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We study the cohomology of group theoretic Dehn fillings. 
Applying the Cohen-Lyndon property for sufficiently deep 
Dehn fillings of hyperbolically embedded subgroups H ↪→h G, 
obtained by the second named author in [67], we derive 
a spectral sequence that computes the cohomology of the 
corresponding Dehn filling quotients G. As an application, we 
establish an isomorphism between the relative cohomology of 
the group pair (G, H) and its sufficiently deep Dehn filling 
quotient pair (G, H). This allows us to generalize the results 
of Fujiwara and Manning on simplicial volume of Dehn fillings 
of hyperbolic manifolds to Dehn fillings of Poincaré duality 
pairs.
We also strengthen the results of Olshanskii [58], Dahmani-
Guirardel-Osin [27] and Hull [42] on SQ-universality and 
common quotients of acylindrically hyperbolic groups by 
adding cohomological finiteness conditions. We apply these 
results to obtain hyperbolic and acylindrically hyperbolic 
quotients with special properties.
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1. Introduction

1.1. Dehn surgery in 3-manifolds

In the late 1970’s, Thurston dramatically changed the study of 3-manifolds by intro-
ducing his Geometrization Conjecture. As supporting evidence, Thurston proved that 
many non-Haken 3-manifolds satisfy the conjecture [69], using the notion of a Dehn 
surgery, which is a two-step procedure of modifying a 3-manifold by first cutting off a 
solid torus and then gluing the torus back in a different way. Another motivation of 
Dehn surgery comes from the Lickorish-Wallace theorem, which states that every closed 
connected orientable 3-manifold can be constructed from the 3-sphere by using finitely 
many Dehn surgeries.

The second step of the surgery, called Dehn filling, starts with a 3-manifold M with 
toral boundary and constructs a new manifold by gluing a solid torus to M by identifying 
their boundaries. Topologically distinct ways of gluing a solid torus are parametrized by 
free homotopy classes of essential simple closed curves on ∂M (the image of the meridian 
circle of the solid torus under the identification), called slopes. For a slope s, the new 
manifold constructed by the corresponding Dehn filling is denoted by Ms. A celebrated 
result of Thurston asserts that most Dehn fillings preserve hyperbolicity.

Theorem 1.1 (Thurston [69]). Let M be a compact orientable 3-manifold with boundary 
a torus, and with interior admitting a complete finite volume hyperbolic structure. Then 
for all but finitely many slopes s on ∂M , Ms admits a hyperbolic structure.

1.2. Group theoretic Dehn fillings

There is an analogous construction in group theory, called (group theoretic) Dehn 
filling, which can be formalized as follows. Given a group G with a subgroup H and a 
normal subgroup N of H, the Dehn filling associated with the triple (G, H, N) is the 
quotient G/〈 〈N〉 〉, where 〈 〈N〉 〉 is the normal closure of N in G.

The relation between these two versions of Dehn fillings can be seen as follows: un-
der the assumptions of Theorem 1.1, the natural homomorphism π1(∂M) → π1(M) is 
injective and thus π1(∂M) can be thought of as a subgroup of π1(M). Let G = π1(M)
and H = π1(∂M). Every slope s on ∂M generates a normal subgroup Ns � H. As s
is the image of the meridian circle of the solid torus, which bounds a disc, we have 
π1(Ms) = G/〈 〈Ns〉 〉.

Dehn filling is a fundamental tool in group theory. It appears, for instance, in the 
solution of the Virtual Haken Conjecture [3], the study of the Farrell-Jones Conjecture 
and the isomorphism problem of relatively hyperbolic groups [1,26], and the construc-
tion of purely pseudo-Anosov normal subgroups of mapping class groups [27]. Other 
applications of Dehn fillings can be found for example in [2,35].
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Algebraic analogs of Theorem 1.1 can be proved for groups satisfying certain negative 
curvature conditions. The first result of this kind was for relatively hyperbolic groups by 
Osin [60] and independently, by Groves-Manning [33]. Later, Dahmani-Guirardel-Osin 
[27] introduced a generalization of relative hyperbolicity based on the notion of a hyper-
bolically embedded subgroup and proved a generalization of the main results of [60,33]. 
We postpone the definition and motivation of hyperbolically embedded subgroups until 
Section 3.3 and only discuss several examples for the moment. The reader is referred to 
the survey [63] for other examples. We use H ↪→h G to indicate that H is a hyperbolically 
embedded subgroup of G.

Example 1.2. If a group G is hyperbolic relative to its subgroup H, then H ↪→h G [27, 
Proposition 2.4]. In particular, if M is a compact orientable manifold with one boundary 
component and M � ∂M admits a complete finite volume hyperbolic structure, then 
π1(∂M) ↪→h π1(M) [14,28].

Example 1.3. Another typical example arises if a group G acts on a Gromov hyperbolic 
space S acylindrically by isometries and g ∈ G is a loxodromic element. Then there 
exists a maximal virtually-cyclic subgroup E(g) � G containing g such that E(g) ↪→h G

[27, Corollary 2.9]. In particular, if G is a word-hyperbolic group (resp. mapping class 
group of a finite type surface [27, Theorem 2.19], outer automorphism group of a finite 
rank free group [27, Theorem 2.20]) and g is an infinite order (resp. a pseudo-Anosov, a 
fully irreducible) element, then E(g) ↪→h G.

The following is a group theoretic analog of Thurston’s Theorem 1.1 due to Dahmani-
Guirardel-Osin.

Theorem 1.4 (Dahmani-Guirardel-Osin [27]). Let G be a group with a subgroup H ↪→h G. 
Then there exists a finite set F ⊆ H � {1} such that if N � H and N ∩ F = ∅, then 
the natural homomorphism H/N → G/〈 〈N〉 〉 maps H/N injectively onto a hyperbolically 
embedded subgroup of G/〈 〈N〉 〉.

In the setting of Theorem 1.1, we have π1(∂M) ↪→h M by Example 1.2. Theorem 1.4
then implies that for all but finitely many slopes s on ∂M , we have π1(∂M)/Ns ↪→h

π1(Ms). A deeper investigation, using more precise versions of Theorem 1.4 (e.g., 
[60, Theorem 1.1], [33, Theorem 7.2] and [27, Theorem 2.27]), shows that π1(Ms) is 
word-hyperbolic [60, Corollary 1.2] and one-ended [34, Corollary 1.11]. The Geometriza-
tion Conjecture, proved by Perelman, then implies that Ms admits a hyperbolic structure.

1.3. Motivation: cohomology of Dehn fillings

Theorem 1.1 asserts that Ms is often hyperbolic and thus its universal cover is H3. It 
follows that the cohomology of π1(Ms) can be understood by studying the cohomology of 
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Ms and the action of π1(Ms) on H3. It is therefore natural to investigate the cohomology 
of G/〈 〈N〉 〉 in the more general setting of Theorem 1.4 where one may look for a similar 
geometric footing.

Question 1.5. For a group G with a subgroup H ↪→h G and a normal subgroup N � H, 
what can be said about the cohomology of G/〈 〈N〉 〉?

The main goal of this series of two papers is to address this question and to illustrate 
the implications of the results in this direction.

We should point out that even though we consider the general case of hyperbolically 
embedded subgroups H ↪→h G, all of our results are new in the special case when G is 
hyperbolic relative to H.

Acknowledgments. Most of this work was done when the second named author was a 
graduate student at Vanderbilt University. He would like to thank his supervisor, Denis 
Osin, for the valuable discussions. This paper would not have been written without the 
help of Osin. The second named author would also like to thank Anna Marie Bohmann 
for the helpful comments and thank Ian Leary for answering his question and the sug-
gestion of references. The second named author received funding from the European 
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (Grant agreement No. 850930) and an AMS–Simons Travel Grant 
(Grant agreement No. IP00672308). The first named author would like to thank Clara 
Löh and Kevin Li for helpful comments and suggestions. Finally, the authors are thankful 
to the referees for the careful reading of the paper and many detailed comments which 
have improved both its content and exposition.

2. Statements of main results

2.1. Cohomological properties of Dehn fillings

To simplify the statement, we introduce the following terminology and notation.

Definition 2.1. Let G be a group and H a subgroup of G. We say that a property P holds 
for sufficiently deep normal subgroups if there is a finite set F ⊆ H � {1} such that P
holds whenever N is a normal subgroup of H and N ∩ F = ∅.

Given a normal subgroup N of H, let G = G/〈 〈N〉 〉 and H = H/N .

Theorem 1.4 can now be restated as: let G be a group with a subgroup H ↪→h G. 
Then for sufficiently deep N�H, the natural homomorphism H → G maps H injectively 
onto a hyperbolically embedded subgroup of G.

The following is a summary of our main results on cohomological properties of Dehn 
fillings.
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Theorem A. Let G be a group with a subgroup H ↪→h G. Then the following hold for all 
sufficiently deep N � H and all G-modules A.

(i) There is a spectral sequence

Ep,q
2 (A) =

{
Hp(H;Hq(N ;A)) for q > 0
Hp(G;A) for q = 0

⇒ Hp+q(G;A),

where the action of G on A factors through G. In particular, the action of N on A
fixes A pointwise.

(ii) (Algebraic Excision) For all n � 0, there is a natural isomorphism induced by the 
quotient maps G → G and H → H,

Hn(G,H;A) ∼= Hn(G,H;A).

The spectral sequence together with the algebraic excision have the following appli-
cation.

Corollary 2.2. Let G be a group with a subgroup H ↪→h G. Then for all sufficiently deep 
N � H and all G-modules A, we have

(i) For all n � cd(H) + 2,

Hn(G;A) ∼= Hn(G;A) ⊕Hn(H;A).

(ii) cd(G) � max{cd(G), cd(H) + 1, cd(H)}.
(iii) If G is of type FPn for some n ∈ N+ ∪ {∞} (resp. FP ), then G is of type FPn

(resp. FP ) if and only if H is of type FPn (resp. FP ).

Here, cd(G) stands for the cohomological dimension of a group G, and N+ stands 
for the set of positive integers. This notion, property FPn, property FP , and relative 
cohomology of group pairs are reviewed in Section 3.2.

Analogous homological statements to Theorem A and Corollary 2.2 also hold. The 
spectral sequence in Theorem A (i) is a refinement of the classical Lyndon-Hochschild-
Serre spectral sequence [41,51] in the setting of Dehn fillings.

Let M and Ms be as in Theorem 1.1 and let G = π1(M), H = π1(∂M), N = 〈s〉. 
Then Theorem A (ii) is an immediate consequence of excision. Therefore, Theorem A
(ii) can be thought of as an algebraic analog of excision and computes Hn(G, H; A)
from Hn(G, H; A). In the special case where A = ZG, a spectral sequence to compute 
H∗(G, H; ZG) with H∗(G, H; ZG) has been developed by [71]. We remark that the 
spectral sequence in [71] is different from ours.
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Instead of proving Theorem A, we will prove more general results (see Section 4), which 
cover the case of a hyperbolically embedded family of subgroups and will be useful in the 
proof of Theorems B, C, and E below, and also cover the case of weakly hyperbolically 
embedded subgroups and can be applied to graph of groups (see Example 3.8 (e)).

Corollary 2.2 was recently used by Arenas [5], who gave a variation of the Rips 
Construction that produces cubulated hyperbolic groups of cohomological dimension 
bounded above by the cohomological dimension of an associated compact special cube 
complex.

2.2. Poincaré duality and simplicial volume

Simplicial volume is a homotopy invariant of oriented closed connected manifolds 
[32,48]. It was introduced by Gromov in his seminal paper [38].

In [29], Fujiwara and Manning generalize Gromov-Thurston’s 2π-theorem [10] on Dehn 
fillings of 3-manifolds to higher dimensional finite volume hyperbolic manifolds Mn with 
toral cusps. The resulting 2π-fillings are pseudomanifolds and are manifolds if and only if 
all the filling cores have dimension exactly n −2. They prove that every 2π-filling admits 
a complete locally CAT(0) metric. In [30], they show that the simplicial volume of every 
2π-filling is positive and bounded above by the relative simplicial volume ||M, ∂M || of 
M .

In certain cases, simplicial volume can also be defined in more abstract setting of 
groups and topological spaces. The following two theorems can be seen as natural gen-
eralizations and group theoretic analogs of the results of Fujiwara and Manning.

Theorem B. Let G be a group and H = {Hi}mi=1 a collection of subgroups such that 
H ↪→h G. Suppose, for some integer 2 � n, (G, H) is a PD(n)-pair and that there are 
sufficiently deep {Z ∼= Ni � Hi}mi=1, such that every Hi is a PD(n − 2)-group. Then G
is a PD(n)-group.

The hypothesis on subgroups in Theorem B is for example satisfied when each Hi is 
a torsion-free nilpotent group with center of rank at least 2 (see e.g. Lemma 6.4).

Theorem C. Let G be a group and H = {Hi}mi=1 a collection of subgroups such that 
H ↪→h G. Suppose, for some integer n � 2, (G, H) is a PD(n)-pair and for a sufficiently 
deep {Ni�Hi}mi=1, cd(Hi) � n −2 for each 1 � i � m. Then, cd(G) = n, Hn(G; Z) = Z. 
In addition,

(i) if the group Hi is amenable for each 1 � i � m, then ||G|| � ||G, H||, where || · ||
denotes the simplicial volume (see Definition 6.2);

(ii) if G is hyperbolic relative to H, then ||G|| > 0.
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We should point out that conjecturally by Kropholler, amenable groups of finite co-
homological dimension such as Hi are virtually solvable [23, Question, p. 2]. Also, by 
Poincaré duality group or pair we will always mean orientable ones.

Theorem C can for example be applied when G is the fundamental group of a Rieman-
nian manifold with a complete pinched negative sectional curvature and finite volume. 
We give one such application which generalizes Theorem 1.5 of [30].

Corollary 2.3 (Corollary 6.6). Let M be a compact oriented n-manifold with nilmanifold 
boundary components such that the center of the fundamental group of each boundary 
component is of rank at least 2. Suppose the interior of M admits a Riemannian met-
ric with a complete pinched negative sectional curvature and finite volume. If MT is a 
sufficiently deep Dehn filling manifold of M , then MT is a closed oriented aspherical 
n-manifold with

0 < ||MT || � ||M,∂M ||.

For the definition of MT we refer to Definition 6.5. It is worth mentioning that the 
asphericity of MT above is not immediate and follows from the Cohen-Lyndon property.

2.3. Quotients of acylindrically hyperbolic groups

The notion of an acylindrically hyperbolic group was introduced by Osin [62] as a 
generalization of non-elementary hyperbolic and non-elementary relatively hyperbolic 
groups. Examples of acylindrically hyperbolic groups can be found in many classes of 
groups that attracted group theorists for years, e.g., mapping class groups of surfaces 
[53,13], outer automorphism groups of free groups [8], small cancellation groups [40], 
convergence groups [66], the Cremona group (see [27] and references therein; the main 
contribution towards showing the acylindrical hyperbolicity of the Cremona group is due 
to [22]), and tame automorphism groups of 3-dimensional affine spaces [49]. We refer to 
[63] for details and other examples.

Every acylindrically hyperbolic group G contains hyperbolically embedded subgroups 
[27, Theorem 6.14] and Dehn fillings can often be applied to construct useful quotients 
of G. We use Theorem A to study homological properties of those quotients.

Recall that every acylindrically hyperbolic group G has a unique maximal finite nor-
mal subgroup denoted by K(G) [27, Theorem 6.14].

Theorem D. Let G be an acylindrically hyperbolic group, and let C be any countable 
group. Then C embeds into a quotient G of G/K(G) (in particular, G is a quotient of 
G) such that

(i) G is acylindrically hyperbolic;
(ii) if C is finitely generated, then C ↪→h G;
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(iii) if G and C are torsion-free, then so is G;
(iv) for all n � 3 and every G-module A, we have

Hn(G;A) ∼= Hn(G/K(G);A) ⊕Hn(C;A),

where the action of G/K(G) (resp. C) on A is induced by the quotient map 
G/K(G) → G (resp. the embedding C ↪→ G);

(v) cd(G) � max{cd(G), cd(C)};
(vi) if C is finitely generated and G is of type FPn for some n ∈ N+∪{∞} (resp. FP ), 

then G is of type FPn (resp. FP ) if and only if C is of type FPn (resp. FP ).

As an application, we strengthen SQ-universality of hyperbolic groups given by Ol-
shanskii [58] and independently by Delzant [25] by adding cohomological conditions.

Corollary 2.4 (Corollary 8.2). Let G be a non-elementary hyperbolic group and C any 
hyperbolic group. Then there is a hyperbolic quotient G of G/K(G) (in particular, G is 
a quotient of G) such that C embeds into G and the following hold.

(i) For all n � 3 and every G-module A, we have

Hn(G;A) ∼= Hn(G/K(G);A) ⊕Hn(C;A),

where the action of G/K(G) (resp. C) on A is induced by the quotient map 
G/K(G) → G (resp. the embedding C ↪→ G).

(ii) cd(G) � max{cd(G), cd(C)}.

