig. 2 it acts upon star S̃, but these two stars themselves
differ from one another only in a perturbative way, so the difference
in the action of 𝑓𝑖 on the two must be of second order.
This immediately suggests a strategy for computing the deform-

ation of star B (i.e., 𝛿𝐻SB
𝑖
and other perturbed quantities). We can

easily compute the perturbations linking S and A (i.e., 𝛿𝐻SA
𝑖
etc.), as

this is just the perturbation of a spherical fluid star by the force 𝑓𝑖 . We
can, with only a little more effort, compute the perturbations linking
star S̃ and C (i.e., 𝛿𝐻SC

𝑖
etc.), as this is just the perturbation of a

spherical elastic star by 𝑓𝑖 . Then, we can take the difference between
these two configurations to give the difference between star A and C
(i.e., 𝛿𝐻AC

𝑖
etc.), which is, up to an overall sign, the deformation of

star B relative to star S that we require, as per (31).
As we are interested in computing maximum mountains, we will

choose the force 𝑓𝑖 such that the breaking strain is reached at some
point in the crust of star C. Note, however, that in this force-based
approach, we will not be able to follow Ushomirsky et al. (2000)
and find the solution where the strain is reached at all points (sim-
ultaneously) in the crust. This is a price one pays in adopting the
force-based approach. We have, however, reduced the calculation
of the mountain to two simpler calculations, both taking place on
a spherical background and with readily implementable boundary
conditions. We now go on to consider these calculations in detail.

4 PERTURBATION FORMALISM

In order to develop the second strategy in detail, we take the back-
ground star to be non-rotating and the perturbations to be static. Our
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star is separated into three layers: a fluid core, an elastic crust and a
fluid ocean. We choose to include a fluid layer outside the crust since
at low densities the crustal lattice begins to melt and it also sim-
plifies the matching to the exterior gravitational potential (Gittins,
Andersson & Pereira 2020). The crust only comes into the structure
equations at the perturbative level.
From equations (3), (4) and (6), we obtain theNewtonian equations

of structure for a non-rotating, fluid star,

𝑚′ = 4π𝑟2𝜌, (32a)
𝑝′ = −𝜌Φ′ (32b)

and

Φ′ =
𝐺𝑚

𝑟2
, (32c)

where 𝑚(𝑟) is the mass enclosed in radius 𝑟. These equations are
closed by supplying an equation of state (5).

4.1 Fluid perturbations

In order to calculate the relaxed configuration (star A), we need to
introduce the force 𝑓𝑖 . For practical purposes, it is convenient to write
the force as the gradient of a potential, 𝜒,

𝑓𝑖 = −𝜌∇𝑖 𝜒. (33)

This is not the most general expression for the force but it allows us
to combine 𝜒 with the gravitational potential, which simplifies the
analysis. To make the notation more compact, we introduce the total
perturbed potential,𝑈 = 𝛿Φ + 𝜒.
At this point, we note that this is where our calculation differs

from previous work (Ushomirsky et al. 2000; Haskell et al. 2006;
Johnson-McDaniel & Owen 2013). Previous calculations set out to
evaluate the perturbed Euler equation (26) where the strain is taken
with respect to the relaxed shape the crust wants to have (see Fig. 1).
In our method, we start with the deforming force and evaluate (29),
using the subtraction scheme (taking the difference between stars C
and A) set out in Section 3. The use of this force is a subtle, but
important, detail since without it one does not have the necessary
freedom to impose all the boundary conditions of the problem. We
emphasise this point since this issue was somewhat confused in the
analysis of Haskell et al. (2006) who calculate perturbations of a
spherical star but do not explicitly consider the force which sources
them. It is for this reason that theywere unable to satisfy the boundary
condition on the potential at the surface. This point is elucidated
below.
Recall that, as we discussed earlier, we assume all perturbed quant-

ities to be expanded in spherical harmonics, but it will be sufficient
for our discussion to focus on the (𝑙, 𝑚) = (2, 2) mode. The system
of equations which describes fluid perturbations then simplifies to a
single second-order differential equation for the perturbed potential.
From the perturbed Poisson’s equation (11), we get

𝛿Φ′′ + 2
𝑟
𝛿Φ′ − 𝛽2

𝑟2
𝛿Φ = 4π𝐺𝛿𝜌, (34a)

where 𝛽 ≡
√︁
𝑙 (𝑙 + 1). The perturbed Euler equation (12) returns

𝛿𝜌 = − 𝜌

𝑐2s
𝑈. (34b)

Therefore, provided a description of the perturbing force, equa-
tions (34) give a second-order equation that describes the perturba-
tions in the fluid.
The perturbed potential must satisfy two boundary conditions. At

the centre of the star the solution must be regular and at the surface it
must match to the external solution. Therefore, in addition to 𝜒 being
regular at the centre of the star and continuous at all interfaces, we
must have

