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by Alvaro Perez-Diaz

Motivated by the high electric vehicle (EV) penetration percentages foreseen for the near future,

we study the integration of large fleets of EVs into the existing electricity market structure, with

special emphasis on day-ahead markets. More specifically, given the large energy requirements

characteristic of the widespread use of EVs, the operation of an EV fleet requires careful man-

aging in order to limit environmental and infrastructural impacts. On the other hand, a key

characteristic of an EVs is their flexibility, given that most vehicles are idle most of the day. This

translates into coordination opportunities which allow for the temporal spreading of the energy

consumption of the fleet, avoiding unnecessary demand peaks which translate into increased elec-

tricity prices and stress in the grid. Electric vehicle coordination has received a lot of attention

in the literature in recent years, with many works studying this problem under the perspective

of an aggregator controlling a fleet of electric vehicles and taking coordinated charging decisions.

However, we envision a scenario where a number of independent and self-interested aggregators

compete in the electricity markets in order to obtain the energy needed to meet their clients’

needs. Extending the benefits of coordinated operation to this multi-aggregator setting can

provide reduced prices and increased grid stability, but is challenging due to the self-interested

nature of the aggregators. Indeed, lower costs translate into more profit for the aggregator or

cheaper charging tariffs for their customers. Moreover, an additional challenge arises once the

necessary energy has been purchased. In more detail, the aggregator needs to decide on how to

allocate the available energy among the available EVs, without knowledge about future arrivals.

In order to address these challenges, the first part of this thesis proposes a novel price-maker

day-ahead bidding algorithm for electric vehicle aggregators. Importantly, the price impact of

the aggregator’s bids is taken into account, providing greatly improved results for large aggreg-

ators, when compared to existing price-taker algorithms. With respect to existing price-maker

algorithms, our algorithm is formulated in terms of a scalable and computationally tractable

optimisation algorithm, which allows its application to very large problem sizes. Furthermore,

the formulation of our proposed bidding algorithm in terms of simple linear constraints allows

the application of the coordination mechanisms proposed next.

The second part of this thesis proposes the first inter-aggregator coordination mechanism, which

incentivises competing aggregators to produce joint coordinated bidding in the day-ahead mar-

ket. This cooperation mitigates the increased electricity costs resulting from uncoordinated

independent bidding. Moreover, techniques from mechanism design are employed to design the

energy cost distribution mechanism in a way that discourages strategic manipulation, in order to

ensure inter-aggregator cooperation. We conclude this part with an empirical case study based

on real market and driver data from the Iberian Peninsula, showing substantially reduced energy

costs when our proposed coordination algorithm is employed.
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The third part of this thesis studies the aforementioned multi-aggregator scenario from a different

perspective. Specifically, while in the previous mechanism design approach we assume a central

coordinator and a number of aggregators that can use its services, we now consider a scenario

where the aggregators can form willing coalitions to perform joint bidding. Given that the

aggregators are self-interested, this scenario naturally lies within the field of cooperative game

theory. As a consequence, we model this scenario as a coalitional game and prove that it is

superadditive and balanced, hence the grand coalition where all aggregators cooperate with each

other has the incentive to form. Moreover, we propose a payment mechanism, namely the least-

core, which lies in the core of the game and hence stabilises the grand coalition. Finally, we use

the empirical evaluation presented in the previous chapter to evaluate the coalitional game and

the proposed payment mechanism.

Next, in the fourth contribution, we address the trust and privacy problems arising from the

centralised coordination approaches proposed above. In more detail, an aggregator participating

in the aforementioned coordination approaches needs to disclose key business information to the

centre, which then acts as a black box and decides energy allocations and payments. By refor-

mulating these centralised mechanisms using the Alternating Method of Multipliers algorithm,

we obtain a decentralised model which greatly limits the share of information. Moreover, the

decentralised algorithm is well suited for implementation on a blockchain, allowing execution in

a trustless environment and providing transparency and anti-tampering guarantees. Finally, we

assess the performance of the new model in a realistic case study akin to the one used in the

previous contributions.

However, despite the interesting properties of the decentralised coordination mechanism pro-

posed above, it also introduces new challenges, which are addressed in the fifth contribution.

In more detail, the fact that the self-interested aggregators are not responsible only for sharing

their requirements, but also for computation, introduces new strategic manipulation opportun-

ities. More specifically, an aggregator can choose to deviate from the decentralised algorithm

and manipulate its computation in order to increase its utility (i.e. reduce its energy costs) in

detriment of the other participating aggregators. To study this problem, we define several attack

vectors that deviate from the vanilla algorithm, and study their effects on the attacker’s utility.

We find that the attacker is able to artificially reduce its energy costs and increase its compet-

itors’. In order to address this issue, we propose a manipulation detection framework which

monitors successive rounds of the decentralised algorithm. The performance of this algorithm

is also tested empirically and we found that it significantly outperforms a naive benchmark,

presenting high levels of accuracy in a variety of scenarios. Finally, we would like to note that

the issues of computational manipulation described in this contribution are not limited to our

considered scenario and are present in any decentralised optimisation mechanism. Furthermore,

the proposed detection mechanism can also be used in general settings.

Next, turning our attention to EV charging scheduling, we study the problem of allocating energy

units. In more detail, after a given aggregator has purchased the energy necessary to satisfy

its clients’ needs, it needs to decide how to allocate it to the available EVs, without knowledge

about future arrivals. In order to address this issue, we study existing and novel online scheduling

algorithms, both theoretically and empirically. Moreover, given that it is unrealistic to require EV

drivers to report valuations, we consider fairness objectives such as envy-freeness and maximising

the number of satisfied drivers instead. The results from the realistic empirical evaluation show
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that the proposed algorithms are able to achieve good performance with respect to the considered

fairness objectives. Moreover, we note that the proposed model and algorithms can be used in

other settings with perishable goods, such as processor scheduling and cloud computing.

Finally, in order to support the operation of EV aggregators and, more specifically, the day-

ahead bidding algorithms proposed above, we turn our attention to forecasting. In more detail,

given the nature of the electricity markets, bidding happens days or hours in advance, and

needs to be based on forecasts. As a consequence, accurate forecasts improve the performance

of bidding and coordination algorithms. More specifically, in this contribution we focus on

the forecasting of price impact curves, which relate bid volume with resulting price, and are

essential for large market participants such as EV aggregators. To this end, we draw from the

field of machine learning and present novel artificial neural network models which significantly

outperform previous approaches in the literature. 1

1This work was supported by an EPSRC Doctoral Training Centre grant (EP/L015382/1) through the Next
Generation Computational Modelling CDT in the University of Southampton.
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Chapter 1

Introduction

Climate change and environment conservation rise as two of the main challenges to address in

the twenty-first century. Fossil fuels employed to satisfy a very large percentage of the global

energy demands account for a great proportion of the pollution and emissions related to those.

Nowadays, around 29% of the total energy consumption in the US corresponds to the transport-

ation sector, and fossil fuels power around 95% of this consumption [EIA, 2016]. Similarly, in

the UK transportation is the biggest energy consumer accounting for 40% of the total energy

consumption [ONS, 2016], and 96% of this consumption depends on fossil fuels [POST, 2015].

In recent years there has been a shift towards renewable energy production to harvest non-

polluting energy sources. This is seen as a fundamental aspect of the transition from fossil fuels

to cleaner and more sustainable energy generation methods. For example, in the UK, renew-

able generation overtook coal in 2015 to consolidate as the second largest electricity generation

method, accounting for 25% of the total UK electricity generation [Electricity Statistics, 2017].

A growing dependence on renewable sources will help lower the magnitude of greenhouse gas

emissions and ensure the 2050 European targets, 80% reduction of emissions by 2050 [European

Commission, 2011], are met.

Transportation is then a key participant in the modernisation and improvement of the energy

generation-demand duo. The electrification of the transportation sector, which will stop the

dependence on fossil fuels and allow working with renewable electricity sources, is seen as one

of the main targets to achieve in the near future. In the UK, there exists a 10% target for

electrification in the transportation sector by 2020 [ECCC, 2016]. Currently the UK has a

fleet of nearly 100,000 electric vehicles (EVs), combining purely electrical and hybrid vehicles

[SMMT, 2017]. In a global scale, there are targets to achieve 100 to 140 million of EVs by 2020

[International Energy Agency, 2016]. The transition from conventional fossil-fuelled to electric

vehicles presents great opportunities but also large challenges.

Specifically, the main challenge is that the electrification of the transportation sector will present

a heavy new load to existing electricity grids and power systems [Lopes et al., 2010]. More

specifically, a single EV battery has a capacity of around 24 kWh [Gerding et al., 2016], depending

on make and model. Comparing this capacity with the average daily electricity consumption per

household in the UK, 10.8 kWh [World Energy Council, 2017], one can see that the widespread
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use of EVs will cause a great increase in electricity demand. As a consequence, care needs

to be taken to ensure an smooth transition and to accommodate the new EV fleet without

the need of costly improvements in the electricity systems and extra generation infrastructure.

At the same time, the new possibilities introduced by the penetration of EVs in the existing

transportation ecology, e.g. the introduction of distributed storage systems (EV batteries), the

ability of providing regulatory services to the electricity grid, etc., could improve the behaviour

of the electricity grid if used appropriately [Ramchurn et al., 2012].

To address this challenge, the academic literature has seen a high number of studies concerning

a broad range of aspects related to the introduction of EVs in the power systems framework.

Among those, of special relevance to this thesis is the literature on artificial intelligence applied to

the management of a fleet of EVs [Rigas et al., 2015]. Typically, this involves an EV aggregator,

an entity which can control the charging and discharging of a fleet of EVs, and thus make informed

collective decisions [Bessa and Matos, 2010]. Moreover, different optimisation approaches have

been proposed to address the aggregation of EVs and their participation on electricity markets,

including energy scheduling and regulatory services [You et al., 2016]. However, a downside

of most of the existing work is that it fails to account for the impact that a large fleet of

EVs will have in electricity markets, as most works consider small EV penetration rate. In

more detail, increased demand translates into increased electricity prices, the so-called price

impact. Furthermore, the vast majority of the works in the literature consider the case of a

single aggregator.

These two assumptions are unrealistic when considering the targeted levels of EV penetration

in the near future (2030-2050) [International Energy Agency, 2016]. To this end, specialised

algorithms for the participation of large EV fleets in the electricity markets, which incorporate

the effect of the large load that future EV fleets will present, need to be devised. Moreover, the

presence of multiple EV aggregators operating in the same markets and infrastructure presents

exciting coordination opportunities. In more detail, given the high flexibility characteristic of

EV charging, inter-aggregator cooperation can achieve reduced energy costs and limit physical

impact on the grid. However, this coordination is not without challenges given the self-interested

nature of the aggregators. Indeed, reduced electricity costs and better operation translates into

increased profit for an aggregator and/or cheaper tariffs for their customers. As a consequence,

multi-aggregator scenarios lie within the multi-agent systems field and coordination mechanisms

need to be addressed carefully.

In addition, apart from participating on electricity markets, EV aggregators need to make real-

time decisions such as how to best use the available energy. In more detail, the aggregator

needs to devise appropriate charging schedules for each EV in a dynamic environment, where

drivers arrive and depart over time and have different charging speeds and energy requirements.

Moreover, the fact that energy is perishable, and needs to be used or wasted otherwise, adds

complexity to the problem.

Furthermore, given that electricity markets are future markets, i.e. participation occurs days or

hours before actual energy delivery, accurate forecasting is necessary in order to reduce imbal-

ances and achieve optimised operation. This is true, not only for EV-related bidders, but for

any market participant. To this end, modern machine learning techniques, which have achieved
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impressive results in all research fields, are suitable candidates to provide precise forecasts, which

translate into smoother electricity operation.

These issues, revolving around artificial intelligence techniques applied to EV management, are

the main object of study of this thesis, and will be discussed in detail next

1.1 Research Research Challenges

As described in the previous section, EV penetration is expected to grow significantly in the

near future, motivated by the offering of an environmentally friendly alternative to conventional

fossil-fuelled transportation. However, this transition presents challenges to ensure the correct

integration of the EVs into the existing power system and markets [Rigas et al., 2015]. Despite

the large amount of literature published in the last decade, plenty of challenges remain open.

This thesis aims at addressing a subset of these, with a particular focus on large fleets of EVs

and the presence of multiple self-interested EV aggregators. More specifically, we study the par-

ticipation of multiple competing EV aggregators in day-ahead electricity markets. This includes

the design of optimal bidding strategies and coordination mechanisms that enable joint-bidding,

with the aim of reducing energy costs. Moreover, we consider both centralised and decentral-

ised approaches, each with different strengths and weaknesses. In addition, we also study the

forecasting of price impact curves in day-ahead markets, an important input for the aforemen-

tioned bidding algorithms. Finally, we turn our attention to real-time energy scheduling and to

designing online algorithms for the fair allocation of energy resources among an EV fleet.

In more detail, the research challenges tackled in this thesis are as follows:

1. Optimising the Charging of Large Fleets of EVs: the management of a fleet of EVs

has been studied in a variety of contexts [Rigas et al., 2015]. These include energy schedul-

ing, operations management, integration with the smart grid and distribution networks,

etc. (see Section 2.4 for a literature review). However, the vast majority of the literature

considers low EV penetration, with fleets of hundreds of several thousands of EVs sharing

the electricity markets and grids. Hence, the proposed algorithms and scenarios do not

capture the scale of the targeted number of EVs in the near future [International Energy

Agency, 2016]. This is important as the electricity demand characteristic of large EV

penetration will have a significant impact on electricity prices. To this end, novel com-

putationally tractable algorithms which take into account the large combined magnitude

of a large fleet of EVs need to be developed, in order to ensure efficient power systems

operation and reduce energy costs. More specifically, this can be achieved by utilising EV

aggregators which are able to exploit the information about the fleet as a whole.

2. Inter-Aggregator Coordination: similarly to how an EV aggregator can make more

informed decisions than individual EVs, it is reasonable to expect that inter-aggregator

coordination can provide similar advantages. By sharing energy requirement information,

optimised bidding can be performed, not only for the fleet of an individual aggregator,

but for the whole group of aggregators. This is analogous to coordination approaches pro-

posed in other smart grid scenarios, such as producer-consumer cooperatives [Akasiadis and
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Chalkiadakis, 2016]. Considering now our multi-aggregator scenario, and with a focus on

cost minimising, joint bidding will reduce unnecessary overlapping in the energy schedules

of different aggregators, thus reducing price impact and energy costs. Despite the wide

benefits arising from cooperation, the implementation of coordination mechanisms is not

without challenges. More specifically, the main issue is the self-interested nature of EV

aggregators. Indeed, lower electricity costs translate into more profit for the aggregator or

lower charging tariffs for their clients. As a result, this coordination scenario naturally lies

within the field of multi-agent systems [Wooldridge, 2009] and any coordination mechan-

ism needs to be carefully designed in order to incentivise cooperation, rather than strategic

manipulation.

3. Decentralised Computation: an essential requirement for any inter-aggregator coordin-

ation mechanism is the sharing of information which allows joint coordination. Given that

EV aggregators are self-interested and, in general, private entities, they would be reluctant

to sharing sensitive information. Moreover, the use of centralised approaches based on a

centre, which receives information from the aggregators and acts as a black-box, requires

trust and is not transparent. In order to address these issues, decentralised approaches in

which each aggregator performs part of the coordination computation using its own private

information, can be used instead [Munsing et al., 2017].

4. Strategic Manipulation in Distributed Computation: any distributed algorithm

considering self-interested agents is susceptible to strategic manipulation, not only in the

form of preference elicitation, as it is the case with centralised approaches, but also com-

putationally [Shneidman and Parkes, 2003]. In more detail, an agent could deviate from

the algorithm in order to increase its personal utility, in detriment of the other parti-

cipants. More specifically, focusing on out multi-EV aggregator setting, an aggregator can

deviate from the algorithm with the aim of reducing its energy costs or obtaining more

advantageous energy allocations. As a consequence, in order to incentivise cooperation,

the EV aggregators participating in the decentralised coordination mechanism need to be

monitored in the look for manipulation, and appropriately penalised if deviation are found.

5. Online Allocation of Energy Units: after it has purchased a future electricity schedule

in energy markets, an EV aggregator then needs to decide on how to allocate its available

electricity units among its EV fleet in real-time. Interestingly, electricity is intrinsically

different from other non-perishable resources or goods in that it needs to be used immedi-

ately or be wasted otherwise. Moreover, the highly dynamical and stochastic nature of the

arrivals and departures of a fleet of EVs translates into the need of taking decisions online,

i.e. without knowledge of the future. Furthermore, eliciting preferences and valuations

from EV drivers is not practical or realistic, as in drivers do not generally have a technical

background. In order to address these issues, online energy allocation algorithms need to

be devised. Furthermore, in order to avoid the need for preference elicitation, efficiency

and fairness objectives can be used instead.

6. Price Impact Forecasting: any effective bidding algorithm and coordination mechanism

(see Research Challenges 1, 2 and 3) needs adequate forecasts such as EV fleet require-

ments, electricity prices, etc. With respect to the latter, the electricity market forecasting

literature is mostly focused on prices and demand. However, forecasting price impact is
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equally essential for large market participants and has received much less attention in previ-

ous works. From a technical perspective, it is different from demand and price forecasting,

as price impact is a function (of bid volume) rather than a scalar quantity.

The work presented in this thesis will address the problems and challenges explained above.

Against this background, we detail the precise contributions arising from our work in the next

section.

1.2 Research Contributions

This thesis makes the following contributions to the state-of-the-art:

• We propose a novel price-maker day-ahead bidding algorithm for EV aggregators. This

algorithm accounts for the price impact of the aggregator’s orders and is formulated in terms

of a non-linear optimisation algorithm with linear constraints, guaranteeing scalability to

very large problem sizes and the applicability of the coordination mechanisms proposed

below. The performance of the proposed bidding algorithm is tested in an empirical case

study which employs real market and driver data. This addresses Research Challenge 1,

as detailed in Section 1.1.

• We present the first inter-aggregator coordination mechanism for day-ahead markets. Spe-

cifically, we design a centralised approach and draw from the field of mechanism design to

incentivise the participating aggregators to report their energy requirements to a coordin-

ator, which then performs joint bidding. The performance of the proposed coordination

mechanism is tested in an empirical case study which employs real market and driver data.

This addresses Research Challenge 2, as detailed in Section 1.1.

These two previous contributions are described in the following paper [Perez-Diaz et al.,

2018a]:

A. Perez-Diaz, E. Gerding and F. McGroarty. Coordination and payment

mechanisms for electric vehicle aggregators. Applied Energy, 212, 185-195,

2018a.

• We present the first coalitional analysis of a multi-aggregator day-ahead scenario. In more

detail, we study the theoretical properties of the coalitional game, and prove the stability

of the grand coalition. A payment mechanism lying in the core is proposed in order to

guarantee cooperation. Finally, we present an empirical study, also using real market and

driver data. This addresses Research Challenge 2, as detailed in Section 1.1.

This contribution is described in the following paper [Perez-Diaz et al., 2018b]:

A. Perez-Diaz, E. Gerding and F. McGroarty. Coordination of Electric Vehicle

Aggregators: A Coalitional Approach. Proc. of the 17th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS 2018).

The previous three contributions are described in the following paper [Perez-Diaz, 2018]:

A. Perez-Diaz. Coordination of Electric Vehicle Aggregator Participation in

the Day-Ahead Market. Proc. of the 17th International Conference on Autonom-

ous Agents and Multiagent Systems (AAMAS 2018, Doctoral Consortium).
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• We present the first decentralised coordination mechanism for EV aggregators participating

in the day-ahead market. Specifically, we reformulate the centralised approach presented

in the second and third contributions above using the Alternating Direction Method of

Multipliers (ADMM) algorithm [Boyd et al., 2010]. In more detail, this well-known dis-

tributed optimisation algorithm presents very good convergence properties and has been

widely used to tackle similar problems. Furthermore, in order to provide trustless execu-

tion, we discuss the potential of implementing the proposed coordination algorithm in a

blockchain, providing transparency and anti-tampering guarantees. Finally, we test the

proposed algorithm in a realistic scenario with real market and driver data. This addresses

Research Challenge 4, as detailed in Section 1.1.

This contribution is described in the following paper [Perez-Diaz et al., 2018c]:

A. Perez-Diaz, E. Gerding and F. McGroarty. Decentralised Coordination

of Electric Vehicle Aggregators. International Workshop on Optimization in

Multiagent Systems (OptMAS-18).

• We present the first study of strategic manipulation of decentralised ADMM algorithms.

In more detail, focusing on the decentralised coordination mechanism proposed in the pre-

vious contribution, we describe and analyse different possible attack vectors and propose a

mathematical framework to quantify and detect manipulation. Importantly, this detection

framework is not limited the considered EV scenario and can be applied to general ADMM

algorithms. Finally, we empirically test the proposed attack vectors and manipulation de-

tection algorithm in realistic scenarios. Our empirical results show that the decentralised

algorithms convergence to the optimal solution can be effectively disrupted by manipulat-

ive attacks achieving convergence to a different non-optimal solution which benefits the

attacker. With respect to the detection algorithm, results indicate that it achieves very

high accuracies and significantly outperforms a naive benchmark. This addresses Research

Challenge 4, as detailed in Section 1.1. This contribution is described in the following

paper [Perez-Diaz et al., 2018d]:

A. Perez-Diaz, E. Gerding and F. McGroarty. Catching Cheats: Detecting

Strategic Manipulation in Distributed Optimisation of Electric Vehicle Ag-

gregators. Under review in Journal of Artificial Intelligence Research .

• We consider mechanisms for the online allocation of energy units. Unlike previous work,

we consider mechanisms without money, and a range of objectives including fairness and

efficiency. In doing so, we extend the concept of envy-freeness to online settings. Further-

more, we explore the trade-offs between different objectives and analyse their theoretical

properties both in online and offline settings. We then introduce novel online scheduling

algorithms and compare them in terms of both their theoretical properties and empirical

performance. This addresses Research Challenge 5, as detailed in Section 1.1.

This contribution is described in the following paper [Gerding et al., 2019]:

E. Gerding, A. Perez-Diaz, H. Aziz, S. Gaspers, A. Marcu, N. Mattei and T.

Walsh. Fair Online Allocation of Perishable Goods and its Application to Elec-

tric Vehicle Charging. Proceedings of the 28th International Joint Conference

on Artificial Intelligence (IJCAI 2019) 1

1A. Perez-Diaz made the following contributions to this work: wrote the literature review (Section 2.11),
designed the examples, proved Proposition 8.4, designed the experiments, ran the simulations, wrote the empirical
evaluation (Section 8.5), produced all the figures and made significant overall editing and writing efforts.
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• We study the prediction of residual supply curves in day-ahead electricity markets. To this

end, we apply neural network models, more specifically multilayer perceptrons, and forecast

the residual supply curves for each of the twenty-four hours of the next day. In more detail,

we consider both intra- and inter-hour models, and also incorporate exogenous explanatory

variables such as wind generation and total demand forecasts. We present empirical results

using real data from the Spanish day-ahead market and show that our models outperform

previous models in the literature, achieving up to 58.028% performance increase from the

naive benchmark, compared to the previous 7.805% reported in the literature. Moreover,

we find that inter-hour models achieve up to 6.028% performance increase when compared

to intra-hour models. This addresses Research Challenge 6, as detailed in Section 1.1.

This contribution is described in the following paper [Perez-Diaz et al., 2019a]:

A. Perez-Diaz, A. Augustin, M. Nunes, E. Gerding and F. McGroarty. Fore-

casting Residual Supply Curves in Electricity Markets with Neural Networks.

Under review .

1.3 Report Outline

The remainder of the thesis is structured as follows:

• Chapter 2 introduces the background needed to understand the challenges exposed above

and compares our contributions with the state-of-the-art.

• Chapter 3 details our novel bidding algorithm, including its mathematical formalism and

how to solve the optimisation problem. Its performance is analysed in an empirical case

study with real data.

• Chapter 4 exposes our novel inter-aggregator coordination mechanism, from requirement

aggregation, to collective bidding, energy distribution and payment handling. Its perform-

ance is analysed in an empirical case study with real data.

• Chapter 5 analyses the novel multi-aggregator coalitional game and proves several theor-

etical properties. This is also tested experimentally in an empirical case study with real

data.

• Chapter 6 presents our novel decentralised coordination mechanism and studies its per-

formance in a realistic empirical evaluation.

• Chapter 7 analyses the manipulation opportunities arising in decentralised optimisation

problems, and presents our proposed detection algorithm. The effects of the proposed

attack vectors and the detection algorithm are tested using real driver and market data.

• Chapter 8 studies the online allocation of energy units, or other perishable resources, and

proposes novel scheduling algorithms. The performance of these algorithms, according to

different fairness objectives, is tested in a realistic empirical evaluation.

• Chapter 9 presents our proposed artificial neural network models for the forecasting of

residual supply curves in day-ahead markets.

• Chapter 10 serves as a conclusion for this thesis and outlines future work directions.





Chapter 2

Background

In this chapter, we present the background and literature review necessary to put the research

objectives and challenges into context. The rest of the chapter is structured as follows. First,

we discuss the smart grid paradigm in Section 2.1. Then, in Section 2.2, we proceed to detail

the main characteristics of electricity markets, with a special focus on day-ahead markets and

price impact. Next, we discuss the field of EV aggregation in Section 2.4, focusing on multi-

aggregator scenarios in Section 2.5. Sections 2.6 and 2.7 describe the fields of mechanism design

and cooperative game theory, respectively, with a focus on EV and smart grid applications.

Next, we focus on decentralised algorithms for EV management in Section 2.8 and consider the

application of blockchain technology in this type of scenario in Section 2.9. Moreover, we discuss

the strategic manipulation of decentralised optimisation algorithms in Section 2.10. Next, we

turn our attention to the issue energy scheduling, and to that end review the literature on the

online scheduling of perishable resources, such as energy and computational power, in Section

2.11. Finally, we discuss the field of price impact forecasting, with a focus on day-ahead markets,

in Section 2.12.

2.1 Smart Grid and Electric Vehicles

Energy and power systems are experiencing a radical change, transitioning from the traditional

carbon-based structure into a smarter, cleaner, dynamic and bi-directional model, the so-called

smart grid [Department of Energy and Climate Change, 2009]. This new paradigm envisions a

future with decentralised production, transmission and distribution, widely employing renewable

production methods and distributed storage systems. This will ensure a low-carbon and modern

electricity grid with lower costs and improved efficiency [Ofgem and Department of Energy and

Climate Change, 2014].

One of the key ingredients for this low-carbon and low emission future is the advent of electric

vehicles. By electrifying transportation, dependency on fossil fuels is eliminated, and clean

energy sources can be utilised to power the transportation sector, which accounts for a large

proportion of the global consumed energy [Yong et al., 2015]. However, the introduction of EVs

also presents a problem for the existing electricity grid, as this new heavy load will present a

9
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heavy strain, which the current generation, transmission and distribution infrastructure may not

be ready to accommodate [Pieltain Fernández et al., 2011, Lopes et al., 2010].

On the other hand, EVs can also be seen as distributed energy sources and storage systems,

and could support the functioning of the electricity grid if managed appropriately [Ramchurn

et al., 2012]. By storing energy when surplus is available and injecting it back to the grid when

it is scarce, they could help regulate supply and demand. Given their high degree of flexibility

[Pasaoglu et al., 2012, 2013], EVs can participate in demand response frameworks and provide

auxiliary services that ensure stable grid operation [Shafie-khah et al., 2016].

In recent years, a lot of work has been done in the context of smart grid and EVs, as detailed in

Section 2.4. However, further work is still necessary in order to ensure that the integration and

operation of fleets of EVs is done in the best possible way. This challenge comprises several key

aspects, such as the interaction with electricity markets, or with distribution and transmission

grids. In this thesis, we will focus on former. To this end, we detail the structure and working

principles of modern electricity markets next.

2.2 Electricity Markets

Electricity is produced in generation plants of different types and consumed in industries and

households. With the ongoing electrification of the transportation sector, EVs are acquiring an

important role as electricity consumers by obtaining the energy needed to charge their batteries.

After the deregulation process which happened in most countries in the last few of decades,

wholesale electricity is traded in energy markets as any other commodity: suppliers and con-

sumers make offers and bids, the market is cleared, and electricity is delivered accordingly from

sellers to buyers. While different countries and regions may be structured in different ways, the

underlying structure and working principles are similar [Murray, 2009].

In the following, we present an overview of the common wholesale market structure, where

several markets with different purposes and time horizons are available. Among these, energy

scheduling markets are the ones where electricity is actually sold and bought. The purpose of

these is to negotiate the future delivery of electricity, from generators to consumers, usually in

an auction style. Different markets exist, ranging from long-term to very short-term time scales

[Herranz et al., 2012, Ugedo et al., 2006]. Each market participant is free to take part in any

combination of those, according to its needs and preferences.

On the long-term side one can find bilateral contracts and futures, in which energy delivery can

be arranged and agreed upon months or years in advance. For example, energy retailers often

employ this kind of contract to offer fixed-price energy to consumers.

Considering shorter time scales, i.e. days to hours in advance, two different markets are usually

available: day-ahead and intra-day. Day-ahead markets present an auction style mechanism in

which energy delivery deals are struck in an hourly fashion for the next day. Market participants

forecast their needs or generation capabilities and make bids and offers to the market. When

the market is cleared, energy delivery contracts for the next day are formalised. An important

characteristic of electricity markets, different from other commodities, is the fact that energy is
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difficult and expensive to store, hence supply and demand need to be constantly balanced to

prevent losses. This causes the need for extra markets close to delivery time.

After the day-ahead market is cleared, intra-day markets become available. There are usually

several instances of daily intra-day markets, each negotiating energy for 4 to 6-hour slots each day

in an auction style. These markets allow market participants to adjust to deviations in demand

or supply capabilities with respect to their orders in the earlier day-ahead market. The shortest-

term includes balancing markets, which act as last-minute auctions in which any unbalanced

supply and demand can be matched together to ensure best possible allocation. This sequence

of energy scheduling markets is employed by wholesale buyers and sellers to agree on electricity

delivery across different time-scales. EV aggregators, as large electricity consumers, participate

in these scheduling markets as buyers to purchase electricity for their clients, as shown in Section

2.4.

Apart from scheduling markets, and due to the particular nature of electricity and the physical

grid across which it is distributed, a second type of markets are available to ensure a correct and

stable behaviour, namely the ancillary and regulatory markets. As mentioned above, electricity

generation and consumption need to be balanced at all times. Indeed, generation and demand

unbalances cause physical problems such as instability in alternate current frequency and voltage.