Theorem E. Let G1 and G2 be finitely generated acylindrically hyperbolic groups. Then 
there exists a common quotient G of G1/K(G1) and G2/K(G2) (in particular, G is a 
common quotient of G1 and G2) such that

(i) G is acylindrically hyperbolic;
(ii) for all n � 3 and every G-module A, we have

Hn(G;A) ∼= Hn(G1/K(G1);A) ⊕Hn(G2/K(G2);A),

where the actions of G1/K(G1) and G2/K(G2) on A factor through G;
(iii) cd(G) � max{cd(G1), cd(G2)};
(iv) if G1 and G2 are of type FPn for some n ∈ {2, 3, ..., ∞} (resp. FP ), then so is G.

Homological analogs of Theorem D (iv), (v) and Theorem E (ii), (iii) also hold (see 
Remarks 7.3 and 7.11). Theorem D (i), (ii) are proved in [27, Theorem 2.33] and Theo-
rem E (i) is proved in [42, Corollary 7.4]. The benefit of Theorems D and E is that they 
allow one to control the cohomology of the resulting acylindrically hyperbolic quotients. 
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As we illustrate in Section 8, this facilitates the constructions of various acylindrically 
hyperbolic groups satisfying certain cohomological properties. We list some of them be-
low.

Corollary 2.5 (Corollary 8.1). Every torsion-free acylindrically hyperbolic group G of type 
FP∞ has a torsion-free acylindrically hyperbolic quotient G of type FP∞ which contains 
the Thompson group F .

The existence of a pair H < G, where G is hyperbolic and H is of type F but 
not hyperbolic, was a well-known open problem, raised in particular by Bestvina [7, 
Question 2.1], Brady [15, Question 7.2], and Jankiewicz-Norin-Wise [46, Section 7]. The 
first example of such a pair was constructed recently by Italiano-Martelli-Migliorini [43, 
Corollary 2]. By Corollary 2.4, we obtain:

Corollary 2.6 (Corollary 8.3). Let n � 5 be an integer. Every non-elementary hyperbolic 
group G with cd(G) � n has a hyperbolic quotient G with cd(G) = n such that G contains 
the Italiano-Martelli-Migliorini group. In particular, there is a type F non-hyperbolic 
subgroup H < G.

The next two corollaries strengthen a result of [42, Corollary 1.7] stating that every 
acylindrically hyperbolic group has an acylindrically hyperbolic quotient with Kazhdan’s 
Property (T).

Corollary 2.7 (Corollary 8.4). Every acylindrically hyperbolic group G of type FPn for 
some n ∈ {2, 3, ..., ∞} (resp. FP ) has an acylindrically hyperbolic quotient G of type 
FPn (resp. FP ) with Kazhdan’s Property (T) such that cd(G) � max{cd(G), 2}.

Corollary 2.8 (Corollary 8.6). Let G be any acylindrically hyperbolic group of type FP∞. 
Then G has a family of acylindrically hyperbolic quotients {Gk}∞k=2 such that for each 
k, Gk has Kazhdan’s Property (T), is of type FPk−1 but not of type FPk.

In particular, since mapping class groups of surfaces of finite type, outer automor-
phism groups of free groups of finite rank and most 3-manifold groups are acylindrically 
hyperbolic and of type FP , they all exhibit such quotients.

2.4. A few words on the proofs of the main results

The first step of the proof of Theorem A is to establish, under the assumptions of the 
theorem, the isomorphism

Hn(〈〈N〉〉;A) ∼= CoIndG
HHn(N ;A) (1)

for all n > 0. Here, CoIndG
H stands for the co-induction from ZH to ZG. The Lyndon-

Hochschild-Serre spectral sequence associated to the triple (G, 〈 〈N〉 〉, A) takes the form
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Ep,q
2 (A) = Hp(G;Hq(〈〈N〉〉;A)) ⇒ Hp+q(G;A).

Shapiro’s lemma together with (1) yields Theorem A (i). In fact, we will establish a 
more precise result which involves a morphism between the Lyndon-Hochschild-Serre 
spectral sequences associated to (G, 〈 〈N〉 〉, A) and (H, N, A). Part (ii) of Theorem A will 
be proved by an inspection of this morphism.

To prove Theorem B, we analyze the spectral sequence of Theorem A (i) and apply 
part (ii) and Corollary 2.2 (iii). To show that G is a Poincaré duality group, we use 
Johnson-Wall characterization [47]; namely, a group Γ is a Poincaré duality group of 
dimension n if and only if Γ is of type FP , Hi(Γ, ZΓ) = 0 for i = n and Hn(Γ, ZΓ) = Z.

The algebraic excision Theorem A (ii) is again key in proving Theorem C. Since all Hi

are amenable, the natural map in bounded cohomology Hn
b (G, H; R) → Hn

b (G; R) is an 
isometric isomorphism. The duality pairing between bounded cohomology and ordinary 
homology leads to the inequality ||G|| � ||G, H||. When G is hyperbolic relative to H, 
then a sufficiently deep Dehn filling quotient G is hyperbolic relative to H [60, Theorem 
1.1]. This allows us to show that ||G|| > 0.

The proof of Theorem D is a modification of the proof of [27, Theorem 2.33]. Given 
any acylindrically hyperbolic group G, one can find a non-cyclic free group F ↪→h G0 =
G/K(G). For any countable group C and any finite subset F ⊆ F � {1}, we will use 
small cancellation theory to construct a normal subgroup N � F such that N ∩ F = ∅, 
C embeds into F/N , and F/N has the desired cohomological properties. Theorem 1.4
then implies that C embeds into G0/〈 〈N〉 〉 and Theorem A and Corollary 2.2 applied to 
N � F ↪→h G0 yields the desired cohomological results.

The proof of [42, Corollary 7.4] uses small cancellation theory instead of Dehn filling. 
In order to apply our main result, we carry out an alternative approach. Given finitely 
generated acylindrically hyperbolic groups G1 and G2, we construct subgroups H1, H2 <

G̃ = G′
1∗G′

2, where G′
1 = G1/K(G1) and G′

2 = G2/K(G2), such that the family {H1, H2}
hyperbolically embeds into G̃. For any finite sets {Fi ⊆ Hi � {1}}i=1,2, we will use small 
cancellation theory to construct normal subgroups {Ni�Hi}i=1,2 such that Ni∩Fi = ∅

and N1 (resp. N2) identifies a finite set of generators of G′
2 (resp. G′

1) with certain 
elements of G′

1 (resp. G′
2). The quotient G = G̃/〈 〈N1 ∪N2〉 〉 is thus a common quotient 

of G′
1 and G′

2. Theorem E is then proved by applying general versions of Theorems 1.4
and A. The main difficulty of this argument is the construction of H1 and H2, which 
is presented in Section 7.2, using a technical tool provided by [27] (see also [60]) called 
isolated components.

2.5. Organization of the paper

We will start with preliminaries in Section 3, recalling basic definitions of group coho-
mology, the notion of (weakly) hyperbolically embedded subgroups, isolated components, 
acylindrically hyperbolic groups, and the structural result of [67] called the Cohen-
Lyndon property. The proof of (the general version of) Theorem A and Corollary 2.2
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is given in Section 4. Theorems B and C are proved in Sections 5 and 6, respectively. 
Theorems D and E are proved in Section 7 with applications given in Section 8.

3. Preliminaries

3.1. Direct sum and product of spectral sequences

We briefly recall a property concerning convergence of the direct sum and direct 
product of a (possibly infinite) family of spectral sequences of ring modules. For detailed 
introduction to spectral sequences we refer to [72], [19] and [20].

Let R be a unital ring, and let E2,λ
p,q ⇒ Hλ

p+q, λ ∈ Λ be a family of convergent 
homological spectral sequences of R-modules such that E2,λ

p,q = 0 if either p or q is less 
than 0.

Lemma 3.1. We have⊕
λ∈Λ

E2,λ
p,q ⇒

⊕
λ∈Λ

Hλ
p+q,

∏
λ∈Λ

E2,λ
p,q ⇒

∏
λ∈Λ

Hλ
p+q.

Moreover, the same statement holds for cohomological spectral sequences as well.

Proof. For simplicity, denote 
⊕

λ∈Λ E2,λ
p,q as E2

p,q. First note that the E∞-terms satisfy

E∞
p,q =

⊕
λ∈Λ

E∞,λ
p,q .

Indeed, fix p, q for the moment. We have

E∞
p,q = Ep+q+1

p,q =
⊕
λ∈Λ

Ep+q+1,λ
p,q =

⊕
λ∈Λ

E∞,λ
p,q .

Next, let us recall that the convergence E2,λ
p,q ⇒ Hλ

p+q means that for each λ and each 
Hλ

p+q, there is a filtration

0 = F−1H
λ
p+q < F0H

λ
p+q < ... < Fp+qH

λ
p+q = Hλ

p+q

such that for all p, q we have a short exact sequence

0 → Fp−1H
λ
p+q → FpH

λ
p+q → E∞,λ

p,q → 0.

Consider the following filtration of 
⊕

λ∈Λ Hλ
p+q:

0 =
⊕

F−1H
λ
p+q <

⊕
F0H

λ
p+q < ... <

⊕
Fp+qH

λ
p+q =

⊕
Hλ

p+q.

λ∈Λ λ∈Λ λ∈Λ λ∈Λ
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Then we have short exact sequences

0 →
⊕
λ∈Λ

Fp−1H
λ
p+q →

⊕
λ∈Λ

FpH
λ
p+q →

⊕
λ∈Λ

E∞,λ
p,q → 0

by taking the direct sum of the above short exact sequences, as the direct sum functor 
is exact [72, Theorem 2.6.15].

The proof for direct product is similar. We only point out that the direct product func-
tor is exact for R-modules, as the category of R-modules satisfies Axiom (AB4∗) of [36, 
Section 1.5]. Also, the proof for cohomological spectral sequences is almost identical. �
3.2. Cohomology of groups

Let G be a group. Recall that the homological and cohomological dimension of G can 
be defined by

hd(G) = sup{n ∈ N | Hn(G,A) = 0 for some ZG-module A},
cd(G) = sup{n ∈ N | Hn(G,A) = 0 for some ZG-module A},

respectively.
G is of type FPn for some n ∈ N+ ∪ {∞} if there is a projective resolution

· · · → P2 → P1 → P0 → Z

over ZG such that Pk are finitely generated G-modules for all k � n. G is of type FP if 
cd(G) < ∞ and G is of type FP∞.

Property FPn can be characterized by the cohomology functor. The following will be 
useful in the proof of Theorem 4.8.

Theorem 3.2 (Bieri [12, Theorem 1.3], Brown [17, Theorem 2]). For a group G, the 
following are equivalent.

(a) G is of type FPn for some n ∈ N+ ∪ {∞}.
(b) For every k � n and every direct system {Ai}i∈I of G-modules such that lim−−→Ai = 0, 

we have lim−−→Hk(G; Ai) = 0.

Given a family {Hλ}λ∈Λ of subgroups of G, [6] defined the relative (co)homology of 
the group pair (G, {Hλ}λ∈Λ). We briefly recall the definition. Let Δ be the kernel of the 
augmentation 

⊕
λ∈Λ Z[G/Hλ] � Z which sends every left Hλ-coset to 1. By definition,

Hn(G, {Hλ}λ∈Λ;A) = TorGn−1(Δ, A), Hn(G, {Hλ}λ∈Λ;A) = Extn−1
G (Δ, A) (2)

for any G-module A. The dimension shift in the above definition ensures a long exact 
sequence between the absolute and relative (co)homology (see [6, Proposition 1.1]).
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3.3. (Weakly) hyperbolically embedded subgroups

The notion of (weakly) hyperbolically embedded subgroups was introduced by [27], 
which is our main reference for Sections 3.3, 3.4, and 3.5. We first recall the definition 
and present some examples. The motivation will be discussed afterwards.

Let G be a group, {Hλ}λ∈Λ a family of subgroups of G, X a subset of G such that 
G is generated by X together with the union of all Hλ (in which case X is called a 
relative generating set of G with respect to {Hλ}λ∈Λ), and H = �λ∈Λ Hλ. Consider 
the Cayley graph Γ(G, X � H). Note that, for λ ∈ Λ there is a natural embedding 
Γ(Hλ, Hλ) ↪→ Γ(G, X � H) whose image is the subgraph of Γ(G, X � H) with vertices 
and edges labeled by elements of Hλ.

Remark 3.3. We do allow X ∩Hλ = ∅ and Hλ∩Hμ = {1} for distinct λ, μ ∈ Λ, in which 
case there will be multiple edges between some pairs of vertices of Γ(G, X �H).

For λ ∈ Λ, an edge path in Γ(G, X � H) between vertices of Γ(Hλ, Hλ) is called 
Hλ-admissible if it does not contain any edge of Γ(Hλ, Hλ). Note that an Hλ-admissible 
path is allowed to pass through vertices of Γ(Hλ, Hλ).

For example, consider the simple case where {Hλ}λ∈Λ = {H} consists of only one 
subgroup H � G. The Cayley graph Γ(G, X �H) is displayed in Fig. 1. The blue path 
is admissible. The red path is an edge from 1 to h labeled by h ∈ H, and thus is 
inadmissible. If h happens to be an element of X, i.e., there exists x ∈ X with x = h, 
and the red path were labeled by x instead of h, then the red path would be admissible.

Definition 3.4. For every pair of elements h, k ∈ Hλ, let d̂λ(h, k) ∈ [0, ∞] be the length 
of a shortest Hλ-admissible path connecting the vertices labeled by h and k. If no such 
path exists, set d̂λ(h, k) = ∞. The laws of summation on [0, ∞) extend naturally to 
[0, ∞] and it is easy to verify that d̂λ : Hλ×Hλ → [0, +∞] defines a metric on Hλ, which 
is called the relative metric on Hλ with respect to X.

Definition 3.5. We say that the family {Hλ}λ∈Λ weakly hyperbolically embeds into (G, X)
(denoted by {Hλ}λ∈Λ ↪→wh (G, X)) if G is generated by the set X together with union 
of all Hλ, λ ∈ Λ, and the Cayley graph Γ(G, X �H) is a Gromov hyperbolic space.

If {Hλ}λ∈Λ ↪→wh (G, X) and for each λ ∈ Λ, the metric space (Hλ, d̂λ) is proper, i.e., 
every ball of finite radius contains only finitely many elements, then {Hλ}λ∈Λ hyperboli-
cally embeds into (G, X) (denoted by {Hλ}λ∈Λ ↪→h (G, X)). If in addition, X and Λ are 
finite, then we say that G is hyperbolic relative to {Hλ}λ∈Λ.

Further, we say that the family {Hλ}λ∈Λ hyperbolically embeds into G, denoted by 
{Hλ}λ∈Λ ↪→h G, if there exists some subset X ⊆ G such that {Hλ}λ∈Λ ↪→h (G, X).

Notation 3.6. In case {Hλ}λ∈Λ = {H} is a singleton, we will drop the braces and write 
H ↪→wh (G, X) and H ↪→h G.
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Fig. 1. Illustration of H ↪→h G. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

We refer to Fig. 1 for an illustration of the situation H ↪→h G. The grey discs represent 
cosets of H in G. The black edges are labeled by elements of X. The edges and discs 
appear in a tree-like pattern as Γ(G, X �H) is Gromov hyperbolic.

Remark 3.7. Notice that the above definition of relative hyperbolicity is not commonly 
used in literature. One of the most commonly used definitions for relative hyperbolicity 
which we will use later is the following: a group G is hyperbolic relative to a family 
{Hλ}λ∈Λ of its subgroups if G has a finite relative presentation with respect to {Hλ}λ∈Λ
with a linear relative isoperimetric function (see [27, Definition 3.6]). The equivalence of 
these two definitions is proved in [27, Remark 4.41 and Theorem 4.42].

Example 3.8.

(a) H ↪→wh (G, G) for every subgroup H � G.
(b) H ↪→h (G, G) for every finite subgroup H � G.
(c) G ↪→h (G, ∅).
(d) If G can be decomposed as a free product of its subgroups {Gλ}λ∈Λ (denoted by 

G = ˚λ∈ΛGλ), then {Gλ}λ∈Λ ↪→h (G, ∅) [27, Example 4.12].
(e) More generally, suppose that G = π1(G), where G is a graph of groups. Let {Gv}v∈V G

be the collection of vertex subgroups and {Ge}e∈EG the collection of edge subgroups. 
By [27, Example 4.12], {Gv}v∈V G ↪→wh (π1(G), X), where the subset X ⊆ G consists 
of stable letters (i.e., there is a spanning tree TG of G such that X consists of 
generators corresponding to the edges of G � TG).

Recall that a group is word-hyperbolic if it is finitely generated and for some (equiva-
lently, any) finite generating set the corresponding Cayley graph is Gromov hyperbolic. 
The notion of weak hyperbolic embedding is thus an attempt to study possibly non-word-
hyperbolic groups via Gromov hyperbolic spaces. Example 3.8 (a) illustrates a triviality 
of this notion, in the sense that the weak hyperbolic embedding does not provide any 
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information about the group G. Notice that in that example, the corresponding relative 
metric is bounded. One might therefore refine the notion by imposing additional condi-
tions on the relative metric, for example, requiring local finiteness of the relative metric 
and obtaining the notion of hyperbolic embedding. We note that Examples 3.8 (b) and 
(c) exhibit two kinds of trivialities of hyperbolic embedding, and a further refinement is 
given by the notion of an acylindrically hyperbolic group (see Section 3.5).