𝛿Φ(0) = 0 (35a)

and

𝑅𝛿Φ′(𝑅) = −(𝑙 + 1)𝛿Φ(𝑅). (35b)

From regularity, we obtain an initial condition by expanding (34) in
small 𝑟,

𝛿Φ(𝑟) = 𝑎0𝑟𝑙 [1 + O(𝑟2)], (36)

where 𝑎0 is a constant which parametrises the amplitude of the per-
turbations. In the case when 𝜒 = 0 and there is no driving force,
this initial condition provides sufficient information to calculate the
perturbations up to the surface. At the surface, however, there is no
freedom left to impose the surface boundary condition (35b) – except
in the special case of 𝑎0 = 0where there are no perturbations. [This is
the issue that the formalism of Haskell et al. (2006) suffers from, and
why in that analysis a surface force had to be effectively introduced
via a boundary condition.] This serves as a simple demonstration of
the fact that an unforced, fluid equilibrium is a spherical star. Equa-
tions (34) with the boundary conditions (35) provide the necessary
information to calculate perturbations in the fluid regions of the star
sourced by a perturbing force.

4.2 The crust

In order to calculate the strained star (star C) in our scheme outlined
in Section 3 (Fig. 2), wemust consider the role of the elastic crust.We
reiterate that we consider perturbations with respect to a spherical,
reference star.
The elastic material is characterised by the shear-stress tensor,

𝑡𝑖 𝑗 = 𝜇

(
∇𝑖𝜉 𝑗 + ∇ 𝑗𝜉𝑖 −

2
3
𝑔𝑖 𝑗∇𝑘𝜉

𝑘

)
, (37)

where 𝜇 is the shear modulus of the crust and 𝑔𝑖 𝑗 is the flat three-
metric. Note that we also have

𝑡𝑖 𝑗 = 2𝜇𝜎𝑖 𝑗 , (38)

where 𝜎𝑖 𝑗 is the stress tensor. [This is a factor of two different to
the expressions in Ushomirsky et al. (2000) and Haskell et al. (2006)
but the same as used in Johnson-McDaniel & Owen (2013).] We
use the static displacement vector appropriate for polar perturbations
(Ushomirsky et al. 2000),

𝜉𝑖 = 𝜉𝑟 (𝑟)∇𝑖𝑟𝑌𝑙𝑚 + 𝑟

𝛽
𝜉⊥ (𝑟)∇𝑖𝑌𝑙𝑚. (39)

To make the application of the boundary conditions straightfor-
ward, we consider the perturbed traction vector, which may be iden-
tified from the perturbed Euler equation (13),

𝑇 𝑖 = (𝛿𝑝𝑔𝑖 𝑗 − 𝑡𝑖 𝑗 )∇ 𝑗𝑟

= [𝛿𝑝(𝑟) − 𝑇1 (𝑟)]∇𝑖𝑟𝑌𝑙𝑚 − 𝑟𝑇2 (𝑟)∇𝑖𝑌𝑙𝑚,
(40)

where we have defined the following two variables related to the
radial and tangential components of the traction:

𝑇1 (𝑟)𝑌𝑙𝑚 ≡ 𝑡𝑟𝑟 =
2𝜇
3𝑟

(−2𝜉𝑟 + 𝛽𝜉⊥ + 2𝑟𝜉 ′𝑟 )𝑌𝑙𝑚 (41a)

and

𝑇2 (𝑟)∇𝜃𝑌𝑙𝑚 ≡ 𝑡𝑟 𝜃

𝑟
=
𝜇

𝛽𝑟
(𝛽𝜉𝑟 − 𝜉⊥ + 𝑟𝜉 ′⊥)∇𝜃𝑌𝑙𝑚. (41b)
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From the perturbed continuity equation (8), we then obtain

𝛿𝜌 = −𝜌𝜉 ′𝑟 −
(
2𝜌
𝑟

+ 𝜌′
)
𝜉𝑟 +

𝛽𝜌

𝑟
𝜉⊥

= −
(
3𝜌
𝑟

+ 𝜌′
)
𝜉𝑟 +

3𝛽𝜌
2𝑟

𝜉⊥ − 3𝜌
4𝜇
𝑇1.