Moreover, electricity needs to be distributed along power lines from generators and distributors

to consumers. This imposes physical constraints to electricity delivery, and malfunction or

congestion can affect the deals struck in advance in electricity markets. These and other issues

create the need for regulatory markets, in which generators and consumers can participate to

guarantee a stable electricity grid. The usual market structure consists of three reserve markets:

primary, secondary and tertiary reserve. The exact working of these markets may again depend

on the considered country, but they usually share the underlying structure and consider different

time-scales, from one hour to several minutes ahead [Murray, 2009]. They are usually auction-

based, where suppliers and consumers can submit orders to increase or decrease generation or

consumption, respectively, based on the state of the grid and their own. All the orders are then

aggregated and the market cleared, assigning a correction term to the generation or demand

of each market participant, and some monetary compensation or penalty. Reserve markets can

also be employed as last-minute electricity sources to trade in, for profit or to obtain energy if

needed [Bessa and Matos, 2013c]. Ancillary markets have been employed in the EV literature

to account for forecast deviations and to trade vehicle-to-grid (V2G) electricity, both for profit

and for grid stability, as shown in Section 2.4.

This concludes the overview of the typical electricity market structure, providing a broad picture

of the different wholesale markets available to suppliers and consumers, their particularities, and

how they interact with each other. Of particular interest to this thesis is the day-ahead market,

which will be discussed in detail next.

2.3 The Day-Ahead Market

Dy-ahead markets are the main source of short-term wholesale energy [Stoft, 2002, Murray,

2009] and have been widely employed in the EV literature to obtain energy for battery charging.
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This type of electricity market are available all across Europe (EPEXSPOT, GME, NORD-

POOL, OMIE, OPCOM, OTE, TGE) and the US (CAISO, MISO, ISO-NE, NYISO, NWPP,

WECC, PJM, SPP, ERCOT). Typical day-ahead markets are daily forward markets featuring a

uniformly-priced double-sided auction. In more detail, they run everyday of the year and each

day is divided into 24 one-hour slots. A separate auction is run for each hourly slot. All bids and

offers for each hourly slot of day D+ 1 need to be submitted before market closure time, usually

noon on day D. Double-sided auction means that market participants can simultaneously submit

orders to both the demand and the supply sides of the auction, and uniformly-priced means that

each hourly auction uses uniform marginal pricing (see Section 2.3.2). We will now describe this

type of market in detail.

2.3.1 Order Aggregation

As described above, participants in the day-ahead market submit their buy and sell orders to the

auction before closure time. The usual day-ahead market order has three main characteristics:

order side, volume and price. Order side determines whether it is a supply or demand order,

referred to as an offer and bid respectively. The volume specifies the amount of electricity, usually

in MWh, that the participant is willing to trade. The price specifies the lowest (highest) price

the agent is willing to accept for that volume of offered (bidded) electricity. Note that there is

usually a maximum price for bids and offers, Pmax, which is far above the usual cleared prices.

Different markets have different order types, ranging from the basic order with three components

we just described, to more sophisticated orders which can include a step-wise function of different

volumes and prices, or conditions on acceptance based on other orders or particular market

details. Henceforth, we will consider simple orders, consisting on volume-price pairs on both

sides of the auction.

The supply side, consisting of electricity producers, offers volumes of electricity at different

prices. All supply side offers are aggregated by low-price priority, resulting in a generation stack

curve, which relates production size to price per energy unit, as depicted in Figure 2.1. This

generation stack curve will vary hourly and daily as a result of a myriad factors, such as the

weather, the infrastructure available in the considered region, fossil fuel price fluctuations, new

technologies (such as renewable energy) becoming available, and commercial interests of the

market participants.

The demand side consists of large electricity consumers, such as industries, retailers or aggregat-

ors, which also submit their bids to the day-ahead auction, consisting as well of desired electricity

volumes and prices. All the bids are aggregated by high-price priority forming the aggregated

demand curve, as shown in Figure 2.2, based on real data from the Iberian electricity market

OMIE.

Once all the orders have been aggregated, the generation stack and demand curves are employed

to clear the market, as described in the next section.
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Figure 2.1: Aggregated supply curve.
Source: OMIE, 01/11/2016, 11th hour.
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Figure 2.2: Aggregated demand curve.
Source: OMIE, 01/11/2016, 11th hour.

2.3.2 Market Clearing and Pricing Mechanism

In order to find the clearing price and accepted orders of a given market hour, the aggregated

generation and demand curves described in the previous section are employed. The most common

approach is to find their intersection, as shown in Figure 2.3.
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Figure 2.3: Market clearing and uniform pricing
mechanism. Source: OMIE, 01/11/2016, 11th hour.

The accepted bids and offers are the ones lying towards the left-hand side of the intersection, i.e.

cheaper offers and more expensive bids than the clearing price. The clearing price will be the price

at the intersection, which applies to all accepted bids and offers (uniform pricing). The exact

clearing and pricing mechanisms vary across countries, as do the available types of orders. It is

common to employ a two-stage algorithm, in which aggregated curves intersection and uniform

pricing is applied in the first stage, determining the accepted bids and orders and a clearing price.

In the second stage, the complex requirements of non-basic accepted order types are taken into

account, moving the resulting price up or down according to the particular realisation. This is

the case all across Europe, in which the EUPHEMIA algorithm is employed [EUPHEMIA, 2015].

This concludes a detailed exposition of the behaviour and structure of day-ahead markets, which

conform the framework of our proposed bidding and coordination mechanisms, introduced in

Chapters 3, 4 and 5. An important feature of financial and electricity markets, which describes

how orders affect the market price, will be explained in the next section.
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2.3.3 Price Impact

Consider now a market participant, an electricity buyer, who bids in the day-ahead market to

obtain electricity to satisfy its needs. This market participant’s bids will contribute towards

the aggregated demand curve, and will affect the clearing price by pushing it up. Conversely, if

the market participant is an energy seller, its ask orders will affect the supply curve and push

the clearing price down. This is the so-called price impact, a term borrowed from the financial

literature, where it has been extensively studied [Bouchaud, 2010]. The market impact of small

participants can be negligible, but the larger the order size, the more pronounced effect it will

have on the clearing price. Price impact is an important characteristic associated with large

market participants, such as large EV aggregators, and needs to be taken into account when

developing bidding schedules.

Specifically, price impact has also been applied to electricity markets, under the name of price-

making or market effect, and several frameworks have been proposed for its mathematical treat-

ment. Baillo et al. [2006] present a review of commonly used methods which are described as

follows. The first technique is a two-level problem, in which firstly market participants submit

their orders trying to maximise individual profit, and secondly the market operator determines

optimal dispatch and market prices [Pereira et al., 2005]. The second method employs the so-

called market distribution functions. This probabilistic approach considers the probability of

quantity-price pairs being accepted in market closure and runs an optimisation problem on this

two-dimensional space Anderson and Philpott [2002]. The last method utilises residual curves

to represent the available levels of demand as a function of market clearing prices Baillo et al.

[2004].

In more detail, residual curves were originally introduced to model the effects of electricity

suppliers in electricity markets [Garcia-Gonzalez et al., 1999]. This model was extended to

account for a portfolio of different generators by Berzal et al. [2001], by solving the optimisation

problem for the global offer and distributing the scheduling among the generators. Conejo

et al. [2002], De La Torre et al. [2002] considered a more general model, including the case of

oligopolistic companies. Baillo et al. [2004] extended these works by including long-term contracts

and a multi-unit scenario. A recent study extends the residual demand curves framework to

considered more sophisticated day-ahead market structures, introducing zonal pricing and more

complex order types [Portela González et al., 2017]. The similarities between generation and

demand from the perspective of market participation are high, so the concepts introduced in the

previously described works can be translated to an energy buying perspective. To this end, some

works focus on the demand side of the market. Specifically, the existing literature focuses on

an electricity retailer which participates in the day-ahead market to obtain energy to distribute

to end-users, under different market scenarios [Ya’an Liu and Xiaohong Guan, 2003, Fleten and

Pettersen, 2005, Philpott and Pettersen, 2006, Herranz et al., 2012]. Hence, residual curves seem

the appropriate choice for modelling the price impact of an EV aggregator in our considered

scenario. We will now proceed to formalise the concept of price impact in the context of uniform

double-sided auctions, such as day-ahead markets, utilizing residual supply curves. We focus on

electricity buyers, and the notation employed closely follows the literature [Baillo et al., 2004,

Herranz et al., 2012].
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Specifically, let D(p) and S(p) be the aggregated demand and supply curves respectively, as a

function of price, p. Consider a new agent participating in the market as a buyer. The residual

supply curve is defined as:

R(p) = S(p)−D(p) = E

and represents the amount of energy the new agent can bid for while maintaining a clearing price

P . Without loss of generality, assume that the agent’s bids are set at maximum price, Pmax, to

guarantee execution.

More relevant to us is the clearing price when bidding an amount E, which can be obtained from

the residual supply curve:

p = R−1(E)

Introducing the notation P(E) = R−1(E), the clearing price when the new agent bids an amount

E is:

p = P(E)

and the price impact ∆p of this order is:

∆p = P(E)− P(0)

as P(0) represents the base price, that is the price without the agent’s new bid. This formalism

is depicted in Figs. 2.4 and 2.5.
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Figure 2.4: Price impact of a buy order
with volume E and maximum price Pmax.

Source: OMIE, 01/11/2016, 11th hour.
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Figure 2.5: Price impact function, P(E),
for a volume range up to 10 MWh. Source:

OMIE, 01/11/2016, 11th hour.

Focusing on EVs, a single unit will have a negligible price impact as its battery size is too small

compared to the size of the market. For an aggregator managing a large number of EVs, the

combined capacity of their batteries gets large enough to have a non-negligible impact on the

market, and efficient energy buying algorithms need to account for this. This will become clear

when considering the novel price-maker bidding algorithm presented in Chapter 3.

Next, we will review the literature on EV aggregation, with a special focus on day-ahead market

participation.
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2.4 EV Aggregation

So far, we have explored the smart grid paradigm and the structure of current electricity markets,

with a focus on market clearing and price impact in day-ahead markets. Intimately related to

these is the transition to the widespread use of EVs. The quickly increasing EV penetration

numbers will trigger the growth of EV aggregators, which will become an important part of the

electricity markets participant ecosystem. As described in detail in previous sections, the heavy

new load introduced by the electrification of the transportation sector carries considerable market

impact, and may require large investments and new infrastructure if not carefully managed.

However, this load is very flexible and offers a novel distributed storage system with very different

behaviour compared to conventional electricity consuming demand. This motivates the need to

study the interaction of a fleet of EVs with the existing power systems and to develop mechanisms

to ensure this integration happens in the best possible way. This section reviews the existing

literature working towards this goal.

From the perspective of an EV driver, their main concern is their vehicle’s battery being charged

on time to satisfy their needs. It is unreasonable to assume that the average EV user will have

expertise on electricity markets, or that they will adjust their demand accordingly to hourly

electricity prices or market needs. This motivates the idea of introducing an EV aggregator,

first described in [Kempton et al., 2001] as an entity which acts as an intermediary between a

number of EV users and electricity markets and infrastructure. By collecting information from

its EV fleet, and by managing their batteries, the aggregator is able to make better informed

decisions and has better market visibility than individual EVs. Since their introduction, EV

aggregators have been extensively studied in a variety of settings. A thorough review of EV

aggregator structure and its relation to existing electricity infrastructure and markets can be

found in [Bessa and Matos, 2010]. In addition, detailed reviews of economical and technical

aspects of EV aggregation can be found in [Bessa and Matos, 2012] and [You et al., 2016]. Hu

et al. [2016] review the literature on service provision and EV fleet control strategies. A review

of scheduling and optimisation methods can be found in [Yang et al., 2015]. A detailed overview

of artificial intelligence techniques applied to the managing of fleets of EVs, including routing

problems and congestion managing, is presented in [Rigas et al., 2015]. These works present a

comprehensive review of the EV aggregation literature from different viewpoints. We will now

focus on the most relevant works for this thesis.

As exposed in previous sections, one of the main concerns of growing EV penetration rates is how

they integrate with the existing electric power systems and markets. Early studies investigate the

main aspects necessary to ensure a smooth integration. Specifically, Galus et al. [2010] identify

the actors in power systems planning and operation which will be impacted by the introduction

of EVs, and present potential changes to mitigate this impact. They describe an EV aggregation

framework which can be utilised for activities such as load management and service provision.

A similar study presented by Lopes et al. [2010] focuses on both the grid technical operation

and electricity market operation. The authors describe a list of overall challenges for large

deployments of EVs, which include: (i) evaluating the impact that battery charging has in

system operation; (ii) developing control strategies for battery charging periods; (iii) assessing

the potential of EVs to provide power systems services. These challenges have thenceforth been

studied in the literature in different scenarios.
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Of special relevance to this thesis is the study of the impact of EV charging on electricity markets

and the design of scheduling algorithms which balance the overall EV demand to mitigate de-

mand peaks which can cause grid instability, increased costs, and require polluting and expensive

generation methods. There are a number of works in the literature that study these issues, as

detailed next. Bessa et al. [2012] consider the algorithmic participation of an EV aggregator in

the day-ahead market, in order to obtain energy to charge its clients’ batteries. Their linear pro-

gramming algorithm accounts for the large degree of flexibility characteristic of the EV fleet and

optimises the day-ahead bidding to lower monetary costs. Subsequent work considers different

forecasting techniques, and compares the performance of modelling EV requirements individu-

ally and globally for the whole fleet [Bessa and Matos, 2013a,b]. Lastly, the same authors extend

their model further by considering participation in the day-ahead and manual reserve markets,

in which the EV aggregator can purchase energy in the day-ahead market but also bid in the

reserve market, both for up and downward reserve [Bessa and Matos, 2013c]. Along slightly

different lines, the participation of an EV aggregator in the day-ahead market is also considered

in [Sousa et al., 2012]. In this study, V2G is included in the framework by considering a virtual

power plant that negotiates V2G contracts with drivers and also bids in the day-ahead market.

V2G is also considered in [Sarker et al., 2016], where battery degradation compensations are

included in their model of participation in day-ahead and ancillary markets. A different aspect

of EV aggregation, namely the demand response capabilities offered by the fleet, is considered

in [Shafie-khah et al., 2016]. Their work includes a multi-market scenario with a day-ahead and

several instances of intra-day markets. Morover, the integration of EV aggregation with wind

production is considered in Honarmand et al. [2014]. They propose an aggregation agent which

considers the interaction between wind generators and a small number of EVs in a micro-grid

setting. This work is extended in [Heydarian-Forushani et al., 2016], where more attention is

paid to the uncertainty characteristic of EV fleets, both concerning arrival and departure times,

and charging requirements.

Furthermore, a different body of literature focuses on physical grid aspects, rather than being

focused on electricity markets. For example, Sousa et al. [2014] study the issue of EV scheduling

with the aim of flattening EV demand and successfully integrating the fleet into a smart grid

with large penetration of distributed generation units. Similarly, Alonso et al. [2014] study

the participation in the day-ahead market focusing on the physical aspects of EV penetration,

and considering physical constraints such as thermal line limits, load level on transformers and

voltage limits to find an optimal EV charging schedule.

However, all the works presented above consider price-taker approaches, in which the effect of

the EV fleet in the market is neglected. In more detail, considering the large EV penetration

levels forecasted for the near future (see Section 1), these models will not present an accurate

analysis of the impact of large EV fleets on our existing power systems and market structure.

In order to address this issue, a small body of literature has recently started addressing the EV

aggregator algorithmic participation in day-ahead markets under a price-maker perspective. In

more detail, Kristoffersen et al. [2011] present the first of such studies. Specifically, they con-

sider an EV aggregator able to charge and discharge its EVs batteries bidding in the day-ahead

market, where price impact is approximated to be linear. Similarly, Sundström and Binding

[2012] also consider linear price impact, but focus on physical grid distribution constraints. A

related market scenario in which the market clearing process is explicitly solved is presented in
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[Liu et al., 2017]. Finally, Gonzalez Vaya and Andersson [2015] consider non-linear price impact,

and propose a bidding algorithm which relies on a bi-level optimisation problem in which the

lower level is explicit market clearing. All these works paved the way towards large EV aggreg-

ator participation in day-ahead markets, but have several limitations. Firstly, price impact is

often modelled in a linear fashion, which results in a loss of accuracy. Secondly, some of the

models explicitly solve the market clearing process, introducing extra computational complexity.

Thirdly, all the works are formulated in terms of complex optimisation algorithms with cum-

bersome constraints. This limits the scalability to large problem sizes and the applicability of

coordination mechanisms (see Chapters 4, 5 and 6).

2.5 Scenarios with Multiple EV Aggregators

In the previous section, we have highlighted the higher performance potential achieved by re-

placing individual driver decisions by collective actions managed by an EV aggregator. Indeed,

an EV aggregator, who has aggregate information from the EV fleet and superior market visib-

ility, can obtain reduced costs and ensure better functioning of the electricity grid. Similarly, a

higher level of inter-aggregator coordination would present similar advantages when compared

to individual aggregator decisions without considering other aggregators which share the same

market or operational area. Specifically, we envision a scenario where the high electrification

levels in the transportation sector cause the apparition of many different competing EV aggreg-

ators which want to profit from the services provided, or to lower charging costs for their clients.

These private and independent EV aggregators participate in the same day-ahead market, and

can optimise their own bids via smart bidding algorithms. However, the lack of coordination

among different aggregators can cause inefficient bidding, where hourly bids unnecessarily over-

lap driving prices up. The problem of coordination resides in the fact that EV aggregators are

self-interested, the precise setting explored in the field of multi-agent systems [Wooldridge, 2009].

Similar multi-aggregator problems are studied in the literature. In more detail, Qi et al. [2014],

Shao et al. [2016] study the hierarchical control of EV fleets where different aggregators are co-

ordinated by a high-level coordinator. However, they do not consider self-interested aggregators

and focus accommodating grid constraints and ensuring driver satisfaction instead. More related

to our considered scenario, Yu et al. [2016] study a setup where a number of EV aggregators

can trade energy among them in order to fix forecasting deviations, instead of purchasing the

energy from the grid, and show that this improves the aggregators’ energy costs. However, the

authors do not consider price impact in their model and each aggregator performs independently.

Another related study can be found in [Mukherjee and Gupta, 2017]. Their work considers a

scenario where several private aggregators are present in a given city, and negotiate with each

other in order to balance charging in the different limitedly available charging stations. The aim

is to maximise the total number of EVs charged and the profit of the EV aggregators and their

results indicate that coordinated operation improves the profit of the EV aggregators and the

services offered to the drivers. Finally, in a similar vein to our work, Wu et al. [2016] study

a multi-aggregator day-ahead bidding scenario and apply game theory to find Nash equilibria.

In more detail, each aggregator tries to categorise the other aggregators and thus forecast their

day-ahead bids, and adjust their bidding accordingly. However, after introducing several approx-

imations in order to simplify the model’s structure, the proposed model depends on a complex
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optimisation algorithm which does not guarantee existence of Nash equilibria. Summarising,

even though all these works study multi-aggregator scenarios, none focuses on the interaction of

self-interested aggregators and their coordination possibilities.

2.6 Mechanism Design Applied to EV Management

Mechanism design studies agent interaction protocols which take into account the fact that

agents are rational and self-interested [Vlassis, 2007]. One of the key contributions of the field

is the concept of truthful or incentive compatible mechanisms. Such mechanisms are designed

in a way that strategical manipulation is discouraged, so that the participating agents cannot

obtain a personal benefit by lying or cheating the system. For more detail, the exact definitions

and mathematical framework can be found in, for example, the works by Nisan et al. [2007] and

Vlassis [2007]. Specially relevant to this thesis is the application of mechanism design to the

context of EV aggregation and management, of which there are several studies in the literature.

An early work by Gerding et al. [2011] considers a scenario where a limited amount of electricity

is available throughout the day, and EV drivers negotiate charging times based on their needs

and preferences. Mechanism design is employed to truthfully elicit EV driver requirements and

to distribute the available energy accordingly to these requirements. This work is extended in

[Stein et al., 2012] by introducing the idea of pre-commitment, in which energy resources are

reserved for EVs but the particular charging time and rate are flexible. Incentive compatibility is

maintained in this study to ensure a fair mechanism. Furthermore, these two works are extended

in [Hayakawa et al., 2015] by accounting for multi-dimensional preferences and varying marginal

prices. In a slightly different vein, Gerding et al. [2013] consider a market where EV drivers and

charging points can negotiate charging. Different charging locations and times are available, and

their mechanism truthfully elicits buyer requirements. Lastly, Gerding et al. [2016] consider a car

park with V2G capabilities which truthfully elicits drivers’ preferences and employs the parked

vehicles to provide V2G services to obtain a profit. All these works employ mechanism design

in the context of EV management to ensure fair competition among self-interested EV drivers

and energy providing companies. However, the possibilities of cooperation among different EV

aggregators which share the same infrastructure, particularly the same day-ahead market, have

not been addressed in the literature.

2.7 Cooperative Game Theory in Smart Grid Scenarios

Cooperative game theory studies competitive multi-agent scenarios, in which the agents are

allowed to form coalitions in order to increase their performance by cooperation [Peleg and

Sudhölter, 2007]. More specifically, this field is concerned with the challenges of coalition struc-

ture optimisation and the distribution of value among the members of a given coalition. These

issues are far from trivial given that the agents are rational and self-interested, so incentives need

to be adequately designed, in a related vein to the field of mechanism design described in the

previous section. Techniques from cooperative game theory have been widely applied in many

fields, including smart grid scenarios as described below.
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The cooperation among small power producers is studied in [Chalkiadakis et al., 2011, Bremer

and Sonnenschein, 2013]. More specifically, Chalkiadakis et al. [2011] consider small distributed

energy producers which are able to form coalitions to make joint offers in electricity markets. This

is shown to be beneficial to gain market visibility, and to reduce the uncertainty related to their

bids, resulting in increased profit. Bremer and Sonnenschein [2013] consider a similar scenario,

and focus on profit distribution among the coalition members. Similarly, cooperation among wind

producers is studied in Baeyens et al. [2013]. Their results show that cooperation increases their

profit and that a coalition including all participants provides everyone the best benefit. Moreover,

cooperative game theory has been employed to aggregate demand response providers, in order to

improve their performance and grid stability [O’Brien et al., 2015, Chapman et al., 2017]. Lastly,

cooperation among independent households with distributed generation and storage capabilities

is studied in [Alam et al., 2013]. Their results show that battery degradation can be greatly

reduced, while obtaining significant better energy efficiency, by cooperation. However, none of

these works study EV charging and the interaction among self-interested EV aggregators.

2.8 Decentralised Management of EVs

Typical centralised algorithms have a centre, which collects information from every agent and

makes decisions as a black box. In contrast, decentralised algorithms present important advant-

ages, such as reduced information sharing, more transparent operation and trust-less execution,

achieved by outsourcing computation from the centre to the participating agents. Moreover,

decentralised algorithms are well-suited for implementation on a blockchain (see Section 2.9).

Importantly, apart from monetary transactions, blockchains can be used as general computing

systems by using smart contracts. As a consequence, blockchains are a suitable architecture for

implementing the consensus or aggregation step present in decentralised optimisation algorithms

(see Section 6.1). Furthermore, decentralised mechanisms can also be fully implemented in the

blockchain by using cryptocurrencies.

Focusing now on EV related scenarios, these techniques have been applied in different settings in

the literature. In more detail, several works study the decentralised scheduling of EV charging

[Ardakanian et al., 2014, Wen et al., 2012, Gan et al., 2013, Ma et al., 2013, Le Floch et al.,

2015, 2016]. Overall, these works consider the problem of scheduling the charging of EVs in

different decentralised scenarios, considering each EV as an individual node in their respectively

proposed algorithms. Specifically, Ardakanian et al. [2014] focus on physical grid constraints,

considering an electricity network managed by different access points, and its interaction with

a fleet of EVs. Similarly, Gan et al. [2013], Ma et al. [2013] consider decentralised valley-filling

algorithms, where the aim is to flatten demand over time and each EV sequentially updates its

own charging schedule by iterative interaction with a central utility company. In a related vein,

Wen et al. [2012] consider a decentralised algorithm which employs discrete time intervals and

selects subsets of EVs to be charged at each time interval, by iterative communication between

each EV and their aggregator. Finally, Le Floch et al. [2015, 2016] consider V2G scenarios,

where the EVs are able to inject energy back to the grid when needed. However, although all

these works study different aspects of EV charging scheduling under decentralised algorithms,

they do not consider the interaction among different self-interested aggregators.
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Furthermore, decentralised algorithms have been employed in many non-EV related smart grid

publications. Among these, an algorithm that has acquired great popularity in recent years

due to its versatility and good convergence properties is the Alternating Direction Method of

Multipliers (ADMM) algorithm [Boyd et al., 2010]. Examples of its application in the smart

grid field include power flow [Wang et al., 2017, Sulc et al., 2014, Peng and Low, 2014, Scott and

Thiébaux, 2014] and micro-grid [Munsing et al., 2017] scenarios. However, as mentioned above,

the interaction among different self-interested EV aggregators has not been considered in the

literature. We will now turn our attention to blockchain technologies and present a literature

review on smart grid related applications in the next section.

2.9 Smart Grid and Blockchain

Following the discussion in the previous section, blockchains and smart contracts present de-

sirable advantages such as fully decentralised operation, transparency and anti-tampering guar-

antees. In more detail, a blockchain is a decentralised ledger and computation environment

protected by cryptographic techniques, which allows the participants to agree on the state of the

system at all times [Christidis and Devetsikiotis, 2016]. Moreover, a smart contract is simply a

piece of code hosted publicly and immutably in the blockchain, which can receive messages from

other blockchain users and send its own following its internal logic.

Due to these interesting properties, they have been widely applied in recent smart grid related

works, both in academia and in industry, as detailed next. Specifically, Mylrea and Gourisetti

[2017], Lombardi et al. [2018] study how the smart grid infrastructure can be improved by using

blockchains and the internet-of-things. In more detail, they propose the use of smart contracts to

transparently record energy transactions, which together with connected sensors (such as smart

meters) would present a more robust, secure and efficient smart grid. Similarly, Horta et al.

[2017] focus on distribution networks and study how blockchain technologies can be utilised in

order to support distributed energy generation, EVs and demand response. In a slightly different

vein, a number of works study micro-grid scenarios [Mattila et al., 2016, Munsing et al., 2017,

Baroche et al., 2018, Zizzo et al., 2018]. More specifically, these works study the peer-to-peer

(P2P) interchange of energy in local markets, where households can trade energy with their

neighbours. In this scenarios, blockchain can introduce enhanced security and transparency, and

removes the need for a centralised operator. Finally, we turn our attention to demand response

[Akasiadis and Chalkiadakis, 2016, Pop et al., 2018]. In these works, consumers coordinate with

each other in order to provide flexible energy consumption, which is shown to yield increased

benefits than individual operation. Again, blockchains enable decentralised cooperation and

also profit distribution by using specially designed cryptocurrencies. However, despite the wide

application of blockchains and smart contracts to different smart grid settings, as described

above, the problem of decentralised EV aggregator coordination has not been addressed in the

literature.

Furthermore, we would like to note that these blockchain applications are not limited to academic

research but have already been tested in real scenarios worldwide. We will now provide several

illustrative examples. In the Netherlands, Spectral 1 manages two blockchain projects. Firstly, a

1https://spectral.energy/

https://spectral.energy/


22 Chapter 2 Background

residential P2P micro-grid in Amsterdam, where neighbour can trade energy, including surplus

from photovoltaic using a custom built token called Jouliette. Secondly, a similar project in

the city of Groningen, which has the aim of being carbon-neutral by 2025. Currently, the

project is scaling from small neighbourhoods to city-level P2P energy transactions. Similarly,

PowerLedger 2 provides similar services and participates in the largest commercial P2P trial in

the world, based in Bangkok. Finally, in a slightly different vein, WePower 3 allows individuals

to buy renewable electricity straight from the produces. Although this would not be possible

by using conventional energy markets, given the small size of households compared to wholesale

market participants, the use of blockchain and energy tokens allows coalitions of consumers to

join together to purchase energy directly from generators in a transparent and secure way.

2.10 Strategic Manipulation of Decentralised Optimisation

Algorithms

In the previous two sections we have discussed the use of decentralised algorithms to support

the coordination of multiple EV aggregators. However, although this type of approach has

significant advantages with respect to centralised mechanisms, such as removing the need of

reporting private requirements or place trust in the coordinator, it introduces a new important

problem, namely, the possibility of manipulating computation. More specifically, considering

that each aggregator is self-interested, they can decide to deviate from the algorithm in order to

increase their personal utility in detriment of the other participants. We would like to note that

this is a general issue in multi-agent systems works using decentralised optimisation algorithms,

and not restricted to EV charging.

As discussed in the previous two sections, the ADMM algorithm is extremely popular and has

been applied in many fields in the last decade [Boyd et al., 2010]. There is, however, an large

gap between the introduction of such algorithms and the study of their robustness to potential

manipulative or malicious attacks [Munsing and Moura, 2018]. These important issues are

studied in several recent works which are reviewed next. More specifically, following [Munsing

and Moura, 2018], we can classify the existing literature based on the technique utilised:

• Round-robin techniques [Liao and Chakrabortty, 2016, 2017]: these techniques seek to

identify compromised nodes by replacing the coordination step of the ADMM algorithm

by a round-robin detection algorithm which compares the proposals of different subsets of

nodes in order to identify discrepancies. Once corrupted nodes have been identified, the

coordinator switches back to the ADMM algorithm.

• Filtering techniques [Liao and Chakrabortty, 2018]: these techniques do not try to identify

compromised nodes, but to employ robust statistics and outlier detection techniques in

order to accurately compute a solution even in the presence of malignant data.

• Non-linear weighting techniques [Chen et al., 2018]: similarly to filtering techniques, these

techniques also do not try to identify compromised nodes. Instead, they employ data from

all nodes, but introduce weights to scale down the impact of suspicious nodes.

2https://www.powerledger.io
3https://wepower.network

https://www.powerledger.io
https://wepower.network
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• Convexity techniques [Munsing and Moura, 2018]: these techniques detect compromised

nodes and false-data injection in convex algorithms by checking for convexity violations.

Overall, these works focus on cyber-security, i.e. the effects of external attacks which compromise

a participant in the ADMM algorithm. Moreover, the papers discussed above focus on random

noise injection by a malignant agent who tries to disrupt the algorithm’s convergence. In contrast,

in our considered scenario we are concerned with the potential strategic manipulation arising from

internal self-interested agents (Research Challenge 4). In more detail, rather than considering

external malignant attackers, we consider algorithm participants that want to artificially increase

their utility in detriment of the other participants, and deviate from the vanilla ADMM algorithm

in order to do so. This differs from these existing works in two important aspects: (i) the

manipulated algorithm should still converge to a stable outcome; (ii) the manipulating agents

will use clever cheating techniques which stir the algorithm’ solution, as opposed to injecting

random noise.

Furthermore, we would like to note the connections of this challenge with the field of decent-

ralised mechanism design (DMD). Intimately related to the area of classical mechanism design

(see Section 2.6), DMD is concerned with the design of rules governing decentralised multi-

agent games [Dash et al., 2003]. In contrast to centralised games, where mechanism design is

mainly concerned with preference elicitation, in decentralised scenarios the participating agents

have additional important roles that include message passing and computation [Feigenbaum and

Shenker, 2002]. As a consequence, in such a setting, not only truthful preference elicitation but

also faithful computation are required in order to obtain strategy-proof cooperation. However,

there exists no works in the literature addressing the issue of faithful computation in decentralised

optimisation algorithms, such as ADMM and variants.