The next lemma tells us how to find hyperbolically embedded subgroups.

Lemma 3.9 (Dahmani-Guirardel-Osin [27, Lemma 4.21]). Suppose that card(Λ) < ∞, G
acts on a Gromov hyperbolic space (S, d) by isometries, and the following three conditions 
are satisfied, then {Hλ}λ∈Λ ↪→h G.

(C1) Every Hλ acts on S properly.
(C2) There exists s ∈ S such that for every λ ∈ Λ, the Hλ-orbit Hλ(s) of s is quasi-

convex in S.
(C3) For every ε > 0 and some s ∈ S, there exists R > 0 such that the following holds. 

Suppose that for some g ∈ G and λ, μ ∈ Λ, we have

diam
(
Hμ(s) ∩ (gHλ(s))+ε

)
� R,

then λ = μ and g ∈ Hλ, where (gHλ(s))+ε denotes the ε-neighborhood of gHλ(s)
in S.

The following proposition, which roughly says that being a hyperbolically embedded 
subgroup is a transitive property, will be used later.

Proposition 3.10 (Dahmani-Guirardel-Osin [27, Proposition 4.35]). Let G be a group, let 
{Hλ}λ∈Λ be a finite family of subgroups of G, let X ⊆ G, and let Yλ ⊆ Hλ for every 
λ ∈ Λ. Suppose that {Hλ}λ∈Λ ↪→h (G, X) and for every λ ∈ Λ, there is a family of 
subgroups {Kλ,μ}μ∈Mλ

↪→h (Hλ, Yλ). Then

⋃
λ∈Λ

{Kλ,μ}μ∈Mλ
↪→h

(
G,X ∪

(⋃
λ∈Λ

Yλ

))
.

The cohomological finiteness properties of a group G are inherited by its hyperbolically 
embedded subgroups:

Lemma 3.11 (Dahmani-Guirardel-Osin [27, Remark 4.26 and Corollary 4.32]). Let G be 
a group with a hyperbolically embedded family of subgroups {Hλ}λ∈Λ. Suppose that G is 
of type FPn for some n ∈ {2, 3, ..., ∞}. Then for every λ, the group Hλ is of type FPn.



16 N. Petrosyan, B. Sun / Advances in Mathematics 437 (2024) 109412
3.4. Isolated components

In the proof of Theorem E, we need to construct specific hyperbolically embedded 
subgroups. A tool to do this is the notion of an isolated component, which was intro-
duced by [60] for relatively hyperbolic groups and generalized to hyperbolically embedded 
subgroups by [27]. In this section, we recall the definition and collect several results.

We start with conventions. Let G be a group and X a generating set of G. Consider 
the Cayley graph Γ(G, X). Let p be a path in Γ(G, X). The label of p, denoted Lab(p), is 
obtained by concatenating all labels of the edges in p and is a word over X. The length 
p is denoted by �X(p), and the initial (resp. terminal) vertex of p is denoted by p− (resp. 
p+).

Now suppose that {Hλ}λ∈Λ is a family of subgroups of G. Let H = �λ∈Λ Hλ, and let 
X be a relative generating set of G with respect to {Hλ}λ∈Λ. For λ ∈ Λ, let d̂λ be the 
relative metric on Hλ with respect to X. The following terminology goes back to [59].

Definition 3.12. Let p be a path in Γ(G, X � H). For every λ ∈ Λ, an Hλ-subpath q

of p is a nontrivial subpath of p such that Lab(q) is a word over the alphabet Hλ (if 
p is a cycle, we allow q to be a subpath of some cyclic shift of p). An Hλ-subpath q
of p is an Hλ-component if q is not properly contained in any other Hλ-subpath. Two 
Hλ-components q1 and q2 of p are connected if there exists a path t in Γ(G, X �H) such 
that t connects a vertex of q1 to a vertex of q2, and that Lab(t) is a letter from Hλ. An 
Hλ-component q of p is isolated if it is not connected to any other Hλ-component of p.

Remark 3.13. The definition of connectedness in [27] is seemingly different from the 
version above: instead of requiring Lab(t) to be a letter from Hλ, [27] only requires 
Lab(t) to be a word over Hλ for some λ ∈ Λ. However, as every element of Hλ belongs 
to the generating set X �H, if there is a path t connecting a vertex of q1 to a vertex of 
q2 with Lab(t) being a word over Hλ, then there is another path t′ connecting a vertex 
of q1 to a vertex of q2 with Lab(t′) being a single letter of Hλ (Lab(t′) is the element of 
Hλ represented by Lab(t)).

Suppose that q is an Hλ-component of a path p ⊆ Γ(G, X � H). Then q− (resp. q+) 
is labeled by an element g ∈ G (resp h ∈ G) and we have g−1h ∈ Hλ. In this case, let

�̂λ(q) = d̂λ(1, g−1h).

A nice property of isolated components is that in a geodesic polygon p, the total �̂-
length of isolated components of p is bounded linearly by the number of sides of p. More 
precisely:

Proposition 3.14 (Dahmani-Guirardel-Osin [27, Proposition 4.14] (see also [60, Propo-
sition 3.2])). If {Hλ}λ∈Λ ↪→wh (G, X), then there exists a number D > 0 satisfying 
the following property: Let p be an n-gon in Γ(G, X � H) with geodesic sides p1, ..., pn



N. Petrosyan, B. Sun / Advances in Mathematics 437 (2024) 109412 17
and let I be a subset of the set of sides of p such that every side pi ∈ I is an isolated 
Hλi

-component of p for some λi ∈ Λ. Then∑
pi∈I

�̂λi
(pi) � Dn.

In fact, the above proposition is the reason why certain properties (for example, The-
orems 3.23 and 3.25 below) hold for sufficiently deep Dehn fillings (see Definition 3.19).

The technical lemma below will be used in Section 7.2 along with Lemma 3.9 to 
construct hyperbolically embedded subgroups.

Lemma 3.15 (Dahmani-Guirardel-Osin [27, Lemma 4.21]). Suppose {Hλ}λ∈Λ ↪→wh

(G, X). Let W be the set consisting of all words w over X �H such that

(W1) w contains no subwords of type xy, where x, y ∈ X;
(W2) if w contains a letter h ∈ Hλ for some λ ∈ Λ, then d̂λ(1, h) > 50D, where D is 

given by Proposition 3.14;
(W3) if h1xh2 (resp. h1h2) is a subword of w, where x ∈ X, h1 ∈ Hλ, h2 ∈ Hμ, then 

either λ = μ or the element represented by x in G does not belong to Hλ (resp. 
λ = μ).

Then the following hold.

(a) Every path in the Cayley graph Γ(G, X � H) labeled by a word from W is a (4, 1)-
quasi-geodesic.

(b) If p is a path in Γ(G, X �H) labeled by a word from W , then for every λ ∈ Λ, every 
Hλ-component of p is isolated.

(c) For every ε > 0, there exists R > 0 satisfying the following condition. Let p, q be two 
paths in Γ(G, X �H) such that

�X�H(p) � R, Lab(p),Lab(q) ∈ W,

and p, q are oriented ε-close, i.e.,

max{dX�H(p−, q−), dX�H(p+, q+)} � ε,

where dX�H is the combinatorial metric of Γ(G, X�H). Then there exist five consec-
utive components of p which are respectively connected to five consecutive components 
of q. In other words,

p = ra1x1a2x2a3x3a4x4a5s, q = tb1y1b2y2b3y3b4y4b5u,

such that the following hold.
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(i) r (resp. t) is a subpath of p (resp. q) whose label does not end with a letter from 
H.

(ii) s (resp. u) is a subpath of p (resp. q) whose label does not start with a letter 
from H.

(iii) For i = 1, ..., 4, xi and yi are either trivial subpaths or subpaths labeled by a 
letter over X;

(iv) For i = 1, ..., 5, ai and bi are connected Hλi
-components.

Remark 3.16. Conclusion (b) of Lemma 3.15 is not stated in [27, Lemma 4.21], but it is 
proved in the second paragraph of the proof of [27, Lemma 4.21].

3.5. Acylindrical hyperbolicity

We notice that Examples 3.8 (b) and (c) are two occasions where having a hyper-
bolically embedded subgroup does not provide any information about the group G. We 
also notice that in those two cases, the hyperbolically embedded subgroup is either fi-
nite or improper. It is therefore natural to look at the groups G with a proper infinite 
hyperbolically embedded subgroup. By [27, Theorem 7.19] and [62, Theorem 1.2], this 
is equivalent to saying that G is acylindrically hyperbolic.

Definition 3.17. A group G is acylindrically hyperbolic if G admits a non-elementary 
acylindrical action on some Gromov hyperbolic space by isometries.

For the definition an acylindrical action, the reader is referred to [63]. Intuitively, one 
can think of acylindricity as an analog of properness. An acylindrical action of a group G
is non-elementary if its orbits are unbounded and G is not virtually-cyclic [62, Theorem 
1.1].

Techniques of hyperbolically embedded subgroups are mainly applied to acylindrically 
hyperbolic groups, because every acylindrically hyperbolic group contains infinitely many 
hyperbolically embedded virtually free subgroups.

Theorem 3.18 (Dahmani-Guirardel-Osin [27, Theorem 6.14]). Let G be an acylindrically 
hyperbolic group. Then G has a unique maximal finite normal subgroup, denoted by K(G). 
Moreover, for every n ∈ N+, there exists a free group F of rank n such that F×K(G) ↪→h

G.

3.6. Sufficient deepness and Cohen-Lyndon triples

One consequence of Proposition 3.14 is that acylindrical hyperbolicity is preserved by 
Dehn fillings, provided that the Dehn fillings are sufficiently deep and done on hyperbol-
ically embedded subgroups (see Theorem 3.23).
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Definition 3.19. Let G be a group with a family of subgroups {Hλ}λ∈Λ ↪→wh (G, X) for 
some subset X ⊆ G. For every λ ∈ Λ, let d̂λ be the relative metric on Hλ with respect 
to X. A property P holds for all sufficiently deep normal subgroups if there exists a 
constant C > 0 such that P holds for every family of normal subgroups {Nλ � Hλ}λ∈Λ
with d̂λ(1, n) > C for all n ∈ Nλ � {1}.

Example 3.20. If G = H1∗AH2 is a free product with amalgamation, then {H1, H2} ↪→wh

(G, ∅) by Example 3.8 (e). For normal subgroups {Ni �Hi}i=1,2, consider the property

P: The quotient G/〈 〈N1∪N2〉 〉 splits as an amalgamated free product, where 〈 〈N1∪N2〉 〉
denotes the normal closure of N1 ∪N2 in G.

Then P holds for all sufficiently deep normal subgroup {Ni�Hi}i=1,2, because P holds 
whenever Ni ∩ A = {1}, which amounts to saying that d̂i(n) > 1 for all n ∈ Ni � {1}, 
where d̂i is the relative metric on Hi corresponding to the weak hyperbolic embedding 
{H1, H2} ↪→wh (G, ∅).

Remark 3.21. In Definition 3.19, if {Hλ}λ∈Λ ↪→h (G, X), then the relative metrics d̂λ
are locally finite. Thus,

card
(
{h ∈ Hλ | d̂λ(1, h) � C}

)
< ∞

for all C > 0. Therefore:
Let G be a group with a family of subgroups {Hλ}λ∈Λ ↪→h G. Suppose that a property 

P holds for all sufficiently deep normal subgroups {Nλ�Hλ}λ∈Λ. Then there exist finite 
sets {Fλ ⊆ Hλ � {1}}λ∈Λ such that P holds whenever Nλ ∩ Fλ = ∅ for all λ ∈ Λ.

If in addition, |Λ| < ∞, then a property P holds for all sufficiently deep normal 
subgroups {Nλ�Hλ}λ∈Λ if and only if there exists a finite set F ⊆

(⋃
λ∈Λ Hλ

)
�{1} such 

that P holds whenever Nλ ∩ F = ∅. In particular, if G is a group with a hyperbolically 
embedded subgroup H ↪→h G, then Definition 2.1 is a special case of Definition 3.19.

To simplify statements, we use the following notation.

Notation 3.22. Let G be a group and S a subset of G. Then 〈 〈S〉 〉 denotes the normal 
closure of S in G. Suppose that {Hλ}λ∈Λ is a family of subgroups of G and {Nλ�Hλ}λ∈Λ
is a family of normal subgroups. We call (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) a group triple. We also 
let

N =
⋃
λ∈Λ

Nλ, G = G/〈〈N〉〉, Hλ = Hλ/Nλ.

Theorem 3.23 (Dahmani-Guirardel-Osin [27, Theorem 7.19], Osin [62, Theorem 1.2]). 
Let G be a group with a family of subgroups {Hλ}λ∈Λ ↪→h G. Then for all sufficiently 
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deep normal subgroups {Nλ � Hλ}λ∈Λ, the natural homomorphism Hλ → G is injective 
for λ ∈ Λ and we have {Hλ}λ∈Λ ↪→h G. Moreover, if for some λ ∈ Λ, card(Hλ) = ∞
and Hλ is a proper subgroup of G, then G is acylindrically hyperbolic.

The normal subgroup 〈 〈N〉 〉 in the above theorem can be described more precisely: it 
has a particular free product structure.

Definition 3.24. A group triple (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is called a Cohen-Lyndon triple
if there exist left transversals Tλ of Hλ〈 〈N〉 〉 in G such that

〈〈N〉〉 = ˚λ∈Λ,t∈Tλ
tNλt

−1.

The above free product structure was first proved by Cohen-Lyndon [21] for free 
groups, hence the name. The following theorem was partially proved by [27, Theorem 
7.19], which was later improved by [67].

Theorem 3.25 (Sun [67, Theorem 5.1]). Let G be a group with a family of subgroups 
{Hλ}λ∈Λ ↪→wh (G, X) for some X ⊆ G. Then for all sufficiently deep normal subgroups 
{Nλ � Hλ}λ∈Λ, (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is a Cohen-Lyndon triple.

4. Cohomology of Dehn fillings

In this section, we prove Theorem A. To simplify the notation, we use 3.22. Recall, 
given a group G, a subgroup H � G and a ZH-module M , the induced module is

IndG
HM := ZG⊗ZH M

and the co-induced module is

CoIndG
HM := HomZH(ZG,M).

The left action of G on ZG induces a ZG-module structure on both the induced and the 
co-induced modules [19, §III.5].

Throughout, we adopt the standard convention that given ZG-modules M and N , 
then M ⊗ N := M ⊗Z N and M ⊗G N := M ⊗ZG N . We repeatedly make use of 
the following tenor identities which are a consequence of the associativity of the tensor 
products [19, §III.3 and III.5].

Lemma 4.1 (Tensor product identities). Let G be a group, let H be a subgroup of G, and 
let K be a normal subgroup of G. For any G-modules M , N and H-module L, we have

(i) M ⊗ Z[G/H] ∼= IndG
HResGHM as G-modules,

(ii) M ⊗G N ∼= (M ⊗K N) ⊗G/K Z,
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(iii) (L ⊗H ZG) ⊗G N ∼= L ⊗H N .

Proposition 4.2. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a Cohen-Lyndon triple. Then for any 
G-module A and q > 1 (also for any G-module A and q > 0) there are isomorphisms

Hq(〈〈N〉〉;A) ∼=
⊕
λ∈Λ

IndG
Hλ

Hq(Nλ;A),

Hq(〈〈N〉〉;A) ∼=
∏
λ∈Λ

CoIndG
Hλ

Hq(Nλ;A)

induced by the inclusions Nλ ↪→ 〈 〈N〉 〉.

We remark that an easy consequence of (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) being a Cohen-
Lyndon triple is that the natural maps Hλ → G are injective [67, Lemma 6.4], and 
thus it makes sense to consider the (co)inductions IndG

Hλ
and CoIndG

Hλ
.

Proof. We will prove the homological version. The proof of the cohomological version 
will be analogous.

Let {Tλ}λ∈Λ be the family of left transversals associated to the Cohen-Lyndon triple 
(G, {Hλ}λ∈Λ, {Nλ}λ∈Λ), given by Definition 3.24. Then 〈 〈N〉 〉 = ˚λ∈Λ,t∈Tλ

tNλt
−1. Con-

sider the Bass-Serre tree X associated to this free product decomposition with vertex 
set V and edge set E. Viewing X as a 1-dimensional CW-complex, we get a short exact 
sequence of 〈 〈N〉 〉-modules

0 → Z[E] ∂1−→ Z[V ] ∂0−→ Z → 0,

where C1(X) = Z[E], C0(X) = Z[V ], and ∂∗ is the usual boundary map.
Since the terms in the above exact sequence are Z-free modules, tensoring it with A

preserves exactness [16, §V.6, p. 278-279] and we obtain the short exact sequence

0 → Z[E] ⊗A → Z[V ] ⊗A → A → 0. (3)

Let Fi � Z be a free ZG-resolution of Z. Tensoring the above sequence by Fi ⊗〈〈N〉〉 −, 
we obtain a short exact sequence

0 → Fi ⊗〈〈N〉〉 (Z[E] ⊗A) → Fi ⊗〈〈N〉〉 (Z[V ] ⊗A) → Fi ⊗〈〈N〉〉 A → 0. (4)

Note that there is an isomorphism of 〈 〈N〉 〉-modules

Z[V ] ∼=
⊕

λ∈Λ,t∈Tλ

Z[〈〈N〉〉/tNλt
−1].