(42)

From the definitions of the traction variables (41), we have the fol-
lowing differential equationswhich describe the displacement vector:

𝜉 ′𝑟 =
1
𝑟
𝜉𝑟 −

𝛽

2𝑟
𝜉⊥ + 3

4𝜇
𝑇1 (43a)

and

𝜉 ′⊥ = − 𝛽
𝑟
𝜉𝑟 +

1
𝑟
𝜉⊥ + 𝛽

𝜇
𝑇2. (43b)

From the radial part of the perturbed Euler equation (13) combined
with the perturbed continuity equation (42),(
1+3𝑐

2
s 𝜌

4𝜇

)
𝑇 ′
1 = 𝜌𝑈

′

−
[
(𝑐2s )′(3𝜌 + 𝑟𝜌′) + 𝑐2s

(
3𝛽2𝜌
2𝑟

+ 𝜌′ − 𝑟𝜌′2

𝜌
+ 𝑟𝜌′′

)]
1
𝑟
𝜉𝑟

+
[
(𝑐2s )′3𝜌 + 𝑐2s

(
3𝜌
𝑟

+ 𝜌′
)]

𝛽

2𝑟
𝜉⊥

−
[
3
𝑟
+ (𝑐2s )′

3𝜌
4𝜇

+ 𝑐2s
(
3𝜌
𝑟

− 𝜌𝜇′

𝜇
+ 𝜌′

)
3
4𝜇

]
𝑇1

+
(
1 + 3𝑐

2
s 𝜌

2𝜇

)
𝛽2

𝑟
𝑇2.

(43c)

Then, from the tangential piece of (13) we find

𝑇 ′
2 =

𝜌

𝑟
𝑈−𝑐2s (3𝜌 + 𝑟𝜌′)

1
𝑟2
𝜉𝑟

+
[
3𝑐2s 𝜌
2

+
(
1 − 2

𝛽2

)
𝜇

]
𝛽

𝑟2
𝜉⊥

+
(
1
2
− 3𝑐

2
s 𝜌

4𝜇

)
1
𝑟
𝑇1 −

3
𝑟
𝑇2.

(43d)

We also have the perturbed Poisson’s equation (34a), which combines
with the perturbed continuity equation (42) to give

𝛿Φ′′ + 2
𝑟
𝛿Φ′ − 𝛽2

𝑟2
𝛿Φ = −4π𝐺

(
3𝜌
𝑟

+ 𝜌′
)
𝜉𝑟

+6π𝐺 𝛽𝜌
𝑟
𝜉⊥ − 3π𝐺 𝜌

𝜇
𝑇1.

(43e)

Equations (43) form a coupled system of ordinary differential equa-
tions to describe the perturbations in the elastic material. We have
compared our perturbation equationswith that ofHaskell et al. (2006)
(in the limit of 𝜒 = 0) and noted several discrepancies. We find
that these mistakes increase the maximum quadrupole estimates of
Haskell et al. (2006) by three orders of magnitude.

4.3 Interface conditions

At this point, we address the boundary conditions at the fluid-elastic
interfaces since wewish to connect perturbations in the fluid core and
ocean with the elastic crust. Provided the density is smooth (which
we assume), the perturbed potential, 𝛿Φ, and its derivative, 𝛿Φ′,
must be continuous at an interface. To see how the other perturbed

quantities behave at an interface, we must consider the perturbed
traction (40).
This admits two quantities which must be continuous: the radial

and tangential components. Since the shear modulus vanishes in the
fluid, continuity of the radial traction, (𝛿𝑝−𝑇1), provides an algebraic
relation which must hold true at an interface,

𝜌𝑈F =

(
1 + 3𝑐

2
s 𝜌

4𝜇

)
𝑇1E

+ 𝑐2s
[(
3𝜌
𝑟

+ 𝜌′
)
𝜉𝑟E −

3𝛽𝜌
2𝑟

𝜉⊥E

]
,

(44)

where the subscripts F and E denote the fluid and elastic sides of the
interface, respectively. We note that the radial displacement, 𝜉𝑟 must
be continuous at a boundary, however, this does not necessarily have
to be the case for the tangential piece, 𝜉⊥. From the tangential part
of the traction, we have 𝑇2 = 0 at a fluid-elastic interface.
In reference to the maximally strained approach of Ushomirsky

et al. (2000) and Johnson-McDaniel & Owen (2013), we note that, if
one assumes the shearmodulus smoothly goes to zero at a fluid-elastic
interface, then the tangential traction condition is trivially satisfied
[see (41b)]. This would effectively result in the displacement vector
in the crust being arbitrary since there are not enough boundary
conditions to constrain it. It is not clear how to resolve this issue.
In the fluid regions of the star, the perturbations are governed by

equations (34) and so are described by the variables, (𝛿Φ′, 𝛿Φ). In
the crust, we have a more complex structure with equations (43) and
quantities, (𝛿Φ′, 𝛿Φ, 𝜉𝑟 , 𝜉⊥, 𝑇1, 𝑇2). We assume the force is known.
The perturbations in the elastic crust present a boundary-value prob-
lem. For the six variables, we have six boundary conditions: continu-
ity of 𝛿Φ′ and 𝛿Φ at the core-crust transition and the two traction
conditions – (44) and 𝑇2 = 0 – at both interfaces. Therefore, the
problem is well posed.
Additionally, it is straightforward to show that the boundary con-

dition on the Lagrangian variation of the pressure, Δ𝑝(𝑅) = 0, is
trivially satisfied by the background structure.