2.11 Online Energy Allocation

So far, we have considered the participation of EV aggregators in day-ahead electricity markets,

and the issues optimal bidding and cooperation. Recall that day-ahead bidding happens one day

in advance, so the aggregators forecast their requirements and purchase enough energy to satisfy

their forecasted demand. Then, an intrinsically different problem arises when the time comes to

schedule the available energy to the EV fleet in real-time. More specifically, the available energy

is limited (indeed, it has been purchased in advance hours earlier), and a number of EVs arrive

and depart over time, each with different energy requirements. Given these characteristics, online

scheduling algorithms, rather than offline, are appropriate. Moreover, eliciting preferences and

valuations from EV drivers is not practical or realistic, given that charging can happen daily or

several times per day, and most drivers do not have a technical background. As a consequence,

efficiency and fairness objectives are a suitable alternative.

These types of scenarios are extensively studied in various fields. Firstly, works that consider

scheduling specifically for EV applications include [Mehta et al., 2018, Sun et al., 2018, Liu

et al., 2018]. These works are concerned with cost minimisation, but are not interested in fair

energy allocation and propose offline rather than online algorithms. Other works, more in line

with our purpose, consider online EV scheduling, including [Gerding et al., 2011, 2016, Stein
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et al., 2012, Bilh et al., 2018]. However, all of these works consider mechanisms with money

instead of fairness. A recent closely related work is [De Weerdt et al., 2018]. However, while

they also analyse the computational complexity of battery charging algorithms, they focus on

offline algorithms and monetary payments instead. Also, they consider binary valuation functions

(demand fulfilled/non-fulfilled), rather than partial fulfilment.

Secondly, the extensive field of scheduling has studied related problems (see [Conway et al.,

2003, Pinedo, 2012] for overviews). However, none of the existing models considers the features

demanded by our scenario. More specifically, a model with dynamic arrivals and departures, soft

completion times, and where each element of capacity is perishable. Furthermore, the area of

power balancing and bandwidth allocation [Shah, 2012, Shi et al., 2014] has a similar flavour to

our scenario, but focuses on the coordination of multiple decentralised actors instead. Finally,

Porter [2004] investigates strategic aspects of maximizing weighted completion in online hard

real-time scheduling where tasks have weights, release times, deadlines, and durations. However,

this work does not allow partial fulfilment and does not consider metrics around fairness.

Thirdly, another relevant field is online fair division [Aleksandrov et al., 2015, Aleksandrov and

Walsh, 2017]. In more detail, these works consider the problem of food allocation from food

banks. While this literature presents some similarities, such as using an online setting and

indivisible goods, their scenarios are very different and do not consider agents that dynamically

arrive and depart over time.

The fourth and final similar area of research is that of energy efficient processor scheduling [Yao

et al., 1995, Albers, 2010]. In these works, a number of jobs need to be processed on a variable-

speed processor where each job has a release time, a deadline, and a processing volume. Certain

processing power can be allocated to each job, and this needs to be suitably scheduled. In

comparison, the scenario consider in this work is unique in that it has a multi-processor flavour,

as each EV is independent.

2.12 Price Impact Forecasting in Day-Ahead Markets

Last, but not least, we will now turn our attention to Research Challenge 6, as described in

Section 1.1. Recall that due to the nature of day-ahead markets, and electricity markets in

general, bidding takes place hours or days in advance and needs to be based on forecasts. Among

these, of special importance for cost-minimising market participants are hourly price forecasts,

which are an essential input for bidding algorithms. As a consequence, price forecasting has

received a lot of attention in the literature in recent years. In more detail, excellent reviews

of the plethora of models and techniques proposed in the literature can be found in [Aggarwal

et al., 2009, Weron, 2014]. However, as discussed in Sections 2.3.3 and 2.4, not only hourly

prices but also price impact is key for large market participants, such as —but not limited to—

EV aggregators and coalitions thereof. We would like to note that price impact curves are

intrinsically different from prices as they are functional quantities, as opposed to scalar.

There are several works in the literature investigating the issue of price impact curve forecasting

[Calmarza and de la Fuente, 2002, Villar et al., 2001, Baillo et al., 2004, Ugedo et al., 2004, 2006,

Aneiros et al., 2011, 2013]. In particular, ARIMA methods from classical time series statistics
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are utilised in [Calmarza and de la Fuente, 2002]. In a different vein, clustering algorithms that

model the considered forecast by looking for similar days in the past history are used in [Villar

et al., 2001, Baillo et al., 2004]. Furthermore, decision trees, modelling the probability of finding

different patterns in the residual curves, are considered in [Ugedo et al., 2004, 2006]. Finally, non-

parametric functional and semi-functional prediction models are studied in [Aneiros et al., 2011,

2013]. Importantly, most of these works do not strictly focus on the forecasting issues. Instead,

they present a brief residual curve forecasting technique and then focus on designing optimal

strategies to participate in the considered electricity market. Among these, only [Aneiros et al.,

2011, 2013] focus on forecasting and present a systematic study of their results. However, none

of these works consider modern forecasting techniques which can yield a significant advantage.

Moreover, none of these works exploit the correlations between the residual supply curves of

different hours.

Focusing now on modern forecasting techniques, neural networks have received huge amounts of

interest in recent years and have achieved spectacular results in many fields [LeCun et al., 2015].

Moreover, current software implementations offer great flexibility and computational efficiency.

This translates into important advantages, such as the ability to efficiently process large amounts

of data and the opportunity to use complex models. There is ample literature about the use

of neural network predictive models in electricity market settings, such as price and demand

forecasting. Excellent summaries of these efforts and their performance can be found in [Weron,

2014, 2006]. However, despite this vast literature on price and demand forecasting, to date there

exist no studies about the performance of neural networks predicting residual supply curves.

2.13 Summary

This chapter presents the literature review necessary to put the research objectives and challenges

into context. We start by providing an overview of the smart grid paradigm and the energy

markets that rule the electricity operation in most countries. This is key to understanding

the implications of the electrification of the transportation sector, which provides both great

opportunities and substantial challenges. We then focus on day-ahead markets, which are the

underlying framework of most of our contributions. More specifically, we describe the rules

governing these markets and describe how to quantify the impact of larger orders, the so-called

price impact.

Next, we focus on Research Challenge 1 and present a literature review on EV aggregation, with

a focus on participation in day-ahead markets. Although this scenario has been widely studied

in the literature in recent years, the vast majority of these works fail to account for the EV

aggregator’s price impact, an essential feature for large market participants. On the other hand,

the works that do account for price impact present several shortcomings. Firstly, price impact is

often modelled in a linear fashion, which results in a loss of accuracy. Secondly, some of the mod-

els explicitly solve the market clearing process, introducing computational complexity into the

models. Thirdly, all the works are formulated in terms of complex optimisation algorithms with

cumbersome constraints. This limits the scalability to large problem sizes and the applicability

of the coordination mechanisms discussed below.
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Then, we discuss Research Challenge 2, namely the possibility of inter-aggregator coordination

for day-ahead bidding, a scenario that has not been previously addressed in the literature.

Even though several multi-aggregator scenarios have studied in previous work, none consider

the issue of coordinating self-interested aggregators in order to achieve optimal joint operation.

Moreover, in order to address the issue of the self-interested nature of the aggregators, we consider

two different sets of techniques. Firstly, we consider the field of mechanism design in order to

design payment mechanisms that incentivise the EV aggregators to truthfully report their energy

requirements to the coordinator. While mechanism design has been widely applied in smart grid

scenarios, including EV-related works, it has not been applied for inter-aggregator coordination.

Secondly, we consider the EV aggregator problem from the perspective of cooperative game

theory, where arbitrary coalitions of EV aggregators can be formed. Although these techniques

have applied to coordination mechanisms in several smart grid scenarios, they have not been

applied in the multi-EV aggregator setting considered in this work.

Next, we turn our attention to decentralised algorithms (Research Challenge 3), which offer

significant advantages with respect to their centralised counterparts, such as better privacy and

transparency. Even though there exist works in the literature addressing these issues in related

smart grid scenarios, the challenge of decentralised multi-aggregator cooperation has not been

addressed. Moreover, we describe the potential applications of blockchain technology in our

challenge. In more detail, although blockchains have received a huge amount of attention in

the smart grid literature in the last two or three years, they have not been considered for the

decentralised coordination of EV aggregators.

However, despite the benefits arising from the decentralised mechanisms described above, they

also introduce new challenges. More specifically, the fact that not only private information,

but also computation, are distributed among the participating aggregators, introduces novel

manipulation opportunities. Although this is an important problem characteristic of distributed

optimisation algorithms in general, and thus not limited to our considered scenario, it has received

little attention in the literature. In more detail, none of the existing works study Research

Challenge 4, namely the issue of strategic manipulation coming from a internal participating

agent.

Next, we focus on the issue of online energy allocation (Research Challenge 5). This and related

topics have been widely studied in a variety of fields, such as EV management and scheduling.

However, none of the existing works consider the same setup we consider in our work. In more

detail, an online scenario with dynamic arrivals and departures, soft completion times, and

where each element of capacity is perishable. Moreover, rather than employing a mechanisms

with money and valuations, we consider efficiency and fairness objectives instead, such as envy-

freeness.

Finally, and in order to support participation in day-ahead electricity markets, we turn our

attention to the area of forecasting. More specifically, we study the forecasting of hourly price

impact curves, as captured in Research Challenge 6. Although there exists a large body of

literature addressing price and demand forecasting issues, price impact has received less attention

in the literature. Among the existing works, only a few present a systematic description of

the technique employed for forecasting, and none employ modern machine learning techniques.
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Moreover, none of the existing works exploit the correlations between the residual supply curves

of different hours.

We are now ready to present our first contribution.





Chapter 3

A Novel Price-Maker Day-Ahead

Bidding Algorithm

In this chapter we present a novel price-maker day-ahead bidding algorithm for EV aggregators,

with the aim of addressing Research Challenge 1 (see Section 1.1). In more detail, an EV

aggregator is modelled as a cost-minimiser who can make charging and scheduling decisions,

and purchases electricity in the day-ahead market to meet its clients’ charging needs. The

proposed algorithm considers the price impact of the aggregator’s orders, while being scalable

and computationally tractable. Specifically, our algorithm extends the price-taker algorithm from

[Bessa et al., 2012] by accounting for price impact by using residual supply curves [Herranz et al.,

2012]. In order to achieve this, we consider two approaches. The first utilises raw historical supply

and demand data, while the second formulation employs a quadratic convex approximation which

results in an optimisation algorithm with useful theoretical properties. Lastly, we evaluate the

performance of the proposed algorithm in an empirical case study which employs real market

and driver data from the Iberian Peninsula.

The rest of the chapter is structured as follows. Firstly, we describe the proposed EV aggregator

and the mathematical formalism to capture its operation. Secondly, we present our novel bidding

algorithm. Lastly, we present the results from our empirical case study.

3.1 The EV Aggregator Model

As detailed in Section 2.4, an EV aggregator manages the charging of a fleet of EVs which uses

its services, acting as an intermediary between the drivers and the day-ahead electricity market.

The objective of the aggregator is to minimize costs for itself and its customers [Bessa et al., 2012,

Gerding et al., 2016, Shafie-khah et al., 2016, Gonzalez Vaya and Andersson, 2015]. Examples of

EV aggregators range from a private car park, to a residential micro-grid or a virtual cooperative

with no physical proximity.

29
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3.1.1 Modelling Energy Requirements

In our model, following [Bessa et al., 2012, Gonzalez Vaya and Andersson, 2015], EVs arrive and

depart dynamically over time. When an EV i arrives to the charging point, it communicates the

desired departure time, tid, and desired state of charge at departure, SoCid, to the aggregator.

We assume that arrival time and state of charge, ti0 and SoCi0 can be automatically inferred by

the aggregator. Each EV has a maximum charging speed, P imax in kW, which depends on two

factors: the available physical infrastructure, and the EV’s battery. Without loss of generality, we

will assume that all EVs have the same charging speed, P imax = Pmax. Note that the proposed

bidding algorithm can be easily generalised to accommodate different charging speeds, which

would have little impact in the results presented in Section 3.3. The charging schedule of the EV

is then left at the aggregator’s discretion, which can choose when to perform the charging while

guaranteeing the desired state of charge by departure time. This flexibility allows charging the

battery in an informed way, rather than randomly, or at arrival, providing cheaper electricity

costs and optimised operation.

Due to the nature of the day-ahead market, in which bids need to be submitted a number of hours

prior to actual delivery time, bidding is based on several forecasts, including EV requirements

and electricity prices, as detailed in the next section.

3.1.2 Forecasting of Energy Requirements

As day-ahead markets close around 12h prior to electricity delivery time (see Section 2.3), the

EV aggregator needs to forecast its electricity requirements 12 to 36h in advance. The amount

of purchased electricity needs to be enough to satisfy its clients’ needs, at the cheapest possible

price. Energy requirements are defined in a similar fashion as in [Bessa et al., 2012, Liu et al.,

2017, Gonzalez Vaya and Andersson, 2015].

In more detail, the energy requirements of each EV driver translate into two requirement vectors,

rmin,i and rmax,i, each with 24 entries. Specifically, rmin,i
t is the amount of energy needed at hour t

assuming charging has been left for the last possible moment and that the charging requirements

need to be fulfilled. Conversely, rmax,i
t is the amount of energy needed at hour t assuming charging

starts as soon as possible. For example, consider an EV arriving at the EV aggregator at 3pm

and stating 9pm departure time and 8kWh charging needs with Pmax = 3kW. Then, rmin,i would

be as specified in Table 3.1. Specifically, charging can happen at any time, at a maximum rate

of Pmax = 3kW, but if 6pm is reached with no charging done, at least 2kW of energy needs to

be charged between 6-7pm in order to fulfil the EV driver requirements. The same applies with

3kW between 7-8pm and 8-9pm. Similarly, for the same scenario, the requirement vector rmax,i

would be as specified in Table 3.2.

Then, in order to provide mathematical tractability, two global energy requirement vectors, Rmin

and Rmax, can be obtained by summing the hourly requirements of all the N EVs associated to

the particular aggregator, i.e. Rmin
t =

∑N
i=1 r

min,i
t and Rmax

t =
∑N
i=1 r

max,i
t . Note that, although

these aggregated constraints do not exactly capture the individual requirements of each EV,

they have been widely employed in the literature [Bessa et al., 2012, Bessa and Matos, 2013a,b,

Gonzalez Vaya and Andersson, 2015]. The reasons are the fact that considering constraints
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rmin,i
3 rmin,i

4 rmin,i
5 rmin,i

6 rmin,i
7 rmin,i

8 rmin,i
9

0 0 0 2 3 3 0

Table 3.1: Example of requirement vector rmin,i

rmax,i
3 rmax,i

4 rmax,i
5 rmax,i

6 rmax,i
7 rmax,i

8 rmax,i
9

3 3 2 0 0 0 0

Table 3.2: Example of requirement vector rmax,i

for each individual EV renders the problem unfeasible even for moderate problem sizes and

the intrinsic uncertainty of the forecasts used for bidding. However, in order to compare this

approximate formulation with the exact one that considers each EV individually, we present an

empirical evaluation in Section 3.3.4.3.

We will denote the quantities that need to be forecasted with a hat: hourly energy requirements,

R̂min
t and R̂max

t , hourly number of available EVs, N̂t, and hourly price impact functions, P̂t.
Given that considering advanced forecasting techniques is outside of the scope of this chapter,

we will consider two simple methods commonly used in the literature [Bessa et al., 2012, Gonzalez

Vaya and Andersson, 2015]. The first technique uses data from the day before as the forecast for

the day after. The second considers a perfect forecast, in which exact future information is avail-

able. Note that, as will be shown in Section 3.3, the proposed bidding algorithm achieves good

results with both forecasting techniques. However, accurate forecasting does present reduced

energy costs. In order to address these forecasting issues, we turn our attention to day-ahead

market forecasting techniques in Chapter 9.

We are now ready to formalise our proposed bidding algorithm.

3.2 A Novel Price-Maker Day-Ahead Bidding Algorithm

Now that the characteristics of the day-ahead market (see Section 2.3) and the role of the

EV aggregator (see Section 3.1) have been defined, we proceed to detail our proposed price-

maker day-ahead bidding algorithm. As mentioned above, the algorithm extends the price-taker

algorithm from [Bessa et al., 2012] by accounting for price impact by using residual supply curves

[Herranz et al., 2012].

The exact problem is as follows. Given an EV aggregator with capacity for N EVs, find the

optimal distribution of energy quantities to bid across the 24 hourly slots in the day-ahead

market, E = (E0, . . . , E23), in order to satisfy its clients’ charging needs while minimising the

total cost of the purchased energy. We assume that the agent’s bids are set at maximum price,

pmax, in order to guarantee execution.
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Formally, the proposed optimization problem is defined as follows:

min
E

∑
t

P̂t(Et) · Et (3.1a)

t∑
j=0

Ej ≥
t∑

j=0

R̂min
j , ∀t = 0, . . . , 23 (3.1b)

t∑
j=0

Ej ≤
t∑

j=0

R̂max
j , ∀t = 0, . . . , 23 (3.1c)

Et/1 hour ≤ N̂tPmax , ∀t = 0, . . . , 23 (3.1d)

Et ≥ 0 , ∀t = 0, . . . , 23 (3.1e)

In more detail, the objective function (Eq. 3.1a) minimizes the total cost of the purchased

energy. As explained in Sections 2.3.3 and 3.1.2, P̂t(Et) is the forecasted price at hour t if the

EV aggregator bids a quantity Et. The constraints guarantee that the amount of purchased

energy is enough to satisfy the forecasted demand (Eq. 3.1b), that it is not purchased before the

forecasted arrival of the EVs (Eq. 3.1c), that the energy purchased at each hour is not greater

than the amount that the aggregator is able to charge at the given hour, based on the forecasted

number of available vehicles (Eq. 3.1d) and that energy quantities are non-negative (Eq. 3.3e).

It is worth noting that the number of constraints is always 96, independent on the fleet size.

However, in contrast with the original algorithm without price impact [Bessa et al., 2012], the

novel optimization problem given by Eqs. 3.1a, 3.1b, 3.1c, 3.1d, 3.3e is no longer linear, making

the problem more complex to solve.

Specifically, due to the arbitrary nature of the price impact functions obtained from real market

historical data, the optimisation problem is non-convex and non-linear. As a consequence, it

presents a complex optimisation landscape with multiple local minima, preventing solvers from

obtaining the global minimum. We will henceforth refer to this minimisation problem as the

raw formulation. In order to overcome these issues, we propose a convex approximation, in

which any local minimum is actually globally optimal. The advantage of this approximation, the

convex formulation, is that the global minimum is guaranteed to be found, which has attractive

theoretical properties for the coordination mechanisms proposed in Chapters 4 and 5.

In more detail, we approximate the price impact functions, P̂t by fitting a convex quadratic

curve, P̂convex
t = atE

2
t + btEt + P̂t(0), where all the coefficients at and bt are restricted to be

positive. This guarantees the convexity of the optimisation problem, which in mathematical
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Figure 3.1: Real and approximated price impact curves, showing a good (LHS) and a poor
(RHS) approximation. Source: OMIE, 01/11/2016, LHS: 3rd hour, RHS: 12th hour.

terms takes the following form:

min
E

∑
t

P̂convex
t (Et) · Et (3.2a)

t∑
j=0

Ej ≥
t∑

j=0

R̂min
j , ∀t = 0, . . . , 23 (3.2b)

t∑
j=0

Ej ≤
t∑

j=0

R̂max
j , ∀t = 0, . . . , 23 (3.2c)

Et/1 hour ≤ N̂tPmax , ∀t = 0, . . . , 23 (3.2d)

Et ≥ 0 , ∀t = 0, . . . , 23 (3.2e)

This resulting optimisation problem is then convex and can be readily solved optimally with

little computational burden by using, for example, the SLSQP algorithm [Nocedal and Wright,

2006].

However, this convex approximation introduces a deviation from real data which will affect the

accuracy of the solution. The degree of deviation depends on the price impact curves for the

considered day, ranging from very good fit to larger discrepancies, as shown in Figure 3.1. The

performance of the raw and convex approximations is evaluated and compared in Section 3.3.4.1.

Finally, in a slightly different vein, we now turn our attention to considering individual EV con-

straints, as discussed in Section 3.1.2. Specifically, the minimisation problem will now decide on

an energy allocation for each individual EV, while also imposing individual constraints. Form-

ally, let Eit be the energy allocation for EV i at hour t and Ei =
(
Ei0, . . . , E

i
23

)
. Moreover, let

nit be the boolean variable (0 or 1) representing whether EV i is available for charging at hour
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t. The exact bidding algorithm is then given by:

min
E1,...,EN

∑
t

[(
N∑
i=1

Eit

)
· P̂convex

t

(
N∑
i=1

Eit

)]
(3.3a)

t∑
j=0

Eij ≥
t∑

j=0

r̂min,i
j , ∀t = 0, . . . , 23 , ∀i = 1, . . . , N (3.3b)

t∑
j=0

Ej ≤
t∑

j=0

r̂max,i
j , ∀t = 0, . . . , 23 , ∀i = 1, . . . , N (3.3c)

Eit/1 hour ≤ n̂itPmax , ∀t = 0, . . . , 23 , ∀i = 1, . . . , N (3.3d)

Eit ≥ 0 , ∀t = 0, . . . , 23 , ∀i = 1, . . . , N (3.3e)

Note that, in this case, the number of decision variables and the number of constraints are,

respectively, 24N and 96N , where N is the size of the aggregator. Recall that, in contrast,

the aggregated formulation presents 24 decision variables and 96 constraints, independent of the

number of EVs. As a consequence, the scaling of the exact formulation is much worse that the

approximation. We discuss these issues in more detail in Section 3.3.4.3, where we present an

empirical evaluation comparing the exact and approximate formulations.

3.3 Case Study

This section describes an empirical case study, based on real data, with the aim of testing the

performance of the bidding algorithms proposed in this Chapter. We will start by describing the

empirical scenario, detailing the considered EV aggregators and market and real driver behaviour

data. Then, the results concerning the performance of the proposed algorithms will be presented

and described. All the data from this empirical case study is available in [Perez-Diaz et al.,

2018f].

3.3.1 EV Aggregator Characteristics

This case study considers a night-time residential scenario in which EVs arrive in the evening

and need to be charged by the next morning, similarly to [Bessa et al., 2012]. With respect

to the EV fleet, we consider medium-size electric vehicles with battery capacities of 24kWh

[Heydarian-Forushani et al., 2016, Gerding et al., 2016]. Charging speed is considered to be the

same for all EVs and set to Pmax = 3.7kW [Gerding et al., 2016, Bessa et al., 2012]. Charging

efficiency is considered to be 90%, meaning that 10% of the consumed electricity is lost and does

not contribute to the charging of the battery [Yao et al., 2016, Su and Chow, 2012].

The considered fleet sizes range from 100 000 to 3 000 000 EVs. These values correspond to

EV penetration rates of 0.27% and 8.14% in the Iberian Peninsula, whose electricity market

is considered in the simulations. Note that European targets for EV penetration include, for

example, 10% in the UK by 2020 [ECCC, 2016].



Chapter 3 A Novel Price-Maker Day-Ahead Bidding Algorithm 35

0 1 2 3 4 5 6
·104

0

50

100

150

Clearing
price

Volume (MWh)

Pr
ic

e
(e

/
M

W
h)

Raw orders
Matched

0 1 2 3 4 5 6
·104

0

50

100

150

Rejected
supply orders

Volume (MWh)

Pr
ic

e
(e

/
M

W
h)

Raw
Extended

Figure 3.2: (LHS) Raw and matched market orders, together with the hourly clearing price.
(RHS) Appending the rejected supply orders (dashed) to the accepted matched supply curve

(solid). Source: OMIE, 02/11/2016, 11th hour.

3.3.2 Day-Ahead Market Data

Real market data from the Iberian day-ahead market, OMIE, is employed in the simulations

[OMIE, 2017]. Detailed order data is available online, containing hourly supply and demand

data down to individual order level. All simulations utilize OMIE weekday market data from

November and December 2016, and January and February 2017. Weekends are removed in order

to eliminate weekly seasonality [Herranz et al., 2012].

In more detail, all European markets employ the EUPHEMIA [EUPHEMIA, 2015] clearing

algorithm and allow different types of orders, some with complex requirements. Roughly, the

clearing algorithm proceeds as follows. First, it aggregates all the supply and demand orders

and finds the intersection point. This determines the accepted orders, and a preliminary clearing

price. Secondly, the particularities of the accepted orders are taken into account, which effectively

shifts the previously obtained clearing price, determining the final hourly price.

Specifically, the historical data available from OMIE has two types of data. Firstly, the offered

orders coming from all market participants for every hour and day of the year, corresponding to

the first stage as defined above. Secondly, the matched accepted orders resulting from the second

stage of the clearing algorithm. An example of these two types of data is presented in Figure 3.2.

Given that modelling the exact clearing process is impossible, given that the available data does

not contain the details of order types, approximations are employed in the literature [Vázquez

et al., 2014].

The procedure works as follows. Firstly, for each considered day and hour, the matched orders

are aggregated together to build supply and demand curves and to determine the clearing price.

This clearing price corresponds to the real hourly price. Secondly, in order to consider the

price impact of the exogenous buy orders from our EV aggregators, we look at the unaccepted

supply orders. Specifically, the unaccepted tail of the offered supply curve is appended to the

intersection of the matched curves described above, as shown in Figure 3.2. Then, the bids from

the external aggregators can be integrated in the extended supply and demand curves, and the

intersection of the two will determine the final clearing price with the aggregators’ bids.

Finally, residual supply curves are employed to build price impact functions as described in

Section 2.3.3. In order to obtain the convex approximation of price impact functions described
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in Section 3.2, we proceed as follows. The interval 0-10 GWh is discretised in 50 equally spaced

points, and the clearing price at each point is computed. Then, the corresponding quantity-

clearing price pairs can be interpolated by using a quadratic curve as described in Section 3.2.

3.3.3 Driver Behavioural Data

In order to model the behaviour of the EVs in our simulations, we use real data from the Spanish

driver behaviour survey MOVILIA [Ropero Ortega, 2014]. This survey studies a plethora of

driving patterns, among which are the average number of daily commutes, length and time of

this trips, etc. Specifically, driver behaviour for our simulations is based on [Alonso et al., 2014],

which provides a convenient analysis of MOVILIA data which determines the distribution of

times for the first and last trip from and to home. These distributions are given in Tables 3.3

and 3.4. To account for driver mobility, each EV will make use of the aggregator’s services with

80% probability every day.

With respect to energy requirements, the state of charge of an EV at arrival and departure

times is drawn from a uniform distribution as follows: SoC0 ∈ [SoCtotal/4,SoCtotal/2] and

SoCf ∈ [2 · SoCtotal/3,SoCtotal]. Consequently, the EV charging requirements range between

a large percentage of the battery (up to 75%), to a small percentage (down to 16%), accounting

for long and short trips home, a choice consistent with the literature [Yao et al., 2016].

Time 19h 20h 21h 22h 23h
Probability 0.16 0.25 0.32 0.12 0.15

Table 3.3: Possible arrival times rounded to the nearest hour, with their respective probab-
ilities.

Time 6h 7h 8h 9h 10h
Probability 0.04 0.02 0.34 0.5 0.1

Table 3.4: Possible departure times rounded to the nearest hour, with their respective prob-
abilities.

The results from the simulations are described next, analysing the performance of the bidding

algorithm proposed in Section 3.2.

3.3.4 Results: Performance of the Bidding Algorithm

Now that the empirical setting has been detailed, we are ready to present the results of the

experiments. Firstly, we compare the two formulations of the novel bidding algorithm proposed

in Section 3.1.2, namely, the raw and convex formulations. Secondly, we assess the performance

of our algorithm by direct comparison with two other existing algorithms. Third and lastly, we

compare the approximate and exact formulations.

3.3.4.1 Comparing the Raw and Convex Formulations

We now compare the performance of the two formulations of our proposed bidding algorithm:

the raw formulation given by Eqs. 3.1a, 3.1b, 3.1c, 3.1d, 3.3e and the convex approximation



Chapter 3 A Novel Price-Maker Day-Ahead Bidding Algorithm 37

given by Eqs. 3.2a, 3.2b, 3.2c, 3.2d, 3.2e. Both formulations are solved using the SLSQP

algorithm, specifically the implementation from [Jones et al., 2001]. Moreover, we present two

separate results in the raw case. This is motivated by the fact that the problem is non-convex

and the solution provided by the solver is not globally optimal in general, instead depending

on the solver’s initial guess. A common technique to address this issue is basin-hopping [Wales,

2003]. This method sequentially solves the non-convex minimisation problem using an slightly

randomised previous solution as initial guess. However, there is no guarantee of global optimality.

In this empirical evaluation, we will solve the raw optimisation problem with and without basin-

hopping. In both cases, the initial guess is set to the optimal solution provided by the algorithm

without price impact, which has a linear objective and can easily be solved optimally [Bessa

et al., 2012].

In more detail, we present a comparison of EV aggregators of different sizes employing both

formulations and perfect forecasting, during four months of day-ahead trading, as specified in

Section 3.3.2. The results are shown in Figure 3.3. As seen for small EV fleet sizes, both formula-

tions achieve very similar results. However, as the price impact of the EV aggregator grows, the

raw formulation without basin-hopping struggles to find the global minimum, resulting in worse

solutions than the convex approximation. The raw formulation with basin-hopping explores

the solution space and consistently achieves better solutions than the convex approximation.

However, these cost differences are very small. Given the larger computational complexity of

basin-hopping (which needs to repeatedly solve the optimisation problem changing the initial

guess), the very close performance achieved by both formulations, and the theoretical guarantees

offered by convexity, the convex formulation will be employed in all the subsequent Chapters.
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Figure 3.3: Average daily payments per EV, for both bidding algorithm formulations and
for different EV aggregator sizes, employing perfect forecasts.

3.3.4.2 Comparison with Benchmark Algorithms

We now compare the proposed bidding algorithm (using the convex approximation) with two

existing bidding algorithms. The first of these algorithms is a simple zero-intelligence algorithm

which acts as a lower performance bound and simply charges each EV as soon as it becomes

available, without any further consideration to future prices or requirements [Bessa et al., 2012,

Alonso et al., 2014]. The second is the price-taker algorithm proposed by Bessa et al. [2012],

which inspired our proposed price-maker algorithm. We will henceforth refer to these strategies
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Figure 3.4: Comparison of the three bidding strategies for a single day: dumb, without price
impact and with price impact for the same scenario where the aggregators manage one million
EVs. Curves represent hourly prices, both with and without the EV aggregator bids, and
correspond to the LHS axis. Bars represent the amount of energy purchased at each hourly
slot by the EV aggregator and correspond to the RHS axis. Market data corresponds to OMIE,

09-10/11/2016.

as dumb and noPI respectively, and to our strategy with price impact as PI. Moreover, depending

on the employed forecast, naive or perfect (see Section 3.1.2), we will refer to the PI strategy as

PI naive and PI perfect.