The short exact sequence (4) then transforms to a short exact sequence of chain 
complexes
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0 → Fi ⊗〈〈N〉〉 (Z[E] ⊗A) →
⊕

λ∈Λ,t∈Tλ

Fi ⊗tNλt−1 A
θ−→ Fi ⊗〈〈N〉〉 A → 0. (5)

The long exact sequence corresponding to (5) yields

· · · → Hq(〈〈N〉〉;Z[E] ⊗A) →
⊕

λ∈Λ,t∈Tλ

Hq(tNλt
−1;A) θ∗−→ Hq(〈〈N〉〉;A) →

· · · → Z⊗〈〈N〉〉 (Z[E] ⊗A) f−→ Z⊗〈〈N〉〉 (Z[V ] ⊗A) → Z⊗〈〈N〉〉 A → 0.

Since Z[E] is a free 〈 〈N〉 〉-module, Hq(〈 〈N〉 〉; Z[E] ⊗A) = 0 for q > 0 and f is injective 
if 〈 〈N〉 〉 acts trivially on A. This yields an isomorphism

θ∗ :
⊕

λ∈Λ,t∈Tλ

Hq(tNλt
−1;A) → Hq(〈〈N〉〉;A) (6)

for q > 1 and also for q = 1 if 〈 〈N〉 〉 acts trivially on A. The action of G on Hq(〈 〈N〉 〉; A)
and the isomorphism θ∗ endow 

⊕
λ∈Λ,t∈Tλ

Hq(tNλt
−1; A) with a G-action. Next, we will 

show that this action is a direct sum of permutation actions.
The G-action on Hq(〈 〈N〉 〉; A) comes from the G-action on A and conjugation of G

on 〈 〈N〉 〉 which is induced by the diagonal G-action on F∗ ⊗〈〈N〉〉 A. More explicitly, each 
g ∈ G acts as

τg : Fi ⊗〈〈N〉〉 A → Fi ⊗〈〈N〉〉 A, [x, a] �→ [gx, ga].

For each λ ∈ Λ and t ∈ Tλ, the group tHλt
−1 acts on Fi ⊗tNλt−1 A by

[x, a] �→ [gx, ga], ∀g ∈ tHλt
−1.

This gives us a tHλt
−1-equivariant restriction of θ

θ : Fi ⊗tNλt−1 A → Fi ⊗〈〈N〉〉 A,

which in turn induces the tHλt
−1-equivariant inclusion

θ∗ : Hq(tNλt
−1;A) ↪→ Hq(〈〈N〉〉;A).

Now, for each λ ∈ Λ and t ∈ Tλ, the action of t on Hq(〈 〈N〉 〉; A) induces a map between 
two summands on the left-hand side of the isomorphism (6). To see this, note that the 
map defined by

σt : Fi ⊗Nλ
A → Fi ⊗tNλt−1 A,

[x, a] �→ [tx, ta],
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satisfies θ ◦ σt = τt ◦ θ. In homology, we then have (σt)∗ = θ−1
∗ ◦ (τt)∗ ◦ θ∗ as claimed.

We have shown that for each λ ∈ Λ, the G-action on 
⊕

t∈Tλ
Hq(tNλt

−1; A) restricts to 
the tHλt

−1-action on the summand Hq(tNλt
−1; A) and that it permutes Hq(Nλ; A) and 

Hq(tNλt
−1; A). It is not difficult to show now, see for example [19, Proposition III.5.3], 

that ⊕
t∈Tλ

Hq(tNλt
−1;A) ∼= IndG

Hλ
Hq(Nλ;A).

This finishes the proof of the homology isomorphism of the lemma.
Next, we outline the proof of the cohomology isomorphism which is similar.
First, the analog of (3) is the exact sequence

0 → A → Hom(Z[V ], A) → Hom(Z[E], A) → 0,

which can be identified with the cochain complex C∗(X, A) of the tree X with the 
coefficients in A. Applying Hom〈〈N〉〉(Fi, −) to the above sequence, we obtain a short 
exact sequence

0 → Hom〈〈N〉〉(Fi, A) → Hom〈〈N〉〉(Fi,Hom(Z[V ], A))

→ Hom〈〈N〉〉(Fi,Hom(Z[E], A)) → 0.

Using the tensor-hom adjunction, we obtain

Hom〈〈N〉〉(Fi,Hom(Z[V ], A)) ∼= Hom〈〈N〉〉(Fi ⊗ Z[V ], A)

∼=
∏
λ∈Λ

HomtNλt−1(Fi, A),

where second isomorphism follows from Lemma 4.1 and the adjointness of restriction 
and extension of scalars functors [19, §III.3, eq. (3.3)]. Substituting in the long exact 
sequence above and taking the cohomology, gives the long exact sequence

0 → Hom〈〈N〉〉(Z, A) → Hom〈〈N〉〉(Z[V ], A) f−→ Hom〈〈N〉〉(Z[E], A) →

· · · → Hq(〈〈N〉〉;A) θ∗
−→

∏
λ∈Λ,t∈Tλ

Hq(tNλt
−1;A) → Hq(〈〈N〉〉; Hom(Z[E], A)) → · · ·

If 〈 〈N〉 〉 acts trivially on A, then the first three terms in the above sequence compute the 
cohomology of the quotient graph X/〈〈N〉〉 which is contractible. Therefore f is surjective 
in this case. It follows that θ∗ is an isomorphism for q > 1 and also for q = 1 if 〈 〈N〉 〉
acts trivially on A. By an analogous argument to the homological case but now using 
[19, Proposition III.5.8], it follows that∏

Hq(tNλt
−1;A) ∼= CoIndG

Hλ
Hq(Nλ;A). �
t∈Tλ
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Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a Cohen-Lyndon triple and A any G-module. There 
are Lyndon-Hoschild-Serre spectral sequences

Eλ,2
p,q = Hp(Hλ;Hq(Nλ;A)) ⇒ Hp+q(Hλ;A),

F 2
p,q = Hp(G;Hq(〈〈N〉〉;A)) ⇒ Hp+q(G;A)

associated with the triples (Hλ, Nλ, A) and (G, 〈 〈N〉 〉, A), respectively (see for example 
[19, Chapter VII]). Let Ep,q =

⊕
λ∈Λ Eλ

p,q. Then

E2
p,q =

⊕
λ∈Λ

Hp(Hλ;Hq(Nλ;A)) ⇒
⊕
λ∈Λ

Hp+q(Hλ;A)

by Lemma 3.1.
The inclusions Hλ ↪→ G and Nλ ↪→ 〈 〈N〉 〉 induce a morphism φ : Ep,q → Fp,q. By 

Proposition 4.2 and Shapiro’s lemma, the restriction φ : E2
p,q → F 2

p,q is an isomorphism 
for all q > 1 and also for q = 1 if 〈 〈N〉 〉 acts trivially on A. In short:

Theorem 4.3. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a Cohen-Lyndon triple. Then for every G-
module A, there is a natural morphism of homological spectral sequences φ : Ep,q → Fp,q

such that

E2
p,q =

⊕
λ∈Λ

Hp(Hλ;Hq(Nλ;A)) ⇒
⊕
λ∈Λ

Hp+q(Hλ;A),

F 2
p,q = Hp(G;Hq(〈〈N〉〉;A)) ⇒ Hp+q(G;A),

φ is induced by the inclusions Hλ ↪→ G, Nλ ↪→ 〈 〈N〉 〉, and φ restricts to an isomorphism 

φ : E2
p,q

∼=−→ F 2
p,q for all q > 1 and also for q = 1 if 〈 〈N〉 〉 acts trivially on A.

Moreover, the analogous statement holds for cohomology as well.

We further investigate the morphism φ of the above theorem. Let Pi � Z be a free 
resolution of Z over ZG and Si � Z a free resolution of Z over ZG. The spectral 
sequence Ep,q is induced by the double complex Cp,q =

⊕
λ∈Λ(Pp ⊗ Sq) ⊗Hλ

A and Fp,q

is induced by Dp,q = (Pp ⊗ Sq) ⊗G A. The surjections

(Pp ⊗ Sq) ⊗Hλ
A � (Pp ⊗ Sq) ⊗G A

induce a surjection Cp,q � Dp,q, which in turn induces the morphism φ. Let Rp,q be the 
kernel of the surjection Cp,q � Dp,q and Ep,q(R) the spectral sequence associated with 
Rp,q. It turns out that Ep,q(R) ⇒ Hp+q+1(G, {Hλ}λ∈Λ; A) and we have the following 
commutative diagram of long exact sequences.

Proposition 4.4. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a Cohen-Lyndon triple and A a G-
module. Then there is a commutative diagram of exact sequences



N. Petrosyan, B. Sun / Advances in Mathematics 437 (2024) 109412 25
· · ·
⊕

λ∈Λ Hi(Hλ;A) Hi(G;A) Hi(G, {Hλ}λ∈Λ;A)
⊕

λ∈Λ Hi−1(Hλ;A) · · ·

· · ·
⊕

λ∈Λ Hi(Hλ;A) Hi(G;A) Hi(G, {Hλ}λ∈Λ;A)
⊕

λ∈Λ Hi−1(Hλ;A) · · ·

ι∗

id

ι∗

where ι∗ and ι∗ are induced by the inclusions Hλ ↪→ G and Hλ ↪→ G, respectively. 
Moreover, the cohomological analog of the above statement holds as well.

Proof. We will only prove the homological version since the cohomological version is 
similar. First, we compute the limit of the spectral sequence Ep,q(R).

Claim 4.4.1. Ep,q(R) ⇒ Hp+q+1(G, {Hλ}λ∈Λ; A).

Proof of the claim. Let Δ be the kernel of the augmentation 
⊕

λ∈Λ Z[G/Hλ] → Z. Then 
we have a short exact sequence

0 → Pp ⊗ Sq ⊗ Δ → Pp ⊗ Sq ⊗
(⊕

λ∈Λ

Z[G/Hλ]
)

→ Pp ⊗ Sq → 0. (7)

Note that

(Pp ⊗ Sq ⊗ Z[G/Hλ]) ⊗G A ∼= (Pp ⊗ Sq) ⊗Hλ
A.

Thus, tensoring (7) by − ⊗G A yields

0 → (Pp ⊗ Sq ⊗ Δ) ⊗G A → Cp,q → Dp,q → 0. (8)

Let Tn =
⊕

p+q=n Pp ⊗ Sq. Notice that Tn ⊗ Δ � Δ is a free resolution of Δ over ZG. 
Therefore, it can be used to compute the relative homology of G, which by definition 
given in (2), is

Hn(G, {Hλ}λ∈Λ;A) = TorGn−1(Δ, A) = Hn−1((T∗ ⊗ Δ) ⊗G A).

Hence, to prove the claim, it suffices to show that

(Pp ⊗ Sq ⊗ Δ) ⊗G A ∼= Rp,q,

which will be established once we show that (8) is exact. It is easy to check that

0 → A⊗ Δ → A⊗
(⊕

λ∈Λ

Z[G/Hλ]
)

→ A → 0

is exact (by e.g. [72, Corollary 3.1.5]). Since Pp is free abelian and Sq is a free G-module, 
we have an exact sequence
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0 → (Pp ⊗Δ⊗A)⊗G Sq →
[
Pp ⊗A⊗

(⊕
λ∈Λ

Z[G/Hλ]
)]

⊗G Sq → (Pp ⊗A)⊗G Sq → 0,

which, by basic tensor identities, transforms to the desired one. �
Let us return to the proof of Proposition 4.4. We have a short exact sequence

0 → Rp,q → Cp,q → Dp,q → 0,

whose vertical homology gives the following long exact sequence of the E1-terms of the 
associated spectral sequences

· · · → Hq(Rp,∗) → Hq(Cp,∗) → Hq(Dp,∗) → Hq−1(Rp,∗) → · · ·

We claim that Hq(Dp,∗) = Hq(Cp,∗) for all q > 0. To see this, first note that for all p
and all q > 0, applying Lemma 4.1, we have

Dp,q = (Pp ⊗ Sq) ⊗G A

= (Sq ⊗ Pp ⊗A) ⊗G Z by Lemma 4.1 (ii)

= Sq ⊗G (Pp ⊗A) by Lemma 4.1 (ii)

= (Sq ⊗〈〈N〉〉 (Pp ⊗A)) ⊗G Z by Lemma 4.1 (ii)

= ((Sq ⊗〈〈N〉〉 Z) ⊗ Pp ⊗A) ⊗G Z as 〈〈N〉〉 acts trivially on Pp and A

= Pp ⊗G ((Sq ⊗〈〈N〉〉 Z) ⊗A) by Lemma 4.1 (ii)

= Pp ⊗G (Sq ⊗〈〈N〉〉 A) as 〈〈N〉〉 acts trivially on A.

As Pp is a free ZG-module, we have

Hq(Dp,∗) = Pp ⊗G Hq(S∗ ⊗〈〈N〉〉 A)

= Pp ⊗G Hq(〈〈N〉〉;A)

= Pp ⊗G

(⊕
λ∈Λ

IndG
Hλ

Hq(Nλ;A)
)

=
⊕
λ∈Λ

(
Pp ⊗G IndG

Hλ
Hq(Nλ;A)

)
=

⊕
λ∈Λ

(
Pp ⊗Hλ

Hq(Nλ;A)
)

by Proposition 4.2 and Shapiro’s lemma.
Similarly, we have

Hq(Cp,∗) =
⊕(

Pp ⊗Hλ
Hq(Nλ;A)

)
,

λ∈Λ
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as desired.
The equality Hq(Dp,∗) = Hq(Cp,∗) for q > 0 shows that E1

p,q(R) = Hq(Rp,∗) = 0 for 
all q > 0 and hence E2

p,0(R) = Hp+1(G, {Hλ}λ∈Λ; A) for all p. Also, since Z ⊗〈〈N〉〉A = A, 
we have

E1
p,0(C) = H0(Cp,∗) =

⊕
λ∈Λ

Pp ⊗Hλ
A,

E1
p,0(D) = H0(Dp,∗) = Pp ⊗G A.

So, we get a short exact sequence

0 → E1
p,0(R) →

⊕
λ∈Λ

Pp ⊗Hλ
A → Pp ⊗G A → 0, (9)

whose long exact sequence is the bottom row of the desired diagram.
Similar to the proof of the claim, one can show that there is a short exact sequence

0 → (Sq ⊗ Δ) ⊗G A →
⊕
λ∈Λ

Sq ⊗Hλ
A → Sq ⊗G A → 0. (10)

As Sq is a free ZG-module and we can view Pp as a ZG-module (through the G-action), 
there is a ZG-module homomorphism from the resolution Sq � Z to Pp � Z. This 
induces a map 

⊕
λ∈Λ Sq ⊗Hλ

A →
⊕

λ∈Λ Pp ⊗Hλ
A and a map Sq ⊗G A → Pp ⊗G A, 

yielding a commutative diagram

⊕
λ∈Λ Pp ⊗Hλ

A Pp ⊗G A

⊕
λ∈Λ Sq ⊗Hλ

A Sq ⊗G A

(11)

By composing 
⊕

λ∈Λ Sq⊗Hλ
A →

⊕
λ∈Λ Pp⊗Hλ

A with (Sq⊗Δ) ⊗GA →
⊕

λ∈Λ Sq⊗Hλ
A, 

we get a map (Sq ⊗ Δ) ⊗G A →
⊕

λ∈Λ Pp ⊗Hλ
A, whose image lies in

ker(
⊕
λ∈Λ

Pp ⊗Hλ
A → Pp ⊗G A) = E1

p,0(R)

as the diagram (11) commutes. We therefore have a map from (10) to (9), whose asso-
ciated long exact sequence is the commutative diagram in the statement. �
Remark 4.5. Similar to the proof of Proposition 4.4, one can show that there is a short 
exact sequence

0 → (Pp ⊗ Δ) ⊗G A →
⊕

Pp ⊗Hλ
A → Pp ⊗G A → 0, (12)
λ∈Λ
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where Pp and A are as in the proof of Proposition 4.4, and Δ is the kernel of the 
augmentation 

⊕
λ∈Λ Z[G/Hλ] � Z. The natural map from (9) to (12) gives rise to a 

commutative diagram of the corresponding long exact sequences, which together with 
the five lemma yields an isomorphism

H∗(G, {Hλ}λ∈Λ;A) ∼= H∗(G, {Hλ}λ∈Λ;A) (13)

(of course, under the assumption that (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is a Cohen-Lyndon triple 
and A is a G-module). Moreover, the analogous isomorphism for cohomology holds as 
well.

An easy consequence of Proposition 4.4 is a direct sum decomposition of (co)homology.

Corollary 4.6. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a Cohen-Lyndon triple and A a G-module.

(a) If for some p ∈ N, 
⊕

λ∈Λ Hp(Hλ; A) = 0 and the natural map 
⊕

λ∈Λ Hp−1(Hλ; A) →
Hp−1(G; A) is injective, then

Hp(G;A) ∼= Hp(G;A) ⊕
(⊕

λ∈Λ

Hp(Hλ;A)
)
.

(b) If for some p ∈ N, 
∏

λ∈Λ Hp(Hλ; A) = 0 and the natural map Hp−1(G; A) →∏
λ∈Λ Hp−1(Hλ; A) is surjective, then

Hp(G;A) ∼= Hp(G;A) ⊕
(∏

λ∈Λ

Hp(Hλ;A)
)
.