5 THE DEFORMING FORCE

The formalism we detail above requires a description of the deform-
ing forcewhich causes the star to have a non-spherical shape. Because
of the abstract nature of this force, it is difficult to prescribe without
a detailed evolutionary calculation of the history of the star. As a
proof-of-principle calculation, we examine three example sources.
We use a polytropic equation of state,

𝑝(𝜌) = 𝐾𝜌1+1/𝑛, (45)

where 𝐾 is a constant of proportionality and 𝑛 is the polytropic
constant. We work with 𝑛 = 1 and generate background models with
𝑀 = 1.4𝑀� , 𝑅 = 10 km. For the shear-modulus profile in the crust,
we consider a simple linear model (Haskell et al. 2006),

𝜇(𝜌) = 𝜅𝜌, (46)

where 𝜅 = 1016 cm2 s−2. We assume the core-crust transition to
occur at 𝜌base = 2 × 1014 g cm−3 [which is the same as Ushomirsky
et al. (2000)], while the crust-ocean transition is at 𝜌top = 106 g cm−3

(Gittins et al. 2020).
We consider three sources for the perturbations: (i) a potential

which satisfies Laplace’s equation, (ii) a potential which satisfies
Laplace’s equation but does not act in the core and (iii) a thermal
pressure perturbation. For each prescription, we generate two stars –
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a relaxed star, which experiences purely fluid perturbations (star A in
Fig. 2), and a strained star, which experiences elastic perturbations in
the crust (starC in Fig. 2).Wenormalise the perturbations by ensuring
the strained star reaches breaking strain at a point in the crust, subject
to the von Mises criterion, and that the relaxed star experiences the
same force. This allows us to work out the quadrupole moment of
each star. Our results for the three sources are summarised in Table 1.
To solve the coupled sets of ordinary differential equations (34)

and (43), we used an explicit fifth-order Runge-Kutta method im-
plemented in the solve_ivp function from the scipy library. The
structure in the fluid core may be straightforwardly calculated using
equations (34) with boundary condition (35a). The crust presents a
boundary-value problem with the interface conditions described in
Section 4.3. There are a variety of numerical techniques to solve
such problems. Due to the linearity of the system (43), we used
the linearly independent scheme described in Appendix B of Gittins
et al. (2020). With the perturbations in the crust, one can integrate
equations (34) through the fluid ocean to the surface. At this point,
one can verify that the boundary condition at the surface (35b) is
automatically satisfied.

5.1 A solution of Laplace’s equation

The first example we consider is based on the form of the deforming
potential for tidal deformations [see, e.g., Andersson & Pnigouras
(2020)]. The source potential is taken to be a solution of Laplace’s
equation,

∇2𝜒 = 0. (47)

This example is particularly convenient since the perturbed Poisson’s
equation (11) is simply modified by 𝛿Φ → 𝑈. Therefore, we may
write

∇2𝑈 = 4π𝐺𝛿𝜌. (48)

The total perturbed potential must be regular at the origin,𝑈 (0) = 0.
By using the definition of the multipole moment (1) with the

perturbed Poisson’s equation (34a), one can show through integration
by parts,

𝑄𝑙𝑚 = − (2𝑙 + 1)𝑅𝑙+1
4π𝐺

𝛿Φ(𝑅), (49)

where the boundary conditions (35) have been used for simplification.
This result, perhaps more familiar in relativistic calculations, shows
that one can obtain the multipole moments from the variations of the
potential at the surface. One can also write the multipole in terms of
the total perturbed potential,

𝑄𝑙𝑚 =
𝑅𝑙+1

4π𝐺
[𝑅𝑈 ′(𝑅) − 𝑙𝑈 (𝑅)] . (50)

The advantage of writing the multipole in this way is that one does
not need to disentangle the two potentials (𝜒 and 𝛿Φ) from𝑈.
The source potential must be regular at the centre and so it must

be of the form,

𝜒(𝑟) = 𝐴𝑟𝑙 , (51)

where 𝐴 is a constant. Its value will be chosen to ensure the star is
maximally strained at some point in the crust. The source potential
at the surface is given by

𝜒(𝑅) = 1
2𝑙 + 1 [𝑅𝑈

′(𝑅) + (𝑙 + 1)𝑈 (𝑅)] . (52)

It is this quantity that we use to ensure that the relaxed and strained
stars experience the same force.