To demonstrate the behaviour of each algorithm, an example of the bidding decisions of the

three compared strategies for a given day is presented in Figure 3.4. Here, we consider an EV

aggregator managing a fleet of one million EVs, corresponding to an EV penetration of 2.71%

in the Iberian Peninsula. For this magnitude of EV penetration, price impact is already very

pronounced and plays an essential role in the bidding process. Figure 3.4 provides important

insight into the behaviour of each of the three strategies. Specifically, the dumb strategy forecasts

that EVs come home in the evening and tries to charge their batteries as soon as they are

available. At this time of the day, prices are highest and large orders from the EV aggregator

push them even higher. The second strategy, noPI, is able to take advantage of the fact that
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Figure 3.5: Average daily payments per EV, for each different bidding strategy and for
different EV aggregator sizes. Both with naive and perfect forecasts.
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Figure 3.6: Percentage payment reduction when using the novel algorithm with price impact,
compared to its counterpart without price impact.

EVs stay idle during the night and only need to be charged by the morning. By forecasting the

EV requirements as explained in Section 3.1.2, it obtains the bidding schedule that provides the

cheapest hourly prices. However, by neglecting price impact, the bids are mainly concentrated

in three hours, and price impact is high. Lastly, our proposed strategy is able to mitigate price

impact by spreading its bids in time, achieving reduced energy costs.

Next, we consider the average results over the entire four-month time period. Specifically, we

compare the average daily payments per EV for each strategy as we vary the size of the EV fleet.

Results are shown in Figure 3.5. In more detail, the dumb bidding strategy provides the highest

payments, due to its inability to consider hourly electricity prices. The results of the noPI and

PI strategies are comparable when the size of the EV fleet is moderate, but as the fleet gets

larger, the noPI strategy incurs significantly increased payments, approaching the results from

the dumb strategy for large fleets. In contrast, the PI strategy is able to maintain a sub-linear

payment increase as the fleet grows, providing consistent payment reduction. In more detail,

the payment reduction percentage between noPI and PI strategies is shown in Figure 3.6. We

can see that, once the price impact of the EV fleet becomes appreciable, with a size of around

500 000 vehicles, the improvement percentage grows linearly with fleet size, achieving around

10% improvement for EV penetration values around 8%, and higher percentages for larger fleets.
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Also, it is important to note the performance difference between the perfect and the naive

forecasts (see Section 3.1.2). The average payment improvement comparing the results of the

proposed strategy with price impact with perfect and naive forecasts is around 2%. The im-

portance of the forecasting technique is more crucial for small fleet sizes, where a poor forecast

can cause the PI strategy to perform slightly worse than the noPI one. This is due to the PI

strategy spreading bidding to hours with forecasted mid-range prices which, with a poor forecast,

can have high prices in reality. In contrast, when employing the perfect forecast, the PI strategy

consistently outperforms noPI.

3.3.4.3 Comparison Between the Exact And Approximate Formulations
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Figure 3.7: (LHS) Runtimes for the approximate algorithm. (Center) Runtimes for the
exact algorithm. (RHS) Normalised error between the solutions of the exact and approximate
algorithm. Results are averaged across the first 15 days of November 2015 and error bars

represent standard error.

In previous experiments, we have studied the performance of our proposed bidding algorithm

in comparison with previous algorithms from the literature, and the effect of the convex ap-

proximation. Now, we turn our attention to the effects of aggregating together individual EV

constraints, as described at the end of Section 3.2. To this end, we run both the approximated

algorithm (Eqs. 3.2a, 3.2b, 3.2c, 3.2d) and the exact algorithm (Eqs. 3.3a,3.3b, 3.3c, 3.3d) on

the first 15 trading days of November 2016, in the same night-time scenario considered in the

previous two experiments.

Given the computational complexity of the exact algorithm, it is unfeasible to use it even in

moderate problem sizes, so we will focus the analysis on small scenarios varying the number of

EVs. For each of this scenarios, we will compute the exact and the approximated solutions, Eexact

and Eapprox, together with runtimes for each algorithm. In order to assess the approximation

error, we compute the normalised mean square errors for each instance, given by:

error
(
Eexact,Eapprox

)
=

1

24

23∑
t=0

(
Ẽexact
t − Ẽapprox

t

)2
where Ẽapprox = Eapprox/ ‖Eapprox‖2 and Ẽexact = Eexact/ ‖Eexact‖2 are the normalised solution

vectors. This normalisation is introduced to remove dependence on the number of EVs and

thus allow fair comparison across simulations. Results are presented in Figure 3.7. In more

detail, runtimes for both algorithms are shown in the left-hand side and centre plots, and the

dependence of the normalised error with the number of EVs in the right-hand side. With respect

to runtimes, the approximated algorithm can be run very quickly (∼1 sec)and does not show a

dependence on the number of EVs. On the contrary, the exact algorithm scales exponentially

with the number of EVs taking up to 20 hours to compute the solution in scenarios with 100
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EVs. With respect to the approximation error, and in this particular experiment, we do not see

any particular dependence on the number of EVs. Of course, one cannot extrapolate conclusions

for the larger problem sizes considered in this Chapter and in the rest of this thesis. However,

the poor scaling and hence limited applicability of the exact algorithm motivate the need for the

proposed approximated algorithm, as detailed in Section 3.2.

3.4 Summary

This chapter addresses Research Challenge 1 with respect to day-ahead markets, by presenting

a novel price-maker day-ahead bidding algorithm for EV aggregators. By taking into account

the price impact of the aggregator’s bids, our algorithm provides greatly reduced energy costs

for large aggregators when compared to existing price-taker algorithms. With respect to ex-

isting price-maker algorithms, the proposed algorithm is formulated in terms of simple linear

constraints, resulting in a very scalable optimisation problem. In more detail, two different for-

mulations of the optimisation problem are proposed: the raw formulation and a convex approx-

imation. While the raw formulation achieves slightly better results, the convex approximation is

computationally faster and has the theoretical guarantee of finding the global minimum, which

will prove essential for some of the results presented in later chapters.

Moreover, we evaluate the performance of the proposed algorithm in an empirical case study

with real market and driver data from the Iberian Peninsula. More specifically, we benchmark

the bidding algorithm in a night-time scenario where drivers arrive in the evening and depart

in the morning. We use historical market data to simulate four months of day-ahead trading.

Also, EV requirements are based on real driver behaviour data, including the distribution of

arrival times in the evening and departure times in the morning. We compare our proposed

bidding algorithm with two existing models, which serve as a benchmark. We find that, while

for small aggregators the results are comparable, as the aggregator grows in size, significant

cost reductions are achieved by our proposed algorithm. More specifically, we achieve over 10%

savings for an EV penetration rate of 8% in the Iberian Peninsula.

This will be key when we consider joint multi-aggregator bidding, as detailed in Chapters 4

and 5, where bidding volume is high and price impact very significant. Finally, we evaluate

the possibility of using an analogous minimisation formulation which considers each EV separ-

ately and thus produces an exact solution, at the expense of losing computational tractability.

Results indicate that this exact formulation presents very poor scaling even with small problem

sizes with hundreds aggregators. With respect to the approximation error incurred by the pro-

posed approximate formulation, our experiments do not show any dependence on the number of

aggregators.





Chapter 4

Inter-Aggregator Coordination: a

Mechanism Design Approach

The previous chapter explored the day-ahead bidding of an EV aggregator in order to obtain the

energy needed to charge its clients’ vehicles. By employing a bidding algorithm, the aggregator

can obtain the day-ahead bidding schedule that minimises energy costs while being able to satisfy

its clients’ needs. This way, the aggregator optimises the charging of the vehicles it manages,

achieving lower energy costs and less grid impact. In addition, given the decentralised structure

of electricity markets in most countries, any entity can become a market participant. This

fact, together with the fast growth of the EV industry and the ambitious worldwide penetration

targets for the near future, motivates studying a multi-aggregator scenario.

This will be the objective of this and subsequent chapters, which will address Research Challenge

2 (see Section 1.1). In more detail, we consider a number of independent and self-interested

EV aggregators competing in the same day-ahead market. Similarly to the benefits of EV

aggregation versus individual EV operation, we will study the potential benefits arising from

inter-aggregator cooperation. This is not without challenges, given the self-interested nature

of the EV aggregators. In order to overcome this issue, in this chapter we propose a novel

coordination mechanism based on mechanism design techniques which incentivises cooperation

rather than strategic manipulation. In more detail, we propose the use of a centralised third-

party coordinator, which incentivises the participating aggregators to truthfully report their

energy needs, and bids on their behalf in the day-ahead market. More specifically, it proceeds in

three stages. Firstly, the individual requirements reported by the EV aggregators are combined

together, and the coordinator applies a bidding algorithm to obtain day-ahead energy in bulk

for all the participants. Secondly, it distributes the obtained energy across the participants

taking into account their individual constraints. Thirdly, it computes payments in a way that

promotes cooperation, instead of speculation to increase personal benefit in detriment of the

other participants. This coordination mechanism is visually depicted in Figure 4.1.

This proposed coordination mechanism detailed in this chapter is generic and independent of

the particular bidding algorithm employed. However, the simple constraint formulation and

little computational burden characteristic of the novel bidding algorithm introduced in Chapter

43
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Figure 4.1: Graphical depiction of the proposed coordination mechanism.

3 guarantee good scaling with the number of participating aggregators and fleet size. It is also

worth noting that, in order to operationalise the coordination mechanism, there is no need for any

additional infrastructure; it suffices to have a form of communication between each participating

aggregator and the coordinator, such as an Internet connection.

The rest of the chapter is structured as follows. In Sections 4.1, 4.2 and 4.3 we detail the three

stages of the proposed coordination mechanism. Then, in Section 4.4, we briefly discuss the

details of a potential real implementation. Finally, in Section 4.5, we evaluate the performance

of the novel coordination mechanism in an empirical case study which uses real market and

driver data. Throughout this chapter, we consider an EV aggregator as proposed in Chapter

3. Specifically, energy requirements are modelled as in Section 3.1.1. Despite the proposed

coordination mechanism being independent of the underlying bidding algorithm, we will focus

on the bidding algorithm proposed in Section 3.2.

4.1 Stage 1: Coordinated Bidding

In this first stage, the coordinator receives and combines the requirements reported by each

of the participants. Let n be the number of EV aggregators, R̂min,i
t and R̂max,i

t aggregator i’s

forecasted energy requirements for hour t , and N̂ i
t the number of available EVs from aggregator

i, as specified in Section 3.1.1. The combined requirements of all the aggregators are then:

R̂min
t =

n∑
i=1

R̂min,i
t (4.1)

R̂max
t =

n∑
i=1

R̂max,i
t (4.2)

N̂t =

n∑
i=1

N̂ i
t (4.3)

In order to find the optimal global energy bids, we can use the bidding optimisation algorithm

proposed in the previous Chapter, given by Eqs. 3.2a, 3.2b, 3.2c, 3.2d, 3.2d, but now using
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the combined requirements given by Eqs. 4.1, 4.2, 4.3. This will result in obtaining a global

day-ahead energy volume Eglobal
t for each hour t.

4.2 Stage 2: Hourly Energy Distribution

In the second stage, the purchased energy needs to be distributed among the participating

EV aggregators, based on their reported requirements. In particular, focusing on the bidding

algorithm proposed in Chapter 3, the energy distribution problem can be formulated as follows.

Letting Eit be the amount of energy allocated to EV aggregator i at time t, find Eit for t =

0, . . . , 23 and i = 1, . . . , n satisfying the following constraints:

t∑
j=0

Eij ≥
t∑

j=0

R̂min,i
j , ∀t = 0, . . . , 23; ∀i = 1, . . . , n (4.4a)

t∑
j=0

Eij ≤
t∑

j=0

R̂max,i
j , ∀t = 0, . . . , 23; ∀i = 1, . . . , n (4.4b)

Eit/∆t ≤ N̂ i
tPmax, ∀t = 0, . . . , 23; ∀i = 1, . . . , n (4.4c)

Eit ≥ 0, ∀t = 0, . . . , 23; ∀i = 1, . . . , n (4.4d)

n∑
i=1

Eit = Eglobal
t , ∀t = 0, . . . , 23 (4.4e)

This is a so-called constraint satisfaction problem (CSP), in which the allocation of the existing

resources that satisfies the imposed constraints needs to be found [Tsang, 1996, Gent et al.,

2006]. In more detail, Eqs. 4.4a, 4.4b, 4.4c, 4.4d ensure that each EV aggregator has enough

energy to satisfy its requirements for each hour. Eq. 4.4e makes sure the sums of the allocated

hourly energies add up to the available global energy.

Existence of a solution is guaranteed by definition of the optimization problem, Eqs. 3.2a,

3.2b, 3.2c, 3.2d, 3.2e. However, uniqueness is not guaranteed. For example, consider the case

with two identical EV aggregators who report the same preferences to the coordinator. If the

coordinator’s non-zero bids are E1 = 200 and E2 = 300, we could do an even distribution

E1
1 = E2

1 = 100 and E1
2 = E2

2 = 150, or any other combination E1
1 = 100 + e ; E2

1 = 100 − e
and E1

2 = 150− e ; E2
2 = 150 + e for each e ∈ [0, 100]. Nonetheless, every possible distribution is

entirely valid and will satisfy each EV aggregator’s reported requirements.

This distribution problem given by Eqs. 4.4a, 4.4b, 4.4c, 4.4d, 4.4e grows linearly with the

number of participating EV aggregators, n, being the number of constraints 96n + 24. With

this particular choice of model constraints, given by the bidding algorithm proposed in Chapter

3, computation time scales linearly with the number of EV aggregators and fleet size, and

presents very little computational burden. This constraint problem can be adapted to other

bidding models by employing their requirements definition, and their constraints. However, the

performance and scalability will depend on the particular model considered.
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4.3 Stage 3: Payment Distribution

So far, the coordinator bids in the day-ahead market and distributes the energy to the individual

EV aggregators. The third stage decides how to compute payments appropriately, so that each

aggregator pays an appropriate price for the electricity it has obtained, and strategical manipu-

lation is prevented or minimised. We propose using mechanisms from the Vickrey-Clarke-Groves

(VCG) family [Nisan et al., 2007] which incentivise cooperation across the participating aggreg-

ators. In these mechanisms, the payments reflect the marginal cost that each EV aggregator

incurs on the total overall cost. However, in our experiments (discussed in Section 4.5) we find

that the typical VCG mechanism, known as VCG with Clarke pivot payments [Nisan et al., 2007]

and henceforth referred to here as pure VCG, results in too high payments in this setting. This

is a common issue, given that VCG is not strongly budget-balanced Guo and Conitzer [2009].

To alleviate this problem, we consider two so-called redistribution mechanisms, which attempt

to redistribute some of the pure VCG payments back to the aggregators. The three payment

mechanisms are detailed next.

4.3.1 Pure VCG

The VCG family of mechanisms are a classical approach from the field of mechanism design

and have the desirable property of being truthful under certain conditions, which in our case

means that reporting true requirements will yield each aggregator the best benefit and there is

no rational incentive for cheating [Vlassis, 2007, Nisan et al., 2007]. This is essential, as otherwise

participants could develop strategies to cheat the system, by reporting false preferences to the

coordinator if a greater personal benefit is foreseen. Now, VCG requires global optimality1 in

order to guarantee truthfulness which, from the perspective of the EV aggregators, is achieved

when using the convex formulation of the proposed bidding algorithm. It is worth noting that

solving the convex approximated problem does not actually yield a globally optimal solution

to the bidding problem, due to the deviations produced by the approximation. However, both

the allocation and the payments are calculated based on the approximated function, which EV

aggregators are unable to influence. Hence, they have no opportunity to change the outcome to

their benefit by being untruthful about their requirements.

Formally, let R̂min = (R̂min
0 , . . . , R̂min

23 ), R̂max = (R̂max
0 , . . . , R̂max

23 ) and N̂ = (N̂0, . . . , N̂23) be

the vectors of aggregated requirements. Let E(R̂min, R̂max, N̂) = (Eglobal
0 , . . . , Eglobal

23 ) = Eglobal

be the energy schedule provided by the bidding algorithm (Eq. 3.2a) with requirements R̂min,

R̂max and N̂ . Let Pconvex(E) = (P convex
0 , . . . , P convex

23 ) = Pconvex be the forecasted clearing

prices using the convex approximation. Let P(E) = (P0, . . . , P23) be the real hourly clearing

prices after market closure.

Then, the total aggregated forecasted cost incurred by the coordinator is given by:

Costconvex(R̂min, R̂max, N̂) = E(R̂min, R̂max, N̂) · Pconvex(E(R̂min, R̂max, N̂))

1More precisely, the allocation needs to be optimal in range [Nisan and Ronen, 2007].
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and the real total aggregated cost incurred by the coordinator (when the market is cleared) is

given by:

Cost(R̂min, R̂max, N̂) = E(R̂min, R̂max, N̂) · P(E(R̂min, R̂max, N̂))

Given the intrinsic uncertainty of the forecasts, and the use of the convex approximation, in

general these two cost functions are not equal:

Cost(R̂min, R̂max, N̂) 6= Costconvex(R̂min, R̂max, N̂)

Furthermore, let R̂min
−i , R̂max

−i and N̂−i be the vectors of requirements without the contribution

from the i-th EV aggregator. Then, the VCG payment of EV aggregator i to the coordinator,

pi, is given by:

pi = Costconvex(R̂min, R̂max, N̂)− Costconvex(R̂min
−i , R̂

max
−i , N̂−i) (4.5)

Note that, to compute VCG payments, in case of n EV aggregators, the coordinator needs

to compute the optimal solution n + 1 times (once to compute the total costs when all EV

aggregators are present, and then once for each EV aggregator when they are removed from the

market). Consequently, in order for this coordination mechanism to be scalable and applicable,

the bidding algorithm needs to be computationally quick and have good scaling properties. Both

requirements are satisfied by the bidding algorithm presented in Chapter 3 and used throughout

this chapter. As a result, we can compute VCG payments for very large settings.

The VCG payments effectively mean that the price paid by each participant reflects the impact

that its requirements have on the overall constraints, i.e. an aggregator which reports more

flexible requirements will pay less than another with tighter constraints, which is a very desirable

property when considering the fairness of the payments. Moreover, this Pure VCG payment

mechanism is truthful, meaning that it is in the best interest of every participating aggregator

to truthfully report their energy requirements [Nisan et al., 2007].

However, there are other properties to consider. First, the question is whether the coordinator

will run into a deficit, meaning that the sum of money received from the EV aggregators is

insufficient to cover the payments for the electricity incurred by the coordinator. In order to

maintain the desirable properties of VCG mechanisms, i.e. truthfulness, the allocations and pay-

ments received from the EV aggregators are based on the estimated price impact curves. These

estimated are due to both the approximated convex function and because it uses a forecasted

price curve. As a result, the coordinator can, depending on the accuracy of the prediction, incur

a loss. However, as shown in Section 4.5, we find that the payments are actually often too high,

even higher than the costs the EV aggregators would incur by not participating in the mechan-

ism. Technically, the mechanism is said to violate so-called individual rationality [Nisan et al.,

2007], also known as the participation constraint (meaning EV aggregators have no incentive to

participate if given the choice). Hence, to address this problem, we consider so-called payment

redistribution mechanisms which, in the case of a not-for-profit coordinator, should ideally result

in a surplus close to zero.
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4.3.2 VCG-Based Truthful Redistribution

In recent years, the problem of redistributing some or all the surplus of pure VCG payments,

while preserving truthfulness, has been extensively studied [Cavallo, 2006, Guo and Conitzer,

2008, 2010]. Formally, following the results by Cavallo [2006], the redistributed amount to

participant i is given by:

ri =
1

n

n∑
j=1
j 6=i

[
Costconvex(R̂min

−i , R̂
max
−i , N̂−i)− Costconvex(R̂min

−i−j , R̂
max
−i−j , N̂−i−j)

]

where R̂min
−i−j , R̂max

−i−j and N̂−i−j are the vectors of requirements without the contributions from

the i-th and j-th EV aggregators. Finally, given the payments defined by Eq. 4.5, the total

payment of each EV aggregator i is given by:

pi =
[
Costconvex(R̂min, R̂max, N̂)− Costconvex(R̂min

−i , R̂
max
−i , N̂−i)

]
−

− 1

n

n∑
j=1
j 6=i

[
Costconvex(R̂min

−i , R̂
max
−i , N̂−i)− Costconvex(R̂min

−i−j , R̂
max
−i−j , N̂−i−j)

]
(4.6)

Note that, for this redistribution mechanism, optimal bids need to be computed in the order of n2

times, requiring significant additional computation. Furthermore, depending on the particular

scenario, the redistribution provided by this technique can range from full to small proportions

[Guo and Conitzer, 2008]. However, in our experiments (see Section 4.5), we find that the

redistribution is too large, so the money paid by the aggregators is not enough to cover the

costs for their purchased energy, and the coordinator incurs large losses. Therefore, we explore

another redistribution mechanism, which achieves zero surplus and losses for the coordinator by

sacrificing theoretical truthfulness.

4.3.3 VCG-Based Proportional Redistribution

One such non-truthful redistribution mechanisms is to redistribute the real monetary surplus

among the group of EV aggregators proportionally to their size. This real monetary surplus is

given by
∑n
i=1 pi − Cost(R̂min, R̂max, N̂), the sum of all payments minus the real cost of the

energy paid by the coordinator to the day-ahead market. In more detail, letting Ni be the

vehicle capacity of EV aggregator i, the resulting payments are given by a two-stage algorithm,

in which first VCG payments are computed, p1i , and then the proportional redistribution takes

place, providing the final payments assigned to each aggregator, p2i . Specifically:

p1i = Costconvex(R̂min, R̂max, N̂)− Costconvex(R̂min
−i , R̂

max
−i , N̂−i)

p2i = p1i −
Ni∑n
j=1Nj

 n∑
j=1

p1j − Cost(R̂min, R̂max, N̂)

 (4.7)

It is worth noting that, in contrast to the redistribution approach discussed in Section 4.3.2, this

payment mechanism scales linearly with the number of participating EV aggregators. The loss

of truthfulness means that strategic misreporting of requirements by an EV aggregator to the



Chapter 4 Inter-Aggregator Coordination: a Mechanism Design Approach 49

coordinator could improve an aggregator’s performance. For example, it could be the case that

misreporting less flexible energy requirements, resulting in earlier energy allocation at a more

expensive price, provides the aggregator with earlier energy while the cost excess will be partially

absorbed by other aggregators. In practise, however, the bulk of each aggregator’s payments are

computed using VCG, which is truthful. This means that the tighter the reported requirements,

the more expensive the payment gets, so the room for manipulation is slim. Hence, in the case

study presented in Section 4.5, we assume aggregators are truthful when using this mechanism.

Analysis on the extent of strategic manipulation possible by this payment mechanism is left for

future work.

4.4 The Coordination Mechanism in Practice

Now that the three stages of the coordination mechanism have been described, we proceed to

discuss how it could be implemented in practice. As noted earlier, the coordination mechanism

does not need any additional infrastructure, relying only on the aggregator’s existing electrical

infrastructure and an Internet connection. In more detail, the proposed implementation of the

three-stage coordination mechanism works as follows:

1. Coordinated bidding: the participating EV aggregators securely and privately submit their

electricity requirements to the coordinator over the Internet. Given the low computational

cost of the proposed bidding algorithm and coordination mechanism, the coordinator is

then able to use a standard computer to calculate the optimal bidding schedule, as shown

in Section 3.2. The bids are submitted to the day-ahead market online.

2. Hourly energy distribution: once the market is cleared and an electricity schedule has been

allocated to the coordinator, the hourly energy distribution algorithm detailed in Section

4.2 can be applied, using the same standard computer. Energy delivery to the aggregators

is then managed by the distribution system operator (DSO) [Bessa et al., 2012] in the same

way as in the individual bidding case.

3. Payment distribution: payments are computed by the coordinator (see Section 4.3), and

reported to the participating aggregators, which can then readily process them online.

By using this simple implementation, which requires no infrastructure investment, an EV ag-

gregator can seamlessly transition from individual to cooperative operation. Similarly, the role of

the coordinator can be easily assumed by any trusted third-party, such as a government agency

or a private company.

4.5 Case Study

This section describes a case study based on real data, in order to test the performance of the

coordination mechanism proposed in this chapter. The considered scenario is the same as in the

case study from Chapter 3: a night-time scenario where EVs arrive in the evening and depart

in the morning. In more detail, the employed market and driver data are described in Sections
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3.3.2 and 3.3.3, respectively. Moreover, all the data from this empirical case study is available

in [Perez-Diaz et al., 2018f].

Differently from Chapter 3, we now consider the setting where a number of self-interested and

independent EV aggregators participate in the same day-ahead market. In order to assess the

performance of the proposed coordination mechanism, we compare the setting with uncoordinated

bidding, where each EV aggregator does independent bidding based on past historical data, and
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coordinated bidding, where all the EV aggregators participate in the coordination mechanism

presented in this chapter. Furthermore, for the coordinated setting, we compare the three

different payment mechanisms, i.e., the VCG mechanism (Eq. 4.5), the truthful redistribution

(Eq. 4.6) and proportional redistribution (Eq. 4.7).

Specifically, Figures 4.2 and 4.3 show the average EV payments and coordinator surplus re-

spectively for the various mechanisms. We can see that the VCG payments are higher than the

uncoordinated ones, and hence the coordination mechanism with VCG payments does not offer

any advantage to the aggregators. Conversely, the coordination mechanism with truthful redistri-

bution generates too low payments, causing the coordinator to incur very large monetary losses.

These results indicate the inappropriateness of these two payment mechanisms, which incur too

large and too little payments, respectively. At the same time, the proportional redistribution

mechanism demonstrates a significant reduction in payments compared to the uncoordinated

setting.

Considering the proportional redistribution mechanism in more detail, Figure 4.4 shows the

average daily payment improvement compared to uncoordinated bidding, employing both the

naive and perfect forecasts. We can see that the payment reductions w.r.t. uncoordinated

bidding grow linearly with fleet size and number of participating EV aggregators. Again, when

employing the naive forecast, and for small fleet sizes, the coordination mechanism presents

a very small performance reduction when compared to uncoordinated bidding. However, for

around 8% EV penetration values (see last data points in Figure 4.4), we already see that the

coordination mechanism achieves around a 10% payment reduction.

4.6 Summary

In this chapter we have proposed the first multi-aggregator coordination mechanism for joint

bidding in day-ahead markets, targeting a generalised scenario where a number of EV aggregators

of arbitrary nature compete in the same day-ahead market. In more detail, each aggregator

is assumed to be a profit maximiser entity and hence self-interested. In order to extend the

benefits of coordinated bidding to this multi-aggregator setting, we employ tools from the field

of mechanism design to incentivise the participating EV aggregators to cooperate.

The proposed coordination mechanism consists of three stages. Firstly, the EV aggregators

report their energy requirements to a third-party coordinator. The coordinator is then able to

compute aggregated requirements and bid in the day-ahead market. Given its low computational

complexity, and its accounting for price impact, the novel bidding algorithm proposed in Chapter

3 is well suited for this task. Secondly, the coordinator solves a constraint satisfaction problem

in order to distribute the globally purchased energy among the EV aggregators, where each

gets an energy schedule satisfying their energy requirements. Thirdly and lastly, the coordinator

distributes the joint energy costs among the aggregators in a fashion such each aggregator pays for

the impact of their energy requirements on the overall bids. Mechanism design is employed in this

last stage in order to incentivise inter-aggregator cooperation and prevent strategic manipulation.

The performance of the proposed coordination mechanism is finally evaluated in an empirical case

study which uses real market and driver data from the Iberian Peninsula. Results indicate that
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the coordination mechanism (employing the proposed bidding algorithm in Chapter 3) achieves

substantial cost reductions, which grow linearly with fleet size and the number of participating

EV aggregators. Specifically, the coordination mechanism achieves around 10% cost reduction

for a scenario with around 8% EV penetration.

This work partially addresses Research Challenge 2, from a centralised mechanism design per-

spective. However, the proposed coordinator is not necessarily unique, and different coalitions

of aggregators may form. This different viewpoint will be studied in detail in the next chapter.



Chapter 5

Inter-Aggregator Coalition

Formation

As discussed before, any entity with sufficient resources can become an electricity market parti-

cipant. This is also true in the electric vehicle industry, where many different companies already

manage fleets of EVs, such as car sharing companies, car parks, large electricity retailers, etc.

In order to study this multi-aggregator scenario, we have so far proposed an inter-aggregator

coordination mechanism in Chapter 4, and showed that it is able to reduce electricity costs by

spreading energy consumption in time. However, we have assumed that the third-party coordin-

ator is a unique entity that coordinates all the EV aggregators present in a given market. This

is not necessarily true, as the proposed coordination mechanism has few requirements and is

computationally inexpensive. This makes it easy for any trusted entity to assume the role of

the coordinator, and this raises questions about the scenario where different EV aggregators are

aggregated under different coordinators, which we will address in this chapter in order to further

explore Research Challenge 2.

In more detail, we study the coordination mechanism proposed in Chapter 4 in a scenario where

multiple coordinators may be present, and the aggregators can choose to join smaller cooperative

groups. In order to address this issue, we employ techniques from the field of cooperative game

theory (see Section 2.7). Specifically, we focus on finding payoff allocations (i.e. payment

mechanisms) which result in fair and stable coalitions.

Furthermore, and similarly to the contributions of the previous chapter, it is worth noting that

the multi-aggregator coalitional analysis proposed in this chapter is generic and can be applied

employing different underlying bidding algorithms. However, we will focus on the novel bidding

algorithm presented in Chapter 3 due to its good scalability and computational efficiency.

The rest of the chapter is structured as follows. We start by presenting an introduction to

cooperative game theory in Section 5.1. Then, we define the multi-aggregator coalitional game

in Section 5.2. We discuss the presence of coalitional externalities in Section 5.3. We then turn

our attention to analysing and proving several theoretical properties of the proposed coalitional

game in Section 5.4. The issue of choosing appropriate payment allocations is then discussed

53
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in Section 5.5. Finally, we present an empirical case study with real market and driver data in

Section 5.6.

5.1 A Brief Introduction to Cooperative Game Theory

We start by presenting the basic concepts of cooperative game theory, following the exposition

in [Chalkiadakis et al., 2012]. Throughout the rest of this chapter, consider a set of players

N = {1, . . . , n}, which in our setting correspond to different aggregators.

5.1.1 Characteristic Function Games

We start by defining a coalitional game.

Definition 5.1 (Coalition). A coalition is any subset of players C ⊆ N . The number of players

in the coalition C is given by its cardinality |C|. All possible coalitions are denoted by the power

set of N , 2N . The grand coalition is the set of all players, N .

Definition 5.2 (Coalition structure). A coalition structure over N is a collection of non-empty

subsets CS = {C1, . . . , Ck} such that ∪kj=1Cj = N and Ci ∩ Cj = ∅ ∀i 6= j.