Proof. We only prove the homological version (a) and point out that the proof of (b) is 
analogous. To shorten the notation, we denote H∗(−; A) by H∗(−), 

⊕
λ∈Λ H∗(Hλ; A) by 

H∗(H), 
⊕

λ∈Λ H∗(Hλ; A) by H∗(H), and H∗(G, {Hλ}λ∈Λ; A) by H∗(G, H). Use Propo-
sition 4.4 and consider the commutative diagrams of exact sequences

Hp+1(H) Hp+1(G) Hp+1(G,H) Hp(H)

Hp+1(H) Hp+1(G) Hp+1(G,H) Hp(H)

φp+1 λp+1 ξp+1

rp+1

ψp+1

ρp+1

θp+1

ηp+1

idp+1 ψp

Hp(H) Hp(G) Hp(G,H) Hp−1(H)

Hp(H) Hp(G) Hp(G,H) Hp−1(H)

φp λp ξp

rp

ψp

ρp

θp

ηp

idp ψp−1
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where the horizontal maps come from the exact sequences for the pairs (G, H), (G, H)
and ψ∗, θ∗ are natural maps induced by the surjections G � G, Hλ � Hλ, respectively.

The hypothesis implies that ρp : Hp(G) → Hp(G, H) is an isomorphism which in turn 
shows that the map λp is surjective. Since Hp(H) = 0, ρp+1 is surjective. So λp+1 is also 
surjective. This shows ξp+1 = 0 and hence φp is injective. Since θp ◦ (ρp)−1 is a section 
for λp, the result follows. �

An immediate corollary to the above is an estimate of the (co)homological dimension. 
To shorten the notation, if (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is a Cohen-Lyndon triple, let

hd(H) = sup
λ∈Λ

{hd(Hλ)}, hd(H) = sup
λ∈Λ

{hd(Hλ)},

cd(H) = sup
λ∈Λ

{cd(Hλ)}, cd(H) = sup
λ∈Λ

{cd(Hλ)}.

Corollary 4.7. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a Cohen-Lyndon triple. Then

hd(G) � max{hd(G),hd(H) + 1,hd(H)}, cd(G) � max{cd(G), cd(H) + 1, cd(H)}.

By Theorem 3.2, the commutativity of colimits of coefficients with the cohomology 
functor can be used to characterize property FPn, which is our next goal.

Theorem 4.8. Let G be a group with a finite family of subgroups {Hi}mi=1 ↪→h G. Suppose 
that G is of type FPn for some n ∈ N+ ∪{∞}. Then for sufficiently deep {Ni �Hi}mi=1, 
G is of type FPn if and only if all Hi are of type FPn.

Proof. Suppose that G is of type FPn. By Theorem 3.23, we may assume that 
{Hi}mi=1 ↪→h G. Then by Lemma 3.11, Hi are of type FPn as G is.

Conversely, suppose that all Hi are of type FPn. To shorten notations, we write 
H∗(G, H; −) for H∗(G, {Hi}mi=1; −), H∗(H; −) for 

∏m
i=1 H

∗(Hi; −), and H∗(H; −) for ∏m
i=1 H

∗(Hi; −). Let {Aj}j∈J be a direct system of G-modules such that lim−−→Aj = 0. By 
Proposition 4.4, we have a commutative diagram of exact sequences for each j ∈ J :

· · · Hk(G,H;Aj) Hk(G;Aj) Hk(H;Ai) Hk+1(G,H;Aj) · · ·

· · · Hk(G,H;Aj) Hk(G;Aj) Hk(H;Aj) Hk+1(G,H;Aj) · · ·

id id

The above remains a commutative diagram of exact sequences after taking direct limit, 
by [72, Theorem 2.6.15]. For k � n, we have lim−−→Hk(G; Aj) = 0 by Theorem 3.2. 
By Lemma 3.11, we also have lim−−→Hk(H; Aj) = 0, and thus lim−−→Hk(G, H; Aj) = 0, 
which implies that lim−−→Hk(G; Aj) = lim−−→Hk(H; Aj) = 0 except for k = n. Since 
lim−−→Hn(H; Aj) = 0, we have lim−−→Hn(G; Aj) = 0 as well, and thus G is of type FPn, 
again by Theorem 3.2. �
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We emphasize that the finiteness of Λ is needed in the above proof to guarantee that 
lim−−→Hk(H; Aj) = lim−−→Hk(H; Aj) = 0 for k � n.

Corollary 4.9. Let G be a group with a finite family of subgroups {Hi}mi=1 ↪→h G. Suppose 
that G is of type FP . Then for sufficiently deep {Ni � Hi}mi=1, G is of type FP if and 
only if all Hi are of type FP .

Proof. Theorem 4.8 implies that G is of type FP∞ if and only if all Hi are of type FP∞. 
So we only need to prove that cd(G) < ∞ if and only if cd(Hi) < ∞ for all i. Suppose 
that cd(G) < ∞. Then since Hi are subgroups of G, we have cd(Hi) � cd(G) < ∞. 
Conversely, suppose that cd(Hi) < ∞ for all i. Since G is of type FP , we have cd(G) <
∞. As Hi are subgroups of G, we also have cd(Hi) < ∞ for all i. Then Corollary 4.7
gives

cd(G) � max{cd(G), max
1�i�m

{cd(Hi) + 1}, max
1�i�m

{cd(Hi)}} < ∞. �
Proof of Theorem A. By Theorem 3.25, (G, H, N) is a Cohen-Lyndon triple for suffi-
ciently deep N � H. Item (ii) follows directly from Propositions 4.4 and Remark 4.5.

Theorem 4.3 provides us a spectral sequence

Ep,q
2 ⇒ Hp+q(G;A)

and isomorphisms

Ep,q
2

∼= Hp(H;Hq(N ;A))

for q > 0. Theorem A (i) then follows by observing that Hp(G; H0(〈 〈N〉 〉; A)) ∼= Hp(G; A). 
Similarly, one can prove the homological version. �

Corollary 2.2 follows directly from Proposition 4.6, Corollary 4.7, Theorem 4.8, and 
Corollary 4.9.

We collect the results of this section and state the full version of Theorem A.

Theorem 4.10. Let G be a group with a hyperbolically embedded family of subgroups 
{Hλ}λ∈Λ ↪→h G. Then the following hold for all sufficiently deep Nλ � Hλ, λ ∈ Λ and 
all G-modules A, where G = G/〈 〈∪λ∈ΛNλ〉 〉.

(i) There is a spectral sequence

Ep,q
2 (A) =

{∏
λ∈Λ Hp(Hλ;Hq(Nλ;A)) for q > 0

Hp(G;A) for q = 0
⇒ Hp+q(G;A),

where Hλ = Hλ/Nλ for all λ and the action of G on A factors through G. In 
particular, the action of 〈 〈∪λ∈ΛNλ〉 〉 on A fixes A pointwise.
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(ii) (Algebraic Excision) For all n � 0 and λ ∈ Λ, there is a natural isomorphism 
induced by the quotient maps G → G and Hλ → Hλ,

Hn(G,Hλ;A) ∼= Hn(G,Hλ;A).

(iii) For all n � supλ∈Λ cd(Hλ) + 2,

Hn(G;A) ∼= Hn(G;A) ⊕
(∏

λ∈Λ

Hn(Hλ;A)
)
.

(iv) cd(G) � max{cd(G), supλ∈Λ cd(Hλ) + 1, supλ∈Λ cd(Hλ)}.
(v) If |Λ| < ∞ and G is of type FPn for some n ∈ N+ ∪ {∞}, then G is of type FPn

if and only if every Hλ is of type FPn.
(vi) If |Λ| < ∞ and G is of type FP , then G is of type FP if and only if every Hλ is 

of type FP .

We end this section by showing that the assumption n � cd(H) + 2 in Corollary 2.2
(i) cannot be dropped.

Example 4.11. Let G be a free group with basis {x, y} and let H = 〈h〉 � G where 
h = xyx−1y−1. Then H ↪→h G by Example 1.3 and cd(H) + 1 = 2. Let N = 〈hk〉 � H. 
Note that we can pick k large enough so that N avoids any given finite subset of H�{1}. 
By [52, Theorem 11.1], H2(G; Z) ∼= Z, and it is well-known that H2(G; Z) = 0 and 
H2(H; Z) ∼= Z/kZ. Thus, H2(G; Z) � H2(G; Z) ⊕H2(H; Z). Similarly, hd(H) + 1 = 2
and one can show that H2(G; Z) � H2(G; Z) ⊕H2(H; Z).

5. Dehn fillings and duality

Let G a group and H = {Hi}mi=1 a finite collection of subgroups. Following Bieri-
Eckmann [6], we say that (G, H) is a duality pair of dimension n, with dualizing module 
C, if for all k ∈ Z and all G-modules A, one has

Hk(G;A) ∼= Hn−k(G,H;C ⊗A)

Hk(G,H;A) ∼= Hn−k(G;C ⊗A)

given by the cap product by the fundamental class e ∈ Hn(G, H; C). Here, we adapt 
the convention that Hk(G; A) = Hk(G, H; A) = Hk(G, H; C ⊗ A) = Hk(G; C ⊗ A) = 0
for all k < 0. In which case, it follows that C ∼= Hn(G, H; ZG). If C = Z with trivial 
G-action, the pair is called an (orientable) Poincaré duality pair, in short, a PD(n)-pair.

Let (G, H) be a duality pair of dimension n with dualizing module C and let Δ be 
the kernel of the augmentation 

⊕m
i=1 Z[G/Hi] → Z. By [6, Theorem 4.2], G is a duality 



32 N. Petrosyan, B. Sun / Advances in Mathematics 437 (2024) 109412
group of dimension n − 1 with dualizing module Δ ⊗ C and each Hi is a duality group 
of dimension n − 1 with dualizing module C (thinking as an Hi-module).

The following result generalizes [71, Corollary 1.5] which deals with the case where 
(G, H) is a type F∞ relatively hyperbolic group pair.

Corollary 5.1. Let G be a group and H = {Hi}mi=1 a collection of subgroups such that 
H ↪→h G. Suppose (G, H) is a duality pair of dimension n, with dualizing module C. 
Then for all sufficiently deep {Ni � Hi}mi=1 and k ∈ Z

Hk(G,H;ZG) ∼=
{⊕m

i=1 IndG
Hi

Hn−k(Ni;C) for k = n,

C ⊗〈〈N〉〉 Z for k = n.

Proof. By Theorem 4.10 (ii) (see also Remark 4.5) and duality, for k < n one has

Hk(G,H;ZG) ∼= Hn−k(G;C ⊗ ZG) ∼= Hn−k(G; IndG
〈〈N〉〉ResG〈〈N〉〉C) ∼= Hn−k(〈〈N〉〉;C),

where the second isomorphism follows from Lemma 4.1. The claim now follows from 
Theorem 3.25 and Proposition 4.2. Also,

Hn(G,H;ZG) ∼= H0(G;C ⊗ ZG) ∼= (C ⊗ ZG) ⊗ZG Z ∼= (C ⊗〈〈N〉〉 ZG) ⊗ZG Z

∼= C ⊗〈〈N〉〉 Z. �
It is worth noting that the assumption that the collection H is finite in Corollary 5.1

cannot be dropped, since if (G, H) is a duality pair, then H must be finite [6, Theorem 
4.2].

Theorem 5.2. Let G be a group and H = {Hi}mi=1 a collection of subgroups such that 
H ↪→h G. Suppose, for some integer 0 < n, (G, H) is a PD(n)-pair and that there 
are sufficiently deep {Z ∼= Ni � Hi}mi=1 such that each member of H = {Hi}mi=1 is a 
PD(n − 2)-group. Then G is a PD(n)-group.

Proof. For each 1 � i � m, Hk(Hi; ZG) = 0 if k = n − 2 and by Corollary 5.1, 
Hk(G, H; ZG) = 0 if k = n − 1, n. The long exact sequence in cohomology for the 
pair (G, H) shows that Hk(G; ZG) = 0 if k = n − 2, n − 1, n and for k = n it gives 
Hn(G; ZG) ∼= Hn(G, H; ZG) ∼= Z.

Next, we consider the spectral sequence of Theorem 4.10

Ep,q
2 =

{∏m
i=1 H

p(Hi;Hq(Ni;ZG)) for q > 0
Hp(G;ZG) for q = 0

⇒ Hp+q(G;ZG).

Since each Ni
∼= Z, Ep,q

2 = 0 for q > 1 and Ep,1
2

∼=
∏m

i=1 H
p(Hi; ZG). Since there are 

only two nontrivial rows on the Ep,q
2 -page of the spectral sequence, by the cohomological 

analog of [72, Ex. 5.2.2], see also [20, Theorem XV.5.11], we obtain a long exact sequence
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. . . →
m∏
i=1

Hk−2(Hi;H1(Ni;ZG)) d2−→ Hk(G;ZG) → Hk(G;ZG)

→
m∏
i=1

Hk−1(Hi;H1(Ni;ZG)) d2−→ . . .

(14)

For k = n − 2, (14) yields

Hn−2(G;ZG) ∼= Hn−2(G;ZG)
∼= H2(G,H;ZG)
∼= H2(G,H;ZG) = 0.

For k = n − 1, (14) and the morphism between the Lyndon-Hochschild-Serre spectral 
sequences associated to the inclusions (Hλ, Nλ) ↪→ (G, 〈 〈N〉 〉) give us

0 Hn−1(G;ZG) Hn−1(G;ZG)
∏m

i=1 H
n−2(Hi;H1(Ni;ZG))

∏m
i=1 H

n−1(Hi;ZG)
∏m

i=1 H
n−2(Hi;H1(Ni;ZG))

rn−1 =

∼=

where the bottom isomorphism follows from the Lyndon-Hochschild-Serre spectral se-
quence applied to the extensions 1 → Ni → Hi → Hi → 1. To show that Hn−1(G; ZG) =
0 amounts to showing that rn−1 is injective. By [6, Theorem 2.1], there is a commutative 
diagram

Hn−1(G;ZG)
∏m

i=1 H
n−1(Hi;ZG)

H1(G,H;ZG)
⊕m

i=1 H0(Hi;ZG)

rn−1

∼= ∼=

∂

where by duality the vertical maps are isomorphisms. Thus, it suffices to show that the 
connecting homomorphism ∂ is injective. This follows from the commutativity of the 
diagram

H1(G,H;ZG)
⊕m

i=1 H0(Hi;ZG)

H1(G,H;ZG)
⊕m

i=1 H0(Hi;ZG)

∂

∼= ∼=

∂

and the fact the kernel of ∂ is H1(G, ZG) = 0. This finishes the proof of Hn−1(G; ZG) =
0.



34 N. Petrosyan, B. Sun / Advances in Mathematics 437 (2024) 109412
By [6, Theorem 6.2], G and each Hi are of type FP . So, by Corollary 4.9, G is of 
type FP . We have also established that Hk(G; ZG) = 0 if k = n and Hn(G; ZG) ∼= Z. 
By [6, Theorem 6.2(i)], G is a PD(n)-group. �
6. Simplicial volume of Dehn fillings

For detailed background on bounded cohomology and simplicial volume, we refer to 
[38], [44] and [32].

Let G be a group. Consider the singular chain complex C∗(BG; R) endowed with the 
�1-norm

|c|1 =
k∑

i=1
|ai|, ∀c =

k∑
i=1

aiσi ∈ C∗(BG;R).

The cochain complex of bounded cochains C∗
b (BG; R) coincides with the normed dual 

complex of C∗(BG; R). The norm on chains induces a �1-semi-norm || · ||1 on H∗(G; R) =
H∗(C∗(BG; R)) and �∞-semi-norm || · ||∞ on H∗

b (G; R) = H∗(C∗
b (BG; R)). When H =

{Hi}mi=1 is a collection of subgroups of G, H∗(G, H; R) and H∗
b (G, H; R) and their semi-

norms are defined analogously [55, §9.2].
As before, when Ni � Hi, we let N =

⋃m
i=1 Ni, H = {Hi}mi=1 and G = G/〈〈N〉〉.

Lemma 6.1. Let G be a group and H = {Hi}mi=1 a collection of subgroups such that 
H ↪→h G. Suppose, for some integer n � 2, (G, H) is a PD(n)-pair and for a sufficiently 
deep {Ni � Hi}mi=1, cd(Hi) � n − 2 for each 1 � i � m. Then Hn(G; Z) = Z.

Proof. The result follows from the long exact sequence in homology of the pair (G, H)
and, by Theorem 4.10, the isomorphism Hn(G, H; Z) ∼= Hn(G, H; Z) = Z. �
Definition 6.2. Under the hypothesis of Lemma 6.1, we define the simplicial volume of 
G by

||G|| = inf{|c|1 | c ∈ Cn(BG;R), [c] = [G] ∈ Hn(G;R)},

where [G] is the image of the fundamental class under the change of coefficients map 
Hn(G; Z) → Hn(G; R). Similarly, we define

||G,H|| = inf{|f |1 | f ∈ Cn(BG,
m�
i=1

BHi);R), [f ] = [G,H] ∈ Hn(G,H;R)}.

The simplicial volume of (G, H) is defined analogously.