To make sure the star is maximally strained we calculate the von
Mises strain, 𝜎̄. The von Mises strain is defined using the strain
tensor,

𝜎̄2 ≡ 1
2
𝜎𝑖 𝑗𝜎

𝑖 𝑗 . (53)

The von Mises criterion states that an elastic material will reach its
yield limit when 𝜎̄ ≥ 𝜎̄max. For (𝑙, 𝑚) = (2, 2) perturbations, we
have

𝜎̄2 =
5
256π

{
6 sin2 𝜃

[
3 sin2 𝜃 cos2 2𝜙

(
𝑇1
𝜇

)2
+4(3 + cos 2𝜃 − 2 sin2 𝜃 cos 4𝜙)

(
𝑇2
𝜇

)2 ]
+(35 + 28 cos 2𝜃 + cos 4𝜃 + 8 sin4 𝜃 cos 4𝜙)

(
𝜉⊥
𝑟

)2 }
.

(54)

Since the von Mises strain is a function of position, we can identify
where the strain is highest (and, thus, the crust will break first) and
take that point to be at breaking strain, which we assume to be
𝜎̄max = 10−1 (Horowitz & Kadau 2009).
Thus, for the strained star (star C) we integrate equations (34)

for the core and ocean and integrate equations (43) in the elastic
crust. The relaxed star (star A) is generated using equations (34) for
the entire star. The perturbations are normalised by ensuring that
the point in the crust where the strain is highest reaches breaking
strain, according to (54). The force associated with this deformation
(52) is then taken to be the same for the relaxed star. Figs. 3 and
4 show the results for the strained star. In Fig. 3 we show how
the perturbed traction is continuous at the fluid-elastic interfaces.
We note that Fig. 4 shows how the dominant contribution to the
von Mises strain comes from the radial traction component. This
is also true for the other forces we consider. It is at the top of the
crust that the star is the weakest in the (𝑙, 𝑚) = (2, 2) mode. The
quadrupoles are calculated using (50). The relaxed star attains a
quadrupole of |𝑄relaxed22 | = 2.4 × 1043 g cm2, which corresponds to
an ellipticity of |𝜖 relaxed | = 3.1 × 10−2. The difference between the
strained and relaxed star is |𝑄strained22 −𝑄relaxed22 | = 1.7 × 1037 g cm2,
|𝜖strained − 𝜖 relaxed | = 2.2 × 10−8.
The very different sizes of |𝜖 relaxed | and |𝜖strained − 𝜖 relaxed | re-

ported in Table 1 have a natural interpretation. The large ellipticity
represented by |𝜖 relaxed | corresponds to a star whose deformation
is supported by the external force 𝑓𝑖 , with a size limited only by
the crustal breaking strain. In this case, the (non-zero) shear modu-
lus of the crust plays little role. [It is this sort of configuration that
was effectively considered in Haskell et al. (2006), where in that
case the force that was implicitly introduced was a force per unit
area, applied at the surface.] In contrast, the ellipticity represented
by |𝜖strained − 𝜖 relaxed | is that supported by the shear strains of the
crust when the external force is removed, and therefore is sensitive
to the crust’s shear modulus. As is readily captured by simple back-
of-the-envelope estimates, the relative sizes of these two ellipticities
are related to the fact that the gravitational binding energy of the star
is orders of magnitude larger than the Coulomb binding energy of
the crustal lattice [see, e.g., Jones (2002)].
We observe that the ellipticity |𝜖strained − 𝜖 relaxed | = 2.2 × 10−8 is

notably smaller than what has been found in previous work [equa-
tions (14)–(16)]. This is not surprising, as these previous studies
considered strain fields that were maximal everywhere, as opposed
to at a single point. With a view to producing larger ellipticities, we
will therefore consider some different choices of external force field.

MNRAS 000, 1–13 (2020)
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Table 1. The maximum quadrupoles and ellipticities from the different models. For each case, we show the quadrupole,𝑄relaxed22 , and ellipticity, 𝜖 relaxed, for the
relaxed star and the difference relative to the strained star with quadrupole 𝑄strained22 and ellipticity 𝜖 strained.

Source |𝑄relaxed22 | / g cm2 |𝜖 relaxed | |𝑄strained22 −𝑄relaxed22 | / g cm2 |𝜖 strained − 𝜖 relaxed |
Solution of Laplace’s equation 2.4 × 1043 3.1 × 10−2 1.7 × 1037 2.2 × 10−8
Solution of Laplace’s equation (outside core) 1.4 × 1041 1.8 × 10−4 4.4 × 1038 5.7 × 10−7
Thermal pressure perturbation 9.2 × 1038 1.2 × 10−6 4.0 × 1038 5.2 × 10−7
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Figure 3. The radial (left panel) and tangential (right panel) components of the perturbed traction as functions of radius for the potential solution to Laplace’s
equation. The vertical red dashed lines in the left panel indicate the base and the top of the crust. Regarding the horizontal range in the right panel, recall that 𝑇2
only has a finite value in the crust.
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5.2 A solution of Laplace’s equation outside the core