Definition 5.3 (Characteristic function game). A characteristic function game G is given by a

pair (N, v), where N is a finite and non-empty set of players, and v : 2N −→ R is a characteristic

function. The value v(C) is usually referred to as the value of the coalition C.

Note that the characteristic function assigns a value to the whole coalition, not to its individual

members. Games in which a coalition value, v(C), can be divided in any way among its members

are called transferable utility (TU) games.

Definition 5.4 (Superadditive game). A coalitional game (N, v) is superadditive if for every pair

of disjoint coalitions C1, C2 ⊂ N such that C1 ∩ C2 = ∅, we have v(C1) + v(C2) ≤ v(C1 ∪ C2).

In other words, in a superadditive game, the grand coalition has the incentive to form, as the

agents can earn at least as much profit by working together. Now that the basics have been

defined, we will focus on how the value of a given coalition is distributed among its members.

5.1.2 Payoff Allocations

The distribution of the value of a given coalition among its members can be done in an arbitrary

way. However, certain allocations have special properties, such as efficiency and individual

rationality, which make them desirable, as defined below.

Definition 5.5 (Payoff allocation). A vector x = (x1, . . . , xn) is a payoff allocation vector for a

coalition structure CS = {C1, . . . , Ck} over N if xi ≥ 0 for all i ∈ N , and
∑
i∈Cj

xi ≤ v(Cj) for

any j = 1 . . . , k.

1. (Efficiency) An allocation x is efficient if
∑
i∈Cj

xi = v(Cj) for any j = 1 . . . , k.
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2. (Individually rational) An allocation is individually rational if xi ≥ v({i}) for all i ∈ N .

Definition 5.6 (Imputation). A payoff allocation for the grand coalition N is said to be an

imputation if it is both efficient and individually rational.

Definition 5.7 (The Core). Given a TU characteristic function game (N, v), the core, C, is

defined as the set of imputations such that no sub-coalition can obtain a payoff which is better

than the sum of the members current payoffs. Explicitly:

C :=

{
x ∈ RN

∣∣∣∣∑i∈N
xi = v(N),

∑
i∈S

xi ≥ v(S), ∀S ⊆ N
}

In other words, payoff allocations lying in the core provide stability, as no sub-coalition has an

incentive to deviate from the grand coalition in order to increase its profit. However, the core

of coalitional game can be empty [Chalkiadakis et al., 2012]. A classical result guarantees the

non-emptiness of the core for certain games, the so-called balanced games.

Definition 5.8 (Balanced function). A function α : 2N −→ R is said to be balanced if for all

i ∈ N , we have
∑
C∈2N α(C) 1{i ∈ C} = 1, where 1 is the indicator function.

Definition 5.9 (Balanced game). A coalitional game (N, v) is balanced if for any balanced

function α, we have
∑
C∈2N α(C)v(C) ≤ v(N).

Theorem 5.10 (Bondareva – Shapley Theorem, [Shapley, 1967]). A coalitional game has a

non-empty core if and only if it is balanced.

We will now focus on one of the most commonly used payoff allocations, the Shapley value.

5.1.3 The Shapley Value

One of the most widely used allocations is the Shapley value, defined as:

Definition 5.11 (Shapley value [Shapley, 1971]). Given a coalitional game (N, v), the Shapley

value assigns a payoff SVi to each player i ∈ N given by:

SVi(v) =
∑

C⊆N\{i}

|S|!(N − |S| − 1)!

N !
[v(C ∪ {i} − v(C)]

The Shapley value is the only payment allocation satisfying the efficiency, symmetry, dummy

action and additive axioms [Chalkiadakis et al., 2012]. Hence, it is traditionally considered to

present a fair payoff distribution. Moreover, there exist the following positive results which

guarantee that the Shapley value lies in the core of a particular type of coalitional games, the

so-called convex games.

Definition 5.12 (Convex game). A coalitional game (N, v) is convex if it has a supermodular

value function:

v(C1) + v(C2) ≤ v(C1 ∪ C2) + v(C1 ∩ C2) ,∀C1, C2 ⊆ N

Theorem 5.13 ([Shapley, 1971]). If (N, v) is a convex game, then the Shapley value is the

barycentre of its core.
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5.1.4 The Nucleolus

Another widely used imputation is the nucleolus. It employs a different approach than the

Shapley value, trying to minimise agent dissatisfaction, which is defined next.

Definition 5.14 (Excess). Given a coalitional game (N, v) and a payment allocation x ∈ RN ,

the dissatisfaction of coalition C is measured by the excess defined as: e(x, C) = v(C)−
∑
i∈C xi.

Any payoff vector x generates an excess vector, e(x) = (e(x, C1), . . . , e(x, C2N )) ∈ R2N , where

C1, . . . , C2N is the list of subsets of N ordered in non-increasing order by their excess under x.

Then, two deficit vectors can be compared lexicographically. Given two payoff vectors x,y, we

have e(x) ≤lex e(y) if there exists k ∈ R such that for all i < k, ei(x) = ei(y), and ek(x) ≤ ek(y).

Definition 5.15 (Nucleolus). Given a coalitional game (N, v), its nucleolus is given by the

lexicographically minimal imputation.

The nucleolus is in the core of any coalitional game with non-empty core, as the core is the set

of imputations with negative excess [Solymosi, 2014]. However, computing the nucleolus for a

game with n players requires solving 2n linear programs [Sankaran, 1991], which is prohibitive

for all but the smallest coalitional games. In order to maintain computational tractability and

develop a scalable system, one can use an approximation to the nucleolus which lies in the core

and presents better scaling properties, namely, the least-core [Maschler et al., 1979]. This im-

putation only minimises the worst-case excess for all coalitions, instead of finding the imputation

that lexicographically minimises the vector of excesses. As a result, the least-core is much less

computationally expensive than computing the nucleolus. Moreover, if the core is non-empty,

the least-core belongs to it [Solymosi, 2014]. Formally, following the exposition in [Baeyens et al.,

2013], we can define:

Definition 5.16 (Least-core). Given a coalitional game (N, v), its least-core is the solution, x,

to the following linear program with n+ 1 variables and 2n + 1 constraints:

min
x∈Rn,e∈R

e, s.t.

v(C)−
∑
i∈C xi − e ≤ 0, ∀C ⊂ N

v(N)−
∑
i∈N xi = 0

(5.1)

We now have the theoretical foundations to study our multi-EV aggregator scenario from a

coalitional perspective.

5.2 Defining the Multi-EV Aggregator Coalitional Game

Focusing on our considered scenario, let N = {1, . . . , n} be a set of EV aggregators and C ⊆ N
a coalition. Following the notation from Section 4.1, let R̂min,i

t and R̂max,i
t be aggregator i’s

forecasted energy requirements for hour t, and N̂ i
t the number of available EVs from aggregator

i at hour t. The combined requirements of all the aggregators in the coalition C are then given

by:
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R̂min
t =

∑
i∈C

R̂min,i
t (5.2) R̂max

t =
∑
i∈C

R̂max,i
t (5.3) N̂t =

∑
i∈C

N̂ i
t (5.4)

Once the requirements of all the aggregators in the coalition C have been aggregated, we can

apply the bidding algorithm given by Eqs. 3.2a, 3.2b, 3.2c, 3.2d, 3.2e in Section 3.2 with

constraints given by Eqs. 5.2, 5.3 and 5.4. This will provide a global day-ahead energy volume

Eglobal
t for each hour t, which can be then distributed among the aggregators in C, as detailed

in Section 4.2. This will be the basis of the proposed coalitional game.

Moreover, let’s consider a realisation of the day-ahead market with hourly prices p = (p0, . . . , p23).

Then, the aggregators purchasing an energy schedule given by E = (E0, . . . , E23) will incur a

total electricity cost given by:

cost(p,E) =
∑23

t=0
pt · Et (5.5)

This provides a natural way to define the value function of our coalitional game. In more detail,

for a coalition C, v(C) must represent the electricity costs paid by the members of C when they

perform coordinated bidding. However, the price impact present in our market model introduces

an extra layer of complexity, as any market participant affects the resulting prices with their

bids. More specifically, the cost paid by a coalition C depends not only on the members of the

coalition itself, but on all the other aggregators as well. This situation is treated in detail in the

next section.

5.3 Value Function with Externalities

The first thing to note is that our setting deviates from traditional characteristic function games.

This is due to the presence of externalities [Chalkiadakis et al., 2012]. Specifically, in classical

game theory, the value of a coalition C, v(C), only depends on the coalition itself. However, in

our market structure with price impact (see Section 2.3.3), a given coalition C is also affected

by the aggregators not in the coalition. In more detail, any market participant will affect the

resulting market prices, hence affecting every other participant’s costs. Formally, the resulting

prices depend on the whole coalition structure, p = p(CS), and thus so does the value function

of our game: v(C,CS). Games with such value functions are called partition function games

[Thrall and Lucas, 1963].

A coalitional game with externalities can be studied in partition function form. However, the

resulting game has poor theoretical properties and does not yield useful results, as we show in

Section 5.3.1. Another usual procedure when dealing with a coalitional game with externalities

is to introduce a conjecture on the behaviour of the outsider agents [Aumann, 1961]. In more

detail, when considering a coalition C, the behaviour of the outsider agents, N \C, is assumed to

be deterministic, and to follow the chosen conjecture, hence recovering the classical theory where

the value of the coalition only depends on the coalition itself. The earliest proposed conjecture

is the so-called α-conjecture [Aumann, 1961], which assumes that the outsider players act as to

minimise the payoff of the deviated coalition. However, this conjecture is not appropriate in

our setting, as an aggregator trying to minimise a coalition’s payoff through price impact would

automatically harm itself as well. More recent conjectures proposed in the literature include the



58 Chapter 5 Inter-Aggregator Coalition Formation

γ-conjecture and the outsider coalition conjecture. Both are reasonable in our setting and are

further explored in the next two subsections.

5.3.1 The outsider coalition (oc) conjecture

Introduced in [Funaki and Yamato, 1999], it assumes that, when a coalition C deviates from

the grand coalition, all the outsiders join together and form a counter coalition N \ C. Hence,

the resulting coalition structure is Coc = {C,N \ C}. Formally, the resulting prices depend on

the coalition structure, and thus we can write p = p(Coc). Similarly, the amount of energy

purchased by the members of coalition C depends on C itself and on the coalition structure Coc,

E = EC(Coc). Therefore, the value function of this game can be defined as:

voc(C) := −cost (p(Coc),EC(Coc))

Even though this conjecture seems reasonable in our scenario, the resulting coalitional game

(N, voc) has poor stability properties given that it is not superadditive, as proven below.

Theorem 5.17. The coalitional game (N, voc) is not superadditive.

Proof. This is found empirically by using the case study detailed in Section 5.6. However, for

clarity, we present a counter-example which employs a simplified market structure with three

hours and synthetic prices. In more detail, consider hourly prices given by: P̂1(E1) = 10 + E1,

P̂2(E2) = 5 +E2/2, P̂3(E3) = 10 +E3. Consider nine identical EV aggregators, N = {1, . . . , 9},
with the following individual energy requirements: Rmax = (1, 0, 0), Rmin = (0, 0, 1) and a

maximum charging speed Pmax = 1. Considering the following pair of coalitions, C1 = {1, 2}
and C2 = {3, 4}, it holds: voc(C1∪C2) < voc(C1) + voc(C2). Hence the coalitional game (N, voc)

is not superadditive.

Thus, the grand coalition does not necessarily form, in which case full coordination is not

achieved. This is a common issue in games considering a shared pool resource, as described

in [Funaki and Yamato, 1999]. Furthermore, note that this counter-example also applies to the

partition function game described in Section 5.3, which is not superadditive either.

5.3.2 The γ-conjecture

Another common choice is the so-called γ-conjecture [Chander and Tulkens, 1997], in which the

outsider agents select their individual best strategies. Hence, the resulting coalition structure is

Cγ = {C} ∪ {{i} |i ∈ N, i /∈ C}. Formally, we can write p = p(Cγ) and E = EC(Cγ). Then,

the value function can be defined as:

vγ(C) := −cost (p(Cγ),EC(Cγ)) (5.6)

This conjecture is also reasonable in our setting and will be adopted throughout the rest of the

chapter. For convenience, we will drop the subscript γ and write v instead of vγ henceforth.
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5.4 Properties of the Coalitional Game

The coalitional game using the γ-conjecture proposed in the previous section, (N, v), has several

desirable properties. Specifically, we will show that it is superadditive and balanced, hence it

has a non-empty core. Thus, all the EV aggregators are incentivised to cooperate together

(the grand coalition forms), and a payment mechanism can be implemented which results in a

stable game where no sub-coalition having an incentive to deviate. We will formally prove these

claims next. For convenience, and extending the notation presented in the previous subsection,

let cost(p(Cγ2 ),EC1(Cγ2 )) be the total electricity cost paid by the members of C1 ⊆ N when

coalition C2 ⊆ N performs coordinated bidding, and all other participants perform individual

bidding.

We are now ready to show that the game is superadditive.

Lemma 5.18. For all coalitions C1, C2 ⊆ N such that C1 ⊂ C2, it holds that:

cost (p ((C1 ∪ C2)γ) ,EC1
((C1 ∪ C2)γ)) ≤ cost (p(Cγ1 ),EC1

(Cγ1 ))

Proof. This lemma trivially follows from the fact that coordinated bidding with more parti-

cipants can only decrease the total costs. Hence the price paid by members of coalition C1

when coordination happens inside C1 ∪ C2 can only be lower, or equal, than when coordination

happens only inside C1. The equality case happens only when the members of C1 and C2 have

non-overlapping energy requirements, or when the price impact of their combined bids is not

high enough.

Theorem 5.19. The proposed coalitional game (N, v) is superadditive.

Proof. Consider any two disjoint coalitions, C1, C2 ⊆ N . Then,

v(C1 ∪ C2) ≥ v(C1) + v(C2)⇔ cost (p ((C1 ∪ C2)γ) ,EC1∪C2
((C1 ∪ C2)γ))

≤ cost (p(Cγ1 ),EC1(Cγ1 )) + cost (p(Cγ2 ),EC2(Cγ2 ))

Given the following identity:

cost (p ((C1 ∪ C2)γ) , EC1∪C2 ((C1 ∪ C2)γ))

= cost (p ((C1 ∪ C2)γ) , EC1
((C1 ∪ C2)γ))

+ cost (p ((C1 ∪ C2)γ) , EC2
((C1 ∪ C2)γ))

the expression above reads:

cost (p ((C1 ∪ C2)γ) ,EC1
((C1 ∪ C2)γ))

+ cost (p ((C1 ∪ C2)γ) ,EC2
((C1 ∪ C2)γ))

≤ cost (p(Cγ1 ),EC1(Cγ1 )) + cost (p(Cγ2 ),EC2(Cγ2 ))

which is always true, applying Lemma 5.18.

This result shows that overall costs are minimised when the grand coalition forms. The main

issue is now how to distribute the value of the grand coalition, i.e. the resulting costs, among
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its members. To this end, we will next prove that stable coalitions are possible given that the

game has a non-empty core.

Theorem 5.20. The proposed coalitional game (N, v) is balanced. As a result, it has a non-

empty core.

Proof. Let α : 2N −→ R be an arbitrary balanced function. Balancedness of the coalitional game

follows from Lemma 5.18:∑
C∈2N

α(C)v(C) = −
∑
C∈2N

α(C) cost (p(Cγ),EC(Cγ))

≤ −
∑
C∈2N

α(C) cost (p(Nγ),EC(Nγ))

= −
∑
C∈2N

∑
i∈N

α(C)1{i∈C}cost
(
p(Nγ),E{i}(N

γ)
)

= −
∑
i∈N

cost
(
p(Nγ ,E{i}(N

γ)
)

= −cost (p(Nγ ,EN (Nγ)) = v(N)

Thus the coalitional game is balanced and, by the Bondareva-Shapley Theorem (Th. 5.10), it

has a non-empty core.

The non-emptiness of the core of our proposed coalitional game guarantees the existence of at

least one payoff allocation which stabilises the grand coalition.

5.5 Payoff Allocations

After proving that the proposed game has a non-empty core, we now seek a payoff allocation

lying in it. As described in Section 5.1.3, a common choice is the Shapley value. However, it

turns out that our proposed coalitional game is not convex hence the Shapley value is not in the

core, as proven by the counter-example in the following result.

Theorem 5.21. The coalitional game (N, v) is not convex.

Proof. This is found empirically by using the case study detailed in Section 5.6. However, for

clarity, we present a counter-example which employs a simplified market structure with three

hours and synthetic prices. In more detail, consider hourly prices given by: P̂1(E1) = 10+20E1,

P̂2(E2) = 0.1 + 20E2, P̂3(E3) = 10 + 20E3. Consider three identical EV aggregators, N =

{1, 2, 3}, with the following individual energy requirements: Rmax = (1, 0, 0), Rmin = (0, 0, 1) and

a maximum charging speed Pmax = 1. Considering the following pair of coalitions, C1 = {1, 2}
and C2 = {2, 3}, it holds: v(C1 ∪C2) + v(C1 ∩C2) < v(C1) + v(C2). Hence the coalitional game

is not convex.

As a result, the Shapley value is not guaranteed to be in the core of our proposed coalitional

game (N, v). Therefore, we seek a different payoff allocation which is guaranteed to be in the

core. As described in Section 5.1.4, given that our game has a non-empty core, the nucleolus

and the least-core lie in it. Given the computational cost of the former, the latter provides a

viable and scalable option to stabilise the grand coalition.
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Following this theoretical analysis of the considered game, we now turn our attention to an em-

pirical case study where we will compare the performance of the two proposed payoff allocations,

namely the Shapley value and the least-core.

5.6 Case Study

This section describes a case study based on real data with the aim of testing the performance of

the coalitional game proposed in this chapter. The considered scenario is the same as in the case

studies from Chapters 3 and 4: a night-time scenario where EVs arrive in the evening and depart

in the morning. In more detail, the aggregator, market and driver characteristics are described

in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. Throughout this section, naive forecasts where

the data from the day before is employed as a forecast for the day after are employed (see Section

3.1.2).

The main goal of this analysis is to compare the two different payment allocations proposed

in the previous section: the Shapley value and the least-core. Recall that the Shapley value is

considered as a fair payment allocation (see Section 5.1.3), but is not in the core. Furthermore,

the least-core minimises agent dissatisfaction (see Section 5.1.4), and it lies in the core. Finally,

in order to maintain computational tractability, an error-bounded approximation of the Shapley

value is employed, as described in Section 5.6.1. All the data from this empirical case study is

available in [Perez-Diaz et al., 2018e].

5.6.1 Approximating the Shapley Value

The Shapley value (see Section 5.1.3) is known to be computationally expensive. Specifically,

its computational complexity is 2n · O(v), where O(v) is the complexity of the value function.

In order to improve its computational tractability, approximations are commonly used in the

literature. In this chapter, we apply the state-of-the-art error-bound approximation proposed by

[Maleki, 2015] for superadditive games.

In more detail, let SVi(v) denote the Shapley value for a given agent i ∈ N , and S̃V i(v) the

approximated Shapley value for the same agent. Instead of considering the v(C ∪ {i} − v(C))

contributions from all subsets of N \ {i}, the approximation randomly samples a number of

them, mε,δ, which depends on the desired level of precision:

P
(∣∣∣SVi(v)− S̃V i(v)

∣∣∣ ≥ ε) ≤ δ
The specific formula for mε,δ is detailed in [Maleki, 2015, Th. 4.3]. Throughout our simulations,

we employ ε, δ = 5%, in order to balance precision and computational tractability.

5.6.2 Experimental Results

We present the results from three different simulations, all of them considering every weekday of

November 2016. Firstly, we study the global cost reductions provided by coordination, when the



62 Chapter 5 Inter-Aggregator Coalition Formation

2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

Number of EV aggregators
(150 000 EVs per aggregator)

Av
er

ag
e

da
ily

pa
ym

en
t

pe
r

EV
(e

)

Uncoordinated
Coordinated

Figure 5.1: Comparison between unco-
ordinated and fully coordinated bidding
when varying the number of aggregators.

2 3 4 5 6 7

0

1,000

2,000

3,000

4,000

5,000
log-log

Number of EV aggregators
(150 000 EVs per aggregator)

T
im

e
(s

ec
on

ds
)

Least-core
SV approx.

Figure 5.2: Runtimes for the approx. SV
and least-core payment mechanisms. Er-

ror bars represent standard deviations.

0 5 10 15 20
0

0.5

1

1.5

2

·104

Trading days

Le
as

t-
co

re
pa

ym
en

t
(e

)

0 5 10 15 20

−0.5

0

0.5

Trading days

R
el

at
iv

e
di

ffe
re

nc
e

fr
om

Le
as

t-
co

re
to

SV
(%

)

10k EVs
20k EVs
30k EVs
40k EVs

Figure 5.3: (LHS) Daily least-core payment allocations for four aggregators with different
sizes. (RHS) Daily difference between the least-core and approximate Shapley value payments

0 5 10 15 200.7

0.8

0.9

1
·105

Trading days

Le
as

t-
co

re
pa

ym
en

t
(e

)

0 5 10 15 20

−3

−2

−1

0

1

Trading days

R
el

at
iv

e
di

ffe
re

nc
e

fr
om

Le
as

t-
co

re
to

SV
(%

)

1st agg.
2nd agg.
3rd agg.

Figure 5.4: (LHS) Daily least-core payment allocations for three aggregators of the same size,
but with different flexibilities. (RHS) Daily difference between the least-core and approximate

Shapley value payments.



Chapter 5 Inter-Aggregator Coalition Formation 63

grand coalition performs joint bidding (see Section 5.2), in comparison to individual, uncoordin-

ated, bidding. These results are the same as in Section 4.5, as the grand coalition performing

joint bidding is analogous to all market participants performing joint bidding under a single

coordinator. Results indicate that significant cost reductions can be achieved by coordination,

as shown in Figure 5.1. Now that the efficacy of coordinated inter-aggregator bidding has been

shown, we turn our attention to the two proposed payment mechanisms, the least-core and the

approximated Shapley value.

In more detail, we present the results from two different simulations. Firstly, we consider a

scenario where four different EV aggregators of different sizes, namely 50, 100, 150 and 200k EVs

participate in the market. Apart from size, they share the same characteristics, as described in

Section 3.3.3. The purpose of this simulation is to study how the proposed payment mechanisms

capture the greater electricity costs of larger market participants. Results are shown in Figure

5.3. More specifically, the left-hand-side presents the daily prices assigned to each aggregator by

the least-core payment mechanism. We can see that it correctly assigns larger payments to larger

aggregators. Moreover, the right-hand-side presents the daily difference between least-core and

approximated Shapley value payments for each aggregator. We can see that the differences are

of very small magnitude, concluding that both payment mechanisms are both very close in all

cases.

Lastly, we consider a similar scenario, where three different aggregators participate in the market.

In this case, they all have the same size, 150k EVs each, but have different charging flexibilities.

In more detail, instead of employing the real arrival and departure data provided in Table 3.4, we

employ synthetic data in order to capture the effects of charging flexibility on allocated prices.

Specifically, we consider an evening charging scenario where all EVs depart at midnight. The

first aggregator receives EVs at 14h, the second at 16h and the third at 18h. Thus, the first

aggregator has the highest flexibility and the third is the most constrained. This choice of arrival

and departure times is motivated by the typical hourly prices found in the OMIE market, where

electricity is cheaper around 15-17h, and more expensive afterwards. Results are presented in

Figure 5.4. We can see that first aggregator, the most flexible, is able to obtain energy at cheaper

hours, hence being allocated cheaper payments. Conversely, the third aggregator which is forced

to operate at expensive hours, incurs larger payments. The second aggregator lies in between.

Similarly to the previous scenario, we can see that least-core and approximated Shapley value

payments are very close together for all aggregators and every trading days.

As just described, the least-core and Shapley value payments are very close in all considered

scenarios. This suggests that both payment mechanisms present good stability and fairness

properties. Moreover, given their computational complexity (see Figure 5.2), the approximated

Shapley value presents much better scaling properties, and is more suitable for the application

of this framework to large scenarios.

We note that the presented results do not depend on the particular trading days shown here.

Longer simulations have been run utilising different trading months, and the results obtained

follow the same trend.
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5.7 Summary

In this chapter, we present the first study of inter-EV aggregator cooperation from the perspective

of cooperative game theory. More specifically, we define a cooperative game in which self-

interested EV aggregators can cooperate with each other in order to effectively bid in the day-

ahead market. Given the presence of externalities, we propose employing a γ-conjecture in

order to obtain a game in characteristic function form. Next, we show that the resulting game

is superadditive, hence the larger the formed coalition, the larger electricity cost reductions

for the EV aggregators. Moreover, we prove that our game is balanced and thus has a non-

empty core. The payment mechanism given by the least-core is proposed in order to distribute

payments among the grand coalition of aggregators. As the least-core belongs to the core of

our game, this payment mechanism stabilises the grand coalition. Lastly, we present numerical

simulations which employ real market and driver behaviour data, in order to show the efficacy

of coordinated bidding. The least-core payments are compared with a more computationally

tractable approximation to the Shapley value. The good agreement between the two suggests

that they both present good stability and fairness properties.

In conclusion, Chapters 4 and 5 provide a detailed study of the coordination opportunities avail-

able in multi-EV aggregator participation in day-ahead markets, addressing Research Challenge

2. However, the coordination mechanisms proposed so far are centralised, which introduces

some problems such as private information sharing, lack of transparency and the need for trust

in the coordinator. In order to address these issues, we will next turn our attention to Research

Challenge 3 and design a decentralised coordination approach.



Chapter 6

Decentralised Inter-Aggregator

Coordination

In the last two chapters, we have addressed Research Challenge 2 from a centralised perspect-

ive, proposing EV aggregator coordination mechanisms based on central coordinators. However,

there centralised approaches present certain drawbacks, such as the need for private information

sharing, a lack of transparency and the need for trust in the coordinator. These issues are cap-

tured in Research Challenge 3, and can be addressed by employing a decentralised coordination

mechanism, which the object of this chapter.

In more detail, the idea is to reformulate the centralised coordination mechanisms proposed in

earlier chapters as a distributed optimisation algorithm. More specifically, each aggregator will

take an active computational role, rather than just reporting energy requirements, which will

remove the need of reporting private information. Moreover, the use of blockchain technology,

for which decentralised algorithms are well suited, can provide enhanced transparency and anti-

tampering guarantees, and remove the need for trust on a centralised coordinator.

The rest of this chapter is structured as follows. We start by reformulating the centralised

coordination mechanism in Section 6.1. Then, we turn our attention to the application of

blockchain technologies in Section 6.2. Finally, we present an empirical evaluation of the proposed

decentralised coordination algorithm in Section 6.3, using real market and driver data.

6.1 Decentralised Optimisation Algorithm

Our goal is to reformulate the optimisation problems given by Eqs. 3.2a, 3.2b, 3.2c, 3.2d, 3.2e,

4.4a, 4.4b, 4.4c, 4.4d, 4.4e as an iterative decentralised optimisation algorithm. In comparison

with the centralised approaches proposed in Chapters 4 and 5, where each aggregator reports

their energy requirements to the centre who then optimises joint bidding, in the decentralised case

the aggregators do not report their private requirements but solve local optimisation problems

instead. By iteratively solving these local problems and updating some shared variables via a

global consensus step, the globally optimal solution can be obtained.

65
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In more detail, we propose using the Alternating Direction Method of Multipliers (ADMM)

[Boyd et al., 2010]. This type of algorithm is appropriate in our setting for several reasons:

(i) given that our optimisation problem is convex, it is guaranteed to converge to the global

optimum [Boyd et al., 2010]; (ii) it enables coordination without the aggregators revealing their

energy requirements, i.e. Rmin,i and Rmax,i; (iii) it is particularly well suited for blockchain

implementation, providing transparency and anti-tampering guarantees [Munsing et al., 2017].

Following the notation introduced in earlier chapters, let Ei =
(
Ei0, . . . , E

i
23

)
be the energy

schedule for aggregator i. Moreover, let E =
(
E1, . . . ,En

)
be the joint vector encapsulating each

individual energy schedule. We can now rewrite Eq. 3.2a as:

min
E

23∑
t=0

[
P̂convex
t

(
n∑
i=1

Eit

)
·
n∑
i=1

Eit

]
= min

E

n∑
i=1

 23∑
t=0

Eit · P̂convex
t

 n∑
j=1

Ejt

 (6.1)

This way the objective function is expressed as a sum of n terms, as required by the ADMM

formulation. Note that, given that the price impact of each aggregator affects everybody else,

we cannot separate Eq. 6.1 in the variable i, i.e. the equation is coupled and the sum’s terms

cannot be independently distributed among the aggregators. This type of problem is suited to

be formulated as a global variable consensus problem [Boyd et al., 2010], which works as follows.

Consider a minimisation problem in the following form:

min
x

n∑
i=1

fi(x)

where the goal is that each term in the sum can be handled independently. In the cases where

the variable x is not separable in i, we can introduce local variables xi and a global variable z

and rewrite the problem as:

min
{xi}

n∑
i=1

fi(x
i)

subject to: xi − z = 0, ∀ = 1, . . . , n

As mentioned above, the problem constraints require all local variables to agree with each other

and with the global variable. This way, global consensus on the solution is achieved. Also, note

that any individual constraints can be embedded into each fi.

In a similar vein and focusing on our scenario, let E and E(i) denote the global and local variables

respectively, each of which comprises a vector with dimension 24n i.e. E(i) =
(
E(i),1, . . . ,E(i),n

)
and E(i),j =

(
E

(i),j
0 , . . . , E

(i),j
23

)
. Following Eq. 6.1, in our case the functions fi are given by:

fi

(
E(i)

)
=


∑23
t=0

[
E

(i),i
t · P̂convex

t

(∑n
j=1E

(i),j
t

)]
,

if constraints (3.2b),

(3.2c), (3.2d), (3.2e) are

met by E(i),i

∞ , otherwise
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The resulting ADMM algorithm is then given by the following iterative equations:

E
(i)
[k+1] = arg min

E′

(
fi(E

′) + ξ
(i) T
[k] ·

(
E′ −E[k]

)
+
ρ

2

∥∥E′ −E[k]

∥∥2
2

)
(6.2a)

E[k+1] =
1

n

n∑
i=1

(
E

(i)
[k+1] +

1

ρ
ξ
(i)
[k]

)
(6.2b)

ξ
(i)
[k+1] = ξ

(i)
[k] + ρ

(
E

(i)
[k+1] −E[k+1]

)
(6.2c)

where the subscript [k] denotes iteration number, and ξ and ρ are the dual variable and the

augmented Lagrangian parameter, respectively [Boyd et al., 2010]. Intuitively, ρ controls the

trade-off between each aggregator solving its own local problem and achieving global consensus.

In more detail, if ρ is set too high, the algorithm forces consensus too much, resulting in very

slow convergence. Conversely, if ρ is set too small, each aggregator solves its local problem and

consensus is not reached. Examples of this effect are presented in Section 6.3.