The following result is a generalization of [30, Theorem 1.5].
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Theorem 6.3. Let G be a group and H = {Hi}mi=1 a collection of subgroups such that 
H ↪→h G. Suppose, for some integer n � 2, (G, H) is a PD(n)-pair and for a sufficiently 
deep {Ni�Hi}mi=1, cd(Hi) � n −2 for each 1 � i � m. Then, cd(G) = n, Hn(G; Z) = Z. 
In addition,

(i) if the group Hi is amenable for each 1 � i � m, then ||G|| � ||G, H||;
(ii) if G is hyperbolic relative to H, then ||G|| > 0.

Proof. Recall that since (G, H) is a PD(n)-pair, each Hi is a PD(n −1)-group [6, Theorem 
4.2] and hence cd(Hi) = n − 1. The first two claims now follow from Theorem 4.10 (iv) 
and Lemma 6.1.

For part (i), by Theorem 4.10 (ii), pn : Hn(G, H; Z) → Hn(G, H; Z) induced by 
(G, H) � (G, H) is an isomorphism. Since each Hi is amenable, jn : Hn

b (G, H; R) →
Hn

b (G; R) is an isometric isomorphism [32, Theorem 5.14]. By Duality Principle [32, 
Lemma 6.1], we obtain

||G|| = sup{〈jn(ψ), [G]〉 | ψ ∈ Hn
b (G,H;R), ||ψ||∞ � 1},

= sup{〈ψ, jn([G])〉 | ψ ∈ Hn
b (G,H;R), ||ψ||∞ � 1},

= ||jn([G])||1,
= ||G,H||,
� ||G,H||,

where the last inequality follows from the functoriality of the �1-semi-norm [48, Propo-
sition 2.1].

For part (ii), since G is hyperbolic relative to H, then G is hyperbolic relative H [60, 
Theorem 1.1]. Consider the commutative diagram of long exact sequences

∏m
i=1 H

n−1
b (Hi;R) Hn

b (G,H;R) Hn
b (G;R)

∏m
i=1 H

n
b (Hi;R)

∏m
i=1 H

n−1(Hi;R) Hn(G,H;R) Hn(G;R)
∏m

i=1 H
n(Hi;R)

c

Since cd(Hi) � n − 2, the map Hn(G, H; R) → Hn(G; R) is onto. Since G is hyperbolic 
relative to H, the comparison map Hn

b (G, H; R) → Hn(G, H; R) is onto [31, Theorem 
1.1], see also [55]. It follows that the comparison map c : Hn

b (G; R) → Hn(G; R) is also 
onto which shows that ||G|| > 0 [32, Lemma 6.1], see also [32, Proposition 7.10]. �
6.1. Dehn fillings of pinched negatively curved manifolds

In this section, we illustrate how the results of the previous sections apply in a geo-
metric setting. First, we need a lemma.
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Lemma 6.4. Let G be a group and H = {Hi}mi=1 a collection of finitely generated torsion-
free nilpotent subgroups with rk(Z(Hi)) � 2, for all i. Then there are infinitely many 
collections of subgroups {Ni}mi=1 such that Z ∼= Ni � Z(Hi), Hi is torsion-free and 
jk : Hk(G; Z) → Hk(G, H; Z) is an isomorphism for all k > max{hd(Hi) | 1 � i � m}.

Proof. For each i, the center Z(Hi) contains a factor 〈xi, yi〉 ∼= Z2. Let Ns,t
i = 〈xs

iy
t
i〉 �Hi

where s, t ∈ Z are co-prime. Since s, t are co-prime, Z(Hi)/Ns,t
i is torsion-free. Hence 

the quotient group Hi = Hi/N
s,t
i is torsion-free, since it has a composition series with 

torsion-free factor groups. So, Hi is a torsion-free nilpotent group. The long exact se-
quence in homology for the pair (G, H) establishes the isomorphism jk : Hk(G; Z) →
Hk(G, H; Z) for all

k > max{hd(Hi) | 1 � i � m} + 1

= max{hd(Hi) | 1 � i � m}.

The above equality holds since homological dimension is additive for group extensions of 
finitely generated torsion-free nilpotent groups [12, Theorem 5.5], see also [12, Theorem 
7.10(a)]. The collections {Ns,t

i }mi=1 enumerated by the co-prime pairs (s, t) have the 
required properties. �
Definition 6.5. Let M be a Riemannian n-manifold with a complete pinched negative sec-
tional curvature and finite volume. All the cuspidal ends of M are almost-flat manifolds 
and hence by the results of Gromov and Ruh are infra-nil [37,65]. In particular, they are 
finitely covered by nilmanifolds. Let us assume here that all the cuspidal ends {Li}mi=1 of 
M are nilmanifolds such that rk(Z(π1(Li)) � 2. Let M be the natural compactification 
of M with boundary components {Li}mi=1. Let G = π1(M) and Hi = π1(Li). Then G
is hyperbolic relative to the fundamental groups of the cuspidal ends and in particular 
{Hi}mi=1 ↪→h G [14,28]. By Theorem 4.10 (ii) and Lemma 6.4, there are infinitely many 
collections of sufficiently deep normal subgroups {Ni}mi=1 satisfying the conclusions of 
both such that jn : Hn(G; Z) 

∼=−→ Hn(G, H; Z). Let {Ni}mi=1 be one such collection. By 
[60, Theorem 1.1], we can also assume that {Ni}mi=1 are sufficiently deep so that G is 
hyperbolic relative to H. Let Ti ↪→ Li

πi−→ Bi be the circle bundle with a nilmani-
fold base which arises as a quotient of the Malcev completion (see e.g. [24, §1.2, p. 9]) 
R ↪→ Li � Bi of the short exact sequence Ni ↪→ Hi � Hi. Denote by C(Li, Ti) the 
mapping cylinder of πi for each i (see Fig. 2 for an illustration). Note that C(Li, Ti) is 
manifold with boundary Li. We define

MT = M
⋃

φ1�···�φm

(C(L1, T1) � · · · � C(Lm, Tm)),

where each φi is the canonical identification of ∂C(Li, Ti) with Li and call it a sufficiently 
deep Dehn filling of M .
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Fig. 2. Mapping cylinder C(Li, Ti).

Given a closed oriented n-manifold M possibly with boundary ∂M , the simplicial 
volume of (M, ∂M) is defined as

||M,∂M || = ||[M,∂M ]||1

where [M, ∂M ] ∈ Hn(M, ∂M ; R) is the image of the fundamental class under the change 
of coefficients map Hn(M, ∂M ; Z) → Hn(M, ∂M ; R). The following result is again a 
generalization of [30, Theorem 1.5].

Corollary 6.6. Let M be a compact oriented n-manifold with nilmanifold boundary com-
ponents {Li}mi=1 as above. Suppose MT is a sufficiently deep Dehn filling of M . Then, 
MT is a closed oriented aspherical n-manifold with fundamental group G and

0 < ||MT || � ||M,∂M ||.

Proof. We first show that MT is aspherical with fundamental group G.
Let π : M̃ → M be the universal covering map and for each 1 � i � m, denote 

by Li the universal cover of Li which is the Malcev completion [24, §1.2] of Hi. It is a 
simply connected nilpotent Lie group containing Hi as a uniform lattice. Observe that 
M is homeomorphic to a submanifold R ⊆ M where R is obtained by removing the 
interiors of the cusps of M [28]. The universal cover Y of R is a subspace of M̃ with 
boundary a G-orbit of almost-flat totally geodesic submanifolds homeomorphic to Li for 
each 1 � i � m. Let K = Y/〈〈N〉〉, which is a cover of R with fundamental group 〈〈N〉〉. 
The boundary of K is a disjoint union of G-orbits of submanifolds homeomorphic to 
L′
i = Li/Ni for each 1 � i � m. The circle bundle Ti ↪→ Li

πi−→ Bi is the quotient of 
the short exact sequence R ↪→ Li � Bi of simply connected nilpotent Lie groups by the 

action of Hi. Hence, it lifts to the circle bundle Ti ↪→ L′
i

π′
i−→ Bi. Denote by C(L′

i, Ti) the 
mapping cylinder of π′

i. Define

M ′ = K
⋃

ψ1�···�ψm

(G×H1
C(L′

1, T1) � · · · �G×Hm
C(L′

m, Tm)),

where each ψi is the canonical identification of G×Hi
∂C(L′

i, Ti) with GL′
i. The manifold 

M ′ is simply connected by construction. By Mayer-Vietoris homology sequence and the 
Cohen-Lyndon property of Theorem 3.25, it follows M ′ has also trivial homology and 
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is therefore contractible. The group G acts freely on M ′ and the quotient M ′/G is 
homeomorphic to MT .

Since (M, ∂M) � (BG, �m
i=1 BHi), we have [M, ∂M ] ∈ Hn(G, H; R). Similarly, since 

MT � BG, we have [MT ] ∈ Hn(G; R). Applying Theorem 6.3, we obtain

0 < ||MT || � ||M,∂M ||. �
Remark 6.7. In the geometric setting of Corollary 6.6, the isomorphism

pn : Hn(G,H;Z)
∼=−→ Hn(G,H;Z)

used in the proof of Theorem 6.3 also follows from excising the interiors of the attached 
submanifolds {C(Li, Ti)}mi=1 from MT which gives an isomorphism between the (co)ho-
mologies of (M, ∂M) and (MT , {C(Li, Ti)}mi=1). So, one can think of the isomorphism in 
Theorem 4.10 (ii) as a group theoretic analog of topological excision.

We should also remark that the right-hand-side inequality of Corollary 6.6 can be 
deduced from Gromov’s Additivity Theorem [32, Theorem 7.6].

7. Quotients of acylindrically hyperbolic groups

7.1. Cohomology and embedding theorems

We prove Theorem D in this subsection. The reader is referred to Section 2.4 for 
an outline of the proof. In the sequel, we employ the convention that if X is a set of 
alphabets and w is a word over X, then ‖w‖ denotes the length of w. In certain cases, 
it might be possible to view w as a word over another alphabet Y . In such a case, we 
will use ‖w‖X (resp. ‖w‖Y ) to denote the number of letters of X (resp. Y ) in w. For 
two words w and v, we write w ≡ v to indicate that there is a letter-by-letter equality 
between w and v.

Lemma 7.1. Let F4 be a free group of rank 4, F ⊆ F4 a finite set, and C a countable 
group with cd(C) � 2. Then there exists a quotient R of F4 such that the following hold.

(1) R can be decomposed as a free product R = Z ∗ R0 with card(R0) = ∞. Moreover, 
C embeds into R0.

(2) The quotient map F4 → R is injective on F .
(3) If C is torsion-free, then so is R.
(4) hd(R) � max{hd(C), 2}, cd(R) � cd(C).
(5) For every n � 3 and every R-module A, we have

Hn(R;A) ∼= Hn(C;A), Hn(R;A) ∼= Hn(C;A),

where the action of C on A is induced by the embedding C ↪→ R.
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(6) If C is finitely generated, then R0 is hyperbolic relative to C.
(7) If C is of type FPn for some n ∈ N+ ∪ {∞}, then so is R.
(8) If C is of type FP , then so is R.

Remark 7.2. Lemma 7.1 (1) (2) (6) are proved in [27, Lemma 8.4]. We refine the method 
therein so as to impose (co)homological conditions.

The proof of Lemma 7.1 relies on small cancellation theory, the reader is referred to 
[50, Chapter V] for a treatment.

Proof. Let {x, y, z, t} be a free basis of F4, let F3 < F4 be the subgroup generated 
by x, y, t, and let {ci}i∈I be a generating set of C. There exist freely reduced words 
{wi}i∈I , {vi}i∈I over the alphabet {x, y} such that

(a) the words {ciwi}i∈I satisfy the C ′(1/2) small cancellation condition over the free 
product 〈x〉 ∗ 〈y〉 ∗ C;

(b) the words {vi}i∈I satisfy the C ′(1/2) small cancellation condition over the alphabet 
{x, y};

(c) the words {tciwit
−1vi}i∈I satisfy the C ′(1/6) small cancellation condition over the 

free product 〈x〉 ∗ 〈y〉 ∗ 〈t〉 ∗ C.

Indeed, we can first construct words wi satisfying condition (a), and then pick sufficiently 
long words vi to ensure conditions (b) and (c).

Let N (resp. N0) be the normal subgroup of F4 ∗ C (resp. F3 ∗ C) generated by 
{tciwit

−1vi}i∈I , and let

R0 = (F3 ∗ C)/N0, R = (F4 ∗ C)/N.

For i ∈ I, let t (resp. ci, wi, vi, z) be the image of t (resp. ci, wi, vi, z) under the quotient 
map F4 ∗ C → R. Then we have

R = 〈z〉 ∗R0 = Z ∗R0.

Note that tciwit
−1

vi = 1 and we can rewrite this equation as ci = t
−1

v−1
i tw−1

i . Thus, 
R is generated by t, z, wi, vi, i ∈ I, and hence is a quotient of F4.

Let

α : F4 → R

be the corresponding quotient map, which is the restriction of the quotient map F4∗C →
R to F4. It follows from the Greendlinger’s lemma for free products [50, Chapter V 
Theorem 9.3] that if ‖wi‖, ‖vi‖, i ∈ I, are sufficiently large, then α is injective on F and 
thus statement (2) is guaranteed.
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Let L = 〈x〉 ∗ 〈y〉 ∗ C, let U � L be the subgroup generated by {ciwi}i∈I , and let 
V � L be the subgroup generated by {vi}i∈I .

Claim 7.2.1. U (resp. V ) is a free group with basis {ciwi}i∈I , (resp. {vi}i∈I). In partic-
ular, U and V are both of rank card(I).

Proof of Claim 7.2.1. We prove the claim for U . The proof for V is similar. Let

u ≡
�∏

k=1

(cikwik)εk

be a nonempty freely reduced word over the alphabet {ciwi}i∈I , where ik ∈ I and 
εk = ±1 for k = 1, ..., �. Think of u as a word over the alphabet 〈x〉 ∪ 〈y〉 ∪ C and then 
reduce u to its normal form u corresponding to the free product 〈x〉 ∗ 〈y〉 ∗ C (see [50, 
Chapter IV] for the definition of normal forms). By condition (a) and that the words wi

do not involve inverses of the generators x, y, for each factor (cikwik)εk of u, a non-empty 
subword of (cikwik)εk survives in u. In particular, u is nonempty and thus u does not 
represent 1 in L. �

Note that the relations tciwit
−1

vi = 1 can be rewritten as tciwit
−1 = v−1

i . Thus, R0
is the HNN-extension of L with associated subgroups U and V . In particular, L embeds 
into R0. As card(L) = ∞, we have card(R0) = ∞. Since C embeds into L, C embeds 
into R0. Thus, statement (1) holds.

If C is torsion-free, then so is L. Being an HNN-extension of L, R0 is also torsion-free, 
and thus so is R = Z ∗R0, which is statement (3).

By [11, Theorem 3.1], there is a long exact sequence for any R0-module A,

· · · → Hn−1(U ;A) → Hn(R0;A) → Hn(L;A) → Hn(U ;A) → · · · (15)

As U is free, exact sequence (15) implies for n � 3,

Hn(R0;A) ∼= Hn(L;A) ∼= Hn(C;A).

As R = Z ∗R0, the cohomology part of statement (5) holds. Similarly, one can prove the 
homology part of statement (5). Statement (4) follows from statement (5) and cd(C) � 2.

If C is finitely generated, then we can construct R using a finite generating set of C. 
Then R0 is the quotient of F3 ∗C by adding finitely many relations tciwit

−1vi, and thus 
has a finite relative presentation over C. The Greendlinger’s lemma for free products 
implies that the relative isoperimetric function of R0 with respect to C is linear. Thus, 
R0 is hyperbolic relative to C (see Remark 3.7), which is statement (6).

If C is of type FPn for some n ∈ N+ ∪{∞}, then since W is of type FP , we have R0
is of type FPn by [12, Proposition I.2.13(b)]. As R = Z ∗R0, R is of type FPn, which is 
statement (7). Finally, statement (8) follows from (4) and (7). �
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Proof of Theorem D. By Theorem 3.18, G has a unique maximal finite normal subgroup 
K(G). By [42, Lemma 5.10], G0 = G/K(G) is acylindrically hyperbolic.

If cd(C) = 0, then C = {1}. Let G = G0. By Theorem 3.18, C ↪→h G. First consider 
statement (vi). As G and G are quasi-isometric (note that the assumption of (vi) implies 
that G and G are finitely generated), [4, Corollary 9] implies (vi). Other conclusions of 
Theorem D hold trivially.

If cd(C) = 1, then by the Stallings-Swan theorem [68, corollary to Theorem 1], C is 
free. By Theorem 3.18, there exists a finitely generated non-cyclic free group F ↪→h G0. 
Let G = G0. It is well-known that the free group C embeds into F . Thus, C also embeds 
into G. All conclusions except for (ii) hold trivially. If in addition, C is finitely generated, 
then C is a finite rank free group and we can let F = C. Thus, (ii) also holds.

Let us assume cd(C) � 2. By Theorem 3.18, there exists X ⊆ G0 and a free subgroup 
F4 � G0 of rank 4 such that F4 ↪→h (G0, X). There exists a finite set F ⊆ F4 � {1} such 
that if N � F4 satisfies N ∩ F = ∅, then the conclusions of Theorems A and 3.23 and 
[27, Theorem 7.15] hold.