We consider a special case of the above source: a source potential
that does not act in the core – instead, it only manifests itself in the
crust and ocean. The motivation for considering this special case
is regularity at the centre will not be a necessary condition on the
source potential since it does not exist at the origin. Also, we note
that Haskell et al. (2006) found that a similar example produced their
largest quadrupole moment. We then have the general solution to

Laplace’s equation (47),

𝜒(𝑟) = 𝐴𝑟𝑙 + 𝐵/𝑟𝑙+1, (55)

where 𝐵 is another constant. This expression is taken to be true for
the base of the crust and above.
As this model is somewhat artificial, we have to make a number of

assumptions with regards to its prescription. We take the core to be
unperturbed and have 𝛿Φ = 𝜉𝑟 = 0 in the core. With the introduction
of the source potential in the crust, there will be a discontinuity
in 𝑈 at the core-crust interface. However, we insist that 𝛿Φ must
be continuous. This discontinuity is relevant for the radial traction
condition (44) where 𝑈F = 0, but has a finite value in the crust due
to the source potential.
The quadrupole may be calculated from (49). The matching with

the total perturbed potential needs to be adjusted to take into account
the additional 1/𝑟𝑙+1 term from the external field. Therefore, we have

𝑄𝑙𝑚 =
𝑅𝑙+1

4π𝐺
[𝑅𝑈 ′(𝑅) − 𝑙𝑈 (𝑅)] + 2𝑙 + 1

4π𝐺
𝐵. (56)

As in the previous case, we generate a relaxed star and amaximally
strained star. One must vary either 𝐴 or 𝐵 to ensure the surface
boundary condition (35b) is satisfied. We normalise the relaxed star
so that it experiences the same source potential (55). The results for
this case are shown in Figs. 5 and 6. As in the above example, the 𝑇1
component dominates the vonMises strain and the crust breaks at the
top. We find |𝑄relaxed22 | = 1.4 × 1041 g cm2, |𝜖 relaxed | = 1.8 × 10−4

and |𝑄strained22 − 𝑄relaxed22 | = 4.4 × 1038 g cm2, |𝜖strained − 𝜖 relaxed | =
5.7 × 10−7.
Compared to the previous result, the quadrupole difference

between the relaxed and strained stars has increased by an order
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of magnitude. This is within a factor of a few of previous maximum-
mountain calculations, and illustrates the dependence on the force
prescription.

5.3 A thermal pressure perturbation

The third source for the perturbations we examine is motivated by a
thermal pressure perturbation. Note that the approach we use for this
example could be applied more generally to consider non-barotropic
matter where the pressure is adjusted, relative to the barotropic case,
at the perturbative level. We assume the thermal pressure to be of the
ideal-gas form,

𝛿𝑝th =
𝑘B𝜌

𝑚u
𝛿𝑇, (57)

where 𝑘B is the Boltzmann constant, 𝑚u is the atomic mass unit and
𝛿𝑇 is the temperature perturbation. To interpret this thermal pressure
as a force, we identify

𝜌∇𝑖 𝜒 = ∇𝑖𝛿𝑝th =
𝑘B
𝑚u

∇𝑖 (𝜌𝛿𝑇). (58)

The temperature perturbation must be regular at the origin. For sim-
plicity we assume it to be quadratic,

𝛿𝑇 (𝑟) =
( 𝑟
𝑅

)2
𝛿𝑇 (𝑅), (59)

where 𝛿𝑇 (𝑅) corresponds to the perturbation of the temperature at the
surface. Both the relaxed and strained configurations experience the
same temperature perturbation. We show the results in Figs. 7 and 8.
We now find the crust breaks when 𝛿𝑇 (𝑅) = 3.5 × 106 K. We obtain
the results |𝑄relaxed22 | = 9.2 × 1038 g cm2, |𝜖 relaxed | = 1.2 × 10−6

and |𝑄strained22 − 𝑄relaxed22 | = 4.0 × 1038 g cm2, |𝜖strained − 𝜖 relaxed | =
5.2 × 10−7. This result is of the same order of magnitude to the
potential outside the core.
It is interesting to note that while the values of the ellipticities

|𝜖strained | and |𝜖 relaxed | vary by about four orders of magnitude for
the three deforming forces we consider, the variation in the actual
ellipticity of the mountain, |𝜖strained − 𝜖 relaxed |, is relatively modest,
about one order of magnitude (see Table 1). This is presumably a
reflection of the fact that in all three cases we consider the same star
with the same crustal breaking strain and shear modulus, so all stars
have a similar ability to support deformations.