Given this, the iterative algorithm works as follows: first, each EV aggregator solves their local

problem, Eq. 6.2a, and update their local copy of the energy schedule, E(i). Then, an aggregation

step, Eq. 6.2b, collects all the local solutions proposed by each aggregator and updates the global

energy schedule, E, reporting this vector back to all the aggregators. Lastly, each aggregator

updates their local copy of the dual variable, ξ(i), as per Eq. 6.2c and proceeds to the new

iteration.

This iterative process is stopped when the primal and dual residuals reach some user-specified

tolerances, εpri and εdual [Boyd et al., 2010, Munsing et al., 2017]. Specifically, the primal residual

is denoted by r[k] =
(
r1[k], . . . , r

n
[k]

)
, where ri[k] = E

(i)
[k]−E[k]. Similarly, the dual residual is given

by s[k] = E[k] −E[k−1]. The stopping criterion then takes the following form:

∥∥r[k]∥∥22 ≤ εpri (6.3a)∥∥s[k]∥∥22 ≤ εdual (6.3b)

and the algorithm stops when both conditions have been met.

We are now ready to discuss how the proposed decentralised coordination algorithm can be

implemented in a blockchain, hence allowing execution in a completely trustless environment.

6.2 Proposed Blockchain Implementation

So far, we have motivated and formulated a decentralised algorithm addressing the coordina-

tion of multi-EV aggregator bidding in day-ahead markets. Specifically, the proposed algorithm

addresses the first part of Research Challenge 3, namely the need for disclosing private informa-

tion. However, the second aspect of this challenge, i.e. trust-less and transparent operation, has

not been addressed so far. In order to do so, we propose employing a blockchain to implement

the consensus step of the proposed decentralised algorithm, similarly to [Munsing et al., 2017].

In more detail, this consensus step requires communication between each aggregator and the

coordinator, hence is susceptible to tampering. Also, if the coordinator remains a black-box, i.e.

an entity that receives messages from the aggregators and responds with some other message
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without its internal workings being transparent, the aggregators cannot be sure that they are

billed and allocated a fair electricity schedule.

Recall that a blockchain is a decentralised ledger and computation environment, protected by

cryptographic techniques, which allows the participants to agree on the state of the system at

all times. Moreover, apart from monetary transactions, blockchains can be seen as a general

computing system, by using smart contracts. In more detail, a smart contract is simply a

piece of code hosted publicly and immutably in the blockchain, which can receive messages

from other blockchain users and send its own following its internal logic. Thus, smart contracts

are a suitable architecture for implementing the consensus step of the proposed decentralised

algorithm. Moreover, if desired, the proposed coordination mechanism can be fully implemented

in the blockchain by using cryptocurrencies. This way, no centralised entity is needed, and all the

bidding and coordination process can run transparently on the blockchain. Finally, it is worth

noting that, when running on a blockchain, the operation of the coalition of EV aggregators is

transparent and can easily be externally audited, perhaps by the government or the electricity

market operator.

Formally, the proposed blockchain implementation is described in Algorithm 1, closely following

[Munsing et al., 2017]. In more detail, the local optimisation problems Pi are executed locally

by each aggregator, sending the results to the smart contract S, who performs the consensus

step. This process is iterated until the algorithm has converged.

Data: initialise ~E[0], ~E
(i)
[0] ,

~ξ
(i)
[0] , εpri, εdual

while
∥∥~r[k]∥∥22 ≤ εpri and

∥∥~s[k]∥∥22 ≤ εdual do
begin Pi: private optimisation problem, compute locally

Update ~ξ
(i)
[k] , Eq. 6.2c

Update ~E
(i)
[k] , Eq. 6.2a, and send to smart contract S

end
begin S: ADMM consensus, smart contract

Update ~E[k], Eq. 6.2b

if
∥∥~r[k]∥∥22 ≤ εpri and

∥∥~s[k]∥∥22 ≤ εdual then

ADMM algorithm finished
Report final allocations

end

end

end

Algorithm 1: Decentralised optimal multi-EV aggregator day-ahead bidding algorithm imple-
mented in a blockchain.

We are now ready to empirically evaluate the performance of the proposed algorithm.

6.3 Empirical Evaluation

The experiment setup described in this section closely follows the case studies presented in

Chapters 3, 4 and 5. Recall that this consists of a night-time residential scenario in which EVs

arrive in the evening and need to be charged by the next morning. In more detail, the aggregator,

market and driver characteristics are described in Sections 3.3.1, 3.3.2 and 3.3.3, respectively.
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The goal of this empirical evaluation is to study the convergence of the proposed decentralised

algorithm and hence its practical applicability. As discussed in Section 6.1, key determinant of

convergence is the augmented Lagrangian parameter ρ (see Eqs. 6.2a, 6.2b, 6.2c). Intuitively, it

controls the weight that the similarity of local and global solutions has in the local minimisation

algorithms. If it is set too large or too small, the algorithm will not converge. For every problem

there exists a range of values providing convergence but, as already mentioned, it can be very

slow in some cases. Also, the number of participating aggregators affects the convergence of the

algorithm: the higher the number of participants, the more fragmented the optimisation problem

is, so more iterations may be required. Thus, a suitable value for ρ needs to be found in order

to make the algorithm converge fast, a key point for its practical applicability.
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Figure 6.1: Convergence of the ADMM decentralised algorithm to the optimal centralised
solution, for different values of ρ. (Top) Simulations with two aggregators, each with 150 000
EVs. (Bottom) Simulations with ten aggregators, each with 150 000 EVs. Market data from

1/11/2016.

Figure 6.1 shows the convergence for different values of ρ, and for two scenarios, with two and ten

EV aggregators respectively. Each plot shows the convergence of the decentralised solution to the

optimal solution. We can see similar convergence behaviour for the two scenarios, although the

case with two EV aggregators is faster and more uniform. These results show evidence of good

computational scaling with the number of EV aggregators, something key for tackling larger

problem sizes. Moreover, for both scenarios, convergence starts slow for a value of ρ = 10−3,

becoming fastest for a value ρ ∼ 10−5, and diverging for larger values. This suggests that a value

about ρ = 10−5 presents the best convergence for these scenarios, although this may vary for

larger problem sizes. Also, we would like to note that these results are consistent across different

trading days. Lastly, note that there exist recent extensions of the ADMM algorithm which

include an adaptive parameter ρ and can provide faster convergence and rule out the need for

parameter tweaking [Xu et al., 2017]. We discuss this possibility as future work in Section 10.

6.4 Summary

In this chapter, we have presented the first decentralised coordination mechanism for multi-EV

aggregator bidding in the day-ahead market. In more detail, this algorithm uses the Alternat-

ing Direction Method of Multipliers algorithm in order to decouple the centralised mechanisms

proposed in Chapters 4 and 5. This new decentralised formulation removes the need for the
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aggregators to communicate private requirement information to the coordinator, as each aggreg-

ator solves its own local private optimisation problem with their own requirements. Moreover,

this algorithm is well-suited for implementation in a blockchain, providing a trust-less execution

environment with greatly increased transparency and anti-tampering guarantees. Finally, in or-

der to study the appropriateness of the proposed algorithm, we present an empirical evaluation

using real market and driver data. Results show the convergence of the decentralised method

to the optimal solution for two scenarios, with two and ten cooperating EV aggregators respect-

ively. Convergence can be achieved in around 50 iterations in the first case and around 80 in the

second case. Therefore, although problem complexity increases with the number of participants,

these numbers suggest the applicability of the algorithm in large settings.

This chapter has contributed towards Research Challenges 2 and 3, but also introduces an

important challenge of its own. More specifically, by decentralising computation among self-

interested aggregators, new strategic manipulation opportunities arise, as described in Research

Challenge 4, an issue which will be addressed in the next chapter.



Chapter 7

Strategic Manipulation of

Decentralised Optimisation

Algorithms

In the previous chapter we proposed a decentralised coordination mechanism for EV aggregators,

with the aim of addressing Research Challenges 2 and 3. Indeed, by decentralising computation,

the need for sharing private information and trusting a central coordinator are removed. How-

ever, as hinted in the previous chapter, a new risk for potential strategic manipulation arises.

More specifically, in centralised approaches, such as the ones proposed in Chapters 4 and 5, self-

interested aggregators can only manipulate the coordination algorithm by misreporting their

energy requirements. In order to avoid this, payment mechanisms can be carefully designed

to incentivise the aggregators to cooperate and report truthful requirements (see Sections 4.3

and 5.5). However, when considering decentralised mechanisms, the participating aggregators’

roles are not limited to reporting preferences, but also play an active part in computation. As

a consequence, the opportunities for strategic manipulation are greatly increased, as detailed

in Research Challenge 4. Again, we would like note note that, although we will focus on our

multi-aggregator scenario, these issues exist in any decentralised optimisation algorithm.

In order to address these issues, we will describe and analyse how the decentralised coordination

mechanism from Chapter 6 can be manipulated, and propose a manipulation detection algorithm

which detects deviating aggregators. The rest of this chapter is structured as follows. We start

by describing several attack vectors which can be used by a deviating aggregator in order to

increase its personal utility in Section 7.1. Then, in Section 7.2 we turn our attention to the

issue of detecting strategic manipulation, and present frameworks for measuring and detecting

deviating behaviour. Finally, we present a case study using real driver and market data in order

to assess the effects of the proposed attacks in the coordination algorithm and the performance

of the detection algorithm in Section 7.3.

71
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7.1 Strategic Manipulation of the ADMM Algorithm

The decentralised ADMM-based algorithm proposed in Chapter 6, given by Eqs. 6.2a, 6.2b,

6.2c, has nice convergence properties and asymptotically reaches the global optimum for suitable

values of ρ [Boyd et al., 2010]. However, this requires every participating agent to run the

algorithm faithfully. In our case, where agents are assumed to be self-interested, an aggregator

could deviate from their assigned local algorithm and/or misreport their local solutions with the

aim of improving their allocation. More specifically, we assume that a potential attacker aims

to reducing its energy costs (i.e. increase its utility) and we will show how this misbehaving

aggregator can significantly affect the algorithm’s outcome for its own benefit. Note that we do

not look at all possible manipulation vectors, as this is not feasible, but instead focus on several

intuitive and specific types of manipulation that are beneficial for the attacker in our setting.

Formally, considering a set of n aggregators and following the notation from Chapter 6, the

electricity costs incurred by aggregator i when a global allocation E =
(
E1, . . . ,En

)
is reached

are given by:

costi =

23∑
t=0

Eit · P̂t
 n∑
j=1

Ejt

 (7.1)

In order to reduce these costs, the attacker aims to minimise the price impact on their desired

hours, which in turn can be achieved by moving other aggregators’ overlapping allocations to

different hours. To this end, we consider different attack vectors, namely Shift, Proportional,

Freeze, FreezeShift, FreezeProp and Adversarial attacks, which are described next. These capture

different ways that an attacker can try to increase its own utility and present very different

outcomes and efficacy, as detailed in Section 7.3.1. Note that, throughout the rest of this chapter,

we assume that an attacker performs a given attack vector with a given intensity in every round.

The study of more sophisticated attacks is outlined as future work (Section 7.4). For quick

reference, a summary of the considered attack vectors can be found in Table 7.1. Finally, note

that an empirical evaluation of all the proposed attack vectors can be found in Section 7.3.1.

Attack name Short description

Shift(All)
Shift the proposed allocation for one attacked aggregator
(or all aggregators) to more expensive hours

Proportional(All)
Scale down the proposed allocation for the attacked
aggregator (or all aggregators)

Freeze
Propose its individually optimal allocation for itself
(without considering the competitor aggregators)

FreezeShift(All) Freeze + Shift(All)
FreezeProp(All) Freeze + Proportional(All)

Adversarial
Attempt to incriminate a benign aggregator as deviator
by artifically favouring their allocations

Table 7.1: Summary of the proposed attack vectors.

7.1.1 Shift Attack

In this type of attack, the deviating aggregator i runs its local optimisation problem (i.e.

Eq. 6.2b), but artificially modifies its local schedule allocation for another aggregator j, E(i),j , by
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Figure 7.1: (a) Truthful allocation from aggregator i to aggregator j following Eq. 6.2b,

E
(i),j

[k+1]. (b) Attacked Ê
(i),j

[k+1] employing a shift attack with µ = 2 as given by Eq. 7.2.
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Figure 7.2: Real example of the effects of ShiftAll on the resulting energy allocations. The
scenario consists of three aggregators of the same size with the third aggregator being the
attacker and employing µ = 1. Results for both vanilla and attacked scenarios are presented.

shifting it outside of aggregator i’s preferred hours. In this work and without loss of generality,

we will focus on a particular case where the deviating aggregator splits the energy schedule of

the attacked aggregator j by its mid-hour, and then shifts the first half outwards by a number

of hours (the strength of the attack) µ = 1, 2, . . ., as depicted in Figure 7.1. This is motivated by

the fact that, normally, the cheapest prices lie somewhat in the middle hours of the day. Note

that the analogous attack where both halves are shifted outwards was also considered and its

empirical results were found to be very similar.

In more detail, let t∗ be the median hour with non-negative energy allocation for agent j, E
(i),j
[k+1].

Then, given E
(i)
[k+1] from Eq. 6.2b, the allocation of aggregator j is modified as follows:

Ê
(i),j
[k+1], t =


E

(i),j
[k+1], t+µ , if t ≤ bt∗c − µ

0 , if t ∈ (bt∗c − µ, bt∗c]

E
(i),j
[k+1], t , if t > t∗

(7.2)

Note that, in the mathematical formulation presented in Eq. 7.2, the allocation can be pushed

beyond the 24h day interval for large values of µ, but this does not happen for the range of

values employed in the empirical evaluation presented in Section 7.3.

Finally, this attack vector can be extended to target all the competing aggregators, rather than

aggregator j only, and will then be referred to as ShiftAll attack.

For illustrative purposes, the effects of ShiftAll in a scenario with three aggregators are shown

in Figure 7.2. The third aggregator deviates from the vanilla algorithm and manages to shift

the allocation of the first two aggregators out of one of its preferred hours (3 am). As a result,

the attacker is able to obtain more energy at 3 am and reduce its allocation during the more

expensive hours 5 and 6 am.
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Figure 7.3: Real example of the effects of ProportionalAll on the resulting energy allocations.
The scenario consists of three aggregators of the same size with the third aggregator being
the attacker and employing λ = 0.66. Results for both vanilla and attacked scenarios are

presented.

7.1.2 Proportional Attack

In this type of manipulation, the deviating aggregator i runs its local optimisation problem (i.e.

Eq. 6.2b), but scales down its allocation for another aggregator j, E(i),j , by a factor λ ∈ [0, 1],

which indicates the strength of the attack. Formally, E
(i)
[k+1] is obtained from Eq. 6.2b, and then

modified as:

Ê
(i),j
[k+1] = E

(i),j
[k+1] · (1− λ) (7.3)

The effect of this attack is to flatten the the allocation of aggregator j, resulting in less overlap

with aggregator i’s desired schedule, in a similar way to the Shift attack. Note that the attacked

aggregator still enforces its own constraints, Eqs. 3.2b, 3.2c, 3.2d, 3.2e, so that the amount of

energy it receives is enough to satisfy its requirements.

As an example, the effects of ProportionalAll in a scenario with three aggregators are shown in

Figure 7.3. The third aggregator deviates from the vanilla algorithm and manages to flatten the

allocation of the first two aggregators out of one of its preferred hours (3, 4, 5 am). As a result,

the attacker is able to obtain more energy at the cheap hours and reduce its consumption during

more expensive ones.

Analogously to the previous attack vector, Proportional can be targetted to all the competing

aggregators. In such a case it will be denoted by ProportionalAll.

7.1.3 Freeze Attack

In this case, attacker i freezes its own allocation to the individually optimal one, i.e. the alloca-

tion that can be obtained by solving Eqs. 3.2a, 3.2b, 3.2c and 3.2d without taking into account

the other aggregators. Formally, being E∗i the optimal individual allocation for aggregator i:

Ê
(i),i
[k+1] = E∗i (7.4)

This way, the attacker hopes to get its individually optimal allocation and get the other com-

peting aggregators to arrange their allocations around. Importantly, this attack vector can be

combined with the others presented so far. Specifically, we call the attack vectors combining

Eqs. 7.2 and 7.4 FreezeShift and FreezeShiftAll. Similarly, the attacks combining Eqs. 7.3 and

7.4 will be called FreezeProp and FreezePropAll. Intuitively, these combinations should yield
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more benefit to the attacker since its own allocation will be less affected by the smoothing effect

of the competing aggregators.

7.1.4 Adversarial Attack

This last type of attack we consider is different from the previously described ones, as the devi-

ating aggregator i does not seek to directly manipulate another aggregator’s allocation. Instead,

it will try to incriminate a benign aggregator j to make it appear as a deviator, hoping it will be

a false positive of the manipulation detection algorithm (discussed in Section 7.2) and penalised

accordingly. Depending on the imposed penalty, this could consist on banning aggregator j’s

participation on the current trading day, thus benefiting aggregator i as competition is reduced.

Otherwise, this can be seen as a purely malignant adversarial attack. Note that this sort of

attacks have attracted a lot of recent interest in the field of machine learning [Huang et al., 2011,

Kurakin et al., 2016] and could present a serious drawback for incentivising agents to participate

in cooperative schemes such as the one proposed in this work.

Formally, this attack can be performed by proposing a schedule for aggregator j, E
(i),j
[k+1], t,

artificially close to the allocation of aggregator j to itself in the previous round, E
(j),j
[k] . Hence

aggregator j appears to deviate from the algorithm as it breaks the balance in aggregators

i-j interaction. This will become clear in Section 7.2.1 where we describe how to quantify

manipulation. This attack can be parametrised by a parameter λ ∈ [0, 1] which determines a

linear combination between the schedule proposed by aggregator j to itself, and the schedule

allocated by aggregator i to j as a result of Eq. 6.2a. Formally, given E
(i),j
[k+1] from Eq. 6.2b,

modify the allocation to aggregator j as follows:

Ê
(i),j
[k+1] = E

(i),j
[k+1] · (1− λ) + E

(j),j
[k] · λ

In more detail, an attack with parameter λ = 1 proposes an allocation to aggregator j equal to

what j proposed for itself in the previous round. This is likely to be beneficial for aggregator j’s

schedule, as it will contribute towards maintaining the more favourable schedules characteristic

of early rounds before convergence. However, as will be detailed in Section 7.2.1, this will make

benign aggregator j seem a deviator, with the subsequent penalty. Conversely, as λ tends to

zero, we recover the vanilla ADMM algorithm.

7.2 Detecting Manipulation

In this section, we detail a mathematical framework for quantifying the influence of a given

ADMM participant, i.e. an aggregator, onto the rest of participants. The aim is to be able

to detect outliers that are symptom of strategic manipulation in the system. Note that this

framework is general, and can be applied to any ADMM (or variant) scenario, although we focus

on our particular case for ease of exposition.
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7.2.1 Quantifying Manipulation

The basic idea is that any group of aggregators with overlapping energy requirements should in-

fluence each other’s schedules with similar intensity. If a particular aggregator i is self-interested

and wants to improve its allocation by deviating from the ADMM algorithm, it will exert a heav-

ier influence onto its competitors’ allocations. Conversely, as happens in the adversarial attack

detailed in Section 7.1.4, an aggregator that tries to wrongly flag another benign aggregator as

deviator would exert too little influence.

A key point is that each aggregator i produces a (local) proposed schedule for all the n particip-

ating aggregators. Formally, following the notation from Section 6.1:

E
(i)
[k+1] =

(
E

(i),1
[k+1], . . . ,E

(i),n
[k+1]

)
Hence, this local solution proposed by aggregator i at iteration k contains its own schedule,

E
(i),i
[k+1], and all the schedules for all the other participants, E

(i),j
[k+1] for j 6= i. We assume that

each aggregator, benign or deviator, is truthful about their own allocations in their proposed

local solutions. The reason for this is that every aggregator wants the best energy schedule given

their requirements and hence would report the optimal schedule arising from their minimisation

problem. Moreover, note that, given that an aggregator is unlikely to frequently change size

and needs electricity everyday, past behaviour can also be used to roughly infer some of the

aggregator’s characteristics. The study of more general manipulation settings is out of the scope

of this chapter and is outlined as future work (Section 7.4). Also, without loss of generality,

we assume that the deviating behaviour starts from the second ADMM round, when every

aggregator has seen the proposals from each aggregator. This allows us to focus on the first two

iterations (k = 0, 1) for ease of exposition.

Formally, let d be a square matrix of dimension n, the difference matrix, storing how much

each aggregator affects its competitors’ self-proposed allocations. In more detail, every i, j entry

quantifies how much aggregator i modifies the self-assigned schedule of agent j, and is given by:

di,j = ‖E(i),j
[1] − E

(j),j
[0] ‖

As mentioned above, we expect benign aggregators to affect each other’s schedules in a similar

way, but aggregator size significantly affects this. More precisely, there are natural magnitude

deviations in di,j and dj,i when the sizes of the benign aggregators i and j differ. An example

of this effect is shown in the top row of Figure 7.4 in dark grey.

These natural differences are an obstacle for detection algorithms. In order to overcome this issue,

we normalise the matrix d employing the total amount of energy allocated by each aggregator

to itself, as a proxy to potentially unknown aggregator size. Note that other proxies can be used

instead, such as actual size and total amount of electricity purchased in previous trading days.

Formally, we can write:

sizei =

23∑
t=0

E
(i),i
[0]



Chapter 7 Strategic Manipulation of Decentralised Optimisation Algorithms 77

d
i,
j

1 2

d̄
i,
j

1 3 1 4 2 3 2 4 3 4

Aggregator number (i, j)
Figure 7.4: Difference matrix (top) and normalised difference matrix (bottom), d and d̄ re-
spectively, for a scenario with two aggregators of size 50 000 EVs (1 and 4) and two aggregators
of size 150 000 EVs (2 and 3). One of the small aggregators (Aggregator 4) performs a Shift
attack with µ = 1 against the other small aggregator (Aggregator 1), displayed as light grey.

and the proportion of the size of aggregator i among the whole group of aggregators is given by:

pi =
sizei∑
j sizej

Then, the normalised difference matrix, d̄, is given by:

d̄i,j = ‖E(i),j
[1] − E

(j),j
[0] ‖ ·

√
pi

sizei + sizej
(7.5)

This scaling function was chosen as it empirically flattens the entries of the matrix d̄ correspond-

ing to benign aggregators, eliminating most of the dependence on aggregator size. In more detail,

extensive simulations were performed, studying a variety of scenarios with different number of

aggregators of different sizes, and different attack vectors and attack strengths. The selected

normalisation approach provides the best results. An example of the normalisation effect is pic-

tured in the bottom row of Figure 7.4. In this plot, the effect of the manipulating aggregator is

shown in light grey, whereas the rest of the dark grey bars correspond to benign behaviour. In

the top plots, corresponding to the difference matrix d, we can see large differences between dif-

ferent entries, arising from the large size differences between the aggregators. Importantly, these

natural differences are larger that the effect of the manipulating aggregator. On the contrary,

the normalised bottom plots manage to nearly flatten all the natural differences, and the effect

of the deviator aggregator clearly stands out.

Lastly, for the rest of the chapter, we assume that n− 1 aggregators are benign and only one of

them can potentially be a deviator. This is motivated by the fact that, with a perfect detection

algorithm, there exists a Nash equilibrium in which no-one wants to deviate. Note that the

proposed detection algorithm, which we are now ready to introduce, could be extended to deal

with the more general case of having any number of deviators.

7.2.2 Detecting Manipulation

The overall idea is to be able to detect deviating aggregators in order to penalise and discourage

manipulation. As it is usually the case in complex stochastic environments, the aim here is to

reduce false positives and false negatives, while keeping true positives and true negatives as high
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as possible. In this work we consider a positive to be an aggregator detected as deviator, and a

negative an aggregator classified as benign.

Input : d̄, α
Output: list with the detected manipulating aggregator, if any

/* off-diagonal */

consider the off-diagonal elements: offDiag;
compute the median: µ1/2 = median(offDiag);
compute distances from each element in offDiag to µ1/2;
find max distance −→ maxOffDiag;

/* on-diagonal */

consider the on-diagonal elements: onDiag;
compute the median: µ1/2 = median(onDiag);
compute distances from each element in onDiag to µ1/2;
find max distance −→ maxOnDiag;

/* threshold-based detection */

max(maxOffDiag, maxOnDiag) −→ max;
aggregator index: index(max) −→ i;
if max > α then

deviator −→ [i];
else

deviator−→ [];
end

return deviator
Algorithm 2: Threshold-based strategic manipulation detection algorithm for a scenario with
at most one deviator.

As explained in previous sections, the idea is that manipulating behaviour will stand out, as it

exerts a larger or smaller influence in other aggregators allocations, compared to the scenario’s

average. Formally, one can use the normalised difference matrix d̄ defined in the previous section

in order to quantify this mathematically: manipulating behaviour from aggregator i towards

aggregator j is translated into a too large or too small entry d̄i,j . We propose applying a

threshold-based algorithm, with threshold parameter α, as described in Algorithm 2. In more

detail, the algorithm looks at the difference matrix d̄, computes the medians of the matrix entries,

and then finds the entry that deviates the most from the median. This is done separately for

off- and on-diagonal elements (as there are intrinsic magnitude differences between d̄i,i and d̄i,j

even when all aggregators are benign) and only the highest deviation of the two is taken as final

candidate. Lastly, this candidate is classified as deviator if its deviation from the median is

greater than the user-defined threshold α.

The choice of threshold α is critical and we empirically study the performance of different

thresholds in Section 7.3.2. Also, although the presented algorithm is designed to work in

scenarios with at most one manipulating agent, by selecting the aggregator that deviates the

most, it can be easily adapted to a general scenario. The most straightforward way would be

to simply classify as deviator any aggregator i with |µ1/2 − d̄i,j | > α for some j. This extended

algorithm is conceptually the same as Algorithm 2 and will be studied in future work.

We are now ready to present the empirical evaluation.
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7.3 Empirical Evaluation

In this section we present an analysis of the performance of the different attack vectors proposed

in Section 7.1 and the manipulation detection algorithm presented in Section 7.2.2. This em-

pirical evaluation closely follows the scenarios considered in Chapters 3, 4, 5, 6. In more detail,

we consider a night-time residential scenario in which EVs arrive in the evening and need to be

charged by the next morning. In more detail, the aggregator, market and driver characteristics

are described in Sections 3.3.1, 3.3.2 and 3.3.3, respectively.

7.3.1 Attack Vectors: Utility and Convergence

Similarly to the analysis presented in the the previous chapter, Section 6.3, where we studied

the convergence of the proposed ADMM algorithm, we will now turn our attention to analysing

the behaviour of the algorithm under the effect of the manipulative attacks presented in Section

7.1. To this end, we identify two key quantities to analyse in order to assess the efficacy of a

given attack vector: the effectiveness of the considered attack, in terms of utility increase (i.e.

energy cost reduction) for the attacker, and the convergence of the algorithm under attack. This

is motivated by the fact a given manipulative aggregator would try to improve its own allocation

by manipulating the ADMM algorithm in a subtle way that goes unnoticed.

In order to evaluate these two quantities, we run simulations for each of the proposed attack

vectors over the ten first days of November 2016 using ρ = 10−5, and present the results in

Figure 7.5. Here, we can see that both Proportional and ProportionalAll manage to achieve

reduced costs for the attacker with good convergence rates in the scenarios with three aggregators.

However, for settings with four aggregators, both these attacks destabilise the algorithm which

outputs non-optimal allocations with increased costs for all the aggregators. Interestingly, both

FreezeProp and FreezePropAll present very good results, consistently providing reduced costs

for the attacker and close to 100% convergence rates for all attack strengths. On the other

hand, Shift, ShiftAll, FreezeShift and FreezeShiftAll present very large cost reductions but fail to

converge in the vast majority of cases. We would like to note that even a 1% cost reduction in

the scenarios considered in this work represents savings in the order of hundreds of thousands of

Euros per year. Finally, in a slightly different vein, Adversarial presents 100% convergence rates

for all attack strengths and very small cost alterations. Recall that the aim of this attack is not

to directly increase the attacker’s utility, but to incriminate a benign aggregator as deviator (see

Section 7.1.4). As a consequence, the efficacy of Adversarial is more appropriately measured by

looking at the number of false positives (benign aggregators incorrectly classified as deviators)

that the attack is able to generate. Results from this analysis are detailed in Section 7.3.3, as

they require parts of the explanation about the performance of the proposed detection algorithm,

which is detailed in the next section.

Summarising, we have studied the effects of each of the attack vectors on the convergence and

outcome of the proposed ADMM algorithm. While some attacks (Shift and variants) prevent

the algorithm from converging thus limiting their practical applicability, others, particularly

FreezeProp and FreezePropAll are successful in decreasing the attacker’s electricity costs while

barely affecting the algorithms convergence. We would like to note that these interesting results

all arise from myopic attack vectors that are simply repeated iteration after iteration. Given
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Figure 7.5: Cost and convergence analysis for each of the attack vectors described in Section
7.1. Scenarios with three aggregators (LHS) and four aggregators (RHS) and averaged over

the ten first days of November 2016. All aggregators have capacity for 150 000 EVs.

that an attacker is potentially able to monitor convergence and other metrics during successive

iterations of the algorithm, it is likely that greater cost savings and convergence rates could be

obtained by more sophisticated algorithms.

7.3.2 Threshold-Based Detection Results

So far, we have shown the efficacy of the different proposed attack vectors. Next, we present the

empirical performance of the proposed detection algorithm. As mentioned in Section 7.2.2, the
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Figure 7.6: Accuracy analyses for each of the proposed attack vectors, attack strengths and
number of aggregators. Results averaged over every day of November 2016. All aggregators
have capacity for 150 000 EVs. Dashed lines represent the naive benchmark for each scenario,

which considers every aggregator to be benign.

choice of the threshold parameter α is critical for good performance. Recall that the ultimate

aim is to maximise correct classifications, i.e. true positives and true negatives. If α is set too

high, we will fail to detect deviating behaviour. Conversely, if α is set too low, the detection

algorithm would be too sensitive and misclassify benign aggregators as manipulating.

In order to quantify the performance of the detector we employ the accuracy metric [Metz, 1978],

given by:

Accuracy =
True Positives + True Negatives

Total population

Specifically, accuracies 0 and 1 correspond to detectors which are always wrong and always right,

respectively. Moreover, we will compare the accuracy of our proposed algorithm with that of a
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Figure 7.7: Accuracy analyses for each of the proposed attack vectors, attack strengths and
aggregator size. Results averaged over every day of November 2016. Dashed lines represent

the naive benchmark for each scenario, which considers every aggregator to be benign.

naive detector that classifies all the aggregators as benign. This is motivated by the fact that our

dataset is unbalanced given that we consider at most one deviator per simulation (see Section

7.2). A well performing algorithm should present increased accuracy from this naive benchmark.