By Lemma 7.1, C embeds into an infinite quotient R = Z ∗ R0 of F4 such that the 
conclusions of Lemma 7.1 hold and the quotient map F4 → R is injective on F . Let N
be the kernel of F4 → R. Then N ∩ F = ∅. Let G = G/〈 〈N〉 〉.

As R = Z ∗R0, R0 is a proper subgroup of R and in particular, R0 is a proper subgroup 
of G. By Example 3.8 (d), R0 ↪→h R. Proposition 3.10 and R ↪→h G then imply that 
R0 ↪→h G. As card(R0) = ∞, Theorem 3.23 implies that G is acylindrically hyperbolic, 
that is, statement (i) holds. As C embeds into R0, C also embeds into G.

If C is finitely generated, then Lemma 7.1 implies that R0 is hyperbolic relative to 
C, in particular, C ↪→h R0. As R0 ↪→h G, we have C ↪→h G by Proposition 3.10. Thus, 
statement (ii) holds.

Suppose that G and C are torsion-free and there is a non-trivial finite-order element 
g ∈ G. Then G0 = G. Denote the image of X under the quotient map G � G by X. 
Then R ↪→h (G, X) [27, Theorem 7.15 (b)]. As g has finite order, it acts elliptically on 
the Cayley graph Γ(G, X � R). By [27, Theorem 7.15 (f)], there is an element g ∈ G

such that g is mapped to g under the quotient map G � G and g acts elliptically on 
Γ(G, X �F4). As g has finite order, gn ∈ 〈 〈N〉 〉 for some n > 0. Since gn is elliptic as g is, 
there is some h ∈ G such that hgnh−1 ∈ N � F4 [27, Theorem 7.15 (d)]. By Lemma 7.1
(3), R is torsion free and thus hgh−1 /∈ F4. But

|(hgh−1)F4(hgh−1)−1 ∩ F4| � |〈hgnh−1〉| = ∞,

which is in contradiction with the almost malnormality of F4 in G [27, Proposition 2.10]. 
We have proved statement (iii).

Statement (iv) follows from Corollary 2.2 (i).
Consider statement (v). Corollary 2.2 (ii) implies that

cd(G) � max{cd(G0), cd(F4) + 1, cd(R)}.
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If K(G) = {1}, then G has torsion and thus cd(G) = ∞ [19, Chapter VIII Corollary 
2.5], in which case (v) is a void statement. Thus, let us assume K(G) = {1} and thus 
G0 = G. As cd(R) � cd(C) and cd(C) � 2, we have

cd(G) � max{cd(G), cd(F4) + 1, cd(R)} � max{cd(G), 2, cd(C)} = max{cd(G), cd(C)}.

If G and C are of type FPn for some n ∈ N+ ∪ {∞}, then Lemma 7.1 implies 
that so is R. As G and G0 are quasi-isometric, G0 is of type FPn [4, Corollary 9]. 
As F4 is of type FP∞, Corollary 2.2 (iii) implies that G is of type FPn. Conversely, 
if C is finitely generated and G and G are of type FPn for some n ∈ N+ ∪ {∞}, 
then C ↪→h G by the previously proved statement (ii). Thus, C is of type FPn [27, 
Theorem 2.11]. The previously proved statement (v) implies that cd(G) < ∞ if and only 
if max{cd(G), cd(C)} < ∞, which further implies the statement about type FP . This 
finishes the proof of statement (vi). �
Remark 7.3. Analogous to the above proof, in the setting of Theorem D, we have hd(G) �
max{hd(G), hd(C), 2}.

7.2. Constructing hyperbolically embedded subgroups

We will prove Theorem E in the next subsection, where the following technical result 
will be needed. The reader is referred to Section 2.4 for an outline of the proof.

Proposition 7.4. Suppose that G is a group, Λ is a finite set and {kλ}λ∈Λ is a set of 
positive integers. Let aλ,i ∈ G for λ ∈ Λ and i = 1, 2, · · · , kλ. Also suppose that there is 
a family of subgroups {Fλ}λ∈Λ ↪→h G such that

(a) each Fλ is free of rank 2kλ with basis {fλ,i, gλ,i}kλ
i=1; and

(b) aλ,i /∈ Fλ � {1} for all λ ∈ Λ and i = 1, 2, · · · , kλ.

Then for sufficiently large n ∈ N+, the set

{fn
λ,iaλ,ig

n
λ,i}kλ

i=1 ⊆ G

freely generates a subgroup Hλ � G and

{Hλ}λ∈Λ ↪→h G. (16)

The rest of this subsection is devoted to the proof of the above proposition. We 
first find a “sufficiently large” n ∈ N+. As Fλ = ˚

kλ
i=1(〈fλ,i〉 ∗ 〈gλ,i〉), we have 

{〈fλ,i〉, 〈gλ,i〉}kλ
i=1 ↪→h Fλ by Example 3.8. It follows from Proposition 3.10 that there 

exists a set X ⊆ G such that
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{〈fλ,i〉, 〈gλ,i〉}λ∈Λ,i∈{1,...,kλ} ↪→h (G,X). (17)

By [27, Corollary 4.27], we may assume that aλ,i ∈ X for all λ ∈ Λ and i = 1, 2, · · · , kλ, 
as Λ and kλ are finite.

For λ ∈ Λ and i ∈ {1, ..., kλ}, let

d̂λ,i,f : 〈fλ,i〉 × 〈fλ,i〉 → [0,+∞], d̂λ,i,g : 〈gλ,i〉 × 〈gλ,i〉 → [0,+∞]

be the relative metrics corresponding to (17). The metrics d̂λ,i,f and d̂λ,i,g are locally 
finite. As card(Λ), kλ < ∞, for sufficiently large n, we will have

d̂λ,i,f (1, fn
λ,i), d̂λ,i,g(1, gnλ,i) > 50D

for all λ and i, where D > 0 is given by Lemma 3.14. We fix one such n and let Hλ � G

be as in Proposition 7.4. For simplicity, denote the set {fn
λ,iaλ,ig

n
λ,i}

kλ
i=1 by Uλ.

Notice that Fλ ∩ Fμ = {1} whenever λ = μ [27, Proposition 4.33]. The following are 
easy consequences of this fact.

〈fλ,i〉 ∩ 〈gμ,j〉 = {1} for all λ, μ ∈ Λ, (18)

〈fλ,i〉 ∩ 〈fμ,j〉 = 〈gλ,i〉 ∩ 〈gμ,j〉 = {1} for all λ, μ ∈ Λ with λ = μ, (19)

〈fλ,i〉 ∩ 〈fλ,j〉 = 〈gλ,i〉 ∩ 〈gλ,j〉 = {1} for all λ ∈ Λ and i, j ∈ {1, ..., kλ} with i = j.

(20)

In particular, {〈fλ,i〉, 〈gλ,i〉}λ∈Λ,i∈{1,...,kλ} is a distinct family of hyperbolically em-
bedded subgroups of G.

For simplicity, let

Kλ =
(

kλ�
i=1

〈fλ,i〉
)

�
(

kλ�
i=1

〈gλ,i〉
)
, K = �

λ∈Λ
Kλ.

Remark 7.5. We will apply Lemma 3.15 for the group G, the hyperbolically embedded 
family of subgroups {〈fλ,i〉, 〈gλ,i〉}λ∈Λ,i∈{1,...,kλ} ↪→h (G, X), and reduced words w over 
Uλ for every λ ∈ Λ and every freely reduced word w over Uλ. We can think of w as a word 
over the alphabet X � K, i.e., regard every fn

λ,i (resp. gnλ,i) as a letter from 〈fλ,i〉 (resp. 
〈gλ,i〉) and regard every aλ,i as a letter from X. In this sense, w satisfies the conditions 
(W1), (W2), and (W3) of Lemma 3.15.

Lemma 7.6. For all λ ∈ Λ, Hλ is free with basis Uλ.

Proof. We need to show that for every λ ∈ Λ, every nonempty freely reduced word over 
Uλ does not represent 1 in G. Suppose that
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w ≡
�∏

k=1

(fn
λ,ik

aλ,ikg
n
λ,ik

)εk

is a freely reduced word over Uλ for some λ ∈ Λ such that w represents 1 in G, where 
εk = ±1 for k = 1, ..., �. As Remark 7.5, we think of w as a word over X � K. Then w
labels a 3�-gon p in Γ(G, X � K) with geodesic sides. Notice that p has 2� components. 
By Lemma 3.15 (b), each of these components is isolated. Proposition 3.14 then implies

2n · 50D � 3nD,

which is absurd. Therefore, such a word w does not exist. �
Consider the action G � Γ(G, X � K). Note that Γ(G, X � K) is hyperbolic, by 

(17). Let dX�K be the combinatorial metric of Γ(G, X � K). We verify that, with re-
spect to this action, the family {Hλ}λ∈Λ satisfies the conditions (C1), (C2), and (C3) 
of Lemma 3.9, which then implies {Hλ}λ∈Λ ↪→h G. The verification is divided into the 
following Lemmas 7.7, 7.8, and 7.9.

Lemma 7.7. For every λ ∈ Λ, the action Hλ � Γ(G, X � K) is proper.

Proof. Fix λ ∈ Λ. It suffices to prove that for every R > 0, there are only finitely many 
h ∈ Hλ such that dX�K(1, h) � R. Let h ∈ Hλ such that dX�K(1, h) � R and let w be 
a freely reduced word over Uλ representing h in G. As in Remark 7.5, think of w as a 
word over X � K. By Lemma 3.15 (a), w labels a (4, 1)-quasi-geodesic in Γ(G, X � K). 
Thus,

‖w‖Uλ
= ‖w‖X�K

3 � 4R + 1
3 .

There are only finitely many words w satisfying the above inequality. It follows that the 
number of h ∈ Hλ such that dX�K(1, h) � R is finite. �

For every λ ∈ Λ, we identify Hλ with the subset of Γ(G, X�K) labeled by elements of 
Hλ. Equivalently, we identify Hλ with the Hλ-orbit of the identity vertex of Γ(G, X�K).

Lemma 7.8. For every λ ∈ Λ, the orbit Hλ is quasi-convex in Γ(G, X � K).

Proof. Fix λ ∈ Λ. Let h ∈ Hλ and let γ be a geodesic in Γ(G, X �K) from the vertex 1
to the vertex h. As Γ(G, X � K) is a Gromov hyperbolic space, there exists R > 0 such 
that if α and β are (4, 1)-quasi-geodesics with the same endpoint, then dHau(α, β) � R, 
where dHau is the Hausdorff metric with respect to dX�K.

Let w be a freely reduced word over Uλ representing h in G. As in Remark 7.5, think 
of w as a word over X � K. By Lemma 3.15 (a), w labels a (4, 1)-quasi-geodesic α in 
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Fig. 3. Some of the possible configurations of the two pairs of adjacent components of p. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Γ(G, X � K). Note that α lies in the 2-neighborhood of the orbit Hλ, and γ lies in the 
R-neighborhood of α. Thus, γ lies in the (R + 2)-neighborhood of Hλ. �

For λ, μ ∈ Λ, the orbits Hλ and Hμ are subsets of Γ(G, X � K). Thus, it makes 
sense to talk about the diameter of Hμ ∩ (gHλ)+ε in Γ(X � K), which is denoted by 

diam
(
Hμ ∩ (gHλ)+ε

)
.

Lemma 7.9. For every ε > 0, there exists R > 0 such that the following holds. Suppose 
that for some g ∈ G and λ, μ ∈ Λ, we have

diam
(
Hμ ∩ (gHλ)+ε

)
� R.

Then λ = μ and g ∈ Hλ.

Proof. Fix ε > 0 and let R be the constant given by Lemma 3.15 (c). Suppose that 
diam

(
Hμ ∩ (gHλ)+ε

)
� R for some g ∈ G and λ, μ ∈ Λ. Then there exist vertices 

v1, v2 ∈ Hμ and v3, v4 ∈ gHλ such that

d(v1, v2) � R, d(v1, v3), d(v2, v4) � ε.

Let p (resp. q) be a path from v1 (resp. v3) to v2 (resp. v4) such that Lab(p) (resp. 
Lab(q)) is a freely reduced word over Uμ (resp. Uλ). Then �(p) � R and p, q are oriented 
ε-close. By Lemma 3.15 (b), there exist five consecutive components of p which are 
connected to five consecutive components of q. In particular, there exist two pairs of 
adjacent components of p which are connected to four consecutive components of q. 
Some of the possible configurations of these two pairs of adjacent components are shown 
by Fig. 3, where each horizontal line represents one possible configuration, the red and 
blue segments represent the two pairs of adjacent components of p, and the corresponding 
labels are written on top of the subpaths.

Below, we assume, without loss of generality, that these two pairs of adjacent compo-
nents are of the form
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Fig. 4. Case 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 5. Case 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

f−n
μ,i g

−n
μ,j , f

−n
μ,j g

−n
μ,r .

Other possible configurations can be analyzed similarly. We distinguish two cases.
Case 1. The first pair of adjacent components of p are respectively connected to a 

pair of adjacent components of q.
Case 1 is displayed by Fig. 4, where the red (resp. blue) dashed line represents a 

path with label in 〈fn
μ,i〉 (resp. 〈gnμ,j〉) connecting the corresponding red (resp. blue) 

components. Equations (18), (19), and (20) imply that λ = μ and the red (resp. blue) 
component of q is labeled by f−n

μ,i (resp. g−n
μ,j ). As the red and blue dashed lines form a 

loop, another consequence of (18) is that both of these dashed lines are labeled by 1.
Let p1 (resp. q1) be the subpath of p (resp. q) labeled by uf−n

μ,i (resp. vf−n
μ,i ). Then 

p+
1 = q+

1 . By the structure of Uμ, Lab(p1) and Lab(q1) are words over Uμ and thus 
represent elements in Hμ. Therefore, p+

1 ∈ Hμ ∩ gHμ. It follows that g ∈ Hμ.
Case 2. The first pair of adjacent components of p are respectively connected to two 

consecutive, but not adjacent, components of q.
Case 2 is displayed by Fig. 5. Once again, Equations (18), (19), and (20) imply λ = μ. 

The structures of Uμ imply i = j = r. The red (resp. blue) dashed line on the left 
is labeled by an element in 〈fn

μ,i〉 (resp. 〈gnμ,i〉). As these dashed lines and the yellow 
segment labeled by aμ,i form a loop, assumption (b) of Proposition 7.4 implies that both 
of these dashed lines are labeled by 1. Similarly, the red and blue dashed lines on the 
right are both labeled by 1.

Therefore, the word g2n
μ,if

2n
μ,iaμ,i labels a loop in Γ(G, X �K) and thus represents 1 in 

G, which is in contradiction with assumption (b) of Proposition 7.4. Hence, Case 2 is in 
fact impossible. �
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Proof of Proposition 7.4. The first assertion follows from Lemma 7.6 and formula (16)
follows Lemmas 3.9, 7.7, 7.8, and 7.9. �
7.3. Common quotients of acylindrically hyperbolic groups

In this subsection, we prove Theorem E. Given finitely generated acylindrically hy-
perbolic groups G1 and G2, we construct a common quotient G of G′

1 = G1/K(G1) and 
G′

2 = G2/K(G2) satisfying the conclusions of that theorem, where K(G1) (resp. K(G2)) 
is the maximal finite normal subgroup of G1 (resp. G2).

The idea is to consider G̃ = G′
1 ∗G′

2 and pick a finite generating set A (resp. B) of G′
1

(resp. G′
2). The quotient G is constructed by adding particular relations (which will be 

done by Dehn filling) to G̃ which identify elements of A (resp. B) with certain elements 
of G′

2 (resp. G′
1).

There exists a finite generating set A = {a1, ..., ak} (resp. B = {b1, ..., bk}) of G′
1

(resp. G′
2) for some k ∈ N+. To simplify the argument, let

ak+1 = ak+2 = bk+1 = bk+2 = 1. (21)

To perform Dehn filling on G̃, the first step is to find hyperbolically embedded sub-
groups. By [42, Lemma 5.10], G′

1 and G′
2 are acylindrically hyperbolic with K(G′

1) =
K(G′

2) = {1}. Thus, Theorem 3.18 implies that there exist free groups

F1 ↪→h G′
1, F2 ↪→h G′

2,

each of which has rank 2k + 4. By Example 3.8, we have {G′
1, G

′
2} ↪→h G̃. Thus, Propo-

sition 3.10 implies

{F1, F2} ↪→h G̃.

In fact, F1, F2 are not quite the subgroups that we want, and we will apply Proposi-
tion 7.4 to construct other hyperbolically embedded subgroups from A, B, F1, F2. Note 
that for i = 1, 2, · · · , k + 2,

ai /∈ F2 � {1}, bi /∈ F1 � {1}.

Let {f1,i, g1,i}k+2
i=1 (resp. {f2,i, g2,i}k+2

i=1 ) be a basis of the free group F1 (resp. F2). Then 
Proposition 7.4 implies the following.