6 CONCLUSIONS

The question of the maximum mountain a neutron star crust can
support is an interesting problem. Such an estimate provides upper
limits on the strength of gravitational-wave emission from rotating
neutron stars, as well as having implications for the maximum spin-
frequency limit that these systems can attain.
We returned to this problem to tackle some of the pertinent as-

sumptions made in previous work. We have discussed how previous
estimates have not dealt appropriately with boundary conditions that
must be satisfied for realistic neutron star models. The calculations
of Ushomirsky et al. (2000) and Johnson-McDaniel & Owen (2013)
both assumed a specific form for the strain that takes the star away
from its relaxed shape and ensures the crust is maximally strained at
every point. However, such a strain is somewhat unphysical since it
does not respect the continuity of the traction vector. Additionally,
the approach of Haskell et al. (2006), while satisfying the traction
conditions at the crust-core boundary, did not obey the boundary con-
dition on the potential at the surface. This was due to the calculation

assuming the relaxed configuration is spherical and implicitly using
a surface force to deform the star. There were also errors present in
the perturbation equations of Haskell et al. (2006) which change their
results by several orders of magnitude.
An important simplification of the previous studies was to not

explicitly calculate the non-spherical, relaxed shape that the strain is
taken with respect to. As we have shown, such a description requires
the introduction of a perturbing force which takes the star away from
sphericity. We found such a discussion was missing in prior studies
and, hence, have provided a demonstration that shows, provided one
has a description of the strain, how the relaxed shape can calculated.
We found that including this force is crucial in enabling one to

satisfy all the boundary conditions. Therefore, we have introduced
a novel scheme for calculating the maximum quadrupole deforma-
tion that a neutron star can sustain and have demonstrated how our
scheme is entirely equivalent to the approach of preceding calcula-
tions. Crucially, the formalism satisfies all the boundary conditions
of the problem. One of the key advantages of our approach is that one
computes all relevant quantities, including the shape of the relaxed
star. However, one must provide a prescription for the deforming
force.
There is obviously significant freedom in what one may choose for

the form of this force and, indeed, the formalism we have presented
can be used for any deforming force that has the form (33). Further-
more, it would not be difficult to adjust this formalism for other forces.
However, evolutionary calculations will be necessary to fully motiv-
ate the form of the force. Thus, we surveyed three simple examples
for the source of the mountains. We obtained the largest quadrupole
for the (somewhat artificial) case where the perturbing potential is a
solution to Laplace’s equation, but leaves the core unperturbed. All
of our results are between a factor of a few to two orders of magnitude
below that of prior estimates for the maximum mountain a neutron
star may support. That our results were smaller is not surprising, as
our maximummountains were constructed so that the breaking strain
was reached at only a single point. An immediate question would be
if there is a reasonable scenario that bridges the gap between relaxed
configurations associated with a specific force and configurations fol-
lowing from specifying the strain. It seems inevitable that the answer
will rely on evolutionary scenarios, leading to mountain formation,
a problem that has not yet attracted the attention it deserves.
An example of a promising scenario through which a rotating

neutron star may radiate gravitational waves is accretion from a bin-
ary companion. As the gas is accreted onto the surface of the star,
chemical reactions take place which change the composition. Such
changes in the composition can, in turn, result in the star attain-
ing a non-trivial quadrupole moment (Bildsten 1998; Ushomirsky
et al. 2000). Additionally, there has been some effort towards cal-
culating mountains on accreting neutron stars that are sustained by
the magnetic field (Melatos & Payne 2005; Payne & Melatos 2006;
Priymak et al. 2011). We note that, in our calculation, we only con-
sider barotropic matter. This is appropriate to describe equilibrium
stellar models. Indeed, if the star is in equilibrium, accreted and
non-accreted matter may be described using barotropic equations of
state (Haskell et al. 2006). However, for evolutionary calculations,
like those described above, one may need to consider non-barotropic
features and, as we noted in Section 5.3, the formalism we have
presented could be used with such aspects at the perturbative level.
As an (admittedly phenomenological) indication of a possible

solution, it may be worth pointing out that our approach to elasticity
is somewhat simplistic. We have followed the usual assumption that
the crust can be well described as an elastic solid (represented by
a linear stress-strain relation) until it reaches the breaking strain, at
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Figure 5. The radial (left panel) and tangential (right panel) components of the perturbed traction as functions of radius for the potential solution to Laplace’s
equation outside the core. The vertical red dashed lines in the left panel indicate the base and the top of the crust. Regarding the horizontal range in the right
panel, recall that 𝑇2 only has a finite value in the crust.
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Figure 6. The strain components in (54) maximised over (𝜃, 𝜙) against
radius for the potential solution to Laplace’s equation outside the core.