In more detail, we present the results from two different experiments. First, we consider scenarios

with varying numbers of aggregators of the same size. This smoothens the natural discrepancies

in the difference matrix, d, and allows us to focus on each of the different attacks and attack

strengths. Second, we present an experiment considering aggregators of different sizes. In this

case, the natural discrepancies arising from the size difference play an important role (see Section

7.2.1), and it is more difficult for a detection algorithm to distinguish between size effects and

manipulation. For each scenario, we simulate every day of November 2016 and use ρ = 10−5.

Recall that we assume that the deviating aggregator performs uses the same attack vector and
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Figure 7.8: Analysis of the efficacy of Adversarial for two attack strengths in the Smaller
scenario, as described in Section 7.3.2. Dashed lines correspond to the percentage of times the
attacked aggregator is incorrectly classified as deviator, in the case with no manipulation. Solid
lines represent the same quantity when the aggregator is the target of Adversarial. Results

averaged over every day of November 2016.

attack strength in all rounds, and focus our detection algorithm in the first and second rounds.

The results for each of the two experiments are shown in Figs. 7.6 and 7.7, respectively.

The results from the first experiment indicate that our proposed algorithm is able to detect the

majority of attacks with an accuracy of, or very close to, 1. This shows that our algorithm

significantly outperforms the naive benchmark. Moreover, these results are consistent across

different numbers of aggregators ranging from 3 to 7. Focusing on each different attack, detection

is easier as the strength increases. This is intuitive as stronger attacks have a more pronounced

effect on the algorithm and stand out. Interestingly, the attack vector which is most difficult to

detect is Shift, which is the only one where the algorithm is not able to reach perfect accuracy

for any number of aggregators. Finally, the presence of greater number of aggregators makes

detection slightly more difficult in most cases. Note that, as explained above, these simulations

consider aggregators with the same size. As we will see next, size effects make detection more

challenging. Finally, note that for large values of α, the detection algorithm classifies everyone

as benign thus converging to the naive benchmarks.

In the second experiment, we consider two different settings with three aggregators. Firstly,

the attacker has capacity for 450 000 EVs, whereas the other two aggregators are smaller and

have capacity for 150 000 EVs. Secondly, the attacker and one of the benign aggregators have

capacity for 150 000 EVs, while the attacked aggregator has capacity for 450 000 EVs. These two

scenarios are called Larger and Smaller in Figure 7.7, respectively. We can see that size effects

make detection considerably more challenging. Our proposed algorithm still outperforms the

naive detector in the vast majority of cases, and perfect accuracy is still achieved for high attack

strength in some cases, such as Adversarial, Proportional and FreezeProp. However, smaller

attacks are difficult to detect and in some cases the performance of our algorithm is comparable

to the naive detector (see for example Adversarial with λ = 0.16 in the Smaller scenario. This

suggests that the discrepancies in the difference matrix arising naturally due to size differences

are not smoothed enough by the proposed normalisation scheme. However, despite this extra

challenge, the proposed detection algorithm significantly outperforms the naive benchmark and

presents very good detection results across a variety of settings.
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7.3.3 Performance of Adversarial

As mentioned in Section 7.3.1, the efficacy of the Adversarial attack vector is appropriately

measured in terms of its success rate in incriminating a benign aggregator as deviator. We

perform this analysis using the same datasets as in the previous section: namely the scenarios

with varying number of aggregators of the same size and the ones including varying size aggreg-

ators. Results indicate that this attack vector is unsuccessful in most cases, not being able to

incriminate the attacked aggregator.

The most interesting behaviour is obtained in scenarios containing aggregators of different sizes

and where the attacked aggregator has a larger size than the rest, i.e. the scenarios labelled as

Smaller in the previous section (the attacker is smaller than the attacked aggregator). In these,

the natural discrepancies in the difference matrix cause the detection algorithm to incorrectly

classify the attacked aggregator as deviator for small α values. This happens as, for small α’s,

the algorithm will pick up the aggregator that stands out the most in the difference matrix,

even if only by a very small margin. Interestingly, if the attacker performs an Adversarial

attack on the large benign aggregator, the detection algorithm is able to detect it in some

cases, hence eliminating the false positive that would be obtained without manipulation. This

situation is depicted in Figure 7.8. In more detail, we can see that weak Adversarial attacks

(λ = 0.16) achieve up to 80% success rates. However, the same scenario without manipulation

presents higher false positive rates due to the reasons explained above. Moreover, increasing

the values of α reduces the false positives to zero. Similar results can be observed for stronger

attacks (λ = 0.33. For the rest of scenarios, the attacker is not able to incriminate the attacked

aggregator at all, and is in turn detected as deviator.

Importantly, we would like to remark the fact that this chapter focuses on scenarios where there

is, at most, one deviating aggregator (see 7.2.1). In more general settings, which will be subject

of study in future work, it is likely that this attack vector will present much higher success rates.

In more detail, the proposed detection algorithm will choose at most one aggregator as deviator,

so the natural deviations arising from size differences compete with the manipulation effects. If

size difference stands out more, the detection algorithm will incur a false positive without any

manipulation. Conversely, if the effects of an Adversarial overcome the natural discrepancies,

the algorithm will correctly detect the attacker. In the more general case where there are any

number of deviating aggregators, and with an algorithm (extending the one proposed in this

chapter or otherwise) that can detect any number of aggregators as deviators, both size effects

and malignant incrimination from an Adversarial attack could lead to multiple detections.

7.4 Summary

In this chapter, we present the first study about strategic manipulation of ADMM algorithms

by self-interested internal agents. Even though ADMM and related decentralised optimisation

algorithms are widely applied in many disciplines, little work has focused on studying how these

algorithms can be disrupted by internal attackers. In order to address this issue, we study

how a deviating agent can alter their local algorithm in order to increase their own utility at

the expense of their competitors. Focusing on the decentralised multi-EV aggregator setting
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and algorithm considered in Chapter 6, we introduce several attack vectors that a self-interested

aggregator can employ in order to alter the outcome of the ADMM algorithm. Moreover, in order

to prevent strategic manipulation, and working towards resilient decentralised optimisation, we

study how deviating behaviour can be detected. In more detail, we propose a mathematical

framework which measures the effects that different agents exert onto each other when employing

the ADMM algorithm. Furthermore, we propose a threshold-based algorithm which employs this

formalism in order to classify the participating aggregators as benign or deviators. Although we

focus on an energy setting, the proposed detection framework is general and can be applied in

general.

In order to study the proposed decentralised algorithm and detection mechanism, we present

an empirical evaluation using real market and vehicle usage data from Spain. We first focus

on the performance of the proposed attack vectors and analyse their impact on attacker utility

(reduced energy costs) and on algorithm convergence. Specifically, we show that an attacker is

able to effectively alter the outcome of the algorithm for their own benefit. Secondly, we turn

our attention to the proposed detection framework, and present an accuracy study to assess its

performance. Results show that our algorithm achieves very high accuracy, close and up to 1

in all cases when the considered aggregators have the same size, significantly outperforming the

naive benchmark. However, considering aggregators with different sizes makes detection more

difficult. Although our proposed algorithm outperforms the naive benchmark in most cases,

some small attacks are very challenging to detect.

By addressing Research Challenge 4 in particular, this chapter concludes our investigation on

the coordination opportunities of EV aggregators, namely Research Challenges 2 and 3. In the

next chapter, we will turn our attention to Research Challenge 5, that is, the issue of energy

units allocation.





Chapter 8

Online Allocation of Energy Units

Once a given EV aggregator has purchased an energy allocation from the day-ahead market,

it faces the problem of how to schedule this energy among the available EVs, as captured by

Research Challenge 5. This issue is not trivial, given that the aggregator does not know about

future EV arrivals, and decisions need to be taken on the go. In order to address this challenge, we

will consider an online model with dynamic arrivals and departures, and propose different online

scheduling algorithms. The overall aim is to maximise resource utilisation, customer satisfaction

(i.e. number of EVs with the desired state of charge by departure time) and fairness.

The rest of the chapter is structured as follows. We formally define the online model in Section

8.1. Then, we describe the considered efficiency and fairness objectives in Section 8.2. Next, in

Section 8.3, we study our scenario from an offline perspective, that is, assuming perfect knowledge

of future arrivals. The main contribution of this chapter is presented in Section 8.4, where we

study the online scenario and present existing and novel scheduling algorithms. Finally, we

evaluate the proposed algorithms in a realistic case study in Section 8.5.

8.1 Model

We consider a setting with n agents A = {1, . . . , n} (e.g. EVs) who arrive in an online manner

with arrival time ai ∈ T and departure time di ∈ T (di ≥ ai) and who require up to a certain

quantity of resource qi on departure. The value qi could be seen as the total energy needed

to fully charge the battery of an electric vehicle. We assume that both time and quantity are

discrete, i.e. T = {1, . . . , τ} and qi ∈ N+. Let xi,t ∈ N+ denote the amount of resource allocated

to agent i at time t. Moreover, we say an agent is satisfied if its allocation is equal to its required

quantity, i.e. if
∑di
t=ai

xi,t = qi. We assume that agents can consume resources at a maximum

charging rate of ri ∈ N+. However, since no algorithm will allocate more resources than an agent

needs, the effective maximum charging rate is given by ri,t = min (ri, qi −
∑t−1
t′=ai

xi,t′). Finally,

at each point in time t ∈ T a supply st ∈ N+ of the resource becomes available, which can be

allocated only to agents who are in the market, i.e. At = {i ∈ A : ai ≤ t ≤ di}. We assume that

supply is perishable meaning that supply needs to be allocated immediately and any unallocated

supply is lost. Consequently, we have that ∀t :
∑
i xi,t ≤ st.
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This results in the following problem constraints for any allocation we consider:

∀i ∈ A,∀t < ai : xi,t = 0 (8.1)

∀i ∈ A,∀t > di : xi,t = 0 (8.2)

∀i, ai ≤ t ≤ di : xi,t ≤ ri (8.3)

∀i ∈ A :
∑di

t=ai
xi,t ≤ qi (8.4)

∀t :
∑

i∈A
xi,t ≤ st (8.5)

Example 8.1. Consider two EVs arriving at a charging station with parameters a1 = 1, d1 = 3

and a2 = 2, d2 = 4 respectively. See Figure 8.1. The first vehicle has a maximum charging rate

r1 = 2 and needs three units of energy, q1 = 3. The second vehicle has a maximum charging rate

r2 = 1 and needs two units of energy, q2 = 2. The available supply to the charging station is one

unit at time steps 1, 2, 4, and two units at time step 3. We give an example allocation that fully

satisfies both EVs by allocating x1,1 = x1,2 = x1,3 = 1 and x2,3 = x2,4 = 1, and zero otherwise.

1

2

t = 1 t = 2 t = 3 t = 4

s1 = 1 s2 = 1 s3 = 2 s4 = 1

q1 = 3
r1 = 2

q2 = 2
r2 = 1

Figure 8.1: Example allocation. For each EV and time step, each empty square represents
one potential unit of energy, while a grey square represents an allocated unit.

8.2 Objectives

This work is motivated by the fact that agent preferences are often not easily obtainable in

practice, e.g. because of the additional burden on the user and/or the difficult for users to express

their willingness to pay. Hence, although it is reasonable to assume the agent constraints (ai, di, qi

and ri) can be elicited with relatively little effort, we would like to avoid assumptions about the

utility functions, and hence objectives such as social welfare (sum of utilities) maximisation are

no longer applicable. Instead, we consider other objectives a system designer may reasonably

want to achieve in our setting. In so doing, our goal is to study their comptuational complexity,

as well as the theoretical and empirical trade offs between the various objectives. Specifically,

we consider the following set of objectives:

MaxDelivered: Maximise the total resource allocated:
∑
i∈A

∑di
t=ai

xi,t.

MaxSatisfied: Maximise the number of agents satisfied:
∑
i∈A{

∑di
t=ai

xi,t = qi}.

Envy-Freeness: We say agent i is envious of agent j’s allocation if min
(
qi,
∑di
t=ai

min(ri, xj,t)
)
>∑di

t=ai
xi,t. In words, the allocation to agent j while agent i is in the market is greater than

the allocation i receives, subject to i’s maximum charging rate and total demand. We say

that an allocation is envy-free if no agent is envious of another agent’s allocation.
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Figure 8.2: Example showing that MaxDelivered does not imply MaxSatisfied.
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Figure 8.3: Example showing that MaxSatisfied does not imply MaxDelivered.

The first objective is arguably the closest to the common social welfare maximisation objective

and, indeed, is equivalent if agents have the same preferences and these are linear in the number

of units received. The second objective is reasonable in cases where agents have some comple-

mentary preferences, e.g. in the EV setting a driver will need a minimum charge to complete

a day’s journeys and it is also reasonable to expect that users would want their vehicle fully

charged by the time they need it. Similarly, in a cloud computing setting, partial completion

of a computational task may not be feasible. The third objective is about allocation fairness,

where we build on the established notion of envy-freeness, which requires that no agent should

prefer another agent’s allocation. Our definition is the first generalisation to online settings

where agents may be in the markets at different times (and so it is not considered unfair when

an agent is receiving more resources while another agent is not present). We note that, although

our definition is less restrictive than the original offline one, it would be interesting to study even

less restrictive extensions, and we briefly return to this in our future work discussion.

Note that, in general, not all objectives can be satisfied simultaneously, and none are equivalent.

We explore this in more detail in the remainder of this chapter and present now an illustrative

example.

Example 8.2. In this example, we show that MaxDelivered and MaxSatisfied are not equivalent

and neither implies the other. First, consider the setup depicted in Figure 8.2. The proposed

allocation satisfies MaxDelivered, as all the available supply is allocated, but fails to satisfy any of

the two EVs. Alternatively, if the unit of energy allocated to EV 2 at t = 3 was instead allocated

to EV 1, we would have both MaxDelivered and MaxSatisfied.

Secondly, consider the setup depicted in Figure 8.3. In this case, the proposed allocation verifies

MaxSatisfied, given that it satisfies EV 1 and no other allocation could possibly satisfy the two

EVs given the available supply. However, this allocation is not MaxDelivered, as there is an

unused unit of supply at time t = 3.
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8.3 Offline Algorithms

We start by considering the complexity of solving the offline problem (i.e. where we have complete

foresight of the agents arriving in the future). Specifically, for the MaxSatisfied objective, this

is generally hard, but it can be computed in polynomial time when the supply is a single unit

per timestep:

Theorem 8.1. A MaxSatisfied allocation can be computed in polynomial time when st = 1 at

every time step, and we have ∀i : ri = 1.

Proof. The problem corresponds to the classic scheduling problem 1|pmtn, ri|
∑
Ui; the case

where we have a single machine, tasks can be preempted, there are release times and deadlines

for every task, and we want to minimize the unit penalty which is Ui := 0 if i is completed before

di and 1 otherwise. Here, ri denotes the release time of job i, following standard notation in

the literature. This problem can be solved in polynomial time in the number of agents using an

algorithm from [Lawler, 1990].

Theorem 8.2. Computing a MaxSatisfied allocation is NP-hard, even when st = 2 at every

time step, and we have ∀i : ri = 1.

Proof. We reduce from the scheduling problem P2|pmtn, ri|
∑
Ui, which is NP-hard [Du et al.,

1992]. This is the scheduling problem with two identical machines, tasks that can be preempted,

where each task has its own release time and deadline, and the objective is to minimize the

number of tasks for which the deadline is not met. This corresponds to our setting where we

have one agent for each task whose arrival time equals the task’s release time, whose departure

time equals the task’s deadline and whose charging requirement qi equals the task’s processing

time. Moreover, ri and Ui are defined analogously to the previous Theorem. Finally, we also

have that st = 2 at every time step t, and the charging rates are ri ∈ {0, 1} for every agent i.

Interestingly, the MaxDelivered objective is easier computationally:

Theorem 8.3. A MaxDelivered allocation can be computed in polynomial time.

Proof. We present a polynomial-time reduction to that of computing a feasible flow of a flow

network with upper capacity constraints [Goldberg and Tarjan, 1988].

We build a network flow with nodes as follows:

{s, t} ∪A ∪ {vt | t ∈ T} ∪ {ati | t ∈ T, i ∈ A}.

The arcs between the nodes are as follows:

• Source s points to the n agents.

• Each agent node ai ∈ A points to each node ati for all time slots t ∈ T .

• A node ati only points to node vt corresponding to time slot t if agent ai is active in time

slot t.
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• Each node vt points to sink t.

The only capacities of the nodes are as follows:

• Each node ai has upper capacity qi.

• Each node vt has upper capacity st.

We then compute a maximum flow of the network. Moreover, an actual schedule can be found

by looking at the corresponding feasible flow: if an agent node ai send some flow f through a

vertex vt, then ai gets f units of electricity in time slot t.

We now consider the tradeoffs between MaxDelivered and MaxSatisfied. Although a MaxDe-

livered allocation process need not optimize MaxSatisfied, as shown in Figure 8.2, we now prove

that it is always possible to modify a MaxSatisfied schedule to also be MaxDelivered, and so

achieve both objectives simultaneously.

Proposition 8.4. There always exists a solution which maximizes both MaxDelivered and Max-

Satisfied.

Proof. To find a schedule that is both MaxSatisfied and MaxDelivered we first find a MaxSatisfied

schedule (e.g. using our linear programming formulation). We can then take this schedule, which

may not allocate all units of charge st at each time step, and augment it by assigning any unused

charge to any available agent not covered in the returned MaxSatisfied schedule. If no such agent

exists, then we are allocating as much charge in each time step as possible and the allocation is

MaxDelivered.

We note that this result critically depends on the foresight given by the offline setting. In

an online setting, it will be impossible for any algorithm to always maximise MaxDelivered or

MaxSatisfied, as we prove in the next section.

Finally, in terms of the envy-freeness objective, a solution can be trivially obtained in polynomial

time (both in online and offline settings) by an equal contention algorithm, i.e. an algorithm

which, subject to charging constraints, allocates everyone the same amount at each time step.

Formally:

Definition 8.5 (Equal Contention (EC)). A mechanism satisfies equal contention if, at every

time step, the charging rate of any agent in the market which is below their maximum effective

rate, is at least as fast as that of any other agent in the market. Formally, let ri,t be the effective

maximum charging rate (as defined in Section 8.1). Then, ∀t, i ∈ At, whenever xi,t < ri,t we

have that maxi′∈At xi′,t = xi,t.

8.4 Online Algorithms

We now consider online algorithms, where, at every time step, the algorithm only has knowledge

of the agents arrived so far and has no information about future arrivals. We will assume
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that future supply is known. We start by adapting the following well known online scheduling

algorithms to our setting: earliest deadline first, least laxity first and value density. In these

algorithms, at each time t, the agents are prioritised based on different criteria, and the agent

i ∈ At with the highest priority is allocated resources at the maximum possible rate, i.e. xi,t =

min(st, ri,t). If there is still supply remaining (i.e. if si−xi,t > 0), the next agent in the priority

list is allocated resources in the same manner until no more supply or agents are available. Ties

can be broken in any way desirable. Where unspecified, in our empirical evaluation (Section 8.5)

we use a random tie breaking rule.

• Earliest Deadline First (EDF): Prioritise agents based on their deadline, with earlier dead-

line having higher priority. In our implementation any ties are resolved using arrival time

(earlier is better) followed by random.

• Least Laxity First (LLF): Let τmax
i denote the latest possible time that agent i can be

scheduled any units in order to fully satisfy its demand, given its current the effective

maximum charging rate and the available supply over time. Allocate the agents with the

lowest τmax
i first. If there are agents who cannot be fully satisfied they get top priority and

least satisfied agents are prioritised first. Ties are broken based on arrival time.

• Value Density (VD): Prioritise agents by density defined as:
qi −

∑
t′<t xi,t′

(di − t+ 1) · ri
. Ties are

broken according to EDF.

These algorithms are simple as they are very short-sighted. Moreover, they do not directly

optimise our objectives of MaxDelivered and MaxSatisfied. Therefore, we now introduce novel

algorithms which are based on their offline counterparts, but without considering future arrivals.

That is, an optimal schedule is computed based on the agents currently in the market, assuming

no new agents arrive. The schedule is then recomputed at each timestep, considering any new

agents who have arrived (noting that past allocations cannot be revoked). A challenge is that,

typically, many such schedules exist and a random tie breaking rule turns out to perform poorly

empirically. Therefore, our algorithm prioritises schedules where more resources are allocated to

the agents earlier on in the schedule. Formally, for MaxDelivered the algorithm is as follows:

Definition 8.6 (OnlineMaxDelivered (OMDel)). Let t be a current time step and At the agents

currently in the market. The algorithm proceeds in two steps. First, find the maximum number

of units, xt, we can allocate at the current time, t, i.e. find xt = max
∑
i∈At

xi,t subject

to the problem constraints. Then, an online MaxDelivered solution is found by maximising∑
i∈At

∑di
t′=ai

xi,t′ subject to the problem constraints and
∑
i∈At

xi,t = xt.

Note that, first, the additional constraint of allocating xt units at time t does not reduce the

optimality of the solution. That is, OnlineMaxDelivered will allocate the same number of units

regardless of the constraint (we leave out a formal proof due to space). Second, imposing similar

constraints at later timesteps is superfluous since any future constraints do not influence the

choice at time t. Finally, it is easy to see that the additional constraint does not affect the

computational time:

Theorem 8.7. OnlineMaxDelivered runs in polynomial time.
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Proof. The argument is similar as that of Theorem 8.3 except that, since we are in an online

setting and the allocation in previous time steps is irrevocable, we enforce the prior history of

the allocation by having lower capacity constraints for the ati nodes representing the agents for

a particular time step.

We can similarly define an algorithm for MaxSatisfied. Due to Proposition 8.4 we can always

achieve an allocation which maximises both MaxDelivered and MaxSatisfied, and this can be

achieved by combining both criteria as follows:

Definition 8.8 (OnlineMaxSatisfied (OMSat)). Find xt as in Definition 8.6. Then, an online

MaxSatisfied solution is found by maximising both MaxDelivered as well as MaxSatisfied, i.e.∑
i∈At

(∑di
t′=ai

xi,t′ + {
∑di
t=ai

xi,t = qi}
)

subject to the problem constraints and
∑
i∈At

xi,t =

xt.

Although this algorithm satisfies both objectives, it can be trivially shown that its computational

hardness is the same as that of solving MaxSatisfied offline (see Section 8.3).

Finally, we show that, unfortunately, even though these algorithms look ahead, none of the

algorithms are always optimal in online settings. This is surprising, especially for MaxDelivered.

Theorem 8.9. No online mechanism exists which always optimises MaxDelivered.

Proof. The proof is by counterexample. Consider a setting with initially 2 agents entering the

market at time t = 1, where r1 = 1, q1 = 2 and r2 = 2, q2 = 2. Agent 1 is in the market for 4

timesteps, and agent 2 for only 2 timesteps (d1 = 4, d2 = 2). Supply is 2 units per time step.

We consider two options. In option 1, the algorithm allocates 0 units to agent 1 and 2 units to

agent 2. In option 2, the algorithm allocates 1 unit to both. It is easy to see that any other

option (i.e. which does not allocate the full supply in the first round) is suboptimal.

If option 2 is chosen, suppose that a third agent enters the market at t = 2 with r3 = 2, q3 = 2,

d3 = 2 (i.e. the agent is in the market for 1 timestep and requires 2 units). The maximum total

units allocated is 5. However, if option 1 was chosen, 6 units could have been allocated in total,

showing that option 2 is not optimal.

If option 1 is chosen, suppose that 2 agents enter the market at times t = 3 and t = 4 with

r3 = r4 = 2, q3 = q4 = 2, d3 = 3, d4 = 4 (they stay in the market for 1 timestep each). At

timestep 2 agent 2 requires no more resources, so the only option is to allocate 1 unit to agent

1. Then, at timesteps 3 and 4 at most 4 units can be allocated, making the total delivery 7.

However, if option 2 is chosen, at timestep 2 we give 1 unit to each. The total delivery after 4

timesteps is then 8.

Hence, neither option is always optimal, showing that no online algorithm can always optimise

MaxDelivered.

Theorem 8.10. No online mechanism exists which always optimises MaxSatisfied.

Proof. The proof is by counterexample. Consider the setting detailed in the proof of Theorem

8.9. If option 2 is chosen and, following the previous proof, a new agent arrives at t = 2 with
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r3 = 2, q3 = 2, d3 = 2, then only two agents would be satisfied. It is easy to see that choosing

option 1 would satisfy all three agents. Similarly, if option 1 is chosen and two agents enter the

market at times t = 3 and t = 4 with r3 = r4 = 2, q3 = q4 = 2, d3 = 3, d4 = 4, only three agents

would be satisfied. Again, choosing option 2 would satisfy all four agents. Hence, neither option

is always optimal, showing that no online algorithm can always optimise MaxSatisfied.

8.5 Empirical Evaluation

Despite the negative theoretical results for online settings, the algorithms may perform well in

practice. Hence, in this section, we compare the performance of the proposed algorithms in a

realistic simulation. We will start by detailing the setup considered, and then proceed to describe

the results.

We consider a 24-hour period, i.e. T= {0, 1, . . . , 23}, each time unit representing one hour.

Specifically, we consider a night-time charging scenario, in which EVs arrive to the charging

station in the evening and depart in the morning. For every considered day, random EVs and

supply conditions are generated, as detailed in the next sections. Also, we run 50 instances of

each given simulation and present averaged results. Note that all the data from this empirical

evaluation is publicly available [Perez-Diaz et al., 2019b].

8.5.1 Supply Settings

Each supply unit represents 3 kWh [Binetti et al., 2015]. In terms of the available supply, high

availability is characteristic of night hours. In more detail, [Robu et al., 2013] identify the average

available energy in a small neighbourhood to be 615 kWh between 2:00 and 6:00, corresponding

to 5-12 units/time step. On the contrary, reduced supply is available during the rest of the day,

corresponding to 99 kWh, hence 0-4 units/time step. Thus, the supply available at time t, st,

is drawn from a Gaussian distribution with parameters specified in Table 8.1, both for high and

low supply intervals. Specifically, mean, standard deviation, and minimum and maximum limits

are presented for each.

min average std max
high supply 1 10.5 2.25 15
low supply 1 5.25 6 6

arrival 0 17 2.3 23
online time 1 12.75 0.75 remaining hours

charging rate 1 2.5 1 5
quantity 1 5.5 1.5 10

Table 8.1: Limits, averages and standard deviations of the Gaussian distributions of each of
the scenario’s stochastic variables.
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8.5.2 EV Settings

Similarly to the available supply, the characteristics of every EV are drawn independently from

a Gaussian distribution with the parameters specified in Table 8.1.

Robu et al. [2013] reported that the majority of agents arrive in the time interval 16:00-19:00

(peak at 17:00). With regards to the standard deviation of this arrival time, values such as

1.5 and 3.13 have been reported [Benetti et al., 2015]. Similarly, Robu et al. [2013] find that

EV departures peak between 8:00 and 10:00. Thus, most EVs are plugged-in for at most 15h

every night. Average and standard deviations are set to 85% and 5% of the online time limit,

respectively.

With respect to battery capacity, it is assumed to be approximately 25 kWh, which corresponds

to 9 units of supply. In terms of required charge, it is assumed that the battery’s health is taken

into account by the EV owner. Specifically, Neaimeh et al. [2015] report a minimum charge value

of 39%, with a median of 53%, and a maximum value of 68%.

Finally, the maximum charging rate of an EV depends on the vehicle itself and on the charging

infrastructure. Given that we consider a night-time charging scenario, presumably in residential

areas, we consider that the EVs do not have access to industrial-grade charging speeds. Typical

charging speeds in this type of scenario are around 3-6 kW and 11 kW [Heydarian-Forushani

et al., 2016].

8.5.3 Results
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Figure 8.4: Number of envious agents (LHS) and number of satisfied agents (RHS) when
varying the number of agents present in the simulation. The stochastic available supply units
follow the Gaussian distribution specified in Table 8.1. The dashed line corresponds to the

optimal offline MaxSatisfied allocation. Error bars indicate standard deviations.

We now compare how each of the considered algorithms performs with respect to the considered

objectives. Figure 8.4 shows the number of envious agents (as per our envy-freeness definition,

see Section 8.2) and the number of satisfied agents in a setting where we vary the total number

of agents. We can see that, as the number of agents grows, it becomes more difficult to keep

them envy-free and to satisfy their requirements. In fact, the number of satisfied agents drops as

more agents are in the market for most algorithms, since more agents only get partially satisfied.

Moreover, even though EqualContention is the only envy-free algorithm, it is extremely inefficient

and scores very low on agent satisfaction. Interestingly, while LLF is the worst in terms of

both measures, EDF and OnlineMaxDelivered are comparable, and Value Density is the best of
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Figure 8.5: Number of envious agents (LHS) and number of satisfied agents (RHS) when
varying the amount of supply available at each time step. Total number of agents is 45.
The dashed line corresponds to the optimal offline MaxSatisfied allocation, averaged over 20

instances. Legend is shared with Figure 8.4. Error bars indicate standard deviations.

0 250 500 750 1000
Number of agents

0.00

0.25

0.50

0.75

1.00

R
u

n
ti

m
e

(m
s)

EDF

LLF

VD

EC

10 20 30 40
Number of agents

0

500

1000

R
u

n
ti

m
e

(s
ec

s)

OMSat

OMDel

Figure 8.6: Runtimes for the proposed algorithms averaged over 50 instances.

the simple algorithms and performs surprisingly well. OnlineMaxSatisfied presents the highest

efficiency in terms of the number of satisfied agents, achieving over 96% efficiency in all cases, and

the best envy-freeness after EqualContention, but incurs more costly computation. Furthermore,

all the algorithms perform similarly with respect to MaxDelivered, achieving between 95 and

100% of the offline optimal result, apart from EqualContention, which is only 13% optimal on

average (graphs omitted).

These trends are similar when we vary the amount of available supply, as depicted in Figure 8.5.

We can see that, as expected, overall results improve as the available supply grows, since there is

less competition for the resources. Again, EqualContention is very inefficient, and OnlineMax-

Satisfied presents, on the whole, the best results. Results with respect to MaxDelivered are also

similar to before.

Finally, we present a runtime analysis of the proposed algorithms in Figure 8.6. We can see

that the classical algorithms (EDF, LLF, VD) and EqualContention scale linearly with the

number of agents and run in the order of milliseconds. In the contrary, our proposed algorithms,

OnlineMaxSatisfied and OnlineMaxDelivered, present super-linear scaling and longer runtimes.

In particular, as discussed above, OnlineMaxSatisfied presents the most expensive calculation.