Lemma 7.10. For sufficiently large � ∈ N+, {f �
1,ibig

�
1,i}k+2

i=1 (resp. {f �
2,iaig

�
2,i}k+2

i=1 ) freely 

generates a subgroup H1 � G̃ (resp. H2 � G̃) and

{H1, H2} ↪→h G̃.
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Proof of Theorem E. As G′
1 and G′

2 are acylindrically hyperbolic, we have |G′
1| = |G′

2| =
∞ and thus cd(G′

1), cd(G′
2) � 1. Suppose cd(G′

1) = cd(G′
2) = 1. Then G′

1 and G′
2 are free 

by the Stallings-Swan theorem [68, corollary to Theorem 1]. Without loss of generality, 
we may assume that the rank of G′

1 is greater than or equal to the rank of G′
2. It follows 

that G′
2 is a quotient of G′

1. Let G = G′
2. Statements (i), (ii), and (iii) follow trivially. 

Statement (iv) also holds because if G2 is of type FPn for some n ∈ {2, 3, ..., ∞}, then 
G′

2 is a finite rank free group and thus of type FP∞.
Thus, let us assume max{cd(G′

1), cd(G′
2)} � 2. Fix a sufficiently large � ∈ N+ and let 

H1 and H2 be the subgroups given by Lemma 7.10. By Remark 3.21, Lemma 7.10, and 
Theorems 3.23, 3.25, there exist finite sets F1 ⊆ H1 � {1} and F2 ⊆ H2 � {1} such that 
if N1 � H1, N2 � H2 and N1 ∩ F1 = N2 ∩ F2 = ∅, then the following hold.

(a) {H1/N1, H2/N2} ↪→h G̃/〈 〈N1 ∪N2〉 〉.
(b) (G̃, {H1, H2}, {N1, N2}) is a Cohen-Lyndon triple and thus Theorems 4.6 and 4.8

and Corollary 4.7 can be applied to it.

Let {ui}ki=1 (resp. {vi}ki=1) be freely reduced words over the alphabet
{f �

1,k+1bk+1g
�
1,k+1, f

�
1,k+2bk+2g

�
1,k+2} (resp. {f �

2,k+1ak+1g
�
2,k+1, f

�
2,k+2ak+2g

�
2,k+2}) satis-

fying the C ′(1/6) small cancellation condition. Note that ui ∈ G′
1 and vi ∈ G′

2 for 
i = 1, ..., k by (21). Let N1 (resp. N2) be the normal subgroup of H1 (resp. H2) gener-
ated by {f �

1,ibig
�
1,iui}ki=1 (resp. {f �

2,iaig
�
2,ivi}ki=1).

By Lemma 7.10, H1 and H2 are freely generated by {f �
1,ibig

�
1,i}k+2

i=1 and {f �
2,iaig

�
2,i}k+2

i=1 , 
respectively. Thus, H1/N1 and H2/N2 can be presented as

H1/N1 = 〈f �
1,ibig

�
1,i (i = 1, ..., k + 2) | f �

1,jbjg
�
1,juj (j = 1, ..., k)〉

= 〈f �
1,k+1bk+1g

�
1,k+1, f

�
1,k+2bk+2g

�
1,k+2〉, (22)

H2/N2 = 〈f �
2,iaig

�
2,i (i = 1, ..., k + 2) | f �

2,jajg
�
2,jvj (j = 1, ..., k)〉

= 〈f �
2,k+1ak+1g

�
2,k+1, f

�
2,k+2ak+2g

�
2,k+2〉, (23)

where the last equality of (22) (resp. (23)) follows from eliminating f �
1,ibig

�
1,i (resp. 

f �
2,iaig

�
2,i) for i = 1, ..., k using Tietze transformations (see [50, Chapter II]).

Thus, H1/N1 and H2/N2 are free groups of rank 2. In particular,

card(H1/N1) = ∞. (24)

By the Greendlinger’s lemma for free groups [50, Chapter V Theorem 4.5], if 
‖ui‖, ‖vi‖, 1 � i � k, are sufficiently large, then

N1 ∩ F1 = N2 ∩ F2 = ∅.
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Let

G = G̃/〈〈N1 ∪N2〉〉.

As ak+1 = ak+2 = bk+1 = bk+2 = 1, G is a common quotient of G′
1 and G′

2. In particular, 
G is a common quotient of G1 and G2.

If H1/N1 = G, then G is a non-cyclic free group and thus is acylindrically hyperbolic. 
If H1/N1 is a proper subgroup of G, then equation (24), item (a), and Theorem 3.23
imply that G is acylindrically hyperbolic. Statement (i) is proved.

Consider statement (ii). For every n � 3 and every G-module A, we have

Hn(G;A)
∼=Hn(G̃;A) ⊕Hn(H1/N1;A)

⊕Hn(H2/N2;A) by Corollary 4.6 and that H1, H2 are free
∼=Hn(G̃;A) as H1/N1 and H2/N2 are free groups
∼=Hn(G′

1;A) ⊕Hn(G′
2;A) as G̃ = G′

1 ∗G′
2,

which is (ii).
Consider statement (iii). If either K(G1) or K(G2) is not the trivial group {1}, then 

(iii) is trivial. So let us assume that K(G1) = K(G2) = {1}. Then Corollary 4.7 implies

cd(G) � max{cd(G̃), cd(H1/N1), cd(H2/N2), cd(H1) + 1, cd(H2) + 1}

= max{cd(G̃), 1, 2} as H1, H2, H1/N1, and H2/N2 are free groups

= max{cd(G′
1), cd(G′

2)} as cd(G′
1), cd(G′

2) � 2

= max{cd(G1), cd(G2)}.

Finally, suppose that G1 and G2 are of type FPn for some n ∈ {2, 3, ..., ∞}. Then 
so are G′

1 and G′
2 [4, Corollary 9]. As H1/N1 and H2/N2 are free groups of finite rank, 

they are of type FP∞. Therefore, Theorem 4.8 implies that G is of type FPn and thus 
statement (iv) holds. �
Remark 7.11. Analogous to the above proof, in the setting of Theorem E, we have 
hd(G) � max{hd(G1), hd(G2), 2}.

8. Some applications

In this section, we give some applications of Theorems D and E.
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8.1. Infinite dimension torsion-free FP∞ groups

If a group G has cd(G) < ∞, then G is necessarily torsion-free. Of course, the converse 
is not true, e.g., cd(Z∞) = ∞. Observe however that Z∞ is not of type FP∞. In fact, 
Bieri asked if every torsion-free group of type FP∞ is also of type FP or if there is an 
FP∞ group with a non-finitely generated free abelian subgroup [70, Problem F11]. In 
[9], Brown and Geoghegan settled both questions, by showing that Thompson’s group 
F is of type FP∞.

For every torsion-free acylindrically hyperbolic group G, Theorem D embeds F into an 
acylindrically hyperbolic quotient G of G, which is a torsion-free FP∞ group of infinite 
cohomological dimension. We thus have the following.

Corollary 8.1. Every torsion-free acylindrically hyperbolic group G of type FP∞ has a 
torsion-free acylindrically hyperbolic quotient G of type FP∞ which contains the Thomp-
son group F . In particular, cd(G) = ∞.

8.2. Quotients of hyperbolic groups

SQ-universality of non-elementary hyperbolic groups was proved by Olshanskii [58]
and independently by Delzant [25]. In Theorem D, if G and C are word-hyperbolic, a 
hyperbolic quotient G of G can be constructed so that the conclusions hold. The next 
corollary is thus a strengthening of the aforementioned result.

Corollary 8.2. Let G be a non-elementary hyperbolic group and C any hyperbolic group. 
Then there is a hyperbolic quotient G of G/K(G) (in particular, G is a quotient of G), 
where K(G) is the maximal finite normal subgroup of G, such that C embeds into G and 
the following hold.

(i) For all n � 3 and every G-module A, we have

Hn(G;A) ∼= Hn(G/K(G);A) ⊕Hn(C;A),

where the action of G/K(G) (resp. C) on A is induced by the quotient map 
G/K(G) → G (resp. the embedding C ↪→ G).

(ii) cd(G) � max{cd(G), cd(C)}.

Proof. By passing to G/K(G), we may assume that K(G) = {1}. By [64, Corollary 
4.21], there is a free subgroup F2 < G of rank 2 such that G is hyperbolic relative to 
F2. By [45], four random elements of F2 freely generate a free subgroup F4 � F2 that is 
malnormal in F2. By Marshall Hall’s theorem, there exists a finite-index subgroup H of 
F2 such that F4 is a free factor of H. In particular, F4 is quasi-convex in F2, and thus 
[14, Theorem 7.11] implies that F2 is hyperbolic relative to F4. Thus, G is hyperbolic 
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relative to F4 [59]. By Lemma 7.1, C embeds into a quotient R of F4 such that R is 
hyperbolic relative to C and the quotient map F4 � R is injective on any given finite set 
F ⊆ F4�{1}. Since C is hyperbolic, so is R [59, Corollary 2.41]. Let G be the quotient of 
G by the Dehn filling F4 � R. By avoiding a suitable finite set F , we may assume that 
G is hyperbolic relative to R [60, Theorem 1.1]. Therefore, G is hyperbolic [59, Corollary 
2.41]. Items (i) and (ii) are immediate consequences of Theorem D. �

Recently in [43, Corollary 2], Italiano-Martelli-Migliorini settled a long-standing open 
problem by constructing the first example of hyperbolic group which contains a subgroup 
of type F that is not hyperbolic. Their group is the fundamental group of a 5-dimensional 
hyperbolic pseudo-manifold that fibers over the circle. The fundamental group of the fiber 
is of type F but not hyperbolic.

Corollary 8.3. Let n � 5 be an integer. Every non-elementary hyperbolic group G with 
cd(G) � n has a hyperbolic quotient G with cd(G) = n such that G contains the Italiano-
Martelli-Migliorini group. In particular, there is a type F non-hyperbolic subgroup H <

G.

Proof. Let C1 be the group constructed by Italiano-Martelli-Migliorini in [43, Corol-
lary 2]. Then cd(C1) = 5. Let C2 be a hyperbolic group with cd(C2) = n, and let 
C = C1 ∗ C2. Since cd(G) < ∞, we have K(G) = {1}. Corollary 8.2 thus yields a 
hyperbolic quotient G such that C embeds into G and cd(G) � max{cd(G), cd(C)} =
max{cd(G), cd(C1), cd(C2)} = n. Since C embeds into G, we also have cd(G) � cd(C) �
cd(C2) = n, and thus cd(G) = n. �
8.3. Property (T) quotients

A group G has Kazhdan’s property (T) if every affine isometric action of G on a Hilbert 
space has a global fixed point. The next result strengthens [42, Corollary 1.7].

Corollary 8.4. Every acylindrically hyperbolic group G of type FPn for some n ∈
{2, 3, ..., ∞} (resp. FP ) has an acylindrically hyperbolic quotient G of type FPn

(resp. FP ) with Kazhdan’s Property (T) such that cd(G) � max{cd(G), 2}.

Proof. Let Γ be an type FP acylindrically hyperbolic property (T) group with cd(Γ) = 2. 
For example, one can let Γ be a random group in the Gromov density model with density 
1/3 < d < 1/2. By [39, Section 9.B] (see also [56, Theorem 1]), with overwhelming 
probability Γ is hyperbolic and has an aspherical presentation, and thus is of type FP and 
satisfies cd(Γ) � 2. By [73, Theorem 4] (see also [57, Section I.3.g]), with overwhelming 
probability Γ has property (T). The result now follows from Theorem E applied to G
and Γ. �
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The above result can for example be applied to mapping class groups of surfaces of 
finite type, outer automorphism groups of free groups of finite rank and (non-virtually 
polycyclic) fundamental groups of compact orientable 3-manifolds which all exhibit nice 
cohomological finiteness conditions.

8.4. Acylindrically hyperbolic quotients distinguishable by cohomology

Let G be any acylindrically hyperbolic group. For each k � 3, Theorem D implies that 
one can embed Zk into a quotient Gk of G such that Hn(Gk; Z) ∼= Hn(G; Z) ⊕Hn(Zk; Z)
for all n � 3. Suppose cd(G) < ∞. Then H∗(Gk; Z) = H∗(G�; Z) for k, � > cd(G). 
Suppose that G is of type FP∞ instead. Then Hk(G;Z) is finitely generated, and thus 
Hk(Gk; Z) � Hk(G�; Z) for k = �. This establishes the following.

Corollary 8.5. Let G be any acylindrically hyperbolic group. Then there exists an infi-
nite family {Gk}∞k=3 of acylindrically hyperbolic quotients of G such that Hn(Gk; Z) ∼=
Hn(G; Z) ⊕ Hn(Zk; Z) for all n, k � 3. In particular, if cd(G) < ∞ or G is of type 
FP∞, then each pair of elements of {Gk}∞k=l have non-isomorphic integral cohomology 
for l = cd(G) + 1 and l = 3, respectively.

If instead of embedding Zk, we embed the family of Houghton’s groups or Abel’s 
groups [18], then we will obtain quotients that are separated by homological finiteness 
properties.

Corollary 8.6. Let G be any acylindrically hyperbolic group of type FP∞. Then G has 
a family of acylindrically hyperbolic quotients {Gk}∞k=2 such that for each k, Gk has 
Kazhdan’s Property (T), is of type FPk−1 but not of type FPk.

We remark that being of type FPn is a quasi-isometric invariant [4, Corollary 9]. 
Therefore, the quotients {Gk}k�1 in Corollary 8.6 are pairwise non-quasi-isometric.

Proof. By Corollary 8.4, we can pass to a quotient G of G that is acylindrically hyperbolic 
and of type FP∞ and has property (T). There exists a family of groups {Hk}∞k=2 such that 
for all k, Hk is of type FPk−1 but not of type FPk. For example, one can let {Hk}∞k=2 be 
the family of Houghton’s groups or Abel’s groups [18, Theorems 5.1 and 6.1]. Theorem D
then embeds each Hk to a quotient Gk of G with the desired properties. �
8.5. First Betti number and a question of Osin

Motivated by the Virtual Positive First Betti Number Conjecture which has now been 
settled by Agol [3], Osin posed the following question.

Question 8.7 (Osin, [61, Problem 2.3]). Let G be a Poincaré duality group of dimension 
3 such that G is hyperbolic relative to its subgroup H. If G has positive virtual first 
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Betti number, is it true that for most N �H, G/〈 〈N〉 〉 also has positive virtual first Betti 
number?

Question 8.7 is only about virtual Betti numbers. For actual Betti numbers there 
are counterexamples. For example, let S be an orientable surface of genus two. Take a 
suitable pseudo-Anosov homeomorphism φ on S such that the mapping torus Tφ has 
b1(Tφ) = 1. Then π1(Tφ) is hyperbolic and is a semi-direct product π1(Tφ) = π1(S) � 〈t〉. 
π1(Tφ) is hyperbolic relative to 〈t〉 [14], and for every n � 1, b1(π1(Tφ)/〈 〈tn〉 〉) = 0 since 
the image of t generates H1(π1(Tφ); Q). Using this example, we prove the following.

Corollary 8.8. Let G be any acylindrically hyperbolic group. Then G has an acylindrically 
hyperbolic quotient G such that b1(G) = 0, cd(G) � max{cd(G), 3}, and Hn(G; A) ∼=
Hn(G; A) for all n � 4 and any G-module A.

Proof. The idea is to construct an acylindrically hyperbolic group G′ such that b1(G′) =
0 and cd(G′) � 3. Once such a G′ has been constructed, Theorem E will produce a 
common quotient G of G and G′ with the desired properties.

So it remains to construct G′. Let Tφ, t be as above. Take eight elements a1, a2, · · · , a8

that generate π1(S) as a group. Then a1, a2, · · · , a8, t generate π1(Tφ) as a group. Let 
X be the set consisting of a1, a2, · · · , a8, t and their inverses. Randomly generate two 
words w1, w2 over X of length n and identify w1, w2 with the elements of π1(Tφ) they 
represent.

By [54, Theorem 1], as n → ∞, with probability 1 we have that 〈w1, w2〉 � π1(Tφ) is 
free of rank 2 and 〈w1, w2〉 ↪→h π1(Tφ). Moreover, as n → ∞, with positive probability we 
have that both w1 and w2 have non-zero t-exponents. Thus, there exist w1, w2 ∈ π1(Tφ)
such that

(a) 〈w1, w2〉 � π1(Tφ) is free of rank 2,
(b) 〈w1, w2〉 ↪→h π1(Tφ), and
(c) w1 and w2 have non-zero t-exponents.

Let w be a word over w1, w2 such that w is not a proper power, satisfies the 
C ′(1/6) small cancellation condition, and w has positive t-exponent. Let N be the 
normal subgroup of 〈w1, w2〉 generated by w. By [52, Theorem 11.1], 〈w1, w2〉/N
has cd(〈w1, w2〉/N) � 2. Let 〈 〈N〉 〉 be the normal closure of N in π1(Tφ). By mak-
ing w sufficiently long, we can guarantee that N avoids any given finite subset of 
〈w1, w2〉 � {1}, and therefore guarantee that π1(Tφ)/〈 〈N〉 〉 is acylindrically hyperbolic 
and cd(π1(Tφ)/〈 〈N〉 〉) � 3 by Theorems 3.23 and A. Since w has positive t-exponent, we 
have b1(π1(Tφ)/〈 〈N〉 〉) = 0. So it suffices to let G′ = π1(Tφ)/〈 〈N〉 〉. �
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