which point the crust fails and all the strain is released. This model
accords well with themolecular dynamics simulations of Horowitz&
Kadau (2009), but it is worth noting that laboratorymaterials tends to
behave slightly differently (Ottosen&Ristinmaa 2005). In particular,
one typically finds that material deforms plastically for some level of
strain before the ultimate failure. This introduces the yield strain as
the point above which the stress-strain relationship is no longer linear
and raises (difficult) questions regarding the plastic behaviour (the
matter may harden, allowing stresses to continue building, or soften,
leading to reduced stress as the strain increases). State-of-the-art sim-
ulations suggest a narrow region of plastic behaviour before the crust
fails (Horowitz & Kadau 2009), but one should perhaps keep in mind
that the levels of shear involved in the simulation may not lead to a
true representation of matter that is deformed more gently. Let us,
for the sake of the argument, suppose that this is the case and that the
crust exhibits ideal plasticity above then chosen yield strain. If this
were to happen, the strain would locally saturate at the yield limit
even if the imposed force increased. One can then imagine applying a
deforming force to source a neutron starmountain and then increasing

it until some point in the crust reaches yield strain. This is essentially
the calculation we have done, as we did not model the behaviour
beyond this point. Allowing for (ideal) plastic flow as the force is
further increased, one may envisage that the entire crust may satur-
ate at the yield strain. This is, of course, pure speculation [although
there have been several notable discussions about the relevance of
plastic deformations of the neutron star crust; see Smoluchowski &
Welch (1970), Jones (2003) and Chugunov & Horowitz (2010)], but
it might explain how a real system could reach the maximum strain
configuration imposed in the Ushomirsky et al. (2000) argument. As
we already suggested, detailed evolutionary calculations which take
into account the physical processes that produce the mountain will
be required to make progress on the problem.
Another natural avenue for future research is to generalise our

calculation to relativity. This should be reasonably straightforward
to do. One would need to use the relativistic equivalents of the
perturbation equations [see, e.g., Gittins et al. (2020)]. This would
be an important step as it brings realistic equations of state into play.
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APPENDIX A: CALCULATING THE RELAXED SHAPE

In this appendix, we demonstrate that the relaxed configuration that
is implied, but not calculated, in maximum-mountain calculations
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Ushomirsky et al. (2000) and Johnson-McDaniel & Owen (2013) is
calculable.
Suppose one knows the strain of star B, 𝜎𝑖 𝑗 (𝜂) (see Fig. 1; Sec-

tion 3). [This is the case in Ushomirsky et al. (2000) and Johnson-
McDaniel & Owen (2013).] From the strain tensor it is possible to
obtain the displacement vector, 𝜂𝑖 , which sources the strain.
We note the following relations: 𝛿𝜌 and 𝛿𝑝 are related through the

equation of state (10), the perturbed Poisson’s equation (11) couples
𝛿𝜌 and 𝛿Φ and (20) links 𝛿𝜌, 𝛿𝑝, 𝛿Φ and 𝛿𝐻𝑖 . Therefore, it follows
that if any one of (𝛿𝜌, 𝛿𝑝, 𝛿Φ, 𝛿𝐻𝑖) are known, the other quantities
can, in principle, be calculated.
We begin with (26). Since we know the strain tensor that takes

one from star A to star B, we also know 𝛿𝐻SB
𝑖
. This means we

have (𝛿𝜌SB, 𝛿𝑝SB, 𝛿ΦSB). It is this logic, that enables Ushomirsky
et al. (2000) and Johnson-McDaniel & Owen (2013) to compute the
quadrupole moment from just the strain tensor.
By considering variations between star A (22) and star B (24), we

find

𝛿𝐻AB𝑖 = − 𝑓𝑖 + ∇ 𝑗 𝑡𝑖 𝑗 (𝜂). (A1)

We know 𝑡𝑖 𝑗 (𝜂), but not 𝑓𝑖 or 𝛿𝐻AB𝑖 . However, we can obtain 𝛿𝐻
AB
𝑖
.

The quantity, 𝛿𝐻AB
𝑖
, is generated by the change in shape from star

A to star B. This is described by the displacement, 𝜂𝑖 . In particular,
the two density fields, 𝜌A and 𝜌B, are linked through the perturbed
continuity equation (8). It, therefore, follows that

𝛿𝐻AB𝑖 = 𝛿𝐻AB𝑖 (𝜂). (A2)

We rearrange (A1) to obtain an expression for the force,

𝑓𝑖 = −𝛿𝐻AB𝑖 (𝜂) + ∇ 𝑗 𝑡𝑖 𝑗 (𝜂). (A3)

Provided 𝜂𝑖 , we can calculate the force which takes the star from a
spherical shape (star S) to the relaxed shape (star A).
Using (21) and (22), we have

𝛿𝐻SA𝑖 = 𝑓𝑖 . (A4)

This determines 𝛿𝐻SA
𝑖
and, therefore, also (𝛿𝜌SA, 𝛿𝑝SA, 𝛿ΦSA). This

means one can obtain the shape of the relaxed star, supported by
a force, 𝑓𝑖 , with the property that when the force is removed the
star obtains a strained configuration, according to the displacement
vector, 𝜂𝑖 .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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