However, note that these optimisation algorithms can be parallelised in order to achieve faster

runtimes, and thus allowing their application in larger settings.
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8.6 Summary

In this chapter, we have addressed Research Challenge 5 by studying online allocations of energy

units in a setting without money and where agents dynamically enter and leave the market. In

doing so, we consider efficiency objectives (MaxDelivered and MaxSatisfied) as well as fairness

(envy-freeness). Specifically, we provide computational complexity results as well as the trade-offs

between the objectives. We also introduce novel online algorithms, called OnlineMaxDelivered

and OnlineMaxSatisfied, and prove that their computational complexity is polynomial and NP-

hard, respectively. Moreover, we prove that no algorithm exists which can always guarantee a

solution satisfying either efficiency objective in online settings. Also, we extend the definition of

envy-freeness to online settings, and show that an envy-free allocation can be found in polyno-

mial time using an equal contention algorithm, but this algorithm performs poorly in terms of

the other objectives. Finally, our empirical results show that the proposed OnlineMaxSatisfied

algorithm achieves the best overall performance across the considered objectives, at the cost of

harder computational complexity.

Finally, in the next chapter, we will focus on Research Challenge 6, namely the issue of forecasting

price impact for participation in electricity markets.





Chapter 9

Forecasting Residual Supply

Curves

In previous chapters, 3, 4, 5 and 6, we have explored the issues of optimising day-ahead market

bidding and the design of coordination mechanisms for joint bidding. These efforts, addressing

Research Challenges 1, 2 and 3, have been shown to reduce the energy costs associated with

EV charging and, by reducing demand peaks, limit the stress on the electricity grid. However,

due to the nature of electricity markets, such as day-ahead, bidding happens hours to days in

advance, and relies heavily on forecasts. In the case of EV aggregators, these include future

energy requirements (i.e. EV arrivals, departures and charging needs) and hourly prices. In

particular, in this chapter, we will focus on the prediction of hourly price impact curves in day-

ahead markets (see Section 2.3.3), as described in Research Challenge 6. In this setting, accurate

predictions allow the optimisation and coordination mechanisms to perform at their best, and

have been shown to reduce electricity costs by around 2% in the empirical evaluation presented

in Section 3.3. Note that, although this percentage is small, given the size of the market players,

it translates into millions of Euros per year.

In order to address these forecasting issues, we present a study that employs artificial neural

networks as forecasting models, and compare their performance with existing models in the

literature. More specifically, the rest of the chapter is structured as follows. First, we recall the

notation employed to quantify price impact and detail the structure of the historical data used

in this study in Section 9.1. Next, we describe the considered neural network models in Section

9.2. Section 9.3 describes the methodology used to pre-process the data and to train the neural

networks. Finally, we present empirical results and compare our models to previous literature in

Section 9.4.

9.1 The Data

Recall that the price impact curve for a given hour is a function of energy, E. As detailed in

[Aneiros et al., 2013], this functional data can be converted to a multi-variate scalar problem by

discretising the curve into a sequence of scalar points. In this study, we employ an equally-spaced

99
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50-point discretisation of price impact curves between E = 0 and E = 10 GWh, [E1, . . . , E50].

This range is reasonable given the typical consumption volumes in the OMIE day-ahead market,

and using 50 points provides a detailed discretisation of the curves. Note that the models

presented in this chapter can be applied to arbitrary ranges and discretisations. The chosen

parameters provide a balance between detail and computational complexity. Then, following the

notation from Section 2.3.3, we can describe the price impact curve of a given day d and hour h

by
[
P d
h (E1), . . . ,P d

h (E50)
]
.

9.2 Neural Network Models

This section describes the type of neural network models used in this chapter and details the

form of the forecasting problem. We focus on multilayer perceptron (MLP) models, a type of

feed-forward neural network that has achieved great results in many domains. More specifically,

MLPs are a kind of neural network which consist of a sequence of layers of neurons with forward

connections only. A detailed exposition can be found in, for example, [Bishop, 2006, Nunes et al.,

2019].

9.2.1 Targets

The focus of this work is the prediction of the 24 price impact curves for the day-ahead. As

explained in Section 9.1, these curves are discretised into 50 points, so for a given day there

are 1200 points to forecast. There are several possibilities to achieve this. One the one hand,

each of these points can be forecasted individually by using a single-task learning architecture.

On the other hand, multiple points (either the 50 points of a given hour or the 1200 points of

the whole day) can be forecasted together using multi-task learning. The latter benefits from

potentially being able to capture the functional relation between different points, as they are

forecasted using the same neural network. A more detailed discussion about these choices can

be found in [Nunes et al., 2019]. In order to be able to capture the relations within the 50 points

of every price impact curve, we choose to employ multi-task learning models with 50 outputs.

This means that, for each hour of the day, one neural network is trained to forecast the whole

price impact curve.

9.2.2 Features

A number of different features are utilised as input for our neural network models. Among

these, the main feature is historical price impact data. Neural networks are trained to detect

and exploit patterns in the time series of past price impact data, and these are then used to

obtain a forecast for the day-ahead given previous data.

The other features considered are wind generation and total demand forecasts [Aneiros et al.,

2011, 2013]. Official day-ahead forecasts of these two quantities can be obtained from the

European Network of Transmission System Operators (ENTSOE) website 1. These two exogen-

ous features should have predictive power given that wind production accounts for a significant

1https://transparency.entsoe.eu

https://transparency.entsoe.eu
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amount of the total generation in the OMIE market, and that total electricity demand affects

prices. Henceforth, we will refer to our considered models as NN Simple, NN Wind, NN Demand

and NN Both, depending on whether they use price impact historical data alone, price impact

historical data and wind forecasts, price impact historical data and demand forecasts, and price

impact historical data, wind and demand forecasts, respectively.

Also, we assume that the sequence of price impact curves is Markovian, i.e. the current day only

depends on the previous day. This means that, when forecasting the price impact curves for

day d, price impact and, depending on the model, wind and demand forecasts, for the day d− 1

are used [Aneiros et al., 2011, 2013]. Note that additional information to help in the forecasting

process is used in the models via the exogenous features mentioned above (wind generation and

total demand forecasts). Moreover, additional features result from the use of inter-hour data

(Section 6.2). Overall, this makes having more past time steps less important, but the Markovian

assumption can be relaxed, and all the models used in this chapter can be seamlessly extended to

employ any number of previous days as input for the forecast. However, this would increase the

size of the neural networks and their computational complexity. Given the good results obtained

by using one day, we will focus on this scenario and leave larger models for future work.

9.3 Methodology

In this section we discuss the methodology employed throughout the experiments and justify

decisions and parameter choices.

9.3.1 Data Stationarity

A time series is said to be stationary if its statistical properties (e.g. mean, variance, etc.) do

not vary over time. When dealing with a non-stationary time series, it is common practice to

difference the data in order to remove trends [Aneiros et al., 2013]. Forecasting the differenced

time series is then easier than forecasting the original data. Given the non-stationary patterns

present in the considered data (see top of Figure 9.1), and following previous literature [Aneiros

et al., 2011, 2013], we apply a one-day difference. Formally, given a price impact time series

and following the notation introduced in Section 9.1 and [Aneiros et al., 2013], let χ dh (Ei) =

P d+1
h (Ei)− P d

h (Ei) for all h = 0, . . . , 23 and i = 1, . . . , 50, be the differenced price impact time

series. The effect of differencing and the original data are shown in Figure 9.1.

9.3.2 Inter-hour Correlations

As described in Section 2.12, previous literature forecasts price impact curves for each hour

using historical data from that hour only (i.e. intra-hour). However, given that the day-ahead

market comprises of all different hours and that market participants certainly participate in

multiple hourly auctions, historical data from different hours should have valuable information

for forecasting a given hour.
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Figure 9.1: (Top) Time series
{
P d

h=0(E1)
}

for 2008 to 2018. (Bottom) Differenced time

series
{
χ d
h=0(E1)

}
for 2008 to 2018

A pairwise correlation plot can be used to assess the relation between price impact data between

different hours of the day, as shown in Figure 9.2. We can see high correlations for every pair

of hours and, more specifically, two clusters with very high correlations of above 0.95%. This

means that different hours are very interconnected and employing multi-hour data should yield

improved forecasts. Finally, note that, although in the figure we show correlations for E1, similar

correlations are obtained for every Ei.

In order to assess this empirically, we will explore single-hour models and compare their predictive

performance with their multi-hour counterparts. Throughout the rest of the chapter, we will

refer to single-hour models as NN SingleHour. Empirical results are detailed in Section 9.4.
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Figure 9.2: Pairwise correlations between the time series
{
P d

h (E1)
}

for all d in 2016.

9.3.3 Data Normalisation

Neural networks perform best when all the input values are of similar magnitude [Bishop, 2006].

Hence it is an ubiquitous practice to normalise each input feature independently so that they
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have zero mean and unit variance. In all the models discussed henceforth, input data will be

normalised this way.

9.3.4 Sliding Window

Compared to traditional regression problems, time series forecasting has the particularity that

new data is observed over time and added to the historical dataset. Specifically, in the day-ahead

market setting, the resulting market data for a given day is made publicly available after market

clearing. In practice, this means that the most recent market information can be included in the

forecasting model to predict the next day. Given that most recent data is more relevant than old

data, it is common practice to use a sliding window, in which the new daily data is added to the

training dataset and the oldest data removed [Nunes et al., 2019]. This process is depicted in

Figure 9.3 and used in all models described in this chapter. Note that the length of the training

window can be varied and different values can yield different results.

Time

Day	d Day	d'

training	window

training	window'

Figure 9.3: Illustration of the sliding window procedure to assign a training window to two
given test points, d and d′.

As a consequence, models are re-trained on the new training window on a daily basis. Note that

this is computationally cheap and a standard practice in time series forecasting [Nunes et al.,

2019]. We detail the results of our experiments in Section 9.4.

9.3.5 Validation and Test Sets

Our experiments use daily data for the years 2015, 2016 and 2017, and follow the standard

training-validation-test split [Bishop, 2006]. In more detail, the test set for all our models is

every day of 2017. This dataset includes all seasons of the year, thus accounting for seasonal

factors such as temperatures, which affect the required energy and hence prices. Similarly,

the validation set is the last two months of 2016. As is customary, this dataset is used to

tune hyperparameters and to optimise the neural network models under consideration. Results

concerning this process are detailed in Section 9.4.1.

Note that the training dataset is slightly different than most non-time series neural network use

cases, as we consider the sliding window approach detailed in Section 9.3.4. This means that,

for each data point in the validation or test datasets, the training data set the data window of

the considered size immediately before the data point.

9.3.6 Optimising the Number of Epochs

The number of epochs, in a neural network context, refers to the number of times all training

data is used to update the model. In general, too few epochs means not enough training and too
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many epochs cause over-fitting [Bishop, 2006]. It is then essential to strike a balance in order to

get good performance. In this work, given that each model is re-trained at each time step, and

that different models are considered for each of the 24 different hours, an automated procedure to

optimise the number of epochs was employed. In more detail, for a given experiment, a dataset

immediately prior to the considered test dataset is considered. Then, the given neural network

model is trained and evaluated on this dataset (following Section 9.3.4) keeping track of the loss

function every training epoch. Finally, these curves are averaged among every day of the dataset

and minimised to obtain an optimal number of epochs. This optimal value is then used in the

final evaluation of the model. Details about the length of this dataset are presented with each

experiment in Section 9.4.

9.3.7 Quantifying Prediction Errors

Given that the aim of this work is to accurately forecast price impact curves, measuring the error

or deviation between a given forecast and the actual realisation is essential. Moreover, neural

networks learn by iteratively minimising this error. We consider two common measures of error,

the so-called mean squared error (MSE) and mean absolute error (MAE) [Nunes et al., 2019].

Specifically, MSE is used as a loss function for all the neural network models, and MAE as model

performance metric, allowing standardised comparisons between different models. Formally,

given forecasted and real price impact curves,
[
P̂(E1), . . . , P̂(E50)

]
and [P(E1), . . . ,P(E50)]

respectively, both errors are defined as:

MSE =
1

50

50∑
i=1

(
P̂(Ei)− P(Ei)

)2

MAE =
1

50

50∑
i=1

∣∣∣P̂(Ei)− P(Ei)
∣∣∣

Moreover, when evaluating a given model and presenting averaged results, both across different

hours and different days, MSE and MAE errors for a given price impact curve will be averaged.

9.4 Results

In this section we present and discuss the results obtained with different neural network models

and compare their performance to existing literature. First, we detail the experiments carried to

choose suitable architectures and hyperparameters for the considered models: NN Simple, NN

Wind, NN Demand, NN Both and NN SingleHour. Secondly, we discuss the performance of these

optimised models on the test set. Thirdly, we compare the results from the intra-hour model

with the rest of the inter-hour models. Finally, we compare our results to previous literature.

As mentioned above, a naive benchmark commonly used in the literature uses the price impact

curves from the previous day as forecasts for the next day. Henceforth we will refer to this model

as DayBefore.

Throughout all the experiments, the ADAM optimiser [Kingma and Ba, 2015] and ReLU activ-

ation functions were used. These are the most common choices in the modern neural networks
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Hidden
neurons

Learning
rate

Window
size

Num.
features

NN Simple 50 1e-4 200 1200
NN Wind 600 1e-4 200 1224
NN Demand 600 1e-4 200 1224
NN Both 600 1e-4 200 1248
NN SingleHour 25 1e-4 300 50

Table 9.1: Optimal hyperparameters found for each model. The number of features for
NN Simple is equal to the number of points considered for the price impact functions (50)
multiplied by the number of hours (24). For NN SingleHour, only one hour is considered as
input, so the number of features is just 50. The models NN Wind, NN Demand and NN Both
augment NN Simple by considering 24 extra data points (one for each hour) for wind and/or

demand forecasts.

literature [LeCun et al., 2015]. Also, apart from NN SingleHour, all models use training data

from all 24 hours (see Section 9.3.2). Finally, we used Tensorflow [Abadi et al., 2016] with the

Keras API [Chollet and Al., 2015] in all the experiments.

9.4.1 Hyperparameters and Architecture Tuning

Following the procedure detailed in Section 9.3.5, we employ the validation set (last two months

of 2016) to tune our neural network models with the aim of improving forecasting accuracy.

In these experiments we vary the length of the training window size, the learning rate of the

optimiser and the number and size of the hidden layers. Based on these experiments, we can

select the best performing hyperparameters for each model, which are specified in Table 9.1.

These selected models will be fully tested in the test set and the results detailed in Section 9.4.

9.4.2 Model Results

Using the optimal architecture for each model found in Section 9.4.1, we run each model on the

full test set (every day of 2017), and present the obtained results in Figure 9.4. We can see

that all our models, NN Simple, NN Wind, NN Demand, NN Both and NN SingleHour, perform

significantly better that the naive DayBefore model. The performance of our five neural network

models is close, although NN Both presents the best forecasts overall, followed by NN Wind, NN

Demand, NN Simple and NN SingleHour. Exact forecasting accuracy of all models, aggregating

every hour and averaged among all days of 2017 are presented in Table 9.2. These results are

reasonable, given that NN Both has access to the largest set of features, and the models get

smaller until NN SingleHour, which takes historical data for a single hour only.

Note that our models are able to extract the valuable information from the wind and total

demand forecasts, improving the accuracy of their predictions. This is in contrast to previous

literature where the considered models were not large enough to produce an improvement and

results were mixed [Aneiros et al., 2011, 2013]. This is considered in more detail in the next

section, where we present comparison of the accuracy of our models and existing models in the

literature.
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NN Both 4.051 (3.634)
NN Demand 4.072 (3.638)

NN Wind 4.073 (3.691)
NN Simple 4.113 (3.626)

NN SingleHour 4.377 (4.272)
DayBefore 9.653 (7.021)

Table 9.2: MAE errors (MAE stds) for each model, evaluated on the test set (every day of
2017). Units: EUR/MWh.
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Figure 9.4: Results of the optimised architectures for each of the considered models.

9.4.3 Single-hour versus Inter-hour Models

As explained in Sections 2.12 and 9.3.2, while previous models in the literature use historical

data from each separate hour in order to produce forecasts, we consider larger models where

data from all 24 hours is taken into account. In this section we present results from experiments

comparing the performance of single-hour and the larger intra-hour models.

As detailed in Table 9.2, results indicate that increased predictive performance, up to 6.028%, is

obtained when using multi-hour models. Also, all the inter-hour models present lower spreads,

i.e. reduced standard deviations. These improved results are to be expected given the high

correlations between hours present in the data (see Section 9.3.2).

9.4.4 Comparison with Results in the Literature

Following the discussion from Section 2.12, we compare our models to the ones from existing

literature [Aneiros et al., 2011, 2013]. More specifically, in those papers, the authors present three

different models that are then combined into a fourth one, SCOMB, by using some heuristic rules.

Their results indicate that SCOMB is the best performing and will be considered as literature

benchmark henceforth.

Unfortunately, SCOMB (and the other models considered in these papers) are functional models,

so direct performance comparison is not possible. In more detail, functional models work with

functions rather than vectors, as our models do. Hence, SCOMB forecasts whole price impact

curves. As a consequence, their error measures are also functional. Specifically, they employ the
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NN Both 58.028%
NN Demand 57.815%

NN Wind 57.802%
NN Simple 57.392%

NN SingleHour 54.659%
SCOMB 7.805%

Table 9.3: Percentage improvements (using MAE) with respect to the DayBefore baseline.
SCOMB is the best-performing model from existing literature [Aneiros et al., 2011, 2013].

L1 error, which can be seen as the continuous version of the MAE we use in our work:

L1 =
1

b− a

∫ b

a

∣∣∣P̂(E)− P(E)
∣∣∣ dE

where a and b are the considered E upper and lower limits, respectively.

However, the authors also present a comparison of SCOMB with the naive DayBefore benchmark.

This allows us to use the percentage improvement of a given model from the naive DayBefore

model can as uniform comparison metric. Finally, note that [Aneiros et al., 2011, 2013] use

every day of 2009 as test set, while we use more recent 2017 data. This will introduce small

discrepancies, given that the results of the DayBefore model will not be exactly the same.

Nonetheless, given the very significant performance increase of our models, this effect is negligible.

Model comparison results are presented in Table 9.3. We can see that our five models largely

improve on the results obtained by SCOMB by achieving up to 58.028% improvement from

the DayBefore predictions, compared to the 7.805% obtained by SCOMB. As discussed before,

the reasons for this improvement in performance include the use of modern machine learning

techniques and larger datasets. As an example, in comparison with [Aneiros et al., 2011, 2013],

we have considered window sizes up to five times larger than the experiments in their work. In

terms of input data size, we have considered all 24 hours as features for our models, compared

to the individual hours considered in the previous literature. Moreover, as reported by the

authors, the models employed in [Aneiros et al., 2011, 2013] are very computationally expensive,

which makes parameter tuning challenging. Comparatively, neural networks are quick to train

on modern hardware which allows careful optimisation for peak performance.

9.5 Summary

In this chapter, we explore the forecasting of price impact curves in day-ahead electricity mar-

kets, as described in Research Challenge 6. To this end, we apply, for the first time in this

setting, artificial neural network techniques. In particular, we focus on multilayer perceptron

models. Moreover, we explore, for the first time, the effect of using historical data from different

hours to improve the performance of our models. Following previous literature, we also consider

external explanatory variables such as wind generation and total demand forecasts. Results

using real data from the Spanish day-ahead market suggest that our models achieve very good

performance, significantly outperforming previous results in the literature. In more detail, the

largest considered model, which uses historical price impact data and wind and demand forecasts,

presents the best predictive results improving the naive day-before benchmark by 58.028%. In
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comparison, the best performing model from previous literature achieves only a 7.805% increase.

Furthermore, we find that considering inter-hour models does improve forecasting performance

by up to 6%.

This concludes the contributions presented in this thesis, and we are now ready to discuss the

conclusions and outline future work directions.
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Conclusions and Future Work

This thesis is concerned with the challenge of integrating large fleets of EVs in the electricity

market and power systems infrastructure. To this end, we have presented several studies that

address distinct aspects of this broad challenge. Conclusions related to the findings of the

considered studies and directions for future work are described in more detail in the rest of this

chapter.

10.1 Conclusions

Following the research challenges exposed in Section 1.1, we have made the following contri-

butions to the state-of-the-art. Firstly, we study the optimisation of the charging of a large

fleet of EVs (Research Challenge 1). In order to address this issue, we propose a novel price-

maker day-ahead bidding algorithm for EV aggregators. Importantly, this algorithm explicitly

considers the price impact of the EV aggregators orders, an essential requirement for large mar-

ket participants. More specifically, the algorithm takes the form of a non-linear minimisation

problem which presents a complex landscape with multiple local minima. In order to guarantee

global optimality, a desirable property for the coordination mechanisms introduced in subsequent

chapters, we introduce an approximated convex minimisation formulation. In more detail, by

approximating the hourly price impact functions with quadratic convex curves, we obtain a

convex non-linear optimisation problem in which any local minimum is actually a global min-

imum. Moreover, the proposed algorithm is computationally inexpensive and is formulated in

terms of linear constraints, presenting very good scalability with problem size and allowing the

application of the coordination mechanisms detailed next. Finally, an empirical case study with

real market and driver data is presented, in order to assess the performance of the proposed

algorithm. Results show that the proposed algorithm presents very significant cost reductions

with respect to existing price-taker algorithms, achieving over 10% savings for an EV penetration

rate of 8% in the Iberian Peninsula.

Secondly, we turn our attention to Research Challenge 2, namely the coordination opportun-

ities available for EV aggregators. To this end, we propose the first coordination mechanism

that allows extending the benefits of coordinated EV charging to groups of independent private

109
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EV aggregators, with respect to day-ahead market participation. In more detail, by employ-

ing techniques from mechanism design, we design a centralised third-party coordinator which

bids on behalf of a group of EV aggregators, distributing the purchased energy and payments

among them. This way, more informed bidding can take place, as the requirements of all the

participating EV aggregators are known to the bidding algorithm. In order to ensure fairness

and prevent strategic manipulation, in which an EV aggregator can try to cheat the system for

its own benefit, we propose employing a VCG payment mechanism. This payment mechanism

is truthful, i.e. it is in every participants interest to report true requirements to the coordin-

ator. However, due to an undesirable characteristic of the VCG mechanism, it results in too

high payments for it to be useful in this setup. This motivates the introduction of two further

VCG-based payment mechanisms. Firstly, a VCG-based truthful mechanism which maintains

truthfulness and minimises the undesired payment surplus. However, the payments assigned by

this system are too little, and the coordinator incurs large monetary losses. Secondly and lastly,

we propose VCG-based proportional payment mechanism, which achieves good performance at

the expense of sacrificing full theoretical truthfulness. The performance of the proposed coordin-

ation mechanism is evaluated in an empirical case study which employs real market and driver

data. Results show greatly reduced energy costs when compared to uncoordinated bidding.

Thirdly, addressing a slightly different aspect of Research Challenge 2, we present the first co-

alitional study of a competitive multi-aggregator day-ahead bidding scenario. Similarly to the

previous contribution, we consider an arbitrary number of self-interested and independent EV

aggregators who participate in the same day-ahead market trying to minimise energy expendit-

ure. While the second contribution presented above proposes the use of a coordinator in order

to reduce energy costs for all market participants, this coordinator does not necessarily need

to be unique. Specifically, each EV aggregator is free to choose a number of other aggregators

to coordinate with, possibly forming smaller coalitions if decreased energy costs are perceived.

To study this issue, we turn our attention to the field of cooperative game theory, and model

the consider scenario as a coalitional game. We are then able to prove the theoretical results of

superadditivity and balancedness, which ensure that full cooperation (where the grand coalition

forms) provides the lowest energy costs and that there is a payment mechanism which stabilises

the grand coalition (no participating aggregator has the incentive to deviate). We propose a

payment mechanism lying in the core, namely the least-core, and compare to the commonly

used Shapley value in an empirical case study which uses real market and driver data. Results

show that both payments are usually very close, suggesting a payment mechanism that is both

fair and stable.

Fourthly, we turn our attention to Research Challenge 3, which is concerned with decentralising

computation in multi-aggregator coordination mechanisms. In more detail, and in contrast with

the two centralised coordination mechanisms proposed in the previous two contributions, decent-

ralised cooperation provides important advantages such as limiting the need for sharing sensitive

information and improving transparency and security. In order to address these issues, we refor-

mulate the centralised coordination mechanisms proposed earlier as a distributed optimisation

problem by using the alternating direction method of multipliers algorithm. In this new decent-

ralised problem, each aggregator takes an active computational role, rather than just reporting

energy requirements, which removes the need of reporting private information. Moreover, we

propose the use of blockchain technology to implement the algorithm, which provides enhanced
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transparency and anti-tampering guarantees, and removes the need for trust on a centralised

coordinator. Finally, in a similar vein to previous contributions, we test the novel decentralised

coordination algorithm in a case study using real market and driver data. Results show good

convergence properties, suggesting the applicability of the algorithm in large settings.

Fifthly, we consider Research Challenge 4. Intimately related to the previous contribution, this

challenge is concerned with the risk for potential strategic manipulation in distributed optim-

isation algorithms. In more detail, when considering centralised approaches (such as the ones

presented in Chapters 4 and 5), self-interested aggregators can only manipulate the coordination

algorithm by misreporting their energy requirements. However, when considering decentralised

mechanisms such as the one presented in Chapter 6, the participating aggregators roles are not

limited to reporting preferences, but also play an active part in computation. As a consequence,

the opportunities for strategic manipulation are greatly increased. In order to address these

issues, we present a study on the computational manipulation opportunities present in the de-

centralised coordination mechanism proposed in Chapter 6. More specifically, we propose several

attack vectors which can be used by a deviating aggregator in order to modify its computation

with the aim of increasing its personal utility. Furthermore, we present a manipulation detection

mechanism which monitors the behaviour of each aggregator and identifies deviators. Finally,

the performance of the proposed attack vectors and detection algorithm are evaluated in a case

study using real market and driver data. Our findings show that a deviating aggregator is able to

successfully affect the outcome of the coordination mechanism and artificially reduce its energy

costs in detriment of the other participants. Moreover, the novel detection algorithm signific-

antly outperforms a naive algorithm and presents very good detection accuracies. To conclude,

we would like note note that, although we have focused on our multi-aggregator scenario, these

issues exist in any decentralised optimisation algorithm, and the proposed algorithms can be

easily generalised.

Sixthly, we address Research Challenge 5. Specifically, in order to support the real-time schedul-

ing of energy resources, we study the online allocation of energy units in a setting without money

and where agents dynamically arrive and depart over time. In more detail, we consider both

efficiency and fairness objectives, such as maximising the number of allocated energy units or the

number of fully satisfied customers, and envy-freeness. With respect to the first two objectives,

we study their computational complexity both in offline and online settings and propose novel on-

line algorithms (OnlineMaxDelivered and OnlineMaxSatisfied) which attempt to maximise them.

However, we theoretically prove that no online algorithm exists that can always guarantee either

efficiency objective. With respect to envy-freeness, we present the first extension of the classical

definition to online settings, and prove that it can be obtained in polynomial time using an equal

contention algorithm. Finally, we present a realistic case study where we evaluate existing and

the novel online algorithms. Our empirical results show that the proposed OnlineMaxSatisfied

algorithm achieves the best overall performance, at the cost of harder computational complexity.

Finally, in our seventh study we address Research Challenge 6. More specifically, we have

focused on the prediction of hourly price impact curves in day-ahead markets, with the aim of

supporting day-ahead bidding (Research Challenges 1, 2 and 3). In more detail, better forecasts

translate into cheaper energy costs and, in order to address this issue, we present a study that

employs artificial neural networks as forecasting models, and compare their performance with

existing models in the literature. Moreover, we explore, for the first time, the effect of using
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historical data from different hours to improve the performance of our models. Following previous

literature, we also consider external explanatory variables such as wind generation and total

demand forecasts. Results using real data from the Spanish day-ahead market suggest that

our models achieve very good performance, significantly outperforming previous results in the

literature. In more detail, the largest considered model, which uses historical price impact

data and wind and demand forecasts, presents the best predictive results improving the naive

day-before benchmark by 58.028%. In comparison, the best performing model from previous

literature achieves only a 7.805% increase. Furthermore, we find that considering inter-hour

models does improve forecasting performance by up to 6%.

10.2 Future Work

Despite these contributions, there is ample room for future work in order to address different

important aspects of the research challenges considered in this thesis. For example, we have only

considered participation on day-ahead markets so far. Despite the very similar structure between

day-ahead and shorter-term markets, such as intra-day or reserve, an interesting challenge arises

from sequential participation. More specifically, an EV aggregator can participate in both the

day-ahead and several intra-day markets (see Section 2.2) in order to adjust for deviations

between their forecasted and actual energy requirements. While this issue has been considered

in the literature [Ugedo et al., 2006], it has not been explored for large EV penetration. Moreover,

the issue of inter-aggregator cooperation has not been considered in this setting either. To this

end, similar coordination mechanisms to the ones proposed in this thesis could be employed,

using techniques from mechanism design or cooperative game theory. However, the interplay

between the different markets adds complexity and new manipulation opportunities, which need

to be addressed.

On a slightly different vein, but still addressing the issue of charging large fleets of EVs, are

the issues of physical energy delivery. In more detail, after the electricity market is closed,

the distribution system operator (DSO) needs to arrange electricity delivery between generators

and consumers. In this setting, issues such as line capacity and transformer loading prevent the

delivery of arbitrarily large energy quantities to a given geographical location. As a consequence,

the delivery of energy to different self-interested aggregators can also be seen as a competitive

game, and coordination mechanisms could be employed in order to prevent overloading the grid, a

scenario which has not been addressed in the literature. In particular, the decentralised approach

presented in Chapter 6 is particularly well suited for addressing this issue. More specifically, one

can imagine an iterative process where a number of self-interested aggregators optimise their

joint bidding (as per Chapter 3) and then this allocations are checked for network violations. If

any, extra constraints can be applied to the aggregators as needed, and joint bidding is repeated.

After a number of iterations, one would obtain optimal feasible energy schedules for all the

aggregators.

Turning now our attention to the issue of online energy scheduling, we identify several directions

for future work. First, studying the apparent incompatibility of the efficiency objectives, such

as maximising the number of scheduled energy units and satisfied drivers, and the fairness
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objective given by envy-freeness. More specifically, even though our definition of online envy-

freeness (see Section 8.2) is quite relaxed (when compared to the classical definition of offline

envy-freeness), it turns out to be quite restrictive. In particular, although it can be guaranteed

by equal contention algorithms (see Section 8.3), they are extremely inefficient and waste the

majority of the available resources. However, it is possible that other more efficient alternatives

exist. Moreover, it would be interesting to consider approximately envy-free solutions. Second,

there is the issue of departure time and charge requirements elicitation from drivers. Similarly

to previous works, techniques from mechanism design can be employed to encourage truthful

reporting. One of the challenges here is to study and devise monotonic algorithms (with respect

to the tuple of driver requirements) [Gerding et al., 2011].

Finally, we consider the issue of forecasting, in support EV operation. To this end, given the

enormous recent advances in machine learning, more sophisticated models can be utilised. For

example, recurrent neural networks such as long short-term memory (LSTM) architectures have

vastly outperformed classical architectures such as the multi-layer perceptrons considered in this

thesis. Given the we consider a time-series problem, where recurrent architectures excel, It is

to be expected that more accurate forecasts can be obtained from this and other new models.

Also, the forecasting of EV arrivals and departures is equally important for optimised bidding,

and can also be addressed in a similar way.